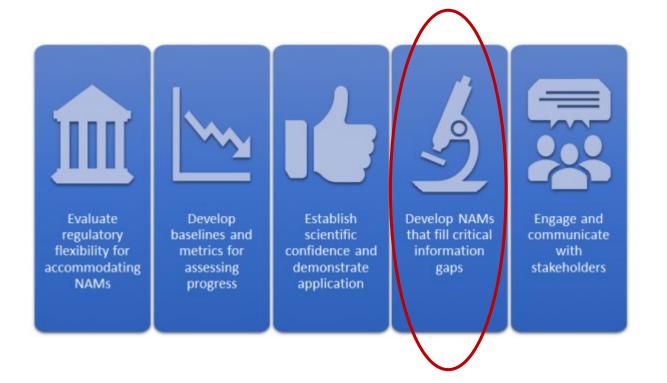


Retrofitting an Estrogen Receptor Transactivation Assay with Metabolic Competence

Chad Deisenroth Center for Computational Toxicology and Exposure October 20th, 2020


EPA NAMs Conference 2020: State of the Science on Development and Use of NAMs for Chemical Safety Testing

Disclaimer: The views expressed are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Office of Research and Development Center for Computational Toxicology and