


Partnership for Electric Power Systems







# Moving Toward SF<sub>6</sub>-Free High Voltage Circuit Breakers:

*Considerations for Adopting Vacuum Breaker and Fluorinated Gas Alternative Technologies* 

For additional resources, please visit: https://www.epa.gov/f-gas-partnership-programs/electric-power-systems-partnership

## Introduction

Over the last two decades, the  $SF_6$  Emission Reduction Partnership for Electric Power Systems has offered utilities a platform to work together to reduce emissions of sulfur hexafluoride ( $SF_6$ ), a very potent greenhouse gas. These efforts included adoption and dissemination of best management practices and, more recently, exploration of alternatives to  $SF_6$ . Although the industry has had success with non- $SF_6$  alternatives in low and medium voltage (up to 72.5 kV) equipment, alternatives for high voltage equipment have proven to be more challenging.<sup>1</sup>

New high voltage non-SF<sub>6</sub> gas insulated alternatives have recently become more promising, with early adoption both in the United States and abroad. Utilities may consider new options as they strive to meet their own voluntary commitments, respond to state or local requirements,<sup>2</sup> or manage their longer term plans for decommissioning first-generation SF<sub>6</sub> breakers or older oil-filled breakers. This document summarizes information about key alternatives for high voltage equipment, including recent developments and potential considerations for adopting SF<sub>6</sub>-free insulated equipment. This work represents EPA's joint efforts with the industry to identify options for effective SF<sub>6</sub> emission reductions.

# Objective

The focus of this overview is on two promising options to replace high voltage  $SF_6$  equipment: (1) alternative vacuum circuit breaker technologies and (2) alternative fluorinated gas mixtures. This document does not cover all alternatives or manufacturers offering alternatives to  $SF_6$  high voltage equipment, nor does it serve as an exhaustive list of current and future industry developments due to the dynamic nature of this topic. Mention of specific companies or products does not constitute endorsement by EPA.

<sup>1</sup> In the United States, electric power systems are nationally classified according to the following voltage classes, per ANSI C84.1-2016:

- Low Voltage: 1,000 volts or less
- Medium Voltage: greater than 1,000 volts and less than 100 kV
- High Voltage: greater than 100 kV and equal to or less than 230 kV
- Extra-High Voltage: greater than 230 kV but less than 1,000 kV
- Ultra-High Voltage: equal to or greater than 1,000 kV

(Some states have different approaches to classifying electric power systems.)

<sup>2</sup> For example, the California Air Resources Board and Massachusetts Department of Environmental Protection have set mandatory emission rate maximums, reporting procedures, SF<sub>6</sub> gas recovery and recycling requirements, and, most recently, proposals in the State of California to phase out SF<sub>6</sub>. At the local level, cities such as Seattle have reporting requirements that may incentivize utilities to reduce SF<sub>6</sub> consumption.



## **Properties of Alternative Mediums Used in SF<sub>6</sub>-Free Technologies**

To meet the operational needs of a circuit breaker, an alternative medium must fulfill dielectric requirements and arc interruption strength, perform at ambient and low temperatures, and perform at high voltages and high short-circuit currents. To reduce environmental impacts, alternative mediums or gases must have long-term stability (e.g., no chemical decomposition), minimal health impacts, and lower global warming potential (GWP). To achieve these effects in circuit breakers, original equipment manufacturers (OEMs) have used both dry air/vacuum and  $CO_2$  and  $O_2$  based mixtures with fluorinated Novec<sup>TM</sup> gases manufactured by 3M, some of which include a small amount of a fluoroketone or fluoronitrile gas to bolster the dielectric and interruption properties (Table 1).<sup>3</sup>

