

Final Risk Evaluation for Methylene Chloride

Systematic Review Supplemental File:

Data Extraction Tables for Environmental Fate and Transport Studies

CASRN: 75-09-2

June 2020

Table of Contents

Table 1. Biodegradation Study Summaries for Methylene Chloride	3
Table 2. Bioconcentration Study Summaries for Methylene Chloride	12
Table 3. Photolysis Study Summaries for Methylene Chloride	13
Table 4. Hydrolysis Study Summaries for Methylene Chloride	14
Table 5. Sorption Study Summaries for Methylene Chloride	16
Table 6. Study summaries for Other Fate Endpoints Related to Methylene Chloride	16
References	20

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status		Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Water	Γ	1	1		1	1		
Other; non-guideline	1 to 100 mg/L	Activated sludge, domestic (acclimated)	Aerobic	9-11 days	Biodegradation parameter: CO2 evolution, rate constants: 1.42, 1.61 and 0.35h ⁻¹ at 1, 10 and 100 mg/L methylene chloride conc.	The reviewer agreed with this study's overall quality level.	(<u>Dow Chem</u> <u>Co, 1982</u>)	High
Other; similar to official Manometric respirometry test except for system material	50 mg/L	Activated sludge (adaptation not specified)	Aerobic	28 days	Biodegradation parameter: chromatographic analyses and oxygen depletion: 0%/28 d	The reviewer agreed with this study's overall quality level.	(<u>Lapertot</u> and <u>Pulgarin,</u> 2006)	High
OECD Guideline 301 D (Ready Biodegradability: Closed Bottle Test); Deviations: a) ammonium chloride was omitted from the medium to prevent oxygen consumption due to nitrification and b) activated sludge instead of an effluent/extract/mixture was used as inoculum.	5 mg/L	Activated sludge, domestic, non- adapted	Aerobic	28 days	Biodegradation parameter: oxygen consumption: 68%/28d; 10-day window passed; Readily biodegradable	agreed with this study's overall quality level.	(<u>ECHA,</u> <u>2017b</u>)	High
Other; Closed-Bottle Manometric Respirometry Test	10 mg/L; 100 mg/L; 1 mg/L	Activated sludge, domestic, adapted	Aerobic	50h	Biodegradation parameter: CO2 evolution: 49%/50h; 65%/50h; 66%/50h	The reviewer agreed with this study's overall quality level.	(<u>Klecka,</u> 1982)	High
Other; non-guideline	90 µm	Other: Hanford soil microcosms	Aerobic	30h	Biodegradation parameter: percent	The reviewer agreed with	(<u>Kim et al.,</u> 2000)	High

Table 1. Biodegradation Study Summaries for Methylene Chloride

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
					95%/30h;	this study's overall quality level.		
OECD Guideline 302 B (Inherent biodegradability: Zahn-Wellens/EMPA Test); A "fast biodegradability test" was done initially, according to Polo et al. 2011. Compounds, including methylene dichloride, that were not determined to be biodegradable in adapted sludge according to that test underwent the OECD 302 B test.	100 mg/L	Activated sludge, domestic, adapted		28 days	reduction: 2.4%/28d		(<u>Tobajas et</u> <u>al., 2016</u>)	High
Other; Solid, liquid, and gas emissions from a municipal solid waste and sludge composting reactor were analyzed for methylene dichloride and other VOC. Based on		Activated sludge, domestic, adapted		5 days	total removal: 4.5%/5d (the rest of	The reviewer agreed with this study's overall quality level.	(<u>Kim et al.,</u> <u>1995</u>)	High

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
degradation rates from Howard 1991 and other system parameters, VOC concentrations were estimated in starting MSW.								
Other; non-guideline	33 kBq of [14C]methylene dichloride in study	Other: anaerobic, acetogenic mixed culture (methylene dichloride- degrading culture, with methylene dichloride as sole C source)	Anaerobic	approx. 32 hours (from figure)	radiolabel in degradation products:	The reviewer agreed with this study's overall quality level.	(<u>Braus-</u> <u>Stromeyer et</u> <u>al., 1993</u>)	High
Other; Static-culture flask- screening test	5 to 10 mg/L	Sewage, domestic, non- adapted	Aerobic	28 days (includes 7- day static incubation and 3 weekly subcultures)	<u>removal:</u> 100%/7 days;	The reviewer agreed with this study's overall quality level.	(<u>Tabak et</u> <u>al., 1981</u>)	High
Other; Biodegradation in an estuarine environment	10 mmol/L	Natural water: marine	Aerobic	6 days	Biodegradation parameter: mineralization: 90%/6d	The reviewer agreed with this study's overall quality level.	(<u>Krausova et</u> <u>al., 2006</u>)	High

