The Decontamination Effluent Treatment System (DETS): Mass Personnel Decontamination, Road Testing, and Integration

Jacob M. Lalley
Research Environmental Engineer
U.S. Army Engineer Research & Development Center
Environmental Engineering Branch
Vicksburg, MS 39180

20 November 2019
Engineer Research and Development Center (ERDC)

Research Laboratories for the US Army Corps of Engineers

- Headquarters
- Coastal & Hydraulics Laboratory
- Environmental Laboratory
- Geotechnical & Structures Laboratory
- Information Technology Laboratory
- Construction Engineering Research Laboratory
- Geospatial Research Laboratory
- Cold Regions Research Engineering Laboratory

Laboratories
Field Offices
Environmental Engineering Branch

• Integrate science, engineering, and technology to solve environmental problems,
• Research and develop bench, pilot, and full-scale field systems, and
• Promote understanding through technology transfer.
The Problem

- The Army has no capability to treat and/or recycle the effluent from its aqueous based chemical, biological, radiological and nuclear (CBRN) decontamination operations. This effluent is still very hazardous and a major handling, logistical, and potentially a political burden.
The Solution: The Decontamination Effluent Treatment System (DETS)
DETS Treatment Strategy

- Settling Tank
- Sand Filter
- IX Resin
- GAC
- RO Membranes

- Sediment
- Particulates
- Hardness
- Surfactants
- Bleach
- Oils/Greases/Miscellaneous
- Chemical warfare agents
- Radioisotopes (e.g. Cesium-137)
Process control and power supply

- Kubota Diesel 9875 240 V, 40 amp Watt Generator
 - 60 gallon subbase fuel tank and a two-wire auto start control.
 - Sound enclosure keeps noise at 68 dB(A) at 7 m (23 ft), which is helpful for communications.
 - The system is also designed to be suitable for operation of sensitive electronic equipment.
 - Fuel consumption varies from 0.41 to 0.84 gal/hr.
 - The system can also simply be plugged into a 240 V, 60 Hz, single phase, 40 amp source.

- Control architecture: EZAutomation EZ-Touch HMI/PLC
 - Customizable and programmable interface with ladder logic control
 - Data recording
 - Modular I/O
 - Pressure sensitive touch screen – compatible with heavy gloves
Table to the left summarizes costs of elements of the system

The equipment costs were less than $60,000

Keeping costs low allows for a unit to be disposed of in its entirety if it gets highly contaminated during treatment

Enhancement of monitoring equipment is the greatest estimated additional cost

<table>
<thead>
<tr>
<th>Unit</th>
<th>Cost</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse osmosis unit with pump and prefilter</td>
<td>$13,621.44</td>
<td>Price is for all the units described</td>
</tr>
<tr>
<td>Cleaning units for scale and organics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand filter media unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon filter media unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water softener media unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultraviolet sterilization unit (not used in these studies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kubota Generator</td>
<td>$9,922.45</td>
<td></td>
</tr>
<tr>
<td>Bredel pumps with mounting equipment and hoses</td>
<td>$13,283.09</td>
<td>We purchased 2, but only 1 was used. Cost is for 1 unit.</td>
</tr>
<tr>
<td>Flanges</td>
<td>$1,066.00</td>
<td></td>
</tr>
<tr>
<td>Hose reels</td>
<td>$8,939.92</td>
<td></td>
</tr>
<tr>
<td>Trailer</td>
<td>$5,000.00</td>
<td></td>
</tr>
<tr>
<td>Trailer upgrades</td>
<td>$1,000.00</td>
<td>We determined upgrades were needed after the initial demonstration</td>
</tr>
<tr>
<td>EZ Touch Control units with associated software</td>
<td>$1,800.00</td>
<td></td>
</tr>
<tr>
<td>Pressure gauges</td>
<td>$1,000.00</td>
<td>Estimated</td>
</tr>
<tr>
<td>Wiring</td>
<td>$500.00</td>
<td>Estimated</td>
</tr>
<tr>
<td>Total</td>
<td>$56,632.90</td>
<td></td>
</tr>
</tbody>
</table>
Alpha Version of Mobile Treatment System

Our system treated a simulated effluent with soap, bleach, clay and cesium. The removal was >99 percent of each constituent.

Our pilot reactor capable of treating aqueous effluent from decontamination of 200 people and 10 large vehicles per day for 3 to 5 days.

Flow Rate
- Battalion Sized Event
- Adapted from planning factors of operational DECON (Army G3/5/7 Decontamination Planning factors)
- 10 gpm
ERDC Demonstration: Simulated Decontamination

Details
- 27 June 2017
- 6 hours of total activity
- DETS operation 2 hours
- 10 large military vehicles & 20 cars, trucks, minivans were washed with soapy water & rinsed.
- 1200 gallons collected and spiked with Malathion, cesium, and bleach.
- Observers from JPM-P, Army MSCoE, JPdM A&RS, ECBC, DTRA, & USEPA

Wash Water

Pressure Wash
Sponge Wash
Rinse

Decon Effluent

DETS Pilot System (Trailer Mounted)

Clean Water

Discharge and/or Reuse
All measurements indicate that the DETS is highly effective at treating constituents found in decontamination wash water (98% removal or greater).

