ENVIRONMENTAL PROTECTION AGENCY

40 CFR Parts 51, 60, 61, and 63

[EPA-HQ-OAR-2018-0815; FRL-XXXX-XX-OAR]

RIN 2060-AU39

Test Methods and Performance Specifications for Air Emission Sources

AGENCY: Environmental Protection Agency (EPA).

ACTION: Proposed rule.

SUMMARY: This action proposes corrections and updates to regulations for source testing of emissions under various rules. This proposed rule includes corrections to inaccurate testing provisions, updates to outdated procedures, and approved alternative procedures that provide testers enhanced flexibility. The revisions will improve the quality of data but will not impose new substantive requirements on source owners or operators.

DATES: Comments must be received on or before [insert date 60 days after date of publication in the Federal Register].

Public Hearing: If a public hearing is requested by [INSERT DATE 5 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER], then we will hold a public hearing. If a public hearing is requested, then additional details about the public hearing will be provided in a separate Federal Register notice and on our Web site at https://www3.epa.gov/ttn/emc/methods. To request a hearing, to register to speak at a hearing, or to inquire if a hearing will be held, please contact Mrs. Lula Melton by email at melton.lula@epa.gov or phone at (919) 541-2910. The last day to pre-register in
advance to speak at the public hearing will be [INSERT DATE 13 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. If held, the public hearing will convene at 9:00 a.m. (local time) and will conclude at 4:00 p.m. (local time).

Because this hearing is being held at a U.S. government facility, individuals planning to attend the hearing should be prepared to show valid picture identification to the security staff in order to gain access to the meeting room. Please note that the REAL ID Act, passed by Congress in 2005, established new requirements for entering federal facilities. For purposes of the REAL ID Act, EPA will accept government-issued IDs, including drivers’ licenses, from the District of Columbia and all states and territories except from American Samoa. If your identification is issued by American Samoa, you must present an additional form of identification to enter the federal building where the public hearing will be held. Acceptable alternative forms of identification include: federal employee badges, passports, enhanced driver’s licenses, and military identification cards. For additional information for the status of your state regarding REAL ID, go to: https://www.dhs.gov/real-id-enforcement-brieffrequently-asked-questions. Any objects brought into the building need to fit through the security screening system, such as a purse, laptop bag, or small backpack. Demonstrations will not be allowed on federal property for security reasons.

ADDRESSES: You may send comments, identified by Docket ID No. EPA-HQ-OAR-2018-0815 by one of the following methods:

- Federal eRulemaking Portal: https://www.regulations.gov (our preferred method). Follow the online instructions for submitting comments.
- Email: a-and-r docket@epa.gov. Include docket ID No. EPA-HQ-OAR-2018-0815 in the subject line of the message.
- Fax: (202) 566-9744.

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.

• Hand Delivery/Courier: EPA Docket Center, WJC West Building, Room 3334, 1301 Constitution Avenue, NW, Washington, DC 20004. The Docket Center’s hours of operations are 8:30 a.m. – 4:30 p.m., Monday through Friday (except Federal Holidays).

FOR FURTHER INFORMATION CONTACT: Mrs. Lula H. Melton, Office of Air Quality Planning and Standards, Air Quality Assessment Division (E143-02), Environmental Protection Agency, Research Triangle Park, NC 27711; telephone number: (919) 541-2910; fax number: (919) 541-0516; email address: melton.lula@epa.gov.

SUPPLEMENTARY INFORMATION:

The supplementary information in this preamble is organized as follows:

I. Written Comments
II. General Information
 A. Does this action apply to me?
 B. What action is the agency taking?
III. Background
IV. Incorporation by Reference
V. Summary of Proposed Amendments
 A. Method 201A of Appendix M of Part 51
 B. General Provisions (Subpart A) of Part 60
 C. Standards of Performance for New Residential Wood Heaters (Subpart AAA) of Part 60
 D. Standards of Performance for Municipal Solid Waste Landfills That Commenced Construction, Reconstruction, or Modification After July 17, 2014 (Subpart XXX) of Part 60
 E. Standards of Performance for Commercial and Industrial Solid Waste Incineration Units (Subpart CCCC) of Part 60
 F. Emission Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units (Subpart DDDD) of Part 60
 G. Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (Subpart JJJJ) of Part 60
 H. Standards of Performance for Stationary Combustion Turbines (Subpart KKKK) of Part 60
 I. Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces (Subpart QQQQ) of Part 60
 J. Method 4 of Appendix A-3 of Part 60
 K. Method 5 of Appendix A-3 of Part 60

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
L. Method 7C of Appendix A-4 of Part 60
M. Method 7E of Appendix A-4 of Part 60
N. Method 12 of Appendix A-5 of Part 60
O. Method 16B of Appendix A-6 of Part 60
P. Method 16C of Appendix A-6 of Part 60
Q. Method 24 of Appendix A-7 of Part 60
R. Method 25C of Appendix A-7 of Part 60
S. Method 26 of Appendix A-8 of Part 60
T. Method 26A of Appendix A-8 of Part 60
U. Performance Specification 4B of Appendix B of Part 60
V. Performance Specification 5 of Appendix B of Part 60
W. Performance Specification 6 of Appendix B of Part 60
X. Performance Specification 8 of Appendix B of Part 60
Y. Performance Specification 9 of Appendix B of Part 60
Z. Performance Specification 18 of Appendix B of Part 60
AA. Procedure 1 of Appendix F of Part 60
BB. Method 107 of Appendix B of Part 61
CC. General Provisions (Subpart A) of Part 63
DD. Portland Cement Manufacturing (Subpart LLL) of Part 63
EE. Method 301 of Appendix A of Part 63
FF. Method 308 of Appendix A of Part 63
GG. Method 311 of Appendix A of Part 63
HH. Method 315 of Appendix A of Part 63
II. Method 316 of Appendix A of Part 63
JJ. Method 323 of Appendix A of Part 63

VI. Statutory and Executive Order Reviews
A. Executive Order 12866: Regulatory Planning and Review and Executive Order 13563: Improving Regulation and Regulatory Review
B. Executive Order 13771: Reducing Regulations and Controlling Regulatory Costs
C. Paperwork Reduction Act (PRA)
D. Regulatory Flexibility Act (RFA)
E. Unfunded Mandates Reform Act (UMRA)
F. Executive Order 13132: Federalism
G. Executive Order 13175: Consultation and Coordination with Indian Tribal Governments
H. Executive Order 13045: Protection of Children from Environmental Health Risks and Safety Risks
I. Executive Order 13211: Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution or Use
J. National Technology Transfer and Advancement Act and 1 CFR Part 51
K. Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations
I. Written Comments

Submit your comments identified by Docket ID No. EPA-HQ-OAR-2018-0815 at https://www.regulations.gov (our preferred method) or the other methods identified in the ADDRESSES section. Once submitted, comments cannot be edited or removed from the docket. Do not submit electronically any information you consider to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Multimedia submissions (audio, video, etc.) must be accompanied by a written comment. The written comment is considered the official comment and should include discussion of all points you wish to make. The EPA will generally not consider comments or comment contents located outside of the primary submission (i.e., on the Web, Cloud, or other file sharing system). For additional submission methods, the full EPA public comment policy, information about CBI or multimedia submissions, and general guidance on making effective comments, please visit https://www.epa.gov/dockets/commenting-epa-dockets.

II. General Information

A. Does this action apply to me?

The proposed amendments apply to industries that are subject to the current provisions of 40 CFR parts 51, 60, 61, and 63. We did not list all of the specific affected industries or their North American Industry Classification System (NAICS) codes herein since there are many affected sources in numerous NAICS categories. If you have any questions regarding the applicability of this action to a particular entity, consult either the air permitting authority for the entity or your EPA Regional representative as listed in 40 CFR 63.13.

B. What action is the agency taking?
This action proposes corrections and revisions to source test methods, performance specifications (PS), and associated regulations. The corrections and revisions consist primarily of typographical errors, updates to testing procedures, and the addition of alternative equipment and methods the Agency has deemed acceptable to use.

III. Background

The EPA catalogs errors and corrections, as well as necessary revisions to test methods, performance specifications, and associated regulations in 40 CFR parts 51, 60, 61, and 63 and periodically updates and revises these provisions. The most recent updates and revisions were promulgated on November 14, 2018 (83 FR 56713). This proposed rule addresses necessary corrections and revisions identified subsequent to that final action, many of which were brought to our attention by regulated sources and end-users, such as environmental consultants and compliance professionals. These revisions will improve the quality of data obtained and give source testers the flexibility to use newly-approved alternative procedures.

IV. Incorporation by Reference

The EPA proposes to incorporate by reference various American Society for Testing and Materials (ASTM) International standards in several testing provisions. Specifically, the EPA proposes to incorporate ASTM D 2369-10, which covers volatile organic content of coatings in Method 24. These standards were developed and adopted by ASTM International and may be obtained from http://www.astm.org or from the ASTM at 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

The EPA proposes to incorporate by reference SW-846 Method 6010D and SW-846 Method 6020B in Method 12. Method 6010D covers inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis, and Method 6020B covers inductively coupled plasma-mass spectrometry (ICP-
MS) analysis. These methods may be obtained from https://www.epa.gov or from the U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue NW, Washington, DE 20460.

The EPA proposes to incorporate by reference Gas Processors Association (GPA) 2166 and GPA 2174 in subpart KKKK of part 60, which involve procedures for obtaining samples from gaseous and liquid fuels, respectively. These GPA standards were developed and adopted by the Gas Processors Association and may be obtained from https://gpamidstream.org/ or from the Gas Processors Association, 6526 East 60th Street, Tulsa, OK 74145.

The EPA proposes to incorporate by reference International Organization for Standardization (ISO) 10715 in subpart KKKK of part 60. This standard involves procedures for obtaining samples from gaseous fuels. This standard was developed by the International Organization for Standardization and may be obtained from https://www.iso.org/home.html or from the IHS Inc., 15 Inverness Way East, Englewood, CO 80112.

ASTM D6784-02 (Reapproved 2008) and ASME PTC 19.10-1981 were previously approved for incorporation by reference, and no changes are proposed.

The EPA proposes to update the ASTM standards referenced in Method 311, but these standards are not incorporated by reference.

V. Summary of Proposed Amendments

The following amendments are being proposed.

A. Method 201A of Appendix M of Part 51

In Method 201A, section 1.2, the erroneous gas filtration temperature limit of 30 °C would be revised to 29.4 °C. In section 1.6, the erroneous word “recommended” would be corrected to “required.” Section 6.2.1(d) would be revised to allow polystyrene petri dishes as an alternative to polyethylene due to the lack of commercially available polyethylene petri dishes. The polystyrene petri dishes offer
similar chemical resistivity to acids and inorganics as polyethene and have been shown to transfer extreme low residual gravimetric mass to filters when used in ambient air applications. In section 8.6.6, the erroneous stack temperature of ±10 °C would be revised to ± 28 °C. In section 17.0, the erroneous caption for Figure 7 would be corrected from “Minimum Number of Traverse Points for Preliminary Method 4 Traverse” to “Maximum Number of Required Traverse Points,” and the erroneous y-axis label would be corrected from “Minimum Number of Traverse Points” to “Maximum Number of Traverse Points.”

B. General Provisions (Subpart A) of Part 60

In the General Provisions of part 60, § 60.17(h) would be revised to add ASTM D2369-10 to the list of incorporations by reference and to re-number the remaining consensus standards that are incorporated by reference in alpha-numeric order.

In part 60, § 60.17(j) would be revised to add SW-846-6010D and SW-846-6020B to the list of incorporations by reference and to re-number the remaining standards that are incorporated by reference in alpha-numeric order.

In part 60, § 60.17(k) would be revised to add GPA Standards 2166-17 and 2174-14 to the list of incorporations by reference and to re-number the remaining GPA standards that are incorporated by reference in alpha-numeric order.

In part 60, § 60.17(l) would be revised to add ISO 10715:1997 to the list of incorporations by reference.

C. Standards of Performance for New Residential Wood Heaters (Subpart AAA) of Part 60

In § 60.534(h), the language would be amended based on comments received in response to an Advance Notice of Proposed Rulemaking (ANPRM), for Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces (83 FR 61585, November...
30, 2018). Several commenters stated that the final clause of these existing paragraphs would create loopholes that allow manufacturers and test labs to withhold critical testing data. The EPA recognizes that this provision was not intended to create an avenue for omissions, so we are proposing language to clarify these communications and their reporting.

D. Standards of Performance for Municipal Solid Waste Landfills That Commenced Construction, Reconstruction, or Modification After July 17, 2014 (Subpart XXX) of Part 60

In § 60.766(a)(3), the text for calibration of temperature measurement would be revised to provide clarity and improve the consistency of implementation.

E. Standards of Performance for Commercial and Industrial Solid Waste Incineration Units (Subpart CCCC) of Part 60

Subpart CCCC of part 60 would be revised to clarify that (1) initial and annual performance testing for particulate matter (PM) for waste-burning kilns and energy recovery units (ERU) is to be conducted using Method 5 or Method 29 of Appendix A of part 60; (2) the required particulate matter continuous parameter monitoring system (PM CPMS) is used to demonstrate continuing compliance with the PM emission limit; and (3) heat input information must be reported for each ERU. The current language in §§ 60.2110(i), (i)(1)(iii) and 60.2145(b), when read together, make it clear that for purposes of demonstrating compliance with the PM emission limit, there must be initial testing and subsequently, annually and for ongoing continuous demonstration of compliance, that data from the compliant performance test in turn must be used to set an operating limit for the PM CPMS. Tables 6 and 7, however, presently specify PM CPMS as the performance test method for determining compliance.

Paragraphs 60.2110(i)(1) and 60.2145(j) would be revised to clarify that the PM CPMS coupled with an operating limit is used for continuing compliance demonstration with the PM emission limit. Paragraphs 60.2110(i)(1)(iii) and (i)(2) would be revised to include Method 29 as an alternative to steps to ensure the accuracy of this version, but it is not the official version.
Method 5 to measure PM in determining compliance with the PM emission limit. Paragraph 60.2145(j) would also be revised to add PM to the list of pollutants for which performance tests are conducted annually. Paragraph (p) would be added to § 60.2210 to require that annual reports include the annual heat input and average annual heat input rate of all fuels being burned in ERUs in order to verify which subcategory of ERU applies.

The required annual performance test timeframe would be changed from “between 11 and 13 calendar months following the previous performance test” to “no later than 13 calendar months following the previous performance test” in paragraphs 60.2145(y)(3) and 60.2150. The current two-month testing range can present operational and testing challenges for facilities that have multiple commercial and industrial solid waste incineration (CISWI) units, and this revision would be consistent with other rules, such as the National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors, to which CISWI units may be subject.

Table 6 (Emission Limitations for Energy Recovery Units) and Table 7 (Emission Limitations for Waste-Burning Kilns) would be revised to clarify the performance test method for PM. The fourth column of the “Particulate matter (filterable)” row of Table 6 would be revised to remove the requirement to use a PM CPMS as the performance test method for large ERU. The fourth column of the “Particulate matter (filterable)” row of Table 7 would be revised to remove the requirement to use a PM CPMS and to instead specify Methods 5 and 29 as alternatives for measuring PM to determine compliance with the PM limit. The third column of the “Particulate matter (filterable)” row of Table 7 would be changed from a 30-day rolling average to specify a 3-run average with a minimum sample volume of 2 dry standard cubic meter (dscm) per run.
F. Emission Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units (Subpart DDDD) of Part 60

Subpart DDDD of part 60 would be revised to clarify that (1) initial and annual performance testing for PM for waste-burning kilns and ERU is to be conducted using Method 5 or Method 29 of Appendix A of part 60; (2) the required PM CPMS is used to demonstrate continuing compliance with the PM emission limit; and (3) heat input information must be reported for ERU. The current language in §§ 60.2675(i) and (i)(1)(iii) and 60.2710(b), when read together, makes it clear that for purposes of demonstrating compliance for PM, performance testing must be used initially and then annually and for purposes of ongoing continuous demonstration of compliance, data from the compliant performance test is in turn used to set an operating limit for the PM CPMS. Tables 7 and 8, however, presently specify PM CPMS as the performance test method for determining compliance.

Paragraphs 60.2675(i)(1) and 60.2710(j) would be revised to clarify that the PM CPMS is used for continuing compliance demonstration with the PM emission limit. Paragraph 60.2710(j) would be also revised to clarify that PM performance tests are conducted annually and §§ 60.2675(i)(1)(iii) and (i)(2) would be revised to include Method 29 as an alternative to Method 5 to measure PM in determining compliance with the PM emission limit.