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Other; Non-guideline repetitive addition of methylene dichloride	7.6 mg/L nominal; approx 7.1 mg/L after volatilization	Digested sludge	Anaerobic	93 days	Biodegradation parameter: percent removal: Variable (100%/10 days, 100%/20 days, 20%/60days for repeat additions)	The reviewer agreed with this study's overall quality level.	(<u>Gossett.</u> <u>1985</u>)	High
Other; Non-guideline		Other: mixed liquor samples from a laboratory reactor	Anaerobic	284d	Biodegradation parameter: radiolabel detected in degradation products: test material was consumed after lag period of about 10 days	The reviewer agreed with this study's overall quality level.	(Freedman and Gossett, 1991)	High
Other; non-guideline	1 mg/L	Other: ditch sludge mixed with sewage in Gifu South Korea culture, adapted to perchloro- ethylene	Anaerobic	7d	Biodegradation parameter: percent removal: 77%/7d	The reviewer agreed with this study's overall quality level.	(<u>Chang et</u> <u>al., 1998</u>)	High
Other; Anaerobic serum bottle test	Methylene dichloride is formed as a byproduct during the degradation of a mixture of chlorinated hydrocarbon.	Digested sludge	Anaerobic	60 days	Biodegradation parameter: percent removal: 100%/60d	The reviewer downgraded this study's overall quality rating. They noted: Methylene chloride is a byproduct and not the chemical being studied	(<u>Long et al.,</u> <u>1993</u>)	Medium

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Other; Aerobic batch fed reactor	Methylene dichloride is formed as a byproduct during the degradation of a mixture of chlorinated hydrocarbons.	Digested sludge	Aerobic	More than a year	Biodegradation parameter: test reactor influent/effluent comparison: Average reactor influent of methylene dichloride = 0 µg/L, effluent not detected.	in this report. The reviewer downgraded this study's overall quality rating. They noted: Methylene chloride is a byproduct and not the chemical being studied in this report.	(<u>Long et al.,</u> <u>1993</u>)	Medium
Other; Anaerobic batch fed reactor	Methylene dichloride is formed as a byproduct during the degradation of a mixture of chlorinated hydrocarbon.	Digested sludge	Anaerobic	More than a year	$\frac{\text{Biodegradation}}{\text{parameter: test reactor}}$ $\frac{\text{influent/effluent}}{\text{comparison:}}$ Average reactor influent of methylene dichloride = 0 µg/L, average reactor effluent of methylene dichloride = 2 µg/L.	-	(<u>Long et al.,</u> <u>1993</u>)	Medium
Other; Aerobic serum bottle test	Methylene dichloride is formed as a byproduct during the degradation of a mixture of chlorinated	Digested sludge	Aerobic	20 days	Biodegradation parameter: percent removal: methane culture and phenol culture, respectively: 100%/20d and	-	(<u>Long et al.,</u> <u>1993</u>)	Medium

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
	hydrocarbon.				100%/20d	chloride is a byproduct and not the chemical being studied in this report		
Other; Specific chemical analysis used instructions from Federal Register and EPA approved procedures.	281 to 287 mg/L	Activated sludge, domestic (adaptation not specified)		8-hour retention time in activated sludge reactors; samples collected over 60-day testing period	Biodegradation parameter: BOD5; 98.9-99.6%; Biodegradation parameter: TOC; 87.9- 89.4%; Biodegradation parameter: COD: 90.8-95.8%	The reviewer agreed with this study's overall quality level.	Kincannon, 1983)	Medium
Other; Non-guideline aerobic biodegradation study	50 to 100 mg/L	Other: industrial wastewater treatment composed of Acinetobacter, Alcaligenes, Flavobacterium, and Pseudomonas and one yeast (Rhodotorula)	Aerobic	data at 6h reported	Biodegradation parameter: oxygen uptake: 4 mg/L of 50 mg/L dose left at 6h	The reviewer agreed with this study's overall quality level.	(<u>Davis et al.,</u> <u>1981</u>)	Medium
Other; non-guideline	~3.33 µg/mL	Other: muck from the Everglades	Anaerobic	30d	<u>Biodegradation</u> <u>parameter: half-life of</u> <u>test material:</u> 11 days	The reviewer downgraded this study's overall quality rating. They noted: Methylene	(<u>Wood et al.,</u> <u>1981</u>)	Medium