#### Table 1. SF<sub>6</sub> and Available Alternative Gases/Mediums

| CHARACTERISTICS                                                      | SF <sub>6</sub>                        | DRY AIR                                          |                                                                                         | CF <sub>5</sub> FLUOROKETONE                                                                                          |
|----------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Chemical formula                                                     | $SF_6$                                 | $N_2$ and $O_2$                                  | (CF <sub>3</sub> ) <sub>2</sub> CFCN                                                    | $(CF_3)_2 CFC(O) CF_3$                                                                                                |
| 100-Year GWP (CO <sub>2</sub> e) of Gas                              | 22,800ª                                | 0                                                | 2,100                                                                                   | < 1                                                                                                                   |
| Typical Mixture Composition                                          | 100% $SF_6$                            | 70–80% N <sub>2</sub> ,<br>20–30% O <sub>2</sub> | 3-5% (CF <sub>3</sub> ) <sub>2</sub> CFCN,<br>95-97% CO <sub>2</sub> and O <sub>2</sub> | 10% (CF <sub>3</sub> ) <sub>2</sub> CFC(O)CF <sub>3</sub> ,<br>90% mixture of $O_2$ and<br>$N_2$ , or CO <sub>2</sub> |
| 100-Year GWP ( $CO_2e$ ) of Mixture                                  | 22,800ª                                | 0                                                | < 500                                                                                   | < 1                                                                                                                   |
| Dielectric Strength of Mixture<br>(with respect to SF <sub>6</sub> ) | 1                                      | 0.43-0.77                                        | 0.87–0.92                                                                               | 0.7                                                                                                                   |
| Carrier Gases                                                        | N <sub>2</sub> <sup>b</sup>            | $N_2$ and $O_2$                                  | CO <sub>2</sub>                                                                         | $O_2$ and $N_2$ , or $CO_2$                                                                                           |
| Condensation Point of Mixture (°C)                                   | -30 <sup>c</sup>                       | -50                                              | -30 <sup>c</sup>                                                                        | -5 <sup>d</sup>                                                                                                       |
| Arc Impact – Decomposition Products                                  | HF, SO <sub>2</sub> , sulfur compounds | O <sub>3</sub>                                   | CO, CO <sub>2</sub> , HF, other F-gases                                                 | CO, CO <sub>2</sub> , HF, other F-gases                                                                               |

#### Sources:

3M Novec<sup>™</sup> 4710 Insulating Gas Health & Safety Bulletin, February 2020. Available online at: https://multimedia.3m.com/mws/media/11321240/3m-novec-4710insulating-gas.pdf

3M Novec™ 5110 Insulating Gas. Gas safety data sheet, May 2017. Available online at: https://multimedia.3m.com/mws/media/11321230/3m-novec-5110-insulating-gas.pdf

Becker, G., Schiffbauer, D., and Trost, K. Alternative Insulating Fluids to SF<sub>6</sub> Gas: What we know and don't know [presentation]. DILO 3rd Annual SF<sub>6</sub> Gas Management Seminar. Available online at: https://slideplayer.com/slide/16172329/

Intergovernmental Panel on Climate Change (IPCC). 2007. AR4 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the IPCC's Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge, UK: Cambridge University Press.

Rak, T. January 2019. Protecting Our Environment with Clean Air Technology: PG&E Phases Out SF<sub>6</sub> Greenhouse Gas. T&D World.

<sup>a</sup> Countries that are parties to the United Nations Framework Convention on Climate Change (UNFCCC) have agreed to use consistent GWP values from the IPCC Fourth Assessment Report (AR4), based on a 100-year time horizon, although other GWP values and time horizon values are available. Therefore, EPA presents the AR4 value of SF<sub>6</sub> in this table.

 $^{\rm b}$  SF<sub>6</sub> can also be mixed with CF<sub>4</sub> to avoid condensation at low temperatures.

<sup>c</sup> Typical for high voltage but as low as -50°C for some products.

<sup>d</sup> Typical for high voltage but as low as -20°C for some products.

<sup>&</sup>lt;sup>3</sup> 3M Novec<sup>™</sup> Brand. July 2018. Demonstrated Uses of 3M Novec<sup>™</sup> Insulating Gases as Alternatives to SF<sub>6</sub> in the Power Sector. Technical Bulletin.

## SF<sub>6</sub>-Free Technologies Under Consideration

While non-SF<sub>6</sub> equipment has long been available for low to medium voltage applications, alternatives for high voltage equipment are at the early stages of entering the market, including vacuum technology and other fluorinated gases with lower GWPs compared to SF<sub>6</sub>. Below is an overview of two major technologies under consideration: vacuum circuit breakers (VCB) and fluorinated alternative gas breakers.<sup>4</sup>

