Evaluation of Analytical Methods for the Detection of *Bacillus anthracis* spores: Compatibility with Real-World Samples Collected from Outdoor and Subway Surfaces

Presented at 2019 EPA International Decontamination Research and Development Conference

20 November 2019

Scott Nelson
Nelsonsc@battelle.org
614-424-4069
Disclaimer

• The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development (ORD) funded and managed the research described. It has been subjected to the Agency’s review and has been approved for publication and distribution. Note that approval does not signify that the contents necessarily reflect the views of the Agency. Mention of trade names, products, or services does not convey official EPA approval, endorsement, or recommendation.

• Battelle is a contractor to EPA and provided technical support for the work described.

• Dr. Worth Calfee (EPA) was the Principal Investigator for this effort
Background

- EPA is responsible for remediation of land and public infrastructure following biological contamination involving *Bacillus anthracis*
 - Emergency Support Function #10 of National Response Framework
- Following a biological contamination incident, spatial extent of contamination should be determined using established sampling and analytical methods
- EPA and CDC have developed analytical methods and established sampling methods for Sponge-Sticks and vacuum filter cassettes (VFC)
- Collected and recovered real-world interferents (RWIs) may adversely impact quantification and identification of *B. anthracis* spores
Objective

• Assess the impact of RWIs collected on Sponge-Stick and VFC samples on the current EPA-developed culture and molecular methods for quantification and identification of viable *B. anthracis* spores in environmental samples.
Technical Approach - Overview

• Sampling campaign conducted in mid-town Manhattan (November 2017)
 ▪ Times Square
 ▪ Grand Central Station
• End-to-end assessment of *B. anthracis* spore recovery and detection from Sponge-Stick and VFC in the presence of RWIs
Technical Approach – Sponge-Sticks

- Eighteen surfaces, plus field blank
- Target Spore Loads of 0/30/300/3,000
- Replicates of 3/5/5/5

<table>
<thead>
<tr>
<th>Surfaces Sampled</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor (Tile)</td>
<td>Metro Card Machine</td>
</tr>
<tr>
<td>Floor (Concrete)</td>
<td>Subway Car Filter Grille</td>
</tr>
<tr>
<td>Steps (w/Metal Grid)</td>
<td>Subway Car Filter Grille</td>
</tr>
<tr>
<td>Wall Tile</td>
<td>Electrical Display Panel</td>
</tr>
<tr>
<td>Glass Window</td>
<td>Crosswalk Signal</td>
</tr>
<tr>
<td>Electrical Display Panel</td>
<td>Telephone Booth</td>
</tr>
<tr>
<td>Glass Panel</td>
<td>Street Grating</td>
</tr>
<tr>
<td>Fluor Light Fixture</td>
<td>Crosswalk Painted</td>
</tr>
<tr>
<td>Overhead Sign</td>
<td>Granite Bench</td>
</tr>
</tbody>
</table>

3M Sponge-Stick

Electronic Display Panel (Times Square)
Technical Approach – Vacuum Filter Cassette (VFC)

- Technical Approach
 - Vacuum Filter Cassette (VFC)

Surfaces Sampled

<table>
<thead>
<tr>
<th>Surfaces Sampled</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor (Concrete)</td>
<td>Subway Car HVAC Filter</td>
</tr>
<tr>
<td>Steps (w/Metal Grid)</td>
<td>Carpet/Rug</td>
</tr>
<tr>
<td>Sidewalk Concrete</td>
<td>Pavement (Asphalt)</td>
</tr>
</tbody>
</table>

- Six surfaces, plus field blank
 - Floor, Steps and Sidewalk also sampled via Sponge-Sticks
- Target Spore Loads of 0/30/300/3,000
- Replicates of 3/5/5/5

Vacuum Filter Cassette

Carpet at Subway Station
Technical Approach – Process Flow

Day 1 (Tues)

Day 2 (Wed)

RV-PCR

Day 2 → Day 3 (Wed → Thurs)

Extracted Sponge-Stick or VFC

Culture

DNA Extraction (t₀ and t₁)

Day 3 (Thurs)

SBA

Plate

Enzyme

Day 4 (Fri)

Incubate Overnight

Streak for Isolation

PCR Analysis

Day 3 (Thurs)

RV-PCR Analysis
Technical Approach – Spore Spiking; Spore Recovery; Split Sample

- **Spore Spiking (post-interferent collection)**
 - B. a. Sterne spores
 - Pipetted twenty (20) 5 µL droplets

- **Spore Recovery**
 - Stomacher or sonication with cold extraction buffers

- **Split recovered spores**
 - Culture
 - Rapid Viability-PCR (RV-PCR)
Technical Approach – Analytical Methods

Culture

- Trypticase Soy Agar with 5% Sheep Blood (SBA)
- Colony PCR confirmation
- Trypticase Soy Broth enrichment

RV-PCR

- Extract DNA from T_0 and T_f aliquots
- Real-Time PCR
 - Chromosome and pXO1 targets
- ΔCt values reported
 - ΔCt ≥9 reported as positive result
Culture Results – Representative Recovery Efficiencies

- Higher standard deviation for nominal 15 spores available attributed to relatively few (<10) recovered colony forming units (CFU)
- Lower percent recovery for VFCs attributed to spores being retained on the MCE filter substrate
- Application of spore using droplets may have adverse impact on recovery
Culture Results – Background Flora/Grime Adversely Affected B. a. Sterne Quantification for Sponge-Stick

• A subset of colonies recovered were screened using real-time PCR assays targeting chromosomal and pXO1 gene targets
 ▪ Of 229 colonies screened from Sponge-Sticks, 93% were confirmed as correctly identified