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
						chloride was studied as a transformation product.		
Other; inhibition of gas production to anaerobic sludge from an operating municipal sludge digester	0 to 100 mg/L	Sewage, domestic (adaptation not specified)	Anaerobic	48h	Parameter: inhibition of gas production: 20% inhibition at 3 mg/L and 50% at 50 mg/L after 48h	The reviewer downgraded this study's overall quality rating. They noted: Study describes inhibition of gas production not biodegradation rates or transformation pathways.	<u>Co, 1977</u>)	Low
Other; Suspended-growth experiments using a biofilm enrichment culture	23.8 mg/L	Sewage, predominantly domestic, adapted	Aerobic	5 weeks	<u>Biodegradation</u> <u>parameter: removal of</u> <u>test material:</u> Removal was observed reducing methylene dichloride from 23.8 mg/L to 1 mg/L and remained consistent over a 5- week period	The reviewer downgraded this study's overall quality rating. They noted: Quantitative results were not reported. The reported qualitative results are not representative of natural environmental conditions.	(<u>Rittmann</u> <u>and</u> <u>McCarty,</u> <u>1980</u>)	Low

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Other; Anaerobic biodegradation with municipal solid waste, biowaste, and/or compost	5 mg/kg	Other	Anaerobic	Not specified; likely >130 days	Biodegradation parameter: average degradation rate: MSW/biowaste (acid- phase): dichloromethane not detected; MSW/biowaste: (methane-phase): 0.6 mg/m3/hr; MSW: 0.6 mg/m3/hr	The study did not include or report control groups to validate the system used.	(Deipser and Stegmann, 1997)	Unacceptable
	≥166 μg	Surface water muck	Not specified	13 days	10.9 days, <21.7 days	Testing conditions were not reported and data provided were insufficient to interpret results.	(<u>Dow Chem</u> <u>Co, 1980</u>)	Unacceptable
Other; Non-guideline radiolabeled study		Digested sludge	Anaerobic	29 days approx.	Biodegradation parameter: quantity methylene dichloride in carbon of CO2: 86-92%	The test substance identity could not be verified from the information provided.	(<u>Gossett,</u> <u>1985</u>)	Unacceptable
Sediment					1			
Other; degradation tests by the marine nitrifying enrichment culture were performed in the Fluidized-	ca.79 to ca.84 μmol/L	Natural sediment: marine	Aerobic	31 hours	Biodegradation parameter: percent removal: 65%/31h in the presence of 2.3	The reviewer agreed with this study's overall quality	(<u>Melin et al.,</u> <u>1996</u>)	High

Study Type (year)	Initial Concentration	Inoculum Source	(An)aerobic Status	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
bed enrichment system					mM ammonia; 84%/31h in the absence of ammonia	level.		
Other; non-guideline study		Natural water/sediment: freshwater	Anaerobic	22d	zero order kinetics,		(Peijnenburg et al., 1998)	High

Study Type (year)	Initial Concentration	Species	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
OECD Guideline 305 (Bioconcentration: Flow-through Fish Test) - [before 2 Oct 2012]	25 to 250 μg/L	Cyprinus carpio	6 week (uptake)	Bioconcentration parameter: BCF: 2-5.4 (high), <6- 40 (low) (carp)	The reviewer agreed with this study's overall quality level.	(<u>ECHA,</u> <u>2017a</u>)	High
Other		Lemna minor (colonies), Groenlendia densa, Elodea canadensis, Fontinalis antipyretica, Physa fontinalis, Daphnia magna, Periphyton, Microphytes, Bacteria, Sediments, Hoagland medium, Quicksafe-N, Activated charcoal and oxyfluor.	15 days	Bioconcentration parameter: [14C] radioactivity balance: <0.1% remaining after 12-15 days (macrophytes, mollusks).	The reviewer agreed with this study's overall quality level.	(<u>Thiébaud</u> <u>et al., 1994</u>)	High