Also, the required annual performance test timeframe would be changed from “between 11 and 13 calendar months following the previous performance test” to “no later than 13 calendar months following the previous performance test” in §§ 60.2710(y)(3) and 60.2715. The current two-month testing range can present operational and testing challenges for facilities that have multiple CISWI units, and this revision would be consistent with other rules, such as the National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors, to which CISWI units may be subject.
Table 7 (Emission Limitations for Energy Recovery Units) and Table 8 (Emission Limitations That Apply to Waste-Burning Kilns) would be revised to clarify the performance test method for PM. The fourth column of the “Particulate matter filterable” row of Table 7 would be revised to remove the requirement to use a PM CPMS as the performance test method for large ERU. The fourth column of the “Particulate matter filterable” row of Table 8 would be revised to specify Methods 5 and 29 as alternatives for measuring PM to determine compliance with the PM emission limit. The third column of the “Particulate matter filterable” row of Table 8 would be changed from a 30-day rolling average to specify a 3-run average with a minimum sample volume of 1 dscm per run.

G. Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (Subpart JJJJ) of Part 60

In Table 2 of subpart JJJJ, text would be added to clarify that when stack gas flowrate measurements are necessary, they must be made at the same time as pollutant concentration measurements unless the option in Method 1A is applicable and is being used.

H. Standards of Performance for Stationary Combustion Turbines (Subpart KKKK) of Part 60

In 2006, EPA promulgated the combustion turbine criteria pollutant NSPS, Subpart KKKK of 40 CFR part 60 (71 FR 38482, July 6, 2006). This rule, which includes a sulfur dioxide (SO₂) emissions standard for all fuels, including natural gas, also made provisions to minimize the compliance burden for owners/operators of combustion turbines burning natural gas and/or low sulfur distillate oil. At the time, the Agency recognized that any SO₂ testing requirements for owners/operators of combustion turbines burning natural gas would result in compliance costs without any associated environmental benefit.

As currently written, the initial and subsequent performance tests required in § 60.4415 may be satisfied by fuel analyses performed by the facility, a contractor, the fuel vendor, or any other qualified agency as described in § 60.4415(a)(1). However, the fuel sample must be collected using ASTM D5287.
(Standard Practice for Automatic Sampling of Gaseous Fuels). This method is not typically used by owner/operators of natural gas pipelines and, as a result, tariff sheets cannot be used without approval of the alternate method. This is creating a situation where the owner/operators of the combustion turbines must do their own sampling and testing, a burden that was not intended in the original rulemaking.

To align the rule requirements with the original intent of subpart KKKK, the EPA is proposing to include additional sampling methods in order for tariff sheets to be used to satisfy the SO$_2$ performance testing requirements. Specifically, § 60.4415(a)(1) would be amended to include GPA 2166 and ISO 10715 for manual sampling of gaseous fuels. In addition, manual sampling method GPA 2174 would be added for liquid fuels. The EPA is soliciting comment regarding whether additional sampling methods should also be included and whether additional test methods should be included in §§ 60.4360 and 60.4415. Specifically, for sampling, EPA is soliciting comment on including American Petroleum Institute (API) Manual of Petroleum Measurement Standards, Chapter 14-Natural Gas Fluids Measurement, Section 1-Collecting and Handling of Natural Gas Samples for Custody Transfer, 7th Edition, August 2017. For determining the sulfur content of liquid fuels, EPA is soliciting comment on adding ASTM D5623-94 (2014) (Standard Test Method for Sulfur Compounds in Light Petroleum Liquids by Gas Chromatography and Sulfur Selective Detection) and ASTM D7039-15a (Standard Test Method for Sulfur in Gasoline and Diesel Fuel by Monochromatic Wavelength Dispersive X-ray Fluorescence Spectrometry). For determining the sulfur content of gaseous fuels, EPA is soliciting comment on adding GPA D2140-17 (Liquefied Petroleum Gas Specifications and Test Methods) and GPA 2261-19 (Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography).

These amendments would also be consistent with the burden reduction proposed by the EPA in 2012 (77 FR 52554, August 29, 2012). In that proposal, the EPA proposed amendments to subpart KKKK that would eliminate the SO$_2$ emissions limit for owner/operators of combustion turbines.
burning natural gas and/or low sulfur distillate and add additional sampling and test methods for owners/operators of combustion turbines burning other fuels. (The EPA has not taken final action on that proposal.)

I. Standard of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces (Subpart QQQQ) of Part 60

In subpart QQQQ, in § 60.5476(i), the language would be amended based on comments received in response to an ANPRM for Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces (83 FR 61585, November 30, 2018). Several commenters stated that the final clause of these existing paragraphs would create loopholes that allow manufacturers and test labs to withhold critical testing data. The EPA recognizes that this provision was not intended to create an avenue for omissions, so we are proposing language to clarify these communications and their reporting.

J. Method 4 of Appendix A-3 of Part 60

In Method 4, the erroneous leak check procedures in section 8.1.3 would be corrected; the erroneous section 8.1.4.2 would be corrected; and in the table in section 9.1, the erroneous reference to section 8.1.1.4 would be replaced with section 8.1.3.2.2.

Method 4 would be revised to standardize the constants between Methods 4 and 5, and more significant digits would be added to constants to remove rounding and truncation errors. Also, the option for volumetric determination of the liquid content would be deleted to remove the unnecessary density conversion. We believe most method users have moved to gravimetric measurement of the liquid contents to lower the cost and increase the accuracy of the liquid measurement. Revisions would occur in various sections (2.1, 6.1.5, 11.1, 11.2, 12.1.1, 12.1.2, 12.1.3, 12.2.1, and 12.2.2) and Figures 4-4 and 4-5.
K. Method 5 of Appendix A-3 of Part 60

In Method 5, sections 6.2.4 and 8.1.2 would be revised to allow polystyrene petri dishes as an alternative to polyethylene due to the lack of commercially available polyethylene petri dishes. The polystyrene petri dishes offer similar chemical resistivity to acids and inorganics as polyethene and have been shown to transfer extreme low residual gravimetric mass to the filters when used in ambient air applications.

Method 5 would also be revised to standardize the constants between Methods 4 and 5, and more significant digits would be added to constants to remove rounding and truncation errors. Also, the option for volumetric determination of the liquid content would be deleted to remove the unnecessary density conversion. We believe most method users have moved to gravimetric measurement of the liquid contents to lower the cost and increase the accuracy of the liquid measurement. Revisions would occur in various sections (6.1.1.8, 6.2.5, 8.7.6.4, 12.1, 12.3, 12.4, 12.11.1, 12.11.2, 16.1.1.4, and 16.2.3.3) and in Figure 5-6.

L. Method 7C of Appendix A-4 of Part 60

In Method 7C, in section 7.2.11, the erroneous chemical compound, sodium sulfite would be corrected to sodium nitrite.

M. Method 7E of Appendix A-4 of Part 60

In Method 7E, section 8.5 would be revised to ensure that the specified bias and calibration error checks are performed consistently. The results of the post-run system bias and calibration error checks are used to validate the run, as well as to correct the results of each individual test run for bias found in the sampling system. The more frequently these checks are performed, the more accurate the bias adjusted data will be.

N. Method 12 of Appendix A-5 of Part 60

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
In Method 12, sections 7.1.2, 8.7.1.6, 8.7.3.1, and 8.7.3.6 would be revised to remove references regarding the use of silicone grease, which is no longer allowed when conducting Method 5, and section 12.3 would be revised to correctly refer to the title of section 12.4 of Method 5.

Section 16.1 allows measurements of PM emissions in conjunction with the lead measurement but does not currently provide enough detail to ensure proper PM measurement; the proposed revisions to section 16.1 would provide testers with the necessary procedures to execute the PM and lead emissions measurements using one sampling train.

Sections 16.3, 16.4.1, 16.4.2, 16.5, 16.5.1, and 16.5.2 would be revised to specify appropriate EPA analytical methods, as well as supporting quality assurance procedures, as part of the allowed alternatives to use inductively coupled plasma-atomic emission spectrometry (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS) for sample analysis. Section 16.0 currently allows three alternatives to the atomic absorption analysis otherwise required in Method 12, specifically ICP-AES in section 16.4, ICP-MS in section 16.5, and cold vapor atomic fluorescence spectrometry (CVAFS) in section 16.6. In regard to the options to use ICP-AES and ICP-MS for analysis of lead, sections 16.4 and 16.5 currently do not include any specifics for applying these candidate analytical techniques, nor any procedures for assessing data quality. The proposed revisions would provide the needed specificity by referencing existing EPA methods for ICP-AES and ICP-MS along with supporting quality assurance requirements. The option to use CVAFS to measure lead (section 16.6) would be removed since CVAFS for lead is not generally available, and there is no existing EPA method for conducting it.

O. Method 16B of Appendix A-6 of Part 60

In Method 16B, in section 2.1, the erroneous phrase “an integrated gas sample” would be corrected to “a gas sample.” In sections 6.1 and 8.2, the reference to section 8.4.1 would be changed to 8.3.1 since section 8.4.1 would be renumbered to 8.3.1. The text in section 8.3, “Analysis. Inject aliquots
of the sample into the GC/FPD analyzer for analysis. Determine the concentration of SO₂ directly from the calibration curves or from the equation for the least-squares line.” would be moved to section 11.1 to be consistent with EPA test method formatting. Sections 8.4, 8.4.1, and 8.4.2 would be renumbered to 8.3, 8.3.1, and 8.3.2, respectively since the text in section 8.3 would be moved to section 11.1. In section 11.1, the sentence “Sample collection and analysis are concurrent for this method (see section 8.3).” would be deleted. Section 11.2 would be added so that a uniform set of analysis results would be obtained over the test period.

P. Method 16C of Appendix A-6 of Part 60

In Method 16C, in section 13.1, “gas concentration” would be replaced with “span” for clarity.

Q. Method 24 of Appendix A-7 of Part 60

In Method 24, section 6.2, the most recent version of ASTM D 2369 (ASTM D 2369-10) would be added.

R. Method 25C of Appendix A-7 of Part 60

We are proposing to change the correction of non-methane organic compounds (NMOC) within the method. Currently, we require the NMOC to be corrected by nitrogen or oxygen content. The correction is done by nitrogen unless the nitrogen content exceeds a threshold of 20 percent. When the nitrogen threshold is above 20 percent, the correction is done by oxygen. We are considering multiple options for revisions, which are outlined in greater detail in docket ID EPA-HQ-OAR-2018-0815, based on data provided by industry also provided in docket ID EPA-HQ-OAR-2018-0815. The revisions to the correction that we are considering are for when only oxygen is used as a NMOC correction, setting a rainfall threshold in lieu of a nitrogen percent threshold, and requiring a methane measurement and using methane only as the correction. We have provided amendatory text for each option in docket ID EPA-HQ-OAR-2018-0815.
S. Method 26 of Appendix A-8 of Part 60

In Method 26, in section 8.1.2, the misspelled word “undereporting” in the next to the last sentence would be corrected to “under reporting.”

T. Method 26A of Appendix A-8 of Part 60

In Method 26A, section 6.1.3, a reference to section 6.1.1.7 of Method 5 would be added to make the filter temperature sensor placement consistent with the requirements in Method 5. Also, in section 6.1.3, the requirement that the filter temperature sensor must be encased in glass or Teflon would be added because of the reactive nature of the halogen acids. In section 8.1.5, the misspelled word “undereporting” would be corrected to “under reporting.”

U. Performance Specification 4B of Appendix B of Part 60

In Performance Specification 4B, the response time in section 4.5 would be changed from “must not exceed 2 minutes” to “must not exceed 240 seconds” to be consistent with the response time in Performance Specification 4A.

V. Performance Specification 5 of Appendix B of Part 60

In Performance Specification 5, section 5.0, the erroneous term “users manual” would be replaced with “user’s manual,” and in the note in section 8.1, the sentence “For Method 16B, you must analyze a minimum of three aliquots spaced evenly over the test period.” would be added to provide consistency with the number of aliquots analyzed in Method 16B, which may be used as the reference method.

W. Performance Specification 6 of Appendix B of Part 60

In Performance Specification 6, section 13.1 would be revised to clarify that the calibration drift test period for the analyzers associated with the measurement of flow rate should be the same as that for the pollutant analyzer that is part of the continuous emission rate monitoring system (CERMS).
13.2 would be revised for clarity and to be consistent with the requirements in Performance Specification 2.

X. Performance Specification 8 of Appendix B of Part 60

In Performance Specification 8, a new section 8.3 would be added to require that an instrument drift check be performed as described in Performance Specification 2, and the existing sections 8.3, 8.4, and 8.5 would be re-numbered as 8.4, 8.5, and 8.6, respectively.

Y. Performance Specification 9 of Appendix B of Part 60

In Performance Specification 9, the quality control and performance audit sections would be clarified. In section 7.2, a requirement that performance audit gas must be an independent certified gas cylinder or cylinder mixture certified by the supplier to be accurate to two percent of the tagged value supplied with the cylinder would be added.

In section 8.3, an incorrect reference concerning quality control requirements that pertain to the 7-day drift test would be clarified and corrected, and an incorrect reference to the error calculation equation would be corrected. In section 8.4, a requirement to ensure that performance audit samples challenge the entire sampling system including the sample transport lines would be added, and quality control requirements that must be met for performance audit tests would be specified by adding references to sections 13.3 and 13.4.

In section 10.1, the erroneous word “initial” would be deleted from the title, “Initial Multi-Point Calibration,” and the quality control requirements that must be met for multi-point calibrations would be specified by referencing sections 13.1 and 13.2 in addition to 13.3. Sections 10.1 and 10.2 would be clarified such that calibrations may be performed at the instrument rather than through the entire sampling system.

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
In section 13.1, language would be clarified to ensure that every time a triplicate injection is performed, the calibration error must be less than or equal to 10 percent of the calibration gas value. In section 13.2, language would be clarified to specify that the linear regression correlation coefficient must be determined to evaluate the calibration curve for instrument response every time the continuous emission monitoring system (CEMS) response is evaluated over multiple concentration levels. Section 13.4 would be added to describe the quality control requirements for the initial and periodic performance audit test sample.

Z. Performance Specification 18 of Appendix B of Part 60

In Performance Specification 18, section 2.3 would be revised to clarify that Method 321 is only applicable to Portland cement plants. Also, in section 11.9.1, the reference to Method 321 would be deleted because Method 321 is specific to Portland cement plants, and it is already specified in the applicable regulations.

AA. Procedure 1 of Appendix F of Part 60

In Procedure 1, section 5.2.3(2), the criteria for cylinder gas audits (CGAs) as applicable to diluent monitors would be specified for clarity.

BB. Method 107 of Appendix B of Part 61

In Method 107, the erroneous equation 107-3 would be corrected by adding the omitted plus (+) sign.

CC. General Provisions (Subpart A) of Part 63

In the General Provisions of part 63, in §63.2, the definition of alternative test method would be revised to exclude “that is not a test method in this chapter and” because doing so clarifies that to use methods other than those required by a specific subpart requires the alternative test method review and approval process.
Section 63.14(h) would be revised to add ASTM D 4457, ASTM D 4747, ASTM D 4827, and ASTM D 5910 to the list of incorporations by reference and to re-number the remaining consensus standards that are incorporated by reference in alpha-numeric order.

DD. Portland Cement Manufacturing (Subpart LLL) of Part 63

In subpart LLL, the units of measure in Equations 12, 13, 17, 18, and 19 would be revised to add clarity and consistency. Equations 12 and 13 need to be corrected so that the operating limit units of measure is calculated correctly. The calculation of the operating limit is established by a relationship of the total hydrocarbons (THC) CEMS signal to the organic HAPs compliance concentration. As illustrated in Table 1 in Part 63, Subpart LLL, the THC and organic HAP emissions limits units are in ppmvd corrected to 7 percent oxygen. Therefore, the average organic HAP values in equation 12 need to be in ppmvd, corrected to 7 percent oxygen, instead of ppmvw. The THC CEMS monitor units of measure are ppmvw, as propane and the variables would be updated to reflect this. The variables in equations 13 and 19 reference variables in equations 12 and 18, respectively. Those variables would be updated for consistency between the equations.

