Ethylene Oxide-
Information about Health
Concerns

Emory Southeast Pediatric Environmental
Health Specialty Unit
PEHSU Participants

• Robert J. Geller, MD, FAAP, FACMT
 • Professor of Pediatrics, Emory University School of Medicine
 • Trained in pediatrics and medical toxicology
 • PEHSU participant since 2000, Director since 2005

• Abby Mutic, RN, PhD
 • Assistant Professor of Nursing, Emory University School of Nursing
 • Co-Director, Emory Childrens’ Chemical Study (C-CHEM)
 • Co-Director, PEHSU since 2017
Accreditation & Disclosures

• Drs Geller and Mutic have no conflicts of interest to disclose relative to this topic. Both are employees of Emory University.

• This material was supported by the American Academy of Pediatrics (AAP) and funded (in part) by the cooperative agreement FAIN: 5 NU61TS000237-05 from the Agency for Toxic Substances and Disease Registry (ATSDR). The U.S. Environmental Protection Agency (EPA) supports the PEHSU by providing partial funding to ATSDR under Inter-Agency Agreement number DW-75-95877701-4.

• Neither EPA nor ATSDR endorse the purchase of any commercial products or services mentioned in PEHSU publications
What is a PEHSU?

• Grant funded

• Provide an independent source of information and education to professionals and community members

• Regarding effects of environmental exposures of all kinds on children and women of child-bearing age

• Housed for the Southeast US (Federal Region 4) at Emory since the program’s inception in 2000
EtO - Chemical Structure
Background Information- EtO

• Most EtO used for precursor for industrial chemicals (e.g., ethylene glycol), plastics, PVC pipes

• Less than 1% used for sterilization of medical equipment, consumer products, certain foods (e.g., spices) that can’t be steam sterilized

• Used as a fumigant for some agricultural products
EtO Background

Physical properties:

- High Vapor Pressure- gas at 20°C
- Colorless, tasteless vapor
- Odor-threshold is 500 ppm
- Sweet, ether-like odor
- Flammable, explosive
- Reacts with water, strong acids, alkalis, and oxidizers
- Atmospheric persistence: 50-60 day half-life; degrades to hydroxyl radicals

How long does EtO stay in the body?

• Physiological half life: 45-60 minutes

• Exhaled as EtO or metabolized and excreted in urine

• Completely eliminated within hours to a day after exposure has ended

Routes of Exposure to EtO

- Inhalation – most likely exposure pathway, due to high vapor pressure
- Dermal- liquid EtO
Occupational High Level EtO Exposure

ACUTE Effects

- Respiratory, skin, eye irritant

- Causes bronchospasm (asthma-like effects); at high levels, ? immediate or delayed effects on the lung

- ? Seizures, CNS depression, ? delayed 6+ hours
 - Nausea/ vomiting- ? Delayed 6+ hours

- Kidney damage

- Increased risk of pregnancy miscarriage

Occupational High Level EtO Exposure

CHRONIC Health Effects

• Cancer
• Reproductive effects, fetal effects
• Impaired cognitive function, seizures
• Damage to liver and kidneys
• Skin allergy
• Cataracts and corneal burns
• Peripheral and central neuropathy

Low Level EtO Exposure – Health Effects

• Acute - none likely

• Chronic
 • Increased risk of certain cancers
 • Risk likely increases with higher intensity and longer duration of exposure
EtO Metabolites

• Conjugates with glutathione – nontoxic

• Ethylene glycol – level produced is much too low (< 0.001%) to cause any discernable health effects
Acknowledgements

Susan Buchanan, MD, PEHSU Region 5 (North Central US) for sharing her previous version of this slide set