Table 2. Bioconcentration Study Summaries for Methylene Chloride

Study Type (year)	Wavelength Range	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Air						
QSAR; Photochemical Reaction with OH Radicals	Not applicable	Not applicable	Photodegradation parameter: Indirect photolysis half-life (reaction with OH radicals): 13.291 Days; Photodegradation parameter: Dissipation half-life of parent compound: 79.31 days	The reviewer agreed with this study's overall quality level.	(<u>ECHA, 2017</u> c)	High
Water						
EPA OTS 796.3700 (Direct Photolysis Rate in Water by Sunlight)	Sunlight	1 year	<u>Photodegradation</u> <u>parameter: DT50:</u> 21.1 months	The reviewer agreed with this study's overall quality level.	(<u>Dilling et al., 1975</u>)	High
Other: non- guideline	300 nm to 500 nm	1-2 min	Photodegradation parameter: Indirect photolysis: hydroxyl radical reaction rate (kHO.): 2.2E7 M-1s-1 1 to 5.8E7 M-1s-1; Photodegradation parameter: ozone decomposition rate: 9(+/-6)E7 M ⁻¹ s ⁻¹	The reviewer agreed with this study's overall quality level.	(<u>Haag and Yao,</u> <u>1992</u>)	High

Table 3. Photolysis Study Summaries for Methylene Chloride

Study Type (year)	рН	Temperature	Duration	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Nonguideline lab study in Pyrex tubes with light- proof container, shaken every 2-weeks		Approx. 25°C	1 year	Hydrolysis parameter: half- life: approx. 18 months; Hydrolysis parameter: decomposition rate constant (in aerated water in the dark); 0.039±0.008 mo-1; part of the reaction may have occurred in the vapor phase	The reviewer agreed with this study's overall quality level.	(<u>Dilling et al.,</u> <u>1975</u>)	High
Hydrolysis of methylene chloride under sub and super critical conditions	Not reported	450-600°C (246 bar)	Residence times ≥22sec	<u>Hydrolysis</u> <u>parameter:</u> <u>hydrolysis</u> <u>products:</u> formaldehyde, hydrochloric acid, carbon monoxide, hydrogen, and methanol; small amounts of methane (temps \geq 562C); trace amounts of chloromethane, chloroform, trichloroethylene and isomers of dichloroethylene detected in vapor phase; reaction network	The reviewer downgraded this study's overall quality rating. Limited supporting data were included for the detection and identification of the transformation products, analytical methods were not detailed and neither a rate constant nor half- life were determined.	(<u>Marrone et</u> <u>al., 1998</u>)	Low

Table 4. Hydrolysis Study Summaries for Methylene Chloride

Study Type (year)	рН	Temperature	Duration	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
				proposed for sub and supercritical conditions			
Other	Not reported	250-450°C	Not applicable	<u>Hydrolysis</u> <u>parameter: rate</u> <u>constant</u> : $k = 2.62$ +/-1.27E-2 s-1 at 250°C; results at higher temps, in presence of oxygen and NaCl also reported. rate constant increased monotonically with temperature increase but dropped above the critical temperature in NaCl under 360°C small increase demonstrated	The temperature range is too high to be relevant to typical environmental conditions.	(<u>Oshima et al.,</u> <u>2001</u>)	Unacceptable

Study Type (year)	Sorbent Source	Sorbent Qualities (clay/silt/sand, OC, pH)	Duration	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Migration through ground water	Subsoil: sandy clay or clayey sand till; 4-8 ft of sand at a depth of ca. 14 ft. Thinner sand seams in the upper zones of the underlying clay till. The uppermost sand aquifer is confined by sandy clay deposits.	Undisturbed samples of the clayey till were obtained 3-4 and 4-5 feet into that deposit and below the uppermost aquifer.		Sorption parameter: ground water migration rate: Methylene chloride was not detected in the upper sample, but was seen at 0.398 ppm in the lower sample; results were inconclusive and appreciable vertical migration is unsubstantiated by analytical results	The reviewer agreed with this study's overall quality level.	(<u>AT&T,</u> <u>1986</u>)	Medium