The units of measure in equation 17 should be the monitoring system’s units of measure. It is possible for those systems to be on either a wet or a dry basis. Currently, the equation is only on a wet basis, even though it should be on the basis of the monitor (wet or dry). The changes to the units of measure from ppmvw to ppmv takes either possibility into account. For Equations 17 and 18, the operating limit units of measure would be changed to the units of the CEMS monitor, ppmv.

EE. Method 301 of Appendix A of Part 63

In Method 301, section 11.1.3, the erroneous SD in equation 301-13 would be replaced with SD_d.

FF. Method 308 of Appendix A of Part 63
In Method 308, section 12.4, erroneous equation 308-3 would be corrected, and in section 12.5, erroneous equation 308-5 would be corrected.

GG. Method 311 of Appendix A of Part 63

In Method 311, in sections 1.1 and 17, the ASTM would be updated. Specifically, in section 1.1, ASTM D4747-87 would be updated to D4747-02, and ASTM D4827-93 would be updated to D4827-03. Also, in section 1.1, Provisional Standard Test Method, PS 9-94 would be replaced with D5910-05. In section 17, ASTM D4457-85 would be updated to ASTM D4457-02, and ASTM D4827-93 would be updated to ASTM D4827-03.

HH. Method 315 of Appendix A of Part 63

In Method 315, in Figure 315-1, an omission would be corrected by adding a “not to exceed” blank criteria for filters used in this test procedure. The blank criteria was derived from evaluation of blank and spiked filters used to prepare Method 315 audit samples. We would set the allowable blank correction for filters based on the greater of two criteria. The first criterion requires the blank to be at least 10 times the measured filter blanks from the audit study. The second criterion requires the blank to be at least 5 times the resolution of the analytical balance required in Method 315. The “not to exceed” value would, therefore, be based on the second criterion (balance resolution) because it is the higher of the two criteria.

II. Method 316 of Appendix A of Part 63

In Method 316, section 1.0, the erroneous positive exponents would be corrected to negative exponents. Also, the title of section 1.0, “Introduction,” would be changed to “Scope and Application” to be consistent with the Environmental Monitoring Management Council (EMMC) format for test methods.

JJ. Method 323 of Appendix A of Part 63

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
In the title of Method 323, the misspelled word “Derivitization” would be corrected to “Derivatization,” and in section 2.0, the misspelled word “colorietrically” would be corrected to “colorimetrically.”

VI. Statutory and Executive Order Reviews

Additional information about these statutes and Executive Orders can be found at http://www2.epa.gov/laws-regulations/laws-and-executive-orders.

A. Executive Order 12866: Regulatory Planning and Review and Executive Order 13563: Improving Regulation and Regulatory Review

This action is not a significant regulatory action and was therefore not submitted to the Office of Management and Budget (OMB) for review.

B. Executive Order 13771: Reducing Regulations and Controlling Regulatory Costs

This action is expected to be an Executive Order 13771 deregulatory action. This proposed rule is expected to provide meaningful burden reduction by updating and clarifying methods and performance specifications, thereby improving data quality, and also by providing source testers flexibility by incorporating approved alternative procedures.

C. Paperwork Reduction Act (PRA)

This action does not impose an information collection burden under the PRA. The amendments being proposed in this action to the test methods, performance specifications, and testing regulations only make corrections and minor updates to existing testing methodology. In addition, the proposed amendments clarify performance testing requirements.

D. Regulatory Flexibility Act (RFA)

I certify that this action will not have a significant economic impact on a substantial number of small entities under the RFA. In making this determination, the impact of concern is any significant
adverse economic impact on small entities. An agency may certify that a rule will not have a significant economic impact on a substantial number of small entities if the rule relieves regulatory burden, has no net burden or otherwise has a positive economic effect on the small entities subject to the rule. This proposed rule will not impose emission measurement requirements beyond those specified in the current regulations, nor does it change any emission standard. We have, therefore, concluded that this action will have no net regulatory burden for all directly regulated small entities.

E. Unfunded Mandates Reform Act (UMRA)

This action does not contain any unfunded mandate as described in UMRA, 2 U.S.C. 1531-1538, and does not significantly or uniquely affect small governments. The action imposes no enforceable duty on any state, local or tribal governments or the private sector.

F. Executive Order 13132: Federalism

This action does not have federalism implications. It will not have substantial direct effects on the states, on the relationship between the national government and the states, or on the distribution of power and responsibilities among the various levels of government.

G. Executive Order 13175: Consultation and Coordination with Indian Tribal Governments

This action does not have tribal implications, as specified in Executive Order 13175. This action would correct and update existing testing regulations. Thus, Executive Order 13175 does not apply to this action.

H. Executive Order 13045: Protection of Children from Environmental Health Risks and Safety Risks

The EPA interprets Executive Order 13045 as applying only to those regulatory actions that concern environmental health or safety risks that the EPA has reason to believe may disproportionately affect children, per the definition of “covered regulatory action” in section 2-202 of the Executive Order.
This action is not subject to Executive Order 13045 because it does not concern an environmental health risk or safety risk.

I. Executive Order 13211: Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution or Use

This action is not subject to Executive Order 13211 because it is not a significant regulatory action under Executive Order 12866.

J. National Technology Transfer and Advancement Act and 1 CFR Part 51

This action involves technical standards. The EPA proposes to use ASTM D 2369 in Method 24. The ASTM D 2369 standard covers volatile content of coatings. The EPA proposes to use ASTM D 4457, ASTM D 4747, ASTM D 4827, and ASTM D 5910 in Method 311. These ASTM standards cover procedures to identify and quantify hazardous air pollutants in paints and coatings. The ASTM standards were developed and adopted by the American Society for Testing and Materials and may be obtained from http://www.astm.org or from the ASTM at 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

The EPA proposes to use GPA 2166 and GPA 2174 in Subpart KKKK of part 60, which involve procedures for obtaining samples from gaseous and liquid fuels, respectively. These GPA standards were developed and adopted by the Gas Processors Association and may be obtained from https://gpamidstream.org/ or from the Gas Processors Association, 6526 East 60th Street, Tulsa, OK 74145.

The EPA proposes to use ISO 10715 in subpart KKKK of part 60. This standard involves procedures for obtaining samples from gaseous fuels. This standard was developed by the International Organization for Standardization and may be obtained from https://www.iso.org/home.html or from the ISH Inc., 15 Inverness Way East, Englewood, CO 80112.
K. Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations

The EPA believes that this action is not subject to Executive Order 12898 (59 FR 7629, February 16, 1994) because it does not establish an environmental health or safety standard. This action would correct and update existing testing regulations.
Test Methods and Performance Specifications for Air Emission Sources

List of Subjects

40 CFR Part 51
 Environmental protection, Air pollution control, Performance specifications, Test methods and procedures.

40 CFR Part 60
 Environmental protection, Air pollution control, Incorporation by reference, Performance specifications, Test methods and procedures.

40 CFR Parts 61 and 63
 Environmental protection, Air pollution control, Incorporation by reference, Performance specifications, Test methods and procedures.

Dated: ________________.

Andrew R. Wheeler,
Administrator.
For the reasons set forth in the preamble, the Environmental Protection Agency proposes to amend title 40, chapter I of the Code of Federal Regulations as follows:

PART 51—REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS

1. The authority citation for part 51 continues to read as follows:

2. Revise sections 1.2, 1.6, 6.2.1(d), and 8.6.6 and Figure 7 in Method 201A of appendix M to part 51 to read as follows:

Appendix M to Part 51—Recommended Test Methods for State Implementation Plans

* * * * *

Method 201A—Determination of PM\(_{10}\) and PM\(_{2.5}\) Emissions From Stationary Sources (Constant Sampling Rate Procedure)

* * * * *

1.2 Applicability. This method addresses the equipment, preparation, and analysis necessary to measure filterable PM. You can use this method to measure filterable PM from stationary sources only. Filterable PM is collected in stack with this method (i.e., the method measures materials that are solid or liquid at stack conditions). If the gas filtration temperature exceeds 29.4 °C (85 °F), then you may use the procedures in this method to measure only filterable PM (material that does not pass through a filter or a cyclone/filter combination). If the gas filtration temperature exceeds 29.4 °C (85 °F), and you must measure both the filterable and condensable (material that condenses after passing through a filter)
components of total primary (direct) PM emissions to the atmosphere, then you must combine the
procedures in this method with the procedures in Method 202 of appendix M to this part for measuring
condensable PM. However, if the gas filtration temperature never exceeds 29.4 °C (85 °F), then use of
Method 202 of appendix M to this part is not required to measure total primary PM.

* * * * *

1.6 Conditions. You can use this method to obtain particle sizing at 10 micrometers and or 2.5
micrometers if you sample within 80 and 120 percent of isokinetic flow. You can also use this method to
obtain total filterable particulate if you sample within 90 to 110 percent of isokinetic flow, the number of
sampling points is the same as required by Method 5 of appendix A-3 to part 60 or Method 17 of
appendix A-6 to part 60, and the filter temperature is within an acceptable range for these methods. For
Method 5, the acceptable range for the filter temperature is generally 120 °C (248 °F) unless a higher or
lower temperature is specified. The acceptable range varies depending on the source, control technology
and applicable rule or permit condition. To satisfy Method 5 criteria, you may need to remove the in-
stack filter and use an out-of-stack filter and recover the PM in the probe between the PM$_{2.5}$ particle
sizer and the filter. In addition, to satisfy Method 5 and Method 17 criteria, you may need to sample
from more than 12 traverse points. Be aware that this method determines in-stack PM$_{10}$ and PM$_{2.5}$
filterable emissions by sampling from a required maximum of 12 sample points, at a constant flow rate
through the train (the constant flow is necessary to maintain the size cuts of the cyclones), and with a
filter that is at the stack temperature. In contrast, Method 5 or Method 17 trains are operated
isokinetically with varying flow rates through the train. Method 5 and Method 17 require sampling from
as many as 24 sample points. Method 5 uses an out-of-stack filter that is maintained at a constant
temperature of 120 °C (248 °F). Further, to use this method in place of Method 5 or Method 17, you
must extend the sampling time so that you collect the minimum mass necessary for weighing each portion of this sampling train. Also, if you are using this method as an alternative to a test method specified in a regulatory requirement (e.g., a requirement to conduct a compliance or performance test), then you must receive approval from the authority that established the regulatory requirement before you conduct the test.

* * * * *

6.2.1 * * *

(d) Petri dishes. For filter samples; glass, polystyrene, or polyethylene, unless otherwise specified by the Administrator.

* * * * *

8.6.6 Sampling Head. You must preheat the combined sampling head to the stack temperature of the gas stream at the test location (±28 °C, ±50 °F). This will heat the sampling head and prevent moisture from condensing from the sample gas stream.

* * * * *

17.0 * * *
PART 60-STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

3. The authority citation for part 60 continues to read as follows:

Authority: 42 U.S.C. 7401 et seq.

4. In § 60.17:

steps to ensure the accuracy of this version, but it is not the official version.
a. In paragraph (a), revise the last sentence;

b. Redesignate paragraphs (h)(95) through (209) as (h)(96) through (210), respectively;

c. Add new paragraph (h)(95);

d. Add paragraphs (j)(3) and (4);

e. Redesignate paragraphs (k)(2) and (3) as paragraphs (k)(4) and (5) and paragraph (k)(1) as paragraph (k)(2), respectively;

f. Add new paragraphs (k)(1) and (3); and

g. Add paragraph (l)(2).

The revisions and additions read as follows:

§ 60.17 Incorporation by reference.

(a) * * * For information on the availability of this material at NARA, email fedreg.legal@nara.gov, or go to www.archives.gov/federal-register/cfr/ibr-locations.html.

* * * * *

(h) * * *

(95) ASTM D2369-10, Standard Test Method for Volatile Content of Coatings, (Approved June 1, 2015), IBR approved for appendix A-8 to part 60: Method 24, Section 6.2.

* * * * *

steps to ensure the accuracy of this version, but it is not the official version.
(j) ** * **

(k) ** * **

(1) Gas Processors Association Standard 2166-17, Obtaining Natural Gas Samples for Analysis by Gas Chromatography, (Reaffirmed 2017) IBR approved for §60.4415(a).

* * * * *

(3) Gas Processors Association Standard 2174-14, Obtaining Liquid Hydrocarbon Samples for Analysis by Gas Chromatography, (Revised 2014) IBR approved for §60.4415(a).

* * * * *

(l) ** * **

* * * * *

Subpart AAA-Standards of Performance for New Residential Wood Heaters

5. Revise § 60.534(h) to read as follows:

§ 60.534 What test methods and procedures must I use to determine compliance with the standards and requirements for certification?
(h) The approved test laboratory must allow the manufacturer, the manufacturer’s approved third-party certifier, the EPA and delegated state regulatory agencies to observe certification testing. However, manufacturers must not involve themselves in the conduct of the test after the pretest burn has begun. Communications between the manufacturer and laboratory or third-party certifier personnel regarding operation of the wood heater must be limited to written communications transmitted prior to the first pretest burn of the certification test series. During certification tests, the manufacturer may communicate with the third-party certifier, and only in writing to notify them that the manufacturer has observed a deviation from proper test procedures by the laboratory. All communications must be included in the test documentation required to be submitted pursuant to §60.533(b)(5) and must be consistent with instructions provided in the owner’s manual required under §60.536(g).

Subpart XXX- Standards of Performance for Municipal Solid Waste Landfills That Commenced Construction, Reconstruction, or Modification After July 17, 2014

6. Revise § 60.766(a)(3) to read as follows:

§ 60.766 Monitoring of operations.

(a) * * *

(3) Monitor temperature of the landfill gas on a monthly basis as provided in 60.765(a)(5). The temperature measuring device must be calibrated annually using the procedure in 40 CFR part 60, appendix A-1, Method 2, Section 10.3 such that a minimum of two temperature points, bracket within...
10 percent of all landfill absolute temperature measurements or two fixed points of ice bath and boiling water, corrected for barometric pressure, are used.

* * * * *

Subpart CCCC-Standards of Performance for Commercial and Industrial Solid Waste

Incineration Units

7. Amend § 60.2110 by revising the introductory text to paragraph (i) and paragraphs (i)(1) and (2) to read as follows:

§ 60.2110 What operating limits must I meet and by when?

* * * * *

(i) If you use a PM CPMS to demonstrate continuing compliance, you must establish your PM CPMS operating limit and determine compliance with it according to paragraphs (i)(1) through (5) of this section:

(1) Determine your operating limit as the average PM CPMS output value recorded during the performance test or at a PM CPMS output value corresponding to 75 percent of the emission limit if your PM performance test demonstrates compliance below 75 percent of the emission limit. You must verify an existing or establish a new operating limit after each repeated performance test. You must repeat the performance test annually and reassess and adjust the site-specific operating limit in accordance with the results of the performance test:

(i) Your PM CPMS must provide a 4-20 milliamp output, or digital equivalent, and the establishment of its relationship to manual reference method measurements must be determined in units of milliamps;
(ii) Your PM CPMS operating range must be capable of reading PM concentrations from zero to a level equivalent to at least two times your allowable emission limit. If your PM CPMS is an auto-ranging instrument capable of multiple scales, the primary range of the instrument must be capable of reading PM concentration from zero to a level equivalent to two times your allowable emission limit; and

(iii) During the initial performance test or any such subsequent performance test that demonstrates compliance with the PM limit, record and average all milliamp output values, or their digital equivalent, from the PM CPMS for the periods corresponding to the compliance test runs (e.g., average all your PM CPMS output values for three corresponding Method 5 or Method 29 test runs).

(2) If the average of your three PM performance test runs are below 75 percent of your PM emission limit, you must calculate an operating limit by establishing a relationship of PM CPMS signal to PM concentration using the PM CPMS instrument zero, the average PM CPMS output values corresponding to the three compliance test runs, and the average PM concentration from the Method 5 or Method 29 performance test with the procedures in (i)(1) through (5) of this section:

* * * * *

8. Amend § 60.2145 by revising the introductory text to paragraph (j) and paragraph (y)(3) to read as follows:

§ 60.2145 How do I demonstrate continuous compliance with the emission limitations and the operating limits?