#### **Vacuum Circuit Breakers**

Vacuum interrupter technology has been demonstrated to be highly reliable and is commercially available in medium voltage breakers. These circuit breakers use vacuum interrupters for switching functions and dry air, a mixture of N<sub>2</sub> and O<sub>2</sub>, for the insulation medium. Currently, 72.5 kV VCBs are available from many providers, including Siemens, Hitachi, Mitsubishi Electric Power Products Inc. (MEPPI), Meiden America, and Shenyang Huade High Technology. The technology for 145 kV breakers has been under development for years; Siemens and Hitachi have commercially introduced this technology at this voltage rating, while MEPPI is expected to have this product available in the next few years. OEMs have indicated that scaling this technology to 245 kV voltage class and higher is difficult. Although all aspects of the interior and interrupter differ from the SF<sub>6</sub>-free breaker, VCBs have similar bushings, current transformers, and control cabinets with relays. Also, VCBs generally require the same footprint at the 72.5 kV and 145 kV ratings and, therefore, a VCB can be a direct replacement of an SF<sub>6</sub> breaker (i.e., no retrofitting).

#### **Fluorinated Alternative Gas Breakers**

Some alternative CO<sub>2</sub> and O<sub>2</sub> gas mixtures have a small amount of a fluoroketone or fluoronitrile gas to bolster the dielectric and current switching properties and deliver the same performance as traditional SF<sub>6</sub> gas (Table 1), including at high voltages. ABB has made available live tank 72 kV breakers that use AirPlus™, which consists of fluoroketone, carbon dioxide, and oxygen. Additionally, GE offers 145 kV GIS, 145 kV live tank circuit breakers, 420 kV gas insulated lines, 245 kV current transformers, and a 123 kV combined metering unit using its Green Gas for Grid (g<sup>3</sup>, pronounced "g cubed") technology, which relies on a gas mixture of fluoronitrile, carbon dioxide, and oxygen. OEMs have indicated that scaling this technology for dead tank circuit breakers to higher voltage classes up to 550 kV is possible.<sup>5,6</sup> High voltage alternative gas breakers have had numerous successful installations in Europe and Asia. Fluorinated alternative breakers are a direct replacement of an  $SF_6$  breaker (i.e., no retrofitting).



<sup>&</sup>lt;sup>5</sup> GE Grid Solutions. 2018. g<sup>3</sup> Technology – SF<sub>6</sub> Alternative for High Voltage Applications [brochure].

<sup>6</sup> GE Grid Solutions. 2019. g<sup>3</sup> Roadmap 2025 [brochure]. Available online at: https://www.gegridsolutions.com/products/reference/g3\_roadmap\_2025-Brochure-EN-2019-10-Grid-GS-1668.pdf

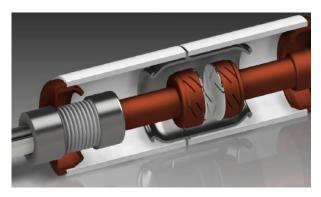



Figure 1. Cutaway of an Interrupter Utilized in Vacuum Circuit Breaker Technology Source: Courtesy of Hitachi. Used with permission.

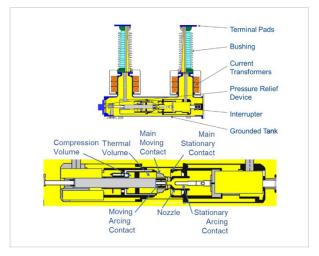



Figure 2. Schematic Diagram of Fluorinated Alternative Gas Circuit Breaker Technology Source: Courtesy of GE Grid Solutions. Used with permission.

## **Considerations for Technology Adoption**

As with any new acquisition or equipment upgrade, utilities will require capital and time investments, planning steps, and education, as well as a host of considerations to support their adoption.

#### **Capital Costs**

As alternative breakers begin to enter the market, utilities can expect that capital costs will be higher than for currently used  $SF_6$  breakers. Several OEMs note that costs for alternative breakers can range from 10% to 50%, or more than that of a comparative  $SF_6$  breaker. However, as volume commitments from utilities increase, utilities may see improved costs over time, as well as reduced time to market for new products.

Utilities can also expect to incur costs associated with the set-up of the new breaker. For example, ABB identified the possibility that a fluorinated alternative gas breaker may need additional tank heaters near it to prevent condensation, because the condensation temperature point for the fluorinated gases is higher than that of SF<sub>6</sub> (Table 1). The breaker may require additional castings and adjustments to the bushings. Normal pressures will likely be higher than required by SF<sub>6</sub> equipment. Additional measures for labelling may also be required if SF<sub>6</sub> and SF<sub>6</sub>-free breakers are located in the same substation. Some OEMs use fill valves with different threads to avoid gas-filling mistakes. The warranty of alternative breakers is appreciably the same as SF<sub>6</sub> breakers, as stated by several OEMs.