Table 5. Sorption Study Summaries for Methylene Chloride

Table 6. Study summaries for Other Fate Endpoints Related to Methylene Chloride

System	Study Type (year)	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
WWTP	Other; Influents and effluents of 27 Korean WWTPs screened for 22 chemicals.	Parameter: WWTP Removal: Average (estimate from graph): 88%	The reviewer agreed with this study's overall quality level.	(<u>Lee et al., 2015</u>)	High
>90% of the wastewater is composed of residential and commercial domestic sewage with <5% from industrial sources; most plants also receive runoff (18-40%) from the surrounding urban watershed	municipal wastewaters from 1989-1993	Parameter: WWTP influent/effluent comparison: Methylene chloride was detected in 39% of influent samples and 31% of effluent samples; the concentration range detected in influent was 6-	The reviewer agreed with this study's overall quality level.	(<u>Stubin et al.,</u> <u>1996</u>)	High

System	Study Type (year)	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
		160 μg/L and effluent was 2-29 μg/L. Methylene chloride was one of five commonly observed volatiles detected; present in at least a third or more of all the samples analyzed.			
WWTP	Other; The influent and effluent concentrations of several VOCs were measured at two WWTPs and compared to a model developed by the authors that estimated VOC removal by volatilization, adsorption, and biodegradation based on the WWTP operational conditions.	<u>Parameter: WWTP</u> <u>removal:</u> _WWTP #1 predicted methylene dichloride biodeg. removal = 96.0%. WWTP #2 predicted biodeg. removal = 96.3%. activated sludge, industrial, adapted	The reviewer agreed with this study's overall quality level.	(<u>Namkung and</u> <u>Rittmann, 1987</u>)	Medium
Chemicals extracted from air by the trap were desorbed at 100C into the GC; relative concentrations in liquid were determined by withdrawing 5mL aliquots and stripping dissolved volatiles into the concentrator trap of the apparatus	Determination of air-water distribution coefficients as a function of temperature	Parameter: air-water distribution coefficients: were 61.4, 111.5, 121.5, 141.6, 157.1, and 161.9 at 1.9°C, 13.5°C, 15.7°C, 17.1°C, 22°, and 24.9°C respectively (overall estimated % error = ± 4.8)	The reviewer agreed with this study's overall quality level.	(<u>Leighton and</u> <u>Calo, 1981</u>)	Medium
Glovebox with a 90%N2/10%H2 atmosphere in 250 mL glass bottles, with water or pH 7 buffer, iron powder and substrate (purged with N2)	Non-guideline	Parameter: abiotic dechlorination: methylene dichloride did not react with iron, manganese or in leachate	The reviewer agreed with this study's overall quality level.	(<u>Schreier and</u> <u>Reinhard, 1994</u>)	Medium
Processes governing solute transport	Volatilization rates and	Parameter: mass flux to	The reviewer	(<u>Keefe et al.,</u>	High

System	Study Type (year)	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
and volatilization were quantified using measured field data and the OTIS (one-dimensional transport with inflow and storage)	half-lives for VOCs in constructed wastewater treatment wetlands	the atmosphere: 0.78g/d/hectare	agreed with this study's overall quality level.	2004)	
Reactors were fed by actual wastewater from unnamed facilities that were spiked with various VOCs.	Field study	Parameter: test reactor influent/effluent comparison: influent: 225000-252000 (mean 238000) mg/L (SD 7770); effluent: 2-2100 (mean 940) mg/L (SD 664)	The reviewer downgraded this study's overall quality rating. They noted: Modeling study that did not report the related experimental details well.	(<u>Soltanali and</u> <u>Hagani, 2008</u>)	Low
Two to five compounds were run simultaneously in the same solution	N/A	Parameter: evaporation half-life: 25.2 min	The reviewer agreed with this study's overall quality level.	(<u>Dilling, 1977</u>)	High
Wastewater flow: 41.5, 21, 852, 2390, 499, 110 and 30.5 L/min. Volatile organic loading rate: 14.6, 4.6, 292, 286, 19, 5.29, 0.395 kg/L. Feed ratio: 9.6, 10.5, 28.8, NA, 14.7, 7.1, 1.4 kg/kg for plants A-G respectively	7 steam stripper operations are reported	Parameter: percent removal from steam stripper operations: >99.1 to >99.99% from plants A, B and C.	The reviewer agreed with this study's overall quality level.	(<u>Blaney, 1989</u>)	Medium
Amber covered bottles, N2 gas passed over, in a Forma model 1024 anaerobic work station	Nonbiological Reductive Dehalogenation Experiments	Parameter: concentration after abiotic dechlorination (initial concentration: 1 mg/L): after 0, 14, 27 and 43 days: reaction in redox buffer: 0.42, 0.39, 0.33 and 0.35 mg/L; reaction	The reviewer agreed with this study's overall quality level.	(<u>Dow Chem Co.</u> <u>1983</u>)	High