* * * * *

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
(j) For waste-burning kilns, you must conduct an annual performance test for particulate matter, cadmium, lead, carbon monoxide, dioxins/furans and hydrogen chloride as listed in table 7 of this subpart, unless you choose to demonstrate initial and continuous compliance using CEMS, as allowed in paragraph (u) of this section. If you do not use an acid gas wet scrubber or dry scrubber, you must determine compliance with the hydrogen chloride emissions limit using a HCl CEMS according to the requirements in paragraph (j)(1) of this section. You must determine compliance with the mercury emissions limit using a mercury CEMS or an integrated sorbent trap monitoring system according to paragraph (j)(2) of this section. You must determine compliance with nitrogen oxides and sulfur dioxide using CEMS. You must determine continuing compliance with the particulate matter emissions limit using a PM CPMS according to paragraph (x) of this section.

* * * * *

(y) * * *

(3) For purposes of determining the combined emissions from kilns equipped with an alkali bypass or that exhaust kiln gases to a coal mill that exhausts through a separate stack, instead of installing a CEMS or PM CPMS on the alkali bypass stack or in-line coal mill stack, the results of the initial and subsequent performance test can be used to demonstrate compliance with the relevant emissions limit. A performance test must be conducted on an annual basis (no later than 13 calendar months following the previous performance test).

* * * * *

9. Revise § 60.2150 to read as follows:

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
§ 60.2150 By what date must I conduct the annual performance test?

You must conduct annual performance tests no later than 13 calendar months following the previous performance test.

10. Amend § 60.2210 by revising the introductory paragraph and adding paragraph (p) to read as follows:

§ 60.2210 What information must I include in my annual report?

The annual report required under § 60.2205 must include the items listed in paragraphs (a) through (p) of this section. If you have a deviation from the operating limits or the emission limitations, you must also submit deviation reports as specified in §§ 60.2215, 60.2220, and 60.2225:

* * * * *

(p) For energy recovery units, include the annual heat input and average annual heat input rate of all fuels being burned in the unit to verify which subcategory of energy recovery unit applies.

11. Revise Tables 6 and 7 to subpart CCCC of part 60 to read as follows:

Table 6 to Subpart CCCC of Part 60–Emission Limitations for Energy Recovery Units That Commenced Construction After June 4, 2010, or That Commenced Reconstruction or Modification After August 7, 2013

<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation¹</th>
<th>Using this averaging time ²</th>
<th>And determining compliance using this method ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid/gas</td>
<td>Solids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.023 milligrams per dry standard cubic meter</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters per run)</td>
<td>Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use ICPMS for the analytical finish.</td>
</tr>
</tbody>
</table>

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation¹</th>
<th>Solids</th>
<th>Using this averaging time ²</th>
<th>And determining compliance using this method ²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid/gas</td>
<td>Solids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>35 parts per million dry volume</td>
<td>Biomass-240 parts per million dry volume</td>
<td>3-run average (1 hour minimum sample time per run)</td>
<td>Performance test (Method 10 at 40 CFR part 60, appendix A-4).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coal-95 parts per million dry volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxin/furans (Total Mass Basis)</td>
<td>No Total Mass Basis limit, must meet the toxic equivalency basis limit below</td>
<td>Biomass-0.52 nanograms per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters)</td>
<td>Performance test (Method 23 at 40 CFR part 60, appendix A-7).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coal-5.1 nanograms per dry standard cubic meter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxins/furans (toxic equivalency basis)</td>
<td>0.093 nanograms per dry standard cubic meter.</td>
<td>Biomass-0.076 nanograms per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters per run)</td>
<td>Performance test (Method 23 of appendix A-7 of this part).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coal-0.075 nanograms per dry standard cubic meter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fugitive ash</td>
<td>Visible emissions for no more than 5 percent of the hourly observation period</td>
<td>Three 1-hour observation periods</td>
<td>Visible emission test (Method 22 at 40 CFR part 60, appendix A-7).</td>
<td>Fugitive ash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>14 parts per million dry volume</td>
<td>Biomass-0.20 parts per million dry volume</td>
<td>3-run average (For Method 26, collect a minimum volume of 360)</td>
<td>Performance test (Method 26 or 26A at 40 CFR part 60, appendix A-8).</td>
</tr>
</tbody>
</table>

¹ You must meet this emission limitation.

² Using this averaging time and determining compliance using this method.

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation(^1)</th>
<th>Using this averaging time (^2)</th>
<th>And determining compliance using this method (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid/gas</td>
<td>Solids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>58 parts per million dry volume</td>
<td>liters per run. For Method 26A, collect a minimum volume of 3 dry standard cubic meters per run</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.096 milligrams per dry standard cubic meter</td>
<td>Biomass-0.014 milligrams per dry standard cubic meter. Coal-0.057 milligrams per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters per run)</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.00056 milligrams per dry standard cubic meter.</td>
<td>Biomass-0.0022 milligrams per dry standard cubic meter. Coal-0.013 milligrams per dry standard cubic meter.</td>
<td>3-run average (collect enough volume to meet an in-stack detection limit data quality objective of 0.03 ug/dscm)</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>76 parts per million dry volume</td>
<td>Biomass-290 parts per million dry volume. Coal-460 parts per million dry volume.</td>
<td>3-run average (for Method 7E, 1 hour minimum sample time per run)</td>
</tr>
<tr>
<td>Particulate matter (filterable)</td>
<td>110 milligrams per dry standard cubic meter</td>
<td>Biomass-5.1 milligrams per dry standard cubic meter. Coal-130 milligrams per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 1 dry standard cubic meter per run)</td>
</tr>
</tbody>
</table>

\(^1\) Emission limit or standard for the air pollutant.

\(^2\) Averaging time for compliance purposes.

\(^3\) Performance test method.
For the air pollutant	You must meet this emission limitation¹	Solids	Using this averaging time²	And determining compliance using this method²
Sulfur dioxide | 720 parts per million dry volume | Biomass-7.3 parts per million dry volume Coal-850 parts per million dry volume | 3-run average (for Method 6, collect a minimum of 60 liters, for Method 6C, 1 hour minimum sample time per run) | Performance test (Method 6 or 6C at 40 CFR part 60, appendix A-4). |

¹ All emission limitations are measured at 7 percent oxygen, dry basis at standard conditions. For dioxins/furans, you must meet either the Total Mass Basis limit or the toxic equivalency basis limit.

² In lieu of performance testing, you may use a CEMS or, for mercury, an integrated sorbent trap monitoring system to demonstrate initial and continuing compliance with an emissions limit, as long as you comply with the CEMS or integrated sorbent trap monitoring system requirements applicable to the specific pollutant in §§ 60.2145 and 60.2165. As prescribed in § 60.2145(u), if you use a CEMS or an integrated sorbent trap monitoring system to demonstrate compliance with an emissions limit, your averaging time is a 30-day rolling average of 1-hour arithmetic average emission concentrations.

³ Incorporated by reference, see § 60.17.

<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation<sup>1</sup></th>
<th>Using this averaging time<sup>2</sup></th>
<th>And determining compliance using this method<sup>2,3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.0014 milligrams per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters per run)</td>
<td>Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use ICPMS for the analytical finish.</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>90 (long kilns)/190 (preheater/precalciner) parts per million dry volume</td>
<td>3-run average (1 hour minimum sample time per run)</td>
<td>Performance test (Method 10 at 40 CFR part 60, appendix A-4).</td>
</tr>
<tr>
<td>Dioxins/furans (total mass basis)</td>
<td>0.51 nanograms per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters per run)</td>
<td>Performance test (Method 23 at 40 CFR part 60, appendix A-7).</td>
</tr>
<tr>
<td>Dioxins/furans (toxic)</td>
<td>0.075 nanograms per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters per run)</td>
<td>Performance test (Method 23 at 40 CFR part 60, appendix A-7).</td>
</tr>
</tbody>
</table>

Table 7 to Subpart CCCC of Part 60—Emission Limitations for Waste-burning Kilns That Commenced Construction After June 4, 2010, or Reconstruction or Modification After August 7, 2013

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation</th>
<th>Using this averaging time</th>
<th>And determining compliance using this method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen chloride</td>
<td>3.0 parts per million dry volume.</td>
<td>3-run average (1 hour minimum sample time per run) or 30-day rolling average if HCl CEMS is being used</td>
<td>If a wet scrubber or dry scrubber is used, performance test (Method 321 at 40 CFR part 63, appendix A). If a wet scrubber or dry scrubber is not used, HCl CEMS as specified in § 60.2145(j).</td>
</tr>
<tr>
<td>Lead</td>
<td>0.014 milligrams per dry standard cubic meter</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters)</td>
<td>Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use ICPMS for the analytical finish.</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0037 milligrams per dry standard cubic meter</td>
<td>30-day rolling average</td>
<td>Mercury CEMS or integrated sorbent trap monitoring system (performance specification 12A or 12B, respectively, of appendix B and procedure 5 of appendix F of this part), as specified in § 60.2145(j).</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>200 parts per million dry volume</td>
<td>30-day rolling average</td>
<td>Nitrogen oxides CEMS (performance specification 2 of appendix B and procedure 1 of appendix F of this part).</td>
</tr>
<tr>
<td>Particulate matter</td>
<td>4.9 milligrams per dry standard cubic meter</td>
<td>3-run average (collect a minimum volume of 2 dry standard cubic meters)</td>
<td>Performance test (Method 5 or 29 at 40 CFR part 60, appendix A-3 or appendix-8).</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>28 parts per million dry volume</td>
<td>30-day rolling average</td>
<td>Sulfur dioxide CEMS (performance specification 2 of appendix B and procedure 1 of appendix F of this part).</td>
</tr>
</tbody>
</table>

1. All emission limitations are measured at 7 percent oxygen (except for CEMS and integrated sorbent trap monitoring system data during startup and shutdown), dry basis at standard conditions. For dioxins/furans, you must meet either the Total Mass Basis limit or the toxic equivalency basis limit.
2. In lieu of performance testing, you may use a CEMS or, for mercury, an integrated sorbent trap monitoring system, to demonstrate initial and continuing compliance with an emissions limit, as long as you comply with the CEMS or integrated sorbent trap monitoring system requirements applicable to the specific pollutant in §§ 60.2145 and 60.2165. As prescribed in § 60.2145(u), if you use a CEMS or integrated sorbent trap monitoring system to demonstrate compliance.
compliance with an emissions limit, your averaging time is a 30-day rolling average of 1-hour arithmetic average emission concentrations.

3 Alkali bypass and in-line coal mill stacks are subject to performance testing only, as specified in § 60.2145(y)(3). They are not subject to the CEMS, integrated sorbent trap monitoring system, or CPMS requirements that otherwise may apply to the main kiln exhaust.

* * * * *

Subpart DDDD-Emission Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units

12. Amend § 60.2675 by revising the introductory text to paragraph (i) and paragraphs (i)(1) (2) to read as follows:

§ 60.2675 What operating limits must I meet and by when?

* * * * *

(i) If you use a PM CPMS to demonstrate continuing compliance, you must establish your PM CPMS operating limit and determine compliance with it according to paragraphs (i)(1) through (5) of this section:

(1) During the initial performance test or any such subsequent performance test that demonstrates compliance with the PM limit, record all hourly average output values (milliamps, or the digital signal equivalent) from the PM CPMS for the periods corresponding to the test runs (e.g., three 1-hour average PM CPMS output values for three 1-hour test runs):
(i) Your PM CPMS must provide a 4-20 milliamp output, or the digital signal equivalent, and the establishment of its relationship to manual reference method measurements must be determined in units of milliamps or digital bits;

(ii) Your PM CPMS operating range must be capable of reading PM concentrations from zero to a level equivalent to at least two times your allowable emission limit. If your PM CPMS is an auto-ranging instrument capable of multiple scales, the primary range of the instrument must be capable of reading PM concentration from zero to a level equivalent to two times your allowable emission limit; and

(iii) During the initial performance test or any such subsequent performance test that demonstrates compliance with the PM limit, record and average all milliamp output values, or their digital equivalent, from the PM CPMS for the periods corresponding to the compliance test runs (e.g., average all your PM CPMS output values for the three corresponding Method 5 or Method 29 PM test runs).

(2) If the average of your three PM performance test runs are below 75 percent of your PM emission limit, you must calculate an operating limit by establishing a relationship of PM CPMS signal to PM concentration using the PM CPMS instrument zero, the average PM CPMS output values corresponding to the three compliance test runs, and the average PM concentration from the Method 5 or Method 29 performance test with the procedures in (i)(1) through (5) of this section:

* * * * *

13. Amend § 60.2710 by revising paragraphs (j) and (y)(3) to read as follows:
§ 60.2710 How do I demonstrate continuous compliance with the amended emission limitations and the operating limits?

* * * * *

(j) For waste-burning kilns, you must conduct an annual performance test for the pollutants (except mercury and hydrogen chloride if no acid gas wet scrubber or dry scrubber is used) listed in table 8 of this subpart, unless you choose to demonstrate initial and continuous compliance using CEMS, as allowed in paragraph (u) of this section. If you do not use an acid gas wet scrubber or dry scrubber, you must determine compliance with the hydrogen chloride emissions limit using a HCl CEMS according to the requirements in paragraph (j)(1) of this section. You must determine compliance with the mercury emissions limit using a mercury CEMS or an integrated sorbent trap monitoring system according to paragraph (j)(2) of this section. You must determine continuing compliance with particulate matter using a PM CPMS according to paragraph (x) of this section.

* * * * *

(y) * * *

(3) For purposes of determining the combined emissions from kilns equipped with an alkali bypass or that exhaust kiln gases to a coal mill that exhausts through a separate stack, instead of installing a CEMS or PM CPMS on the alkali bypass stack or in-line coal mill stack, the results of the initial and subsequent performance test can be used to demonstrate compliance with the relevant emissions limit. A performance test must be conducted on an annual basis (no later than 13 calendar months following the previous performance test).

14. Revise § 60.2715 to read as follows:
§ 60.2715 By what date must I conduct the annual performance test?

You must conduct annual performance tests no later than 13 calendar months following the previous performance test.

15. Revise Tables 7 and 8 to subpart DDDD of part 60 to read as follows:

Table 7 to Subpart DDDD of Part 60—Model Rule—Emission Limitations That Apply to Energy Recovery Units After May 20, 2011 [Date to be specified in state plan]¹

<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation²</th>
<th>Using this averaging time ³</th>
<th>And determining compliance using this method ³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid/Gas</td>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.023 milligrams per dry standard cubic meter</td>
<td>Biomass-0.0014 milligrams per dry standard cubic meter. Coal-0.0017 milligrams per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 2 dry standard cubic meters) Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use ICPMS for the analytical finish.</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>35 parts per million dry volume</td>
<td>Biomass-260 parts per million dry volume Coal-95 parts per million dry volume</td>
<td>3-run average (1 hour minimum sample time per run) Performance test (Method 10 at 40 CFR part 60, appendix A-4).</td>
</tr>
<tr>
<td>Dioxins/furans (total mass basis)</td>
<td>2.9 nanograms per dry standard cubic meter</td>
<td>Biomass-0.52 nanograms per dry standard cubic meter. Coal-5.1 nanograms per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters) Performance test (Method 23 at 40 CFR part 60, appendix A-7).</td>
</tr>
</tbody>
</table>

¹ This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation[^2]</th>
<th>Using this averaging time[^3]</th>
<th>And determining compliance using this method[^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid/Gas</td>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td>Dioxins/furans (toxic equivalency basis)</td>
<td>0.32 nanograms per dry standard cubic meter</td>
<td>Biomass-0.12 nanograms per dry standard cubic meter Coal-0.075 nanograms per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters) Performance test (Method 23 at 40 CFR part 60, appendix A-7).</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>14 parts per million dry volume</td>
<td>Biomass-0.20 parts per million dry volume Coal-58 parts per million dry volume</td>
<td>3-run average (for Method 26, collect a minimum volume of 120 liters; for Method 26A, collect a minimum volume of 1 dry standard cubic meter) Performance test (Method 26 or 26A at 40 CFR part 60, appendix A-8).</td>
</tr>
<tr>
<td>Lead</td>
<td>0.096 milligrams per dry standard cubic meter</td>
<td>Biomass-0.014 milligrams per dry standard cubic meter. Coal-0.057 milligrams per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 2 dry standard cubic meters) Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use ICPMS for the analytical finish.</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0024 milligrams per dry standard cubic meter</td>
<td>Biomass-0.0022 milligrams per dry standard cubic meter Coal-0.013 milligrams per dry standard cubic meter</td>
<td>3-run average (For Method 29 and ASTM D6784-02 (Reapproved 2008)[^4], collect a minimum volume of 2 dry standard cubic meters per run. For Method 30B, collect a minimum sample as specified in Method 30B at 40 CFR part 60, appendix A) Performance test (Method 29 or 30B at 40 CFR part 60, appendix A-8) or ASTM D6784-02 (Reapproved 2008).[^4]</td>
</tr>
</tbody>
</table>

[^2]: For the air pollutant

[^3]: Using this averaging time

[^4]: Performance test (Method 29 and ASTM D6784-02 (Reapproved 2008) or ASTM D6784-02 (Reapproved 2008).
<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation⁴</th>
<th>Using this averaging time</th>
<th>And determining compliance using this method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid/Gas</td>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>76 parts per million dry volume</td>
<td>Biomass-290 parts per million dry volume</td>
<td>3-run average (for Method 7E, 1 hour minimum sample time per run)</td>
</tr>
<tr>
<td>Particulate matter filterable</td>
<td>110 milligrams per dry standard cubic meter</td>
<td>Biomass-11 milligrams per dry standard cubic meter</td>
<td>3-run average (collect a minimum volume of 1 dry standard cubic meter)</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>720 parts per million dry volume</td>
<td>Biomass-7.3 parts per million dry volume</td>
<td>3-run average (1 hour minimum sample time per run)</td>
</tr>
<tr>
<td>Fugitive ash</td>
<td>Visible emissions for no more than 5 percent of the hourly observation period</td>
<td>Visible emissions for no more than 5 percent of the hourly observation period</td>
<td>Three 1-hour observation periods</td>
</tr>
</tbody>
</table>

¹ The date specified in the state plan can be no later than 3 years after the effective date of approval of a revised state plan or February 7, 2018.