• Overall, background flora interfered with identification of presumptive B. a. Sterne from Street Grate samples to a greater degree than the other surfaces
 ▪ All Street Grate samples had background flora counts of greater than 83 colonies

• 3 of 21 Sponge-Sticks that were TSB enriched were real-time PCR positive
 ▪ Isolated colonies from turbid broth were all negative despite B. a. Sterne morphology on SBA
Culture Results – Background Flora/Grime Adversely Affected B. a. Sterne Quantification for VFC

• A subset of colonies recovered were screened using real-time PCR assays targeting chromosomal and pXO1 gene targets
 ▪ Of 50 colonies screened from VFC, 68% were confirmed as correctly identified
 ▪ 16 presumptive B. a. Sterne colonies that were real-time PCR negative artificially inflated the percent recovery

• Subway Car Filters appeared (visually) to be the dirtiest of the VFC filters

• TSB broth enrichment was PCR positive at a lower spore loading level than RV-PCR positive, indicating spores are not being physically removed from the filter of VFC samples
 ▪ B. a. Sterne morphology was not isolated when turbid TSB broth was streaked onto SBA
RV-PCR Results – Representative ΔCt Values for Sponge-Sticks

- All RV-PCR Sponge-Sticks with a nominal 15 B. a. Sterne spores (CFU) available were positive except Street Grate and Painted Crosswalk
- Both chromosome and pXO1 gene targets in the RV-PCR assay yield comparable response
RV-PCR Results – Representative ΔCt Values for VFC

- All RV-PCR VFCs with a nominal 15 B. a. Sterne spores (CFU) available were negative
- Poor recovery efficiencies (< 10%) as determined by culture contributed to the low accuracy of RV-PCR detects
 - Field blank samples were non-detects for samples with 0, 15, and 150 B. a. Sterne spores nominally available
Summary of Detection Accuracy – Sponge Sticks

<table>
<thead>
<tr>
<th></th>
<th>Culture (SBA)</th>
<th>Molecular Response (RV-PCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive</td>
<td>77% (220 of 285)</td>
<td>97% (276 of 285)</td>
</tr>
<tr>
<td>True Negative</td>
<td>96% (55 of 57)</td>
<td>100% (57 of 57)</td>
</tr>
<tr>
<td>False Positive</td>
<td>3.4% (2 of 57)</td>
<td>0% (0 of 57)</td>
</tr>
<tr>
<td>False Negative</td>
<td>23% (65 of 285)</td>
<td>3.2% (9 of 285)</td>
</tr>
</tbody>
</table>

Culture results
- Two false positives, one each from Telephone Booth and Sidewalk Concrete
- Surfaces with most false negatives: Street Grate (15), Crosswalk Painted (10), and Steps (8)

RV-PCR results
- Zero false positives
- Two surfaces with more than 1 false negative: Street Grate (3) and Crosswalk Painted (2)
Summary of Detection Accuracy – VFCs

<table>
<thead>
<tr>
<th>Culture (SBA)</th>
<th>Molecular Response (RV-PCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive</td>
<td>True Positive</td>
</tr>
<tr>
<td>False Positive</td>
<td>False Positive</td>
</tr>
<tr>
<td>False Negative</td>
<td>False Negative</td>
</tr>
<tr>
<td>True Positive</td>
<td>True Positive</td>
</tr>
<tr>
<td>True Negative</td>
<td>False Positive</td>
</tr>
<tr>
<td>False Positive</td>
<td>False Negative</td>
</tr>
<tr>
<td>False Negative</td>
<td>False Positive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Positive</th>
<th>True Negative</th>
<th>False Positive</th>
<th>False Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>54% (57 of 105)</td>
<td>90% (19 of 21)</td>
<td>10% (2 of 21)</td>
<td>46% (48 of 105)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47% (49 of 105)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100% (21 of 21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0% (0 of 21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52% (55 of 105)</td>
</tr>
</tbody>
</table>

- **Culture results**
 - Two false positives, one each from Floor Concrete and Carpet
 - Surfaces with most false negatives: Subway Car Filter (8), Field Blank (8), and Carpet (8)

- **RV-PCR results**
 - Zero false positives
 - Surfaces with most false negatives: Subway Car Filter (14), Field Blank (11), and Pavement (10)
Summary of Key Findings

• *B. anthracis* analysis methods were 77% (Culture) and 97% (RV-PCR) accurate in correctly identifying the presence of B. a. Sterne in Sponge-Stick samples that had previously collected material from real-world surfaces.

• Culture and RV-PCR analysis methods did not perform as well for VFCs.

• TSB enrichment of the VFC filter following spore recovery, was PCR positive at a lower loading level than RV-PCR:
 - Indicates B. a. Sterne spiked onto VFC membrane are not efficiently removed from the filter.
 - When TSB enrichment broth found to be positive by PCR was streaked onto SBA, B. a. Sterne was not isolated (except for field blank samples).

• RV-PCR can be used to positively identify viable *B. anthracis* in the presence of complex, dirty sample matrices from Sponge-Stick surface samples:
 - Samples with as few as 15 B. a. Sterne spores (CFU) were positively identified routinely.
Acknowledgements

• Research funded by U.S. EPA contract EP-C-15-002; TO-09

• Co-authors
 ▪ EPA: Dr. Worth Calfee, Dr. Sanjiv Shah, Mr. Leroy Mickelsen, and Dr. Sang Don Lee
 ▪ NYC Dept Health and Mental Hygiene: Ms. Kobria Karim and Dr. Joel Ackelsberg
 ▪ Battelle: Mr. Kent Hofacre and Dr. Ryan James

• EPA/600/R-19/083, June 2019
 ▪ https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&dirEntryId=346146