System	Study Type (year)	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
		in redox buffer + hematin: 0.36, 0.40, 0.33 and 0.35 mg/L			
Bottles were completely filled and capped to avoid loss of volatiles with solids and test compound; Primary sludge: 7 data points in isotherm test, primary slope = 1.08 and r2= 0.75 ; Digested sludge: 6 data points in isotherm test, slope = 0.8 and r2= 0.94	Sorption study	Parameter, sorption coefficient K: Primary sludge and digested sludge: 0.19 and 0.08, respectively	The reviewer agreed with this study's overall quality level.	(<u>Dobbs et al.,</u> <u>1989</u>)	High
Modified EPA method 624	Stripping of volatile organics from wastewater	Parameter: WWTP influent/effluent comparison: avg. influent and effluent: 13.2 and 9.0 μg/L in water and 1158 and 1038 μg/m3 in off gas at skyway. influent and effluent: 7.2 and 9.5 μg/L in water and 449 and 333 μg/m3 in off gas at highland creek; 1350 and 1499 μg/m3 max off gas samples	The reviewer agreed with this study's overall quality level.	(<u>Bell et al., 1993</u>)	High
Samples taken from WWTP to evaluate air stripping and removal of methylene dichloride Highland Creek WWTP in Toronto, Ontario (pilot plant study also reported in the study)	Partitioning in activated sludge plant	Parameter: test reactor gas-liquid phase partition coefficient: avg. 142 (+/- 31) and 127 (+/-27) (ng/L)/(µg/L); 95% removal of methylene dichloride by full scale aeration basin	Study evaluates removal of methylene dichloride based on air stripping. The extent of air stripping is a function of the compound pchem properties and a	(<u>Parker et al.,</u> <u>1993</u>)	Unacceptable

System	Study Type (year)	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
			function of WWTP design and operation.		

References

- AT&T. (1986). HYDROGEOLOGIC ASSESSMENT AND REMEDIAL ACTION AT&T INFORMATION SYSTEMS SITE INDIANNAPOLIS, INDIANA (INTERIM REPORT) WITH ATTACHMENTS AND COVER LETTER DATED 020690. (OTS: OTS0522315; 8EHQ Num: NA; DCN: 86-900000083; TSCATS RefID: 405919; CIS: NA).
- Bell, J; Melcer, H; Monteith, H; Osinga, I; Steel, P. (1993). Stripping of volatile organic compounds at full-scale municipal wastewater treatment plants. Water Environ Res 65: 708-716. <u>http://dx.doi.org/10.2175/WER.65.6.2</u>
- Blaney, BL. (1989). Applicability of steam stripping to organics removal from wastewater streams (pp. 415-424). (EPA/600/9-89/072). Cincinnati, OH: U.S. Environmental Protection Agency. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30005CR3.txt
- Braus-Stromeyer, SA; Hermann, R; Cook, AM; Leisinger, T. (1993). Dichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacterium. Appl Environ Microbiol 59: 3790-3797.
- Chang, YC; Hatsu, M; Jung, K; Yoo, YS; Takamizawa, K. (1998). Degradation of a variety of halogenated aliphatic compounds by an anaerobic mixed culture. J Ferment Bioeng 86: 410-412. http://dx.doi.org/10.1016/S0922-338X(99)89015-1
- Davis, EM; Murray, HE; Liehr, JG. (1981). Basic microbial degradation rates and chemical byproducts of selected organic compounds. Water Resources 15. <u>http://dx.doi.org/10.1016/0043-1354(81)90082-8</u>
- Deipser, A; Stegmann, R. (1997). Biological degradation of VCCs and CFCs under simulated anaerobic landfill conditions in laboratory test digesters. Environ Sci Pollut Res Int 4: 209-216. <u>http://dx.doi.org/10.1007/BF02986348</u>
- <u>Dilling, WL.</u> (1977). Interphase transfer processes. II. Evaporation rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from dilute aqueous solutions. Comparisons with theoretical predictions. Environ Sci Technol 11: 405-409. <u>http://dx.doi.org/10.1021/es60127a009</u>
- Dilling, WL; Tefertiller, NB; Kallos, GJ. (1975). Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions. Environ Sci Technol 9: 833-838. http://dx.doi.org/10.1021/es60107a008
- Dobbs, RA; Wang, L; Govind, R. (1989). Sorption of toxic organic compounds on wastewater solids: Correlation with fundamental properties. Environ Sci Technol 23: 1092-1097. <u>http://dx.doi.org/10.1021/es00067a004</u>
- Dow Chem Co. (1977). THE INHIBITION OF ANAEROBIC SLUDGE GAS PRODUCTION BY 1,1,1-TRICHLOROETHANE, METHYLENE CHLORIDE, TRICHLOROETHYLENE AND PERCHLOROETHYLENE, Part 2. (OTS: OTS0517178; 8EHQ Num: NA; DCN: 86-