² All emission limitations (except for opacity) are measured at 7 percent oxygen, dry basis at standard conditions. For dioxins/furans, you must meet either the total mass basis limit or the toxic equivalency basis limit.

³ In lieu of performance testing, you may use a CEMS or, for mercury, an integrated sorbent trap monitoring system, to demonstrate initial and continuing compliance with an emissions limit, as long as you comply with the CEMS or integrated sorbent trap monitoring system requirements applicable to the specific pollutant in §§ 60.2710 and 60.2730. As prescribed in § 60.2710(u), if you use a CEMS or integrated sorbent trap monitoring system to demonstrate compliance with an emissions limit, your averaging time is a 30-day rolling average of 1-hour arithmetic average emission concentrations.

⁴ Incorporated by reference, see § 60.17.
Table 8 to Subpart DDDD of Part 60—Model Rule—Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011 [Date to be specified in state plan.]^1

<table>
<thead>
<tr>
<th>For the air pollutant</th>
<th>You must meet this emission limitation</th>
<th>Using this averaging time</th>
<th>And determining compliance using this method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.0014 milligrams per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 2 dry standard cubic meters)</td>
<td>Performance test (Method 29 at 40 CFR part 60, appendix A-8).</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>110 (long kilns)/790 (preheater/precalciner) parts per million dry volume</td>
<td>3-run average (1 hour minimum sample time per run)</td>
<td>Performance test (Method 10 at 40 CFR part 60, appendix A-4).</td>
</tr>
<tr>
<td>Dioxins/furans (total mass basis)</td>
<td>1.3 nanograms per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters)</td>
<td>Performance test (Method 23 at 40 CFR part 60, appendix A-7).</td>
</tr>
<tr>
<td>Dioxins/furans (toxic equivalency basis)</td>
<td>0.075 nanograms per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 4 dry standard cubic meters)</td>
<td>Performance test (Method 23 at 40 CFR part 60, appendix A-7).</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>3.0 parts per million dry volume.</td>
<td>3-run average (collect a minimum volume of 1 dry standard cubic meter), or 30-day rolling average if HCl CEMS is being used</td>
<td>If a wet scrubber or dry scrubber is used, performance test (Method 321 at 40 CFR part 63, appendix A of this part). If a wet scrubber or dry scrubber is not used, HCl CEMS as specified in § 60.2710(j).</td>
</tr>
<tr>
<td>Lead</td>
<td>0.014 milligrams per dry standard cubic meter.</td>
<td>3-run average (collect a minimum volume of 2 dry standard cubic meters)</td>
<td>Performance test (Method 29 at 40 CFR part 60, appendix A-8).</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.011 milligrams per dry standard cubic meter Or 58 pounds/million tons of clinker</td>
<td>30-day rolling average</td>
<td>Mercury CEMS or integrated sorbent trap monitoring system (performance specification 12A or 12B, respectively, of appendix B and procedure 5 of</td>
</tr>
<tr>
<td>For the air pollutant</td>
<td>You must meet this emission limitation¹</td>
<td>Using this averaging time ³</td>
<td>And determining compliance using this method ³,⁴</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>630 parts per million dry volume</td>
<td>3-run average (for Method 7E, 1 hour minimum sample time per run)</td>
<td>Performance test (Method 7 or 7E at 40 CFR part 60, appendix A-4).</td>
</tr>
<tr>
<td>Particulate matter filterable</td>
<td>13.5 milligrams per dry standard cubic meter</td>
<td>3-run average (collect a minimum volume of 1 dry standard cubic meter)</td>
<td>Performance test (Method 5 or 29 at 40 CFR part 60, appendix A-3 or appendix-8).</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>600 parts per million dry volume</td>
<td>3-run average (for Method 6, collect a minimum of 20 liters; for Method 6C, 1 hour minimum sample time per run)</td>
<td>Performance test (Method 6 or 6c at 40 CFR part 60, appendix A-4).</td>
</tr>
</tbody>
</table>

¹ The date specified in the state plan can be no later than 3 years after the effective date of approval of a revised state plan or February 7, 2018.

² All emission limitations are measured at 7 percent oxygen (except for CEMS and integrated sorbent trap monitoring system data during startup and shutdown), dry basis at standard conditions. For dioxins/furans, you must meet either the total mass basis limit or the toxic equivalency basis limit.

³ In lieu of performance testing, you may use a CEMS or, for mercury, an integrated sorbent trap monitoring system, to demonstrate initial and continuing compliance with an emissions limit, as long as you comply with the CEMS or integrated sorbent trap monitoring system requirements applicable to the specific pollutant in §§ 60.2710 and § 60.2730. As prescribed in § 60.2710(u), if you use a CEMS or integrated sorbent trap monitoring system to demonstrate compliance with an emissions limit, your averaging time is a 30-day rolling average of 1-hour arithmetic average emission concentrations.

⁴ Alkali bypass and in-line coal mill stacks are subject to performance testing only, as specified in 60.2710(y)(3). They are not subject to the CEMS, integrated sorbent trap monitoring system, or CPMS requirements that otherwise may apply to the main kiln exhaust.

* * * * *

Subpart JJJJ-Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

16. Revise Table 2 to subpart JJJJ of part 60 to read as follows:

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
As stated in § 60.4244, you must comply with the following requirements for performance tests within 10 percent of 100 percent peak (or the highest achievable) load.

TABLE 2 TO SUBPART JJJJ OF PART 60-REQUIREMENTS FOR PERFORMANCE TESTS

<table>
<thead>
<tr>
<th>For each</th>
<th>Complying with the requirement to</th>
<th>You must</th>
<th>Using</th>
<th>According to the following requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stationary SI internal combustion engine demonstrating compliance according to §60.4244</td>
<td>a. limit the concentration of NOx in the stationary SI internal combustion engine exhaust</td>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;</td>
<td>(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate;</td>
<td>(a) Alternatively, for NOx, O2, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005)µ</td>
<td>(b) Measurements to determine O2 concentration must be made at the same time as the measurements for NOx concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Method 2 or 2C of 40 CFR part 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7</td>
<td>(c) Measurements to determine the exhaust flowrate must be made (1) at the same time as the measurement for NOx concentration or, alternatively (2) according to the option in Section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>b. limit the concentration of CO in the stationary SI internal combustion engine exhaust</td>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;</td>
<td>(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate</td>
<td>(a) Alternatively, for CO, O₂, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at 3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. Determine the O₂ concentration of the stationary internal</td>
<td>(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2 or ASTM Method</td>
<td>(b) Measurements to determine O₂ concentration must be made at the same time as the measurements for CO concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, or ASTM Method D6348-03</td>
<td>(d) Measurements to determine moisture must be made at the same time as the measurement for NOₓ concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Measure NOₓ at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device</td>
<td>(5) Method 7E of 40 CFR part 60, appendix A-4, ASTM Method D6522-00 (Reapproved 2005), Method 320 of 40 CFR part 63, appendix A, or ASTM Method D6348-03</td>
<td>(e) Results of this test consist of the average of the three 1-hour or longer runs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
<table>
<thead>
<tr>
<th></th>
<th>combustion engine exhaust at the sampling port location;</th>
<th>D6522-00 (Reapproved 2005)l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>iii. If necessary, determine the exhaust flowrate of the stationary internal combustion engine exhaust;</td>
<td>(3) Method 2 or 2C of 40 CFR 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7</td>
</tr>
<tr>
<td></td>
<td>c) Measurements to determine the exhaust flowrate must be made (1) at the same time as the measurement for CO concentration or, alternatively (2) according to the option in Section 11.1.2 of Method 1A of 40 CFR part 60, Appendix A-1, if applicable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, or ASTM Method D6348-03</td>
</tr>
<tr>
<td></td>
<td>(d) Measurements to determine moisture must be made at the same time as the measurement for CO concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Measure CO at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device</td>
<td>(5) Method 10 of 40 CFR part 60, appendix A4, ASTM Method D6522-00 (Reapproved 2005)l, Method 320 of 40 CFR part 63, appendix A, or ASTM Method D6348-03</td>
</tr>
<tr>
<td></td>
<td>(e) Results of this test consist of the average of the three 1-hour or longer runs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. limit the concentration of VOC in the stationary SI internal combustion engine exhaust</td>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;</td>
</tr>
<tr>
<td></td>
<td>(a) Alternatively, for VOC, O, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be</td>
<td>(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate</td>
</tr>
<tr>
<td>ii. Determine the (\text{O}_2) concentration of the stationary internal combustion engine exhaust at the sampling port location;</td>
<td>(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005)</td>
<td>(b) Measurements to determine (\text{O}_2) concentration must be made at the same time as the measurements for VOC concentration.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>iii. If necessary, determine the exhaust flowrate of the stationary internal combustion engine exhaust;</td>
<td>(3) Method 2 or 2C of 40 CFR 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7</td>
<td>(c) Measurements to determine the exhaust flowrate must be made (1) at the same time as the measurement for VOC concentration or, alternatively (2) according to the option in Section 11.1.2 of Method 1A of 40 CFR part 60, Appendix A-1, if applicable.</td>
</tr>
<tr>
<td>iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A; or ASTM Method D6348-03</td>
<td>(d) Measurements to determine moisture must be made at the same time as the measurement for VOC concentration.</td>
</tr>
<tr>
<td>v. Measure VOC at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device</td>
<td>(5) Methods 25A and 18 of 40 CFR part 60, appendices A-6 and A-7, Method 25A with the use of a hydrocarbon cutter as described in 40 CFR 1065.265, Method 18 of 40 CFR part 60, appendix A-6; Method 320 of 40 CFR part 63, appendix A; or ASTM Method D6348-03</td>
<td>(e) Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
</tbody>
</table>
Also, you may petition the Administrator for approval to use alternative methods for portable analyzer.

You may use ASME PTC 19.10-1981, Flue and Exhaust Gas Analyses, for measuring the O₂ content of the exhaust gas as an alternative to EPA Method 3B. AMSE PTC 19.10-1981 incorporated by reference, see 40 CFR 60.17

You may use EPA Method 18 of 40 CFR part 60, appendix A-6, provided that you conduct an adequate pre-survey test prior to the emissions test, such as the one described in OTM 11 on EPA’s Web site (http://www.epa.gov/ttn/emc/prelim/otm11.pdf).

Incorporated by reference; see 40 CFR 60.17.

You must meet the requirements in §60.4245(d).

* * * * *

Subpart KKKK- Standards of Performance for Stationary Combustion Turbines

17. Revise § 60.4415(a)(1) to read as follows:

§ 60.4415 How do I conduct the initial and subsequent performance tests for sulfur?

(a) * * * *

(1) If you choose to periodically determine the sulfur content of the fuel combusted in the turbine, a representative fuel sample may be collected either by an automatic sampling system or manually. For automatic sampling, follow either ASTM D5287 (incorporated by reference, see §60.17) for gaseous fuels or ASTM D4177 (incorporated by reference, see §60.17) for liquid fuels. For manual sampling of gaseous fuels, follow either Gas Processors Association 2166 or International Organization for Standardization 10715 (both of which are incorporated by reference, see §60.17). For manual sampling of liquid fuels, follow either Gas Processors Association 2174 or the procedures for manual pipeline sampling in section 14 of ASTM D4057 (both of which are incorporated by reference, see §60.17). The fuel analyses of this section may be performed either by you, a service contractor retained by you, the fuel vendor, or any other qualified agency. Analyze the samples for the total sulfur content of the fuel using:

* * * * *

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.

18. Revise § 60.5476(i) to read as follows:

§ 60.5476 What test methods and procedures must I use to determine compliance with the standards and requirements for certification?

* * * * *

(i) The approved test laboratory must allow the manufacturer, the manufacturer’s approved third-party certifier, the EPA and delegated state regulatory agencies to observe certification testing. However, manufacturers must not involve themselves in the conduct of the test after the pretest burn has begun. Communications between the manufacturer and laboratory or third-party certifier personnel regarding operation of the central heater must be limited to written communications transmitted prior to the first pretest burn of the certification test series. During certification tests, the manufacturer may communicate with the third-party certifier, and only in writing to notify them that the manufacturer has observed a deviation from proper test procedures by the laboratory. All communications must be included in the test documentation required to be submitted pursuant to §60.5475(b)(5) and must be consistent with instructions provided in the owner’s manual required under §60.5478(f).

* * * * *

19. In appendix A-3 to part 60:

a. In Method 4, revise sections 2.1, 6.1.5, 8.1.3, 8.1.4.2, 9.1, 11.1, 11.2, 12.1.1, 12.1.2, 12.1.3, 12.2.1, and 12.2.2 and Figures 4-4 and 4-5; and

b. In Method 5, revise sections 6.1.1.8, 6.2.4, 6.2.5, 8.1.2, 8.7.6.4, 12.1, 12.3, 12.4, 12.11.1, 12.11.2, 16.1.1.4, and 16.2.3.3 and Figure 5-6.
The revisions read as follows:

Appendix A-3 to Part 60-Test Methods 4 through 51

* * * * *

Method 4-Determination of Moisture Content in Stack Gases

* * * * *

2.1 A gas sample is extracted at a constant rate from the source; moisture is removed from the sample stream and determined gravimetrically.

* * * * *

6.1.5 Barometer and Balance. Same as Method 5, sections 6.1.2 and 6.2.5, respectively.

* * * * *

8.1.3 Leak-Check Procedures.

8.1.3.1 Leak Check of Metering System Shown in Figure 4-1. That portion of the sampling train from the pump to the orifice meter should be leak-checked prior to initial use and after each shipment. Leakage after the pump will result in less volume being recorded than is actually sampled. The following procedure is suggested (see Figure 5-2 of Method 5): Close the main valve on the meter box. Insert a one-hole rubber stopper with rubber tubing attached into the orifice exhaust pipe. Disconnect and vent the low side of the orifice manometer. Close off the low side orifice tap. Pressurize the system to 13 to 18 cm (5 to 7 in.) water column by blowing into the rubber tubing. Pinch off the tubing and
observe the manometer for one minute. A loss of pressure on the manometer indicates a leak in the
meter box; leaks, if present, must be corrected.

8.1.3.2 Pretest Leak Check. A pretest leak check of the sampling train is recommended, but not required.
If the pretest leak check is conducted, the following procedure should be used.

8.1.3.2.1 After the sampling train has been assembled, turn on and set the filter and probe heating
systems to the desired operating temperatures. Allow time for the temperatures to stabilize. If a Viton A
O-ring or other leak-free connection is used in assembling the probe nozzle to the probe liner, leak-
check the train at the sampling site by plugging the nozzle and pulling a 380 mm (15 in.) Hg vacuum.

NOTE: A lower vacuum may be used, provided that it is not exceeded during the test.