#### **Operational and Maintenance Costs**

Regardless of technology, some level of maintenance applies to all equipment. As with any newer technology, operational and maintenance (O&M) costs may be higher in the beginning stages of implementation. New technologies require employee trainings on maintenance procedures and sensitivities of the equipment.

In the case of the alternative gas breakers, the core technologies are largely the same, and overall, gas handling and equipment maintenance practices are no different than those that technicians already utilize with  $SF_6$  equipment. In addition, gas suppliers can provide alternative gas that is already mixed, so that no on-site mixing is needed. Some utilities have mentioned concerns with the homogeneity of the gas mixtures due to liquefaction of certain components at lower temperatures.<sup>7</sup> Manufacturers, such as GE, have ongoing testing programs to alleviate such concerns.

#### Considerations for Vacuum Circuit Breakers

With a higher breaker interruption capability than  $SF_6$ , **VCBs** are inherently a more expensive technology, according to Hitachi. At the same time, VCBs do not require gas carts, because the dry air contained in the equipment is readily available with a GWP of zero relative to  $CO_2$ . Total cost of ownership is expected to create overall savings for the lifetime of the VCB.

Considerations for Fluorinated Alternative Gas Breakers

Adoption of **fluorinated alternative** gas breakers will require purchasing gas carts and gas analyzers that can work with the new gas. However, from an operational standpoint, these devices function similarly to those for SF<sub>6</sub> gas and should not pose a significant additional training burden. During equipment operation, leak tests and leak detection may be performed on similar equipment as used for SF<sub>6</sub> after recalibration. Total cost of ownership for fluorinated alternative gas breakers is expected to be approximately the same as that of SF<sub>6</sub> breakers, according to GE.

#### Life Cycle Assessment

Utilities can use a **Life Cycle Assessment** (LCA) methodology to consider the total cost of ownership, as well as the total environmental cost of various  $SF_6$ -free technologies. Rather than evaluating only the initial cost, this methodology considers costs and environmental impacts of production, installation, operation, maintenance, and end of life.

<sup>&</sup>lt;sup>7</sup> Becker, G. 2019. Alternative Insulating Fluids to SF<sub>6</sub> Gas: Status and Strategy Considerations [presentation]. DILO 4th Annual SF<sub>6</sub> Gas Management Seminar. Available online at: https://us.dilo. com/fileadmin/dilo\_us/8.\_Trainings\_and\_Seminars/2019\_Seminar\_Presentations/Becker-\_Alt\_ Gas\_Mixtures\_Status\_and\_Strategy\_Considerations\_.pdf

VCBs require significantly fewer inspections than  $SF_6$  breakers. Without a fluorinated insulating gas, many maintenance costs are eliminated, such as the expenses associated with HAZMAT removal and personal protective equipment. For example, Southern Company and Pacific Gas and Electric (PG&E) found O&M costs associated with VCBs to decrease over time because gas handling with dry air is less intensive than with  $SF_6$ . Furthermore, Siemens estimates that the new vacuum technology can offer a lifetime of five times that of an  $SF_6$  interrupter. For these reasons, these companies are finding it is cost-effective to replace their current  $SF_6$  breakers with VCBs.

Nonetheless, training costs are an important consideration, particularly if multiple types of breakers (e.g., oil,  $SF_6$ , and alternative breakers) must be maintained. Having multiple technologies could be common in the early stages of adopting alternatives to  $SF_6$  gas. Technicians must be able to differentiate between an  $SF_6$  breaker, vacuum breaker, or fluorinated alternative gas breaker and maintain them accordingly.

#### Footprint

Most power system sites have finite space available for equipment and operations; therefore, the dimensions of the alternative equipment must be considered for the site. For fluorinated alternative gas breakers and VCBs, the footprint of the equipment is generally equivalent to  $SF_6$  equipment at 72 kV and 145 kV. At higher voltages, however, the size of VCBs is expected to surpass that of the  $SF_6$  equipment. Southern Company and PG&E explain that in their experience with 72 kV vacuum breakers, no significant energy or infrastructural changes were necessary.