870002089; TSCATS RefID: 309930; CIS: NA).

- Dow Chem Co. (1980). Introductory study of the biodegradation of the chlorinated methane, ethane and ethene compounds: Progress report CR806890-01 coop agreement [TSCA Submission]. (OTS: OTS0509177; 8EHQ Num: 47004 F1-2A; DCN: 40-8024098; TSCATS RefID: 200511; CIS: NA). Midland, MI.
- Dow Chem Co. (1982). FATE AND EFFECTS OF METHYLENE CHLORIDE IN ACTIVATED SLUDGE (SEE COVER LETTER DATED 060382). (OTS: OTS0509180; 8EHQ Num: 47004 F1-7; DCN: 40-8224284; TSCATS RefID: 206792; CIS: NA).
- Dow Chem Co. (1983). NONENZYMATIC REDUCTIVE DECHLORINATION OF CHLORINATED METHANES AND ETHANES IN AQUEOUS SOLUTION. (OTS: OTS0517182; 8EHQ Num: NA; DCN: 86-870002093; TSCATS RefID: 309938; CIS: NA).
- ECHA. (2017a). Bioaccumulation: aquatic/sediment: Dichloromethane. Helsinki, Finland. Retrieved from https://echa.europa.eu/registration-dossier/-/registered-dossier/15182/5/4/2#
- ECHA. (2017c). Phototransformation in air: Dichloromethane. Helsinki, Finland. Retrieved from <u>https://echa.europa.eu/registration-dossier/-/registered-dossier/15182/5/2/2#</u>
- Freedman, DL; Gossett, JM. (1991). Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl Environ Microbiol 57: 2847-2857.
- Gossett, JM. (1985). Anaerobic degradation of C1 and C2 chlorinated hydrocarbons. (ESL-TR-85-38). Tyndal AFB, FL: Air Force Engineering & Services Center.
- Haag, WR; Yao, CCD. (1992). Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26: 1005-1013. <u>http://dx.doi.org/10.1021/es00029a021</u>
- Keefe, SH; Barber, LB; Runkel, RL; Ryan, JN. (2004). Fate of volatile organic compounds in constructed wastewater treatment wetlands. Environ Sci Technol 38: 2209-2216. http://dx.doi.org/10.1021/es034661i
- Kim, JY; Park, JK; Emmons, B; Armstrong, DE. (1995). Survey of volatile organic compounds at a municipal solid waste cocomposting facility. Water Environ Res 67: 1044-1051. <u>http://dx.doi.org/10.2175/106143095X133284</u>
- Kim, Y; Arp, DJ; Semprini, L. (2000). Chlorinated solvent cometabolism by butane-grown mixed culture. J Environ Eng 126: 934-942. http://dx.doi.org/10.1061/(ASCE)0733-9372(2000)126:10(934)
- Klecka, GM. (1982). Fate and effects of methylene chloride in activated sludge. Appl Environ Microbiol 44: 701-707.
- Krausova, VI; Robb, FT; Gonzalez, JM. (2006). Biodegradation of dichloromethane in an estuarine environment. Hydrobiologia 559: 77-83. http://dx.doi.org/10.1007/s10750-004-0571-5
- Lapertot, ME; Pulgarin, C. (2006). Biodegradability assessment of several priority hazardous substances: Choice, application and relevance regarding toxicity and bacterial activity. Chemosphere 65: 682-690. <u>http://dx.doi.org/10.1016/j.chemosphere.2006.01.046</u>
- Lee, W; Park, SH; Kim, J; Jung, JY. (2015). Occurrence and removal of hazardous chemicals and toxic metals in 27 industrial wastewater treatment plants in Korea. Desalination Water Treat 54: 1141-1149. <u>http://dx.doi.org/10.1080/19443994.2014.935810</u>
- Leighton, DT, Jr; Calo, JM. (1981). Distribution coefficients of chlorinated hydrocarbons in dilute air-water systems for groundwater contamination applications. Journal of Chemical and Engineering Data 26: 382-585. http://dx.doi.org/10.1021/je00026a010
- Long, JL; Stensel, HD; Ferguson, JF; Strand, SE; Ongerth, JE. (1993). Anaerobic and aerobic treatment of chlorinated aliphatic compounds. J Environ Eng 119: 300-320. http://dx.doi.org/10.1061/(ASCE)0733-9372(1993)119:2(300)