8.1.3.2.2 Leak-check the train by first plugging the inlet to the filter holder and pulling a 380 mm (15
in.) Hg vacuum (see note in section 8.1.3.2.1). Then connect the probe to the train, and leak-check at
approximately 25 mm (1 in.) Hg vacuum; alternatively, the probe may be leak-checked with the rest of
the sampling train, in one step, at 380 mm (15 in.) Hg vacuum. Leakage rates in excess of 4 percent of
the average sampling rate or 0.00057 m³/min (0.020 cfm), whichever is less, are unacceptable.

8.1.3.2.3 Start the pump with the bypass valve fully open and the coarse adjust valve completely closed.
Partially open the coarse adjust valve, and slowly close the bypass valve until the desired vacuum is
reached. Do not reverse the direction of the bypass valve, as this will cause water to back up into the
filter holder. If the desired vacuum is exceeded, either leak-check at this higher vacuum, or end the leak
check and start over.
8.1.3.2.4 When the leak check is completed, first slowly remove the plug from the inlet to the probe, filter holder, and immediately turn off the vacuum pump. This prevents the water in the impingers from being forced backward into the filter holder and the silica gel from being entrained backward into the third impinger.

8.1.3.3 Leak Checks During Sample Run. If, during the sampling run, a component (e.g., filter assembly or impinger) change becomes necessary, a leak check shall be conducted immediately before the change is made. The leak check shall be done according to the procedure outlined in section 8.1.3.2 above, except that it shall be done at a vacuum equal to or greater than the maximum value recorded up to that point in the test. If the leakage rate is found to be no greater than 0.00057 m³/min (0.020 cfm) or 4 percent of the average sampling rate (whichever is less), the results are acceptable, and no correction will need to be applied to the total volume of dry gas metered; if, however, a higher leakage rate is obtained, either record the leakage rate and plan to correct the sample volume as shown in section 12.3 of Method 5, or void the sample run.

NOTE: Immediately after component changes, leak checks are optional. If such leak checks are done, the procedure outlined in section 8.1.3.2 above should be used.

8.1.3.4 Post-Test Leak Check. A leak check of the sampling train is mandatory at the conclusion of each sampling run. The leak check shall be performed in accordance with the procedures outlined in section 8.1.3.2, except that it shall be conducted at a vacuum equal to or greater than the maximum value reached during the sampling run. If the leakage rate is found to be no greater than 0.00057 m³/min (0.020 cfm) or 4 percent of the average sampling rate (whichever is less), the results are acceptable, and no correction need be applied to the total volume of dry gas metered. If, however, a higher leakage rate
is obtained, either record the leakage rate and correct the sample volume as shown in section 12.3 of Method 5, or void the sampling run.

* * * * *

8.1.4.2 At the end of the sample run, close the coarse adjust valve, remove the probe and nozzle from the stack, turn off the pump, record the final DGM meter reading, and conduct a post-test leak check, as outlined in section 8.1.3.4.

* * * * *

9.1 Miscellaneous Quality Control Measures.

<table>
<thead>
<tr>
<th>Section</th>
<th>Quality control measure</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 8.1.3.2.2</td>
<td>Leak rate of the sampling system cannot exceed four percent of the average sampling rate or 0.00057 m³/min (0.020 cfm)</td>
<td>Ensures the accuracy of the volume of gas sampled. (Reference Method).</td>
</tr>
<tr>
<td>Section 8.2.1</td>
<td>Leak rate of the sampling system cannot exceed two percent of the average sampling rate</td>
<td>Ensures the accuracy of the volume of gas sampled. (Approximation Method).</td>
</tr>
</tbody>
</table>

* * * * *

11.1 Reference Method. Weigh the impingers after sampling and record the difference in weight to the nearest 0.5 g at a minimum. Determine the increase in weight of the silica gel (or silica gel plus impinger) to the nearest 0.5 g at a minimum. Record this information (see example data sheet, Figure 4-5), and calculate the moisture content, as described in section 12.0.

11.2 Approximation Method. Weigh the contents of the two impingers, and measure the weight to the nearest 0.5 g.

* * * * *

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
12.1.1 Nomenclature.

\(B_{ws} \) = Proportion of water vapor, by volume, in the gas stream.

\(M_w \) = Molecular weight of water, 18.015 g/g-mole (18.015 lb/lb-mole).

\(P_m \) = Absolute pressure (for this method, same as barometric pressure) at the dry gas meter, mm Hg (in. Hg).

\(P_{std} \) = Standard absolute pressure, 760 mm Hg (29.92 in. Hg).

\(R \) = Ideal gas constant, 0.06236 (mm Hg)(m\(^3\))/(g-mole)(°K) for metric units and 21.85 (in. Hg)(ft\(^3\))/(lb-mole)(°R) for English units.

\(T_m \) = Absolute temperature at meter, °K (°R).

\(T_{std} \) = Standard absolute temperature, 293.15 °K (527.67 °R).

\(V_f \) = Final weight of condenser water plus impinger, g.

\(V_i \) = Initial weight, if any, of condenser water plus impinger, g.

\(V_m \) = Dry gas volume measured by dry gas meter, dcm (dcf).

\(V_{m(std)} \) = Dry gas volume measured by the dry gas meter, corrected to standard conditions, dscm (dscf).

\(V_{wc(std)} \) = Volume of water vapor condensed, corrected to standard conditions, scm (scf).

\(V_{wsg(std)} \) = Volume of water vapor collected in silica gel, corrected to standard conditions, scm (scf).

\(W_f \) = Final weight of silica gel or silica gel plus impinger, g.

\(W_i \) = Initial weight of silica gel or silica gel plus impinger, g.

\(Y \) = Dry gas meter calibration factor.

\(\Delta V_m \) = Incremental dry gas volume measured by dry gas meter at each traverse point, dcm (dcf).

12.1.2 Volume of Water Vapor Condensed.

\[
V_{wc(std)} = \frac{(V_f - V_i)RT_{std}}{P_{std}M_w} \quad Eq \ 4 - 1
\]

\[
= K_1(V_f - V_i)
\]

Where:

\(K_1 \) = 0.001335 m\(^3\)/g for metric units,
= 0.04716 ft³/g for English units.

12.1.3 * * *

\[K_3 = 0.001335 \text{ m}^3/\text{g} \text{ for metric units}, \]
\[= 0.04716 \text{ ft}^3/\text{g} \text{ for English units}. \]

* * * *

12.2.1 Nomenclature.

\[B_{wm} = \text{Approximate proportion by volume of water vapor in the gas stream leaving the second impinger,} \]
\[0.025. \]

\[B_{ws} = \text{Water vapor in the gas stream, proportion by volume.} \]

\[M_w = \text{Molecular weight of water,} \ 18.015 \text{ g/g-mole} \ (18.015 \text{ lb/lb-mole}). \]

\[P_m = \text{Absolute pressure (for this method, same as barometric pressure) at the dry gas meter, mm Hg (in. Hg).} \]

\[P_{std} = \text{Standard absolute pressure,} \ 760 \text{ mm Hg (29.92 in. Hg).} \]

\[R = \text{Ideal gas constant,} \ 0.06236 \ [(\text{mm Hg})(\text{m}^3)]/[(\text{g-mole})(\text{K})] \text{ for metric units} \]
\[\text{and} \ 21.85 \ [(\text{in. Hg})(\text{ft}^3)]/[(\text{lb-mole})(\text{°R})] \text{ for English units.} \]

\[T_m = \text{Absolute temperature at meter, °K (°R).} \]

\[T_{std} = \text{Standard absolute temperature,} \ 293.15 \text{ °K (527.67 °R).} \]

\[V_f = \text{Final weight of condenser water plus impinger, g.} \]

\[V_i = \text{Initial weight, if any, of condenser water plus impinger, g.} \]

\[V_m = \text{Dry gas volume measured by dry gas meter, dcm (dcf).} \]

\[V_{m(std)} = \text{Dry gas volume measured by dry gas meter, corrected to standard conditions, dscm (dscf).} \]

\[V_{wc(std)} = \text{Volume of water vapor condensed, corrected to standard conditions, scm (scf).} \]

\[Y = \text{Dry gas meter calibration factor.} \]

12.2.2 Volume of Water Vapor Collected.
\[V_{wc(std)} = \frac{(V_f - V_i)RT_{std}}{P_{std}M_w} \] \hspace{1cm} Eq 4 - 5

\[= K_5(V_f - V_i) \]

\[K_5 = 0.001335 \text{ m}^3/\text{g} \text{ for metric units,} \]
\[= 0.04716 \text{ ft}^3/\text{g} \text{ for English units.} \]

* * * *

<table>
<thead>
<tr>
<th>Clock Time</th>
<th>Gas Volume through meter (Vm), (m3 or ft3)</th>
<th>Rate meter setting (m3/min or ft3/min)</th>
<th>Meter temperature (°C or °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-4. Example Moisture Determination Field Data Sheet – Approximation Method

<table>
<thead>
<tr>
<th></th>
<th>Impinger weight (g)</th>
<th>Silica gel weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-5. Analytical Data – Reference Method

Method 5-Determination of Particulate Matter Emissions From Stationary Sources

* * * *

6.1.1.8 Condenser. The following system shall be used to determine the stack gas moisture content: Four impingers connected in series with leak-free ground glass fittings or any similar leak-free

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
noncontaminating fittings. The first, third, and fourth impingers shall be of the Greenburg-Smith design, modified by replacing the tip with a 1.3 cm (1/2 in.) ID glass tube extending to about 1.3 cm (1/2 in.) from the bottom of the flask. The second impinger shall be of the Greenburg-Smith design with the standard tip. Modifications (e.g., using flexible connections between the impingers, using materials other than glass, or using flexible vacuum lines to connect the filter holder to the condenser) may be used, subject to the approval of the Administrator. The first and second impingers shall contain known quantities of water (Section 8.3.1), the third shall be empty, and the fourth shall contain a known weight of silica gel, or equivalent desiccant. A temperature sensor, capable of measuring temperature to within 1 °C (2 °F) shall be placed at the outlet of the fourth impinger for monitoring purposes. Alternatively, any system that cools the sample gas stream and allows measurement of the water condensed and moisture leaving the condenser, each to within 0.5 g may be used, subject to the approval of the Administrator. An acceptable technique involves the measurement of condensed water either gravimetrically and the determination of the moisture leaving the condenser by: (1) monitoring the temperature and pressure at the exit of the condenser and using Dalton's law of partial pressures; or (2) passing the sample gas stream through a tared silica gel (or equivalent desiccant) trap with exit gases kept below 20 °C (68 °F) and determining the weight gain. If means other than silica gel are used to determine the amount of moisture leaving the condenser, it is recommended that silica gel (or equivalent) still be used between the condenser system and pump to prevent moisture condensation in the pump and metering devices and to avoid the need to make corrections for moisture in the metered volume.

NOTE: If a determination of the PM collected in the impingers is desired in addition to moisture content, the impinger system described above shall be used, without modification. Individual States or
control agencies requiring this information shall be contacted as to the sample recovery and analysis of the impinger contents.

* * * * *

6.2.4 Petri dishes. For filter samples; glass, polystyrene, or polyethylene, unless otherwise specified by the Administrator.

6.2.5 Balance. To measure condensed water to within 0.5 g at a minimum.

* * * * *

8.1.2 Check filters visually against light for irregularities, flaws, or pinhole leaks. Label filters of the proper diameter on the back side near the edge using numbering machine ink. As an alternative, label the shipping containers (glass, polystyrene or polyethylene petri dishes), and keep each filter in its identified container at all times except during sampling.

* * * * *

8.7.6.4 Impinger Water. Treat the impingers as follows: Make a notation of any color or film in the liquid catch. Measure the liquid that is in the first three impingers by weighing it to within 0.5 g at a minimum by using a balance. Record the weight of liquid present. This information is required to calculate the moisture content of the effluent gas. Discard the liquid after measuring and recording the weight, unless analysis of the impinger catch is required (see NOTE, section 6.1.1.8). If a different type of condenser is used, measure the amount of moisture condensed gravimetrically.

* * * * *
12.1 Nomenclature.

\(A_n \) = Cross-sectional area of nozzle, \(m^2 \ (ft^2) \).

\(B_{ws} \) = Water vapor in the gas stream, proportion by volume.

\(C_a \) = Acetone blank residue concentration, \(mg/mg \).

\(c_s \) = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, \(g/dscm \) (gr/dscf).

\(I \) = Percent of isokinetic sampling.

\(L_1 \) = Individual leakage rate observed during the leak-check conducted prior to the first component change, \(m^3/min \ (ft^3/min) \)

\(L_a \) = Maximum acceptable leakage rate for either a pretest leak-check or for a leak-check following a component change; equal to \(0.00057 \ m^3/min \ (0.020 \ cfm) \) or 4 percent of the average sampling rate, whichever is less.

\(L_i \) = Individual leakage rate observed during the leak-check conducted prior to the \("i^{th}" \) component change \((i = 1, 2, 3 \ldots n) \), \(m^3/min \ (cfm) \).

\(L_p \) = Leakage rate observed during the post-test leak-check, \(m^3/min \ (cfm) \).

\(m_a \) = Mass of residue of acetone after evaporation, \(mg \).

\(m_n \) = Total amount of particulate matter collected, \(mg \).

\(M_w \) = Molecular weight of water, 18.015 \(g/g-mole \) (18.015 lb/lb-mole).

\(P_{bar} \) = Barometric pressure at the sampling site, \(mm \ Hg \ (in. \ Hg) \).

\(P_s \) = Absolute stack gas pressure, \(mm \ Hg \ (in. \ Hg) \).

\(P_{std} \) = Standard absolute pressure, 760 \(mm \ Hg \ (29.92 \ in. \ Hg) \).

\(R \) = Ideal gas constant, 0.06236 \(((mm \ Hg)(m^3))/((K)(g-mole)) \) \{21.85 \(((in. \ Hg) (ft^3))/((°R) (lb-mole)) \}\.

\(T_m \) = Absolute average DGM temperature (see Figure 5-3), \(K \ (°R) \).

\(T_s \) = Absolute average stack gas temperature (see Figure 5-3), \(K \ (°R) \).

\(T_{std} \) = Standard absolute temperature, 293.15 \(K \ (527.67 °R) \).

\(V_a \) = Volume of acetone blank, ml.

\(V_{aw} \) = Volume of acetone used in wash, ml.

\(V_{1c} \) = Total volume of liquid collected in impingers and silica gel (see Figure 5-6), g.

\(V_m \) = Volume of gas sample as measured by dry gas meter, dcm (dcf).
\(V_{\text{m(std)}} \) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscm (dscf).

\(V_{\text{w(std)}} \) = Volume of water vapor in the gas sample, corrected to standard conditions, scm (scf).

\(V_s \) = Stack gas velocity, calculated by Method 2, Equation 2-7, using data obtained from Method 5, m/sec (ft/sec).

\(W_a \) = Weight of residue in acetone wash, mg.

\(Y \) = Dry gas meter calibration factor.

\(\Delta H \) = Average pressure differential across the orifice meter (see Figure 5-4), mm H\(_2\)O (in. H\(_2\)O).

\(\rho_a \) = Density of acetone, mg/ml (see label on bottle).

\(\theta \) = Total sampling time, min.

\(\theta_1 \) = Sampling time interval, from the beginning of a run until the first component change, min.

\(\theta_i \) = Sampling time interval, between two successive component changes, beginning with the interval between the first and second changes, min.

\(\theta_p \) = Sampling time interval, from the final (n\(^{th}\)) component change until the end of the sampling run, min.

13.6 = Specific gravity of mercury.

60 = Sec/min.

100 = Conversion to percent.

* * * * *

12.3 * * *

\(K_1 = 0.38572 \, ^\circ\text{K/mm Hg} \) for metric units, = 17.636 \(^\circ\text{R/in. Hg} \) for English units.

* * * * *

12.4 Volume of Water Vapor Condensed
\[V_{w(std)} = V_{lec} \frac{RT_{std}}{M_w P_{std}} \quad \text{Eq. 5-2} \]

\[= K_2 V_{lec} \]

Where: \(K_2 = 0.001335 \, \text{m}^3/\text{g} \) for metric units, \(= 0.04716 \, \text{ft}^3/\text{g} \) for English units.

* * * * *

12.11.1 * * *

Where: \(K_4 = 0.003456 \, ((\text{mm Hg})(\text{m}^3))/((\text{ml})(\text{°K})) \) for metric units,
\[= 0.002668 \, ((\text{in. Hg})(\text{ft}^3))/((\text{ml})(\text{°R})) \] for English units.