#### Table 2. SF<sub>6</sub>-Free Available Equipment

| CHARACTERISTICS                                            | VACUUM                                                                                                                                                         | G³                                                                   | AIRPLUS™                                      |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|
| Currently available products                               | - DTCB 72 kV, 40 kA<br>- DTCB 145 kV, 40 kA<br>- LTCB 72 kV, 40 kA<br>- LTCB 145 kV, 40 kA<br>- GIS 72 kV, 25 kA<br>- GIS 145 kV, 40 kA<br>- GIS 145 kV, 50 kA | - GIS 72.5 kV, 31.5 kA<br>- GIS 145 kV, 40 k<br>- LTCB 145 kV, 40 kA | - LTCB 72 kV, 31.5 kA<br>- LTCB 145 kV, 40 kA |
| Size (DTCB) compared to $SF_6$ breaker at 72 kV and 145 kV | same                                                                                                                                                           | same                                                                 | same                                          |
| Size (DTCB) compared to $SF_6$ breaker > 145 kV            | larger                                                                                                                                                         | same                                                                 | same                                          |

GIS: gas insulated substation; DTCB: dead tank circuit breaker; LTCB: live tank circuit breaker; kV: kilovolts; kA: kiloamperes

## **Standards for Alternatives**

Standards provide industry confidence in product performance and safety, which can be useful for equipment warranties in case of malfunction. Current industry standards, set by the Institute of Electrical and Electronics Engineers (IEEE), specify requirements for the performance of  $SF_6$  breakers and VCBs. Standards for the fluorinated alternative gas breakers are in development under IEEE. International Council on Large Electric Systems (CIGRE) and IEEE working groups specific to this topic are already established or scheduled to take place in the next few years. Meanwhile, some utilities have requested ratings to be specified in the standards for  $SF_6$  breakers to ensure the same performance of equipment from the OEM. OEMs that manufacture the fluorinated alternative gas breakers, including GE and ABB, have been conducting their research and development to achieve similar performance to that of the  $SF_6$  breakers.

## **On-the-Grid Piloting**

Utilities will need to develop a strategy for transitioning to alternatives. Some utilities have begun that process through pilot projects, which allow for a phase to test and vet the new technology before further adoption. It can take approximately four to seven years to design and pilot alternative equipment before being able to fully integrate it into the grid. Pilot projects require soliciting proposals, procurement, installation, field testing—particularly on-grid testing—and performance evaluation. These projects, and subsequent adoption of additional alternative breakers, will require capital investment planning.

## **Example Installations of Medium and High Voltage Alternative Equipment**

Adoption of both VCBs and fluorinated alternative gas breakers has so far been more prevalent in Europe. In the United States, VCBs have experienced a greater market penetration relative to fluorinated alternative gas breakers thus far. Medium voltage VCB equipment has been installed in more than 35 states across the United States, as well as in Europe and Asia. Table 3 and Table 4 provide examples of installations of medium and high voltage vacuum and fluorinated gas breakers.

#### Table 3. Medium and High Voltage Vacuum Breaker Installations

| LOCATION                 | YEAR       | ТҮРЕ ОҒ VCB                    |  |  |
|--------------------------|------------|--------------------------------|--|--|
| EUROPE                   |            |                                |  |  |
| Germany                  | 2018       | Siemens LTCB 123 kV            |  |  |
| Kazakhstan               | 2018–2020  | Siemens LTCB 145 kV            |  |  |
| Norway                   | 2017–2020  | Siemens GIS 145 kV and 40 kA   |  |  |
| Poland                   | 2019       | Siemens LTCB 123 kV and 145 kV |  |  |
| Romania                  | 2018–2019  | Siemens LTCB 145 kV            |  |  |
| Sweden                   | 2019       | Siemens LTCB 145 kV            |  |  |
| Switzerland              | 2019       | Siemens LTCB 123 kV            |  |  |
| United Kingdom           | 2019       | Siemens LTCB 145 kV            |  |  |
| ASIA                     |            |                                |  |  |
| Japan                    | 2011       | MEPPI DTCB, 72 kV and 84 kV    |  |  |
| UNITED STATES            |            |                                |  |  |
| More than 35 U.S. States | Since 2007 | Hitachi DTCB, 72 kV            |  |  |

GIS: gas insulated substation; DTCB: dead tank circuit breaker; LTCB: live tank circuit breaker; kV: kilovolts; kA: kiloamperes **Sources:** Representatives of MEPPI, Hitachi, and Siemens in February and March 2020

#### Table 4. Medium and High Voltage Fluorinated Alternative Gas Breakers

| LOCATION       | YEAR          | TYPE OF FLUORINATED GAS BREAKER |  |  |
|----------------|---------------|---------------------------------|--|--|
| EUROPE         |               |                                 |  |  |
| Denmark        | 2019          | GE g <sup>3</sup> LTCB, 145 kV  |  |  |
|                | 2017          | GE g <sup>3</sup> GIS, 145 kV   |  |  |
| France         | 2017          | GE g <sup>3</sup> GIS, 72.5 kV  |  |  |
| Germany        | 2019          | GE g <sup>3</sup> LTCB, 145 kV  |  |  |
|                | 2017          | GE g <sup>3</sup> GIS, 145 kV   |  |  |
| Netherlands    | 2017 and 2019 | GE g <sup>3</sup> GIS, 72.5 kV  |  |  |
| Spain          | 2018          | GE g <sup>3</sup> GIS, 72.5 kV  |  |  |
| Switzerland    | 2019          | GE g <sup>3</sup> LTCB, 145 kV  |  |  |
|                | 2015          | ABB AirPlus™ GIS, 170 kV        |  |  |
| United Kingdom | 2018 and 2019 | GE g <sup>3</sup> GIS, 145 kV   |  |  |

GIS: gas insulated substation; LTCB: live tank circuit breaker; kV: kilovolts **Source:** Representatives of GE and ABB in February and March 2019

## Conclusions

While the rollout of alternative technologies for high voltage equipment is still underway, utilities can begin to assess their 10- to 20-year replacement plans. Alternative breakers do not require significant changes to existing substations. However, utilities will first need to validate the pros and cons of each technology in terms of technical performance, footprint, costs to buy and operate, and training and policy changes necessary for safety and maintenance. Internal planning and circuit breaker purchases will require an implementation strategy, allowing time for steps such as permitting, piloting, and procuring the new technology. The utilities and OEMs interviewed for this paper provided insight on the recent developments and experiences in implementing these alternatives. Whether utilities are responding to state regulations to reduce  $SF_6$  emissions or looking to replace  $SF_6$  leaking breakers or equipment at end of life, alternative breakers offer a new option to the industry.

These innovative technologies and approaches are expected to further reduce or eliminate  $SF_6$  emissions. In many cases, Partners of EPA's  $SF_6$  Emission Reduction Partnership for Electric Power Systems have reduced  $SF_6$  emissions to a very low emission rate—the average Partnership emission rate currently hovers below 2%.



#### Figure 3. SF<sub>6</sub> Emissions and Emission Rate for Partners of the SF<sub>6</sub> Emission Reduction Partnership for Electric Power Systems

It becomes increasingly more challenging to eliminate  $SF_6$ emissions without eliminating reliance on the gas entirely. Several utilities are embracing adoption of  $SF_6$  alternatives, which provide an opportunity to address this challenge. For example, in California, companies are working together through the Electric Utility Industry Sustainable Supply Chain Alliance (EUISSCA) to advance the dialogue across the value chain from suppliers to utilities on this topic.

In general, as the market for  $SF_6$ -free equipment matures and the pace of technology adoption accelerates, the barriers for adopting the new technology also can be expected to come down.

Electrical Utility Industry Sustainable Supply Chain Alliance

**EUISSCA** is composed of member utilities and suppliers that aspire to minimize environmental impacts while addressing safety, cost, and functionality across the value chain. EUISSCA is engaging where appropriate to accelerate the development and adoption of  $SF_6$  alternatives.

#### Disclaimer

This paper uses publicly available information in combination with information obtained through direct contact with electric utilities and other stakeholders. EPA does not:

- (a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe upon privately owned rights;
- (b) assume any liability with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; or
- (c) imply endorsement of any technology supplier, product, or process mentioned in this report.

#### Acknowledgments

Thanks to all Partners of EPA's SF<sub>6</sub> Emission Partnership for Electric Power Systems for their continued support of this program, especially to PG&E, Southern Company, MEPPI, GE Grid Solutions, Hitachi, Siemens, and ABB for providing feedback and images for use in this paper. We would also like to thank the National Electrical Manufacturers Association (NEMA), EUISSCA, and Sacramento Municipal Utility District for reviewing the draft.