- Marrone, PA; Gschwend, PM; Swallow, KC; Peters, WA; Tester, JW. (1998). Product distribution and reaction pathways for methylene chloride hydrolysis and oxidation under hydrothermal conditions. Journal of Supercritical Fluids 12: 239-254.
- Melin, ES; Puhakka, JA; Strand, SE; Rockne, KJ; Ferguson, JF. (1996). Fluidized-bed enrichment of marine ammonia-to-nitrite oxidizers and their ability to degrade chloroaliphatics. Int Biodeterior Biodegradation 38: 9-18. http://dx.doi.org/10.1016/S0964-8305(96)00004-2
- Namkung, E; Rittmann, BE. (1987). Estimating Volatile Organic Compound Emissions from Publicly Owned Treatment Works (pp. 670-678). (NIOSH/00172323). Namkung, E; Rittmann, BE.
- Oshima, Y; Bijanto, B; Koda, S. (2001). Kinetics of methylene chloride hydrolysis and the salt effect under hydrothermal conditions. Ind Eng Chem Res 40: 1026-1031.
- Parker, WJ; Thompson, DJ; Bell, JP; Melcer, H. (1993). Fate of volatile organic compounds in municipal activated sludge plants. Water Environ Res 65: 58-65.
- Peijnenburg, W; Eriksson, L; De Groot, A; Sjöström, M; Verboom, H. (1998). The kinetics of reductive dehalogenation of a set of halogenated aliphatic hydrocarbons in anaerobic sediment slurries. Environ Sci Pollut Res Int 5: 12-16. http://dx.doi.org/10.1007/BF02986368
- Rittmann, BE; McCarty, PL. (1980). Utilization of dichloromethane by suspended and fixed-film bacteria. Appl Environ Microbiol 39: 1225-1226.
- Schreier, CG; Reinhard, M. (1994). Transformation of chlorinated organic compounds by iron and manganese powders in buffered water and in landfill leachate. Chemosphere 29: 1743-1753. <u>http://dx.doi.org/10.1016/0045-6535(94)90320-4</u>
- Soltanali, S; Hagani, ZS. (2008). Modeling of air stripping from volatile organic compounds in biological treatment processes. Int J Environ Sci Tech 5: 353-360.
- Stover, EL; Kincannon, DF. (1983). Biological treatability of specific organic compounds found in chemical industry wastewaters. J Water Pollut Control Fed 55: 97-109.
- Stubin, AI; Brosnan, TM; Porter, KD; Jimenez, L; Lochan, H. (1996). Organic priority pollutants in New York City municipal wastewaters: 1989-1993. Water Environ Res 68: 1037-1044. <u>http://dx.doi.org/10.2175/106143096X128108</u>
- Tabak, HH; Quave, SA; Mashni, CI; Barth, EF. (1981). Biodegradability studies with organic priority pollutant compounds. J Water Pollut Control Fed 53: 1503-1518.
- <u>Thiébaud, H; Merlin, G; Capovilla, MP; Blake, G.</u> (1994). Fate of a volatile chlorinated solvent in indoor aquatic microcosms: Sublethal and static exposure to [14C]dichloromethane. Ecotoxicol Environ Saf 28: 71-81. <u>http://dx.doi.org/10.1006/eesa.1994.1035</u>
- Tobajas, M; Verdugo, V; Polo, AM; Rodriguez, JJ; Mohedano, AF. (2016). Assessment of toxicity and biodegradability on activated sludge of priority and emerging pollutants. Environ Technol 37: 713-721. <u>http://dx.doi.org/10.1080/09593330.2015.1079264</u>