* * * * *

12.11.2 * * *

Where:

\(K_5 = 4.3209 \) for metric units, \(= 0.09450 \) for English units.

* * * * *

16.1.1.4 * * *

Where:

\(K_1 = 0.38572 \, \text{°K/mm Hg} \) for metric units, \(= 17.636 \, \text{°R/in. Hg} \) for English units.

\(T_{adj} = 273.15 \, \text{°C} \) for metric units, \(= 459.67 \, \text{°F} \) for English units.

* * * * *

16.2.3.3 * * *

Where: \(K_1 = 0.38572 \, \text{°K/mm Hg} \) for metric units, \(= 17.636 \, \text{°R/in. Hg} \) for English units.

* * * * *

18.0 * * *

Plant \[\frac{V_w}{w} (s) = V_w \frac{l_w}{R} T_{s} M_w P_s \quad \text{Eq. 5-2} \]

Where: \(K_2 = 0.001335 \, \text{m}^3/\text{g} \) for metric units, \(= 0.04716 \, \text{ft}^3/\text{g} \) for English units.
Date ____________________________
Run No. __________________________
Filter No. __________________________

Amount liquid lost during transport, mg __________________________
Acetone blank volume, ml __________________________
Acetone blank concentration, mg/mg (Equation 5-4) __________________________
Acetone wash blank, mg (Equation 5-5) __________________________

<table>
<thead>
<tr>
<th>Container number</th>
<th>Weight of particulate collected, mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Final weight</td>
</tr>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total collected particulate</td>
</tr>
<tr>
<td></td>
<td>Weight of liquid collected, g</td>
</tr>
<tr>
<td></td>
<td>Impinger weight</td>
</tr>
<tr>
<td>Final</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>Liquid collected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total weight collected</td>
</tr>
</tbody>
</table>

Figure 5-6. Analytical Data Sheet

* * * * *

20. In appendix A-4 to part 60:

a. In Method 7C, revise section 7.2.11.

b. In Method 7E, revise section 8.5.

The revisions read as follows:

Appendix A-4 to Part 60-Test Methods 6 Through 10B

* * * * *

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
Method 7C-Determination of Nitrogen Oxide Emissions From Stationary Sources (Alkaline Permanganate/Colorimetric Method)

* * * * *

7.2.11 Sodium Nitrite (NaNO₂) Standard Solution, Nominal Concentration, 1000 µg NO₂⁻/ml. Desiccate NaNO₂ overnight. Accurately weigh 1.4 to 1.6 g of NaNO₂ (assay of 97 percent NaNO₂ or greater), dissolve in water, and dilute to 1 liter. Calculate the exact NO₂-concentration using Equation 7C-1 in section 12.2. This solution is stable for at least 6 months under laboratory conditions.

* * * * *

Method 7E-Determination of Nitrogen Oxide Emissions From Stationary Sources (Instrumental Analyzer Procedure)

* * * * *

8.5 Post-Run System Bias Check and Drift Assessment.

How do I confirm that each sample I collect is valid? After each run, repeat the system bias check or 2-point system calibration error check (for dilution systems) to validate the run. Do not make adjustments to the measurement system (other than to maintain the target sampling rate or dilution ratio) between the end of the run and the completion of the post-run system bias or system calibration error check. Note that for all post-run system bias or 2-point system calibration error checks, you may inject the low-level gas first and the upscale gas last, or vice-versa. If conducting a relative accuracy test or relative accuracy test audit, consisting of nine runs or more, you may risk sampling for up to three runs before performing the post-run bias or system calibration error check provided you pass this test at the conclusion of the
group of three runs. A failed post-run bias or system calibration error check in this case will invalidate all runs subsequent to the last passed check. When conducting a performance or compliance test, you must perform a post-run system bias or system calibration error check after each individual test run.

* * *

* * * * *

21. In appendix A-5 to part 60, Method 12:

a. Revise sections 7.1.2, 8.7.1.6, 8.7.3.1, 8.7.3.6, 12.3, 16.1 through 16.5;

b. Add sections 16.5.1 and 16.5.2; and

c. Remove section 16.6.

The revisions and additions read as follows:

Appendix A-5 to Part 60-Test Methods 11 Through 15A

* * * * *

Method 12-Determination of Inorganic Lead Emissions From Stationary Sources

* * * * *

7.1.2 Silica Gel and Crushed Ice. Same as Method 5, sections 7.1.2 and 7.1.4, respectively.

* * * * *
8.7.1.6 Brush and rinse with 0.1 N HNO₃ the inside of the front half of the filter holder. Brush and rinse each surface three times or more, if needed, to remove visible sample matter. Make a final rinse of the brush and filter holder. After all 0.1 N HNO₃ washings and sample matter are collected in the sample container, tighten the lid on the sample container so that the fluid will not leak out when it is shipped to the laboratory. Mark the height of the fluid level to determine whether leakage occurs during transport. Label the container to identify its contents clearly.

* * * * *

8.7.3.1. Cap the impinger ball joints.

* * * * *

8.7.3.6. Rinse the insides of each piece of connecting glassware for the impingers twice with 0.1 N HNO₃; transfer this rinse into Container No. 4. Do not rinse or brush the glass-fritted filter support. Mark the height of the fluid level to determine whether leakage occurs during transport. Label the container to identify its contents clearly.

* * * * *

12.3 Dry Gas Volume, Volume of Water Vapor Condensed, and Moisture Content. Using data obtained in this test, calculate $V_{m(\text{std})}$, $V_{w(\text{std})}$, and B_{ws} according to the procedures outlined in Method 5, sections 12.3 through 12.5.

* * * * *
16.1 Simultaneous Determination of Particulate Matter and Lead Emissions. Method 12 may be used to simultaneously determine Pb and particulate matter provided:

(1) A glass fiber filter with a low Pb background is used and this filter is checked, desiccated and weighed per section 8.1 of Method 5,

(2) An acetone rinse, as specified by Method 5, sections 7.2 and 8.7.6.2, is used to remove particulate matter from the probe and inside of the filter holder prior to and kept separate from the 0.1 N HNO₃ rinse of the same components,

(3) The recovered filter, the acetone rinse, and an acetone blank (Method 5, section 7.2) are subjected to gravimetric analysis of Method 5, sections 6.3 and 11.0 prior the analysis for Pb as described below, and

(4) The entire train contents, including the 0.1 N HNO₃ impingers, filter, acetone and 0.1 N HNO₃ probe rinses are treated and analyzed for Pb as described in Sections 8.0 and 11.0 of this method.

16.2 Filter Location. A filter may be used between the third and fourth impingers provided the filter is included in the analysis for Pb.

16.3 In-Stack Filter. An in-stack filter may be used provided: (1) A glass-lined probe and at least two impingers, each containing 100 ml of 0.1 N HNO₃ after the in-stack filter, are used and (2) the probe and impinger contents are recovered and analyzed for Pb. Recover sample from the nozzle with acetone if a particulate analysis is to be made as described in section 16.1 of this method.

16.4 Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) Analysis. ICP-AES may be used as an alternative to atomic absorption analysis provided the following conditions are met:
16.4.1 Sample collection/recovery, sample loss check, and sample preparation procedures are as defined in sections 8.0, 11.1, and 11.2, respectively, of this method.

16.4.2 Analysis shall be conducted following Method 6010D of SW-846 (incorporated by reference -- see §60.17). The limit of detection for the ICP-AES must be demonstrated according to section 15.0 of Method 301 in appendix A of part 63 of this chapter and must be no greater than one-third of the applicable emission limit. Perform a check for matrix effects according to section 11.5 of this method.

16.5 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Analysis. ICP-MS may be used as an alternative to atomic absorption analysis provided the following conditions are met:

16.5.1 Sample collection/recovery, sample loss check, and sample preparation procedures are as defined in sections 8.0, 11.1, and 11.2, respectively of this method.

16.5.2 Analysis shall be conducted following Method 6020B of SW-846 (incorporated by reference -- see §60.17). The limit of detection for the ICP-MS must be demonstrated according to section 15.0 of Method 301 in appendix A to part 63 of this chapter and must be no greater than one-third of the applicable emission limit. Use the multipoint calibration curve option in section 10.4 of Method 6020B and perform a check for matrix effects according to section 11.5 of this method.

* * * * *

22. In appendix A-6 to part 60:

a. In Method 16B:

i. Revise sections 2.1, 6.1, 8.2;
ii. Remove section 8.3;

iii. Redesignate sections 8.4, 8.4.1, and 8.4.2 as 8.3, 8.3.1, and 8.3.2, respectively;

iv. Revise section 11.1;

v. Add section 11.2;

The revisions and addition read as follows:

Appendix A-6 to Part 60-Test Methods 16 Through 18

* * * * *

Method 16B- Determination of Total Reduced Sulfur Emissions From Stationary Sources

* * * * *

2.1 A gas sample is extracted from the stack. The SO$_2$ is removed selectively from the sample using a citrate buffer solution. The TRS compounds are then thermally oxidized to SO$_2$ and analyzed as SO$_2$ by gas chromatography (GC) using flame photometric detection (FPD).

* * * * *

6.1 Sample Collection. The sampling train is shown in Figure 16B-1. Modifications to the apparatus are accepted provided the system performance check in Section 8.3.1 is met.

* * * * *
8.2 Sample Collection. Before any source sampling is performed, conduct a system performance check as detailed in section 8.3.1 to validate the sampling train components and procedures. Although this test is optional, it would significantly reduce the possibility of rejecting tests as a result of failing the post-test performance check. At the completion of the pretest system performance check, insert the sampling probe into the test port making certain that no dilution air enters the stack though the port. Condition the entire system with sample for a minimum of 15 minutes before beginning analysis. If the sample is diluted, determine the dilution factor as in section 10.4 of Method 15.

* * * * *

11.1 Analysis. Inject aliquots of the sample into the GC/FPD analyzer for analysis. Determine the concentration of SO₂ directly from the calibration curves or from the equation for the least-squares line.

11.2 Perform analysis of a minimum of three aliquots or one every 15 minutes, whichever is greater, spaced evenly over the test period.

* * * * *

Method 16C-Determination of Total Reduced Sulfur Emissions From Stationary Sources

* * * * *

13.1 Analyzer Calibration Error. At each calibration gas level (low, mid, and high), the calibration error must either not exceed 5.0 percent of the calibration span or |C_{Dir}−C_{V}| must be ≤0.5 ppmv.

* * * * *

23. In appendix A-7 to part 60, in Method 24, revise section 6.2 to read as follows:

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
Appendix A-7 to Part 60-Test Methods 19 Through 25E

* * * *

Method 24-Determination of Volatile Matter Content, Water Content, Density, Volume Solids, And Weight Solids of Surface Coatings

* * * *

* * * *

24. In appendix A-8 to part 60:

a. In Method 26, revise section 8.1.2; and

b. In Method 26A, revise sections 6.1.3 and 8.1.5.

The revisions read as follows:

Appendix A-8 to Part 60-Test Methods 26 Through 30B

* * * *

Method 26-Determination of Hydrogen Halide and Halogen Emissions From Stationary Sources Non-Isokinetic Method

* * * *

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
8.1.2 Adjust the probe temperature and the temperature of the filter and the stopcock (i.e., the heated area in Figure 26-1) to a temperature sufficient to prevent water condensation. This temperature must be maintained between 120 and 134 °C (248 and 273 °F). The temperature should be monitored throughout a sampling run to ensure that the desired temperature is maintained. It is important to maintain a temperature around the probe and filter in this range since it is extremely difficult to purge acid gases off these components. (These components are not quantitatively recovered and, hence, any collection of acid gases on these components would result in potential under reporting of these emissions. The applicable subparts may specify alternative higher temperatures.)

* * * * *

Method 26A-Determination of Hydrogen Halide and Halogen Emissions From Stationary Sources
Isokinetic Method

* * * * *

6.1.3 Pitot Tube, Differential Pressure Gauge, Filter Heating System, Filter Temperature Sensor with a glass or Teflon encasement, Metering System, Barometer, Gas Density Determination Equipment. Same as Method 5, sections 6.1.1.3, 6.1.1.4, 6.1.1.6, 6.1.1.7, 6.1.1.9, 6.1.2, and 6.1.3.

* * * * *

8.1.5 Sampling Train Operation. Follow the general procedure given in Method 5, Section 8.5. It is important to maintain a temperature around the probe, filter (and cyclone, if used) between 120 and 134 °C (248 and 273 °F) since it is extremely difficult to purge acid gases off these components. (These components are not quantitatively recovered and hence any collection of acid gases on these components would result in potential under reporting of these emissions.)
would result in potential under reporting these emissions. The applicable subparts may specify alternative higher temperatures.) For each run, record the data required on a data sheet such as the one shown in Method 5, Figure 5-3. If the condensate impinger becomes too full, it may be emptied, recharged with 50 ml of 0.1 N H2SO4, and replaced during the sample run. The condensate emptied must be saved and included in the measurement of the volume of moisture collected and included in the sample for analysis. The additional 50 ml of absorbing reagent must also be considered in calculating the moisture. Before the sampling train integrity is compromised by removing the impinger, conduct a leak-check as described in Method 5, section 8.4.2.

* * * * *

25. In appendix B to part 60:

a. In Performance Specification 4B, revise section 4.5;

b. In Performance Specification 5, revise sections 5.0 and 8.1;

c. In Performance Specification 6, Revise sections 13.1 and 13.2;

d. In Performance Specification 8:

i. Redesignate sections 8.3, 8.4, and 8.5 as 8.4, 8.5, and 8.6, respectively;

ii. Add new section 8.3;

e. In Performance Specification 9:

i. revise sections 7.2, 8.3, 8.4, 10.1, 10.2, 13.1, and 13.2;

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
ii. Add section 13.4;

f. In Performance Specification 18, revise sections 2.3 and 11.9.1.

The revisions and additions read as follows:

Appendix B to Part 60-Performance Specifications

* * * * *

Performance Specification 4B-Specifications and Test Procedures For Carbon Monoxide and Oxygen Continuous Monitoring Systems in Stationary Sources

* * * * *

4.5 Response Time. The response time for the CO or O2 monitor must not exceed 240 seconds.

* * * * *

Performance Specification 5-Specifications and Test Procedures For TRS Continuous Emission Monitoring Systems in Stationary Sources

* * * * *

5.0 Safety

This performance specification may involve hazardous materials, operations, and equipment. This performance specification may not address all of the safety problems associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and determine the

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
applicable regulatory limitations prior to performing this performance specification. The CEMS user’s manual should be consulted for specific precautions to be taken with regard to the analytical procedures.

** ** ** **

8.1 Relative Accuracy Test Procedure. Sampling Strategy for reference method (RM) Tests, Number of RM Tests, and Correlation of RM and CEMS Data are the same as PS 2, sections 8.4.3, 8.4.4, and 8.4.5, respectively.

** ** ** **

NOTE: For Method 16, a sample is made up of at least three separate injects equally space over time. For Method 16A, a sample is collected for at least 1 hour. For Method 16B, you must analyze a minimum of three aliquots spaced evenly over the test period.

** ** ** **

Performance Specification 6-Specifications and Test Procedures For Continuous Emission Rate Monitoring Systems in Stationary Sources

** ** ** **

13.1 Calibration Drift. Since the CERMS includes analyzers for several measurements, the CD shall be determined separately for each analyzer in terms of its specific measurement. The calibration for each analyzer associated with the measurement of flow rate shall not drift or deviate from each reference value of flow rate by more than 3 percent of the respective high-level reference value over the CD test period (e.g., seven-day) associated with the pollutant analyzer. The CD specification for each analyzer for which other PSs have been established (e.g., PS 2 for SO2 and NOX), shall be the same as in the applicable PS.

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
13.2 CERMS Relative Accuracy. Calculate the CERMS Relative Accuracy using Eq. 2-6 of section 12 of Performance Specification 1. The RA of the CERMS shall be no greater than 20 percent of the mean value of the RM's test data in terms of the units of the emission standard, or in cases where the average emissions for the test are less than 50 percent of the applicable standard, substitute the emission standard value in the denominator of Eq. 2-6 in place of the RM.

* * * * *

Performance Specification 8-Performance Specifications For Volatile Organic Compound Continuous Emission Monitoring Systems in Stationary Sources

* * * * *

8.3 Calibration Drift Test Procedure. Same as section 8.3 of PS 2.

8.4 Reference Method (RM). Use the method specified in the applicable regulation or permit, or any approved alternative, as the RM.

8.5 Sampling Strategy for RM Tests, Correlation of RM and CEMS Data, and Number of RM Tests. Follow PS 2, sections 8.4.3, 8.4.5, and 8.4.4, respectively.

8.6 Reporting. Same as section 8.5 of PS 2.

* * * * *

Performance Specification 9-Specifications and Test Procedures For Gas Chromatographic Continuous Emission Monitoring Systems in Stationary Sources

* * * * *
7.2 Performance Audit Gas. Performance Audit Gas is an independent cylinder gas or cylinder gas mixture. A certified EPA audit gas shall be used, when possible. A gas mixture containing all the target compounds within the calibration range and certified by EPA's Traceability Protocol for Assay and Certification of Gaseous Calibration Standards may be used when EPA performance audit materials are not available. If a certified EPA audit gas or a traceability protocol gas is not available, use a gas manufacturer standard accurate to 2 percent.

* * * * *

8.3 Seven (7)-Day Calibration Error (CE) Test Period. At the beginning of each 24-hour period, set the initial instrument set points by conducting a multi-point calibration for each compound. The multi-point calibration shall meet the requirements in section 13.1, 13.2, and 13.3. Throughout the 24-hour period, sample and analyze the stack gas at the sampling intervals prescribed in the regulation or permit. At the end of the 24-hour period, inject the calibration gases at three concentrations for each compound in triplicate and determine the average instrument response. Determine the CE for each pollutant at each concentration using Equation 9-2. Each CE shall be ≤10 percent. Repeat this procedure six more times for a total of 7 consecutive days.

8.4 Performance Audit Test Periods. Conduct the performance audit once during the initial 7-day CE test and quarterly thereafter. Performance Audit Tests must be conducted through the entire sampling and analyzer system. Sample and analyze the EPA audit gas(es) (or the gas mixture) three times. Calculate the average instrument response. Results from the performance audit test must meet the requirements in sections 13.3 and 13.4.

* * * * *

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
10.1 Multi-Point Calibration. After initial startup of the GC, after routine maintenance or repair, or at least once per month, conduct a multi-point calibration of the GC for each target analyte. Calibration is performed at the instrument independent of the sample transport system. The multi-point calibration for each analyte shall meet the requirements in sections 13.1, 13.2, and 13.3.

* * * * *

10.2 Daily Calibration. Once every 24 hours, analyze the mid-level calibration standard for each analyte in triplicate. Calibration is performed at the instrument independent of the sample transport system. Calculate the average instrument response for each analyte. The average instrument response shall not vary more than 10 percent from the certified concentration value of the cylinder for each analyte. If the difference between the analyzer response and the cylinder concentration for any target compound is greater than 10 percent, immediately inspect the instrument making any necessary adjustments, and conduct an initial multi-point calibration as described in section 10.1.

* * * * *

13.1 Calibration Error (CE). The CEMS must allow the determination of CE at all three calibration levels. The average CEMS calibration response must not differ by more than 10 percent of calibration gas value at each level after each 24-hour period and after any triplicate calibration response check.

13.2 Calibration Precision and Linearity. For each triplicate injection at each concentration level for each target analyte, any one injection shall not deviate more than 5 percent from the average concentration measured at that level. When the CEMS response is evaluated over three concentration levels, the linear regression curve for each organic compound shall be determined using Equation 9-1 and must have an $r^2 \geq 0.995$.

* * * * *
13.4 Performance Audit Test Error. Determine the error for each average pollutant measurement using the Equation 9-2 in section 12.3. Each error shall be less than or equal to 10 percent of the cylinder gas certified value. Report the audit results including the average measured concentration, the error and the certified cylinder concentration of each pollutant as part of the reporting requirements in the appropriate regulation or permit.

* * * * *

Performance Specification 18-Performance Specifications and Test Procedures For Gaseous Hydrogen Chloride (HCl) Continuous Emission Monitoring Systems At Stationary Sources

* * * * *

2.3 The relative accuracy (RA) must be established against a reference method (RM) (for example, Method 26A, Method 320, ASTM International (ASTM) D6348-12, including mandatory annexes, or Method 321 for Portland cement plants as specified by the applicable regulation or, if not specified, as appropriate for the source concentration and category). Method 26 may be approved as a RM by the Administrator on a case-by-case basis if not otherwise allowed or denied in an applicable regulation.

* * * * *

11.9.1 Unless otherwise specified in an applicable regulation, use Method 26A in 40 CFR part 60, appendix A-8, Method 320 in 40 CFR part 63, appendix A, or ASTM D6348-12 including all annexes, as applicable, as the RMs for HCl measurement. Obtain and analyze RM audit samples, if they are available, concurrently with RM test samples according to the same procedure specified for performance tests in the general provisions of the applicable part. If Method 26 is not specified in an applicable regulation,

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
subpart of the regulations, you may request approval to use Method 26 in appendix A-8 to this part as the RM on a site-specific basis under §§63.7(f) or 60.8(b). Other RMs for moisture, O₂, etc., may be necessary. Conduct the RM tests in such a way that they will yield results representative of the emissions from the source and can be compared to the CEMS data.

* * * * *

26. In appendix F to part 60, in Procedure 1, revise section 5.2.3(2) to read as follows:

Appendix F to Part 60-Quality Assurance Procedures

Procedure 1-Quality Assurance Requirements for Gas Continuous Emission Monitoring Systems Used For Compliance Determination

* * * * *

5.2.3 * * *

(2) For the CGA, ±15 percent of the average audit value or ±5 ppm, whichever is greater, for diluent monitors, ±15 percent of the average audit value.

* * * * *

PART 61-NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

27. The authority citation for part 61 continues to read as follows:

Authority: 42 U.S.C. 7401 et seq.
28. In appendix B to part 61, in Method 107, revise section 12.3, equation 107-3 to read as follows:

Appendix B to Part 61-Test Methods

* * * * *

Method 107-Determination of Vinyl Chloride Content of In-Process Wastewater Samples, and Vinyl Chloride Content of Polyvinyl Chloride Resin Slurry, Wet Cake, and Latex Samples

* * * * *

12.3 * * *

\[
C_{rvc} = \frac{A_s P_a}{R_f T_1} \left[\frac{M_v V_g}{R m} + K_p (TS)T_2 + K_w (1 - TS)T_2 \right] \quad Eq. 107 - 3
\]

* * * * *

PART 63-NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES

29. The authority citation for part 63 continues to read as follows:

Authority: 42 U.S.C. 7401 et seq.

30. In § 63.2, revise the definition of “Alternative test method” to read as follows:

§ 63.2 Definitions.

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
Alternative test method means any method of sampling and analyzing for an air pollutant that has been demonstrated to the Administrator's satisfaction, using Method 301 in appendix A of this part, to produce results adequate for the Administrator's determination that it may be used in place of a test method specified in this part.

Subpart LLL-National Emission Standards for Hazardous Air Pollutants from the Portland Cement Manufacturing Industry

31. Amend § 63.1349, by revising paragraphs (b)(7)(viii)(A) and (B) to read as follows:

(A) Determine the THC CEMS average value in ppmv, and the average of your corresponding three total organic HAP compliance test runs, using Equation 12.

\[
\overline{x} = \frac{1}{n} \sum_{i=1}^{n} X_i, \overline{y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \quad \text{(Eq. 12)}
\]

Where:

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
\(\bar{x} = \) The average THC CEMS value in ppmvw, as propane.

\(X_i = \) The THC CEMS data points in ppmvw, as propane, for all three test runs.

\(\bar{y} = \) The average organic HAP value in ppmvd, corrected to 7 percent oxygen.

\(Y_i = \) The organic HAP concentrations in ppmvd, corrected to 7 percent oxygen, for all three test runs.

\(n = \) The number of data points.

(B) You must use your three run average THC CEMS value and your three run average organic HAP concentration from your Method 18 and/or Method 320 compliance tests to determine the operating limit. Use equation 13 to determine your operating limit in units of ppmvw THC, as propane.

\[
T_l = \left(\frac{9}{\bar{y}} \right) \times \bar{x}
\]

(Eq. 13)

Where:

\(T_l = \) The 30-day operating limit for your THC CEMS, ppmvw, as propane.

\(\bar{y} = \) The average organic HAP concentration from Eq. 12, ppmvd, corrected to 7 percent oxygen.

\(\bar{x} = \) The average THC CEMS concentration from Eq. 12, ppmvw, as propane.

9 = 75 percent of the organic HAP emissions limit (12 ppmvd, corrected to 7 percent oxygen)

* * * * *

32. Amend § 63.1349, by revising paragraph (b)(8)(vi) to read as follows:

* * * * *

(b) * * *

(8) * * *
(vi) If your kiln has an inline kiln/raw mill, you must conduct separate performance tests while the raw mill is operating (“mill on”) and while the raw mill is not operating (“mill off”). Using the fraction of time the raw mill is on and the fraction of time that the raw mill is off, calculate this limit as a weighted average of the SO₂ levels measured during raw mill on and raw mill off compliance testing with Equation 17.

\[R = (y \times t) + x \times (1 - t) \]
\[\text{(Eq. 17)} \]

Where:

- \(R \) = Operating limit as SO₂, ppmv.
- \(y \) = Average SO₂ CEMS value during mill on operations, ppmv.
- \(t \) = Percentage of operating time with mill on, expressed as a decimal.
- \(x \) = Average SO₂ CEMS value during mill off operations, ppmv.
- \(1-t \) = Percentage of operating time with mill off, expressed as a decimal.

33. Amend § 63.1349, by revising paragraphs (b)(8)(vii)(B) and (C) as follows:

(B) Determine your SO₂ CEMS instrument average ppmv, and the average of your corresponding three HCl compliance test runs, using Equation 18.
\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \]

(Eq. 18)

Where:
\(\bar{x} \) = The average SO2 CEMS value in ppmv.
\(X_1 \) = The SO2 CEMS data points in ppmv for the three runs constituting the performance test.
\(\bar{y} \) = The average HCl value in ppmvd, corrected to 7 percent oxygen.
\(Y_1 \) = The HCl emission concentration expressed as ppmvd, corrected to 7 percent oxygen for the three runs constituting the performance test.
n = The number of data points.

(C) With your instrument zero expressed in ppmv, your SO2 CEMS three run average expressed in ppmv, and your three run HCl compliance test average in ppmvd, corrected to 7 percent O2, determine a relationship of ppmvd HCl corrected to 7 percent O2 per ppmv SO2 with Equation 19.

\[R = \frac{\bar{y}}{(\bar{x} - z)} \]

(Eq. 19)

Where:
\(R \) = The relative HCl ppmvd, corrected to 7 percent oxygen, per ppmv SO2 for your SO2 CEMS.
\(\bar{y} \) = The average HCl concentration from Eq. 18 in ppmvd, corrected to 7 percent oxygen.
\(\bar{x} \) = The average SO2 CEMS value from Eq. 18 in ppmv.
\(z \) = The instrument zero output ppmv value.

* * * * *

34. In appendix A to part 63:
a. In Method 301, revise section 11.1.3;
b. In Method 308, revise section 12.4, equation 308-3 and section 12.5, equation 308-5;

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
c. In Method 311, revise sections 1.1 and 17;

d. In Method 315, revise Figure 315-1;

e. In Method 316, revise section 1.0; and

f. In Method 323, revise the method heading and section 2.0.

The revisions read as follows:

Appendix A to Part 63-Test Methods Pollutant Measurement Methods From Various Waste Media

* * * * *

Method 301-Field Validation of Pollutant Measurement Methods From Various Waste Media

* * * * *

\[
t = \frac{|d_m|}{\left(\frac{S_D}{\sqrt{n}}\right)} \quad \text{(Eq. 301-13)}
\]

* * *

* * * * *

Method 308-Procedure for Determination of Methanol Emission from Stationary Sources
Method 311—Analysis of Hazardous Air Pollutant Compounds in Paints and Coatings By Direct Injection Into A Gas Chromatograph

1.1 Applicability. This method is applicable for determination of most compounds designated by the U.S. Environmental Protection Agency as volatile hazardous air pollutants (HAP's) (See Reference 1) that are contained in paints and coatings. Styrene, ethyl acrylate, and methyl methacrylate can be measured by ASTM D 4827-03 or ASTM D 4747-02. Formaldehyde can be measured by ASTM D 5910-05 or ASTM D 1979-91. Toluene diisocyanate can be measured in urethane prepolymers by ASTM D 3432-89. Method 311 applies only to those volatile HAP's which are added to the coating when it is manufactured, not to those that may form as the coating cures (reaction products or cure volatiles). A separate or modified test procedure must be used to measure these reaction products or cure volatiles.
volatiles in order to determine the total volatile HAP emissions from a coating. Cure volatiles are a significant component of the total HAP content of some coatings. The term “coating” used in this method shall be understood to mean paints and coatings.

* * * * *

17. * * *

* * * * *

Method 315-Determination of Particulate and Methylene Chloride Extractable Matter (MCEM) From Selected Sources at Primary Aluminum Production Facilities

* * * * *

FIGURE 315-1. PARTICULATE AND MCEM ANALYSES

<table>
<thead>
<tr>
<th>Particulate Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>Run No.</td>
</tr>
<tr>
<td>Filter No.</td>
</tr>
</tbody>
</table>

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
Amount liquid lost during transport			
Acetone blank volume (ml)			
Acetone blank concentration (Eq. 315-4) (mg/mg)			
Acetone wash blank (Eq. 315-5) (mg)			
Final weight (mg)	**Tare weight (mg)**	**Weight gain (mg)**	
Container No. 1			
Container No. 2			
Total			
Less Acetone blank			
Weight of particulate matter			
Final volume (mg)	**Initial volume (mg)**	**Liquid collected (mg)**	

Moisture Analysis

Impingers

<table>
<thead>
<tr>
<th>Note 1</th>
<th>Note 1</th>
</tr>
</thead>
</table>

Silica gel

| Total | | |

Note 1: Convert volume of water to weight by multiplying by the density of water (1 g/ml).

<table>
<thead>
<tr>
<th>Container No.</th>
<th>Final weight (mg)</th>
<th>Tare of aluminum dish (mg)</th>
<th>Weight gain</th>
<th>Acetone wash volume (ml)</th>
<th>Methylene chloride wash volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 + 2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Σm_{total}</td>
<td>0V_{aw}</td>
<td>ΣV_{tw}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCEM Analysis

<table>
<thead>
<tr>
<th>1</th>
<th>2 + 2M</th>
<th>3W</th>
<th>3S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Less acetone wash blank (mg) (not to exceed 1 mg/l of acetone used)</th>
<th>$w_a = c_a p_a \Sigma V_{aw}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less methylene chloride wash blank (mg) (not to exceed 1.5 mg/l of methylene chloride used)</td>
<td>$w_t = c_t p_t \Sigma V_{tw}$</td>
</tr>
</tbody>
</table>

This document is a prepublication version, signed by EPA Administrator, Andrew R. Wheeler on 11/26/2019. We have taken steps to ensure the accuracy of this version, but it is not the official version.
<table>
<thead>
<tr>
<th>Less filter blank (mg) (not to exceed 0.5 mg/filter)</th>
<th>F_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCEM weight (mg)</td>
<td>$m_{MCEOM} = \sum m_{total} - w_a - w_t - f_b$</td>
</tr>
</tbody>
</table>

Method 316-Sampling and Analysis for Formaldehyde Emissions From Stationary Sources in the Mineral Wool and Wool Fiberglass Industries

1.0 Scope and Application

This method is applicable to the determination of formaldehyde, CAS Registry number 50-00-0, from stationary sources in the mineral wool and wool fiber glass industries. High purity water is used to collect the formaldehyde. The formaldehyde concentrations in the stack samples are determined using the modified pararosaniline method. Formaldehyde can be detected as low as 8.8×10^{-10} lbs/cu ft (11.3 ppbv) or as high as 1.8×10^{-3} lbs/cu ft (23,000,000 ppbv), at standard conditions over a 1 hour sampling period, sampling approximately 30 cu ft.

* * * * *

Method 323-Measurement of Formaldehyde Emissions From Natural Gas-Fired Stationary Sources—Acetyl Acetone Derivatization Method

* * * * *

2.0 Summary of Method. An emission sample from the combustion exhaust is drawn through a midget impinger train containing chilled reagent water to absorb formaldehyde. The formaldehyde concentration in the impinger is determined by reaction with acetyl acetone to form a colored derivative which is measured colorimetrically.