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Analytical Method</th>
<th>Influent Concentration (mg/L)</th>
<th>Effluent Concentration (mg/L)</th>
<th>Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>Summation of Ca2+ and Mg2+ concentrations as measured by ion chromatography</td>
<td>82.36 ± 40.79</td>
<td>0</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total Chlorine</td>
<td>Standard Method 4500-Cl G</td>
<td>0.26 ± 0.07</td>
<td>0</td>
<td>100.0%</td>
</tr>
<tr>
<td>Surfactants</td>
<td>Spectrophotometric method as given in Kloos (2015)</td>
<td>1.422 ± 0.359</td>
<td>0.019 ± 0.017</td>
<td>98.7%</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>USEPA 5310B</td>
<td>58.23 ± 29.7</td>
<td>1.18 ± 0.84</td>
<td>98.0%</td>
</tr>
<tr>
<td>Malathion</td>
<td>Phosphorus balance</td>
<td>26.71 ± 12.16</td>
<td>0.08 ± 0.05</td>
<td>99.7%</td>
</tr>
<tr>
<td>Malathion</td>
<td>USEPA 8141A</td>
<td>24.7</td>
<td>0.000097</td>
<td>100.0%</td>
</tr>
<tr>
<td>Cesium</td>
<td>USEPA 6020A</td>
<td>2.97 ± 4.21</td>
<td>0</td>
<td>100.0%</td>
</tr>
<tr>
<td>Turbidity</td>
<td>USEPA Method 180.1</td>
<td>>4200 (NTU)</td>
<td>1.825 ± 1.145</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Mass Personnel Decontamination Field Evaluation

Details
• 24 May 2018
• DETS operation 2.5 hours at 12 gpm
• 1800 gallons collected and spiked with Malathion, cesium, surfactants, and sediment/ash.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Target Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malathion</td>
<td>1</td>
</tr>
<tr>
<td>Cesium (CsCl)</td>
<td>5</td>
</tr>
<tr>
<td>Surfactants</td>
<td>20</td>
</tr>
<tr>
<td>Sediment</td>
<td>5</td>
</tr>
<tr>
<td>Ash</td>
<td>6</td>
</tr>
</tbody>
</table>
Mass Personnel Decontamination Field Evaluation: Results

Treatment of target constituents exceeded 99.8%

Pretreatment step (i.e., sand/GAC filtration) removed >97% of contaminants

RO proved to be an effective polishing step for surfactant and cesium removal
LA National Guard Demonstration

- 10 January 2019
- Integrate DETS into National Guard CBRNE Enhanced Response Force Package (CERFP)

![Schematic of water flow in current CERFP shower system](image)

US Army Corps of Engineers • Engineer Research and Development Center
Future Work: Adapting DETS to PETS for PFAS
Pilot System Construction and Application

- Found in Aqueous Firefighting Foams (AFFF)
- Very challenging to degrade, particularly PFOS
- EPA Drinking Water Health Advisory: 70 ppt
Future Work: Adapting DETS to PETS for PFAS
Pilot System Construction and Application

- PFAS Treatment Systems
 - Media filter treatment train
 - Primary filtration/ GAC/ RO
 - Mobile trailer 10-30 GPM
 - Recovers over 90% of the influent water
 - Treatment of concentrate approaches zero discharge
 - Goal will be to produce effluent with total PFAS measurements of 70 ppt or less

74,000 gallons (2 sites) with C6 AFFF
Future Work: Adapting DETS to PETS for PFAS

Preliminary Results

RO Only

Figure 14. Results of PFAS removal by the DETS using the RO process only.

Sand/GAC Filtration & RO

Figure 15. Results of PFAS removal by the DETS using the pretreatment steps up to the GAC process and the RO process.

Innovative solutions for a safer, better world
Conclusion

• DETS is a low cost treatment system, the first of its kind to treat and recycle decontamination effluent

• An effective means of capturing wash water from vehicle decontamination and MPD was demonstrated
 • The process was effective at 98% removal of all constituents tested

• The system was easily integrated into the National Guards CERFP decontamination practices

• Early studies have demonstrated effectiveness at removing PFAS
Innovative Solutions for a Safer, Better World

We are interested in collaborating to develop the best solutions for clean water!

Jacob M. Lalley
Research Environmental Engineer
U.S. Army Engineer Research and Development Center (ERDC)
3909 Halls Ferry Rd
Vicksburg, MS 39180
(601) 634-7480
Jacob.M.Lalley@usace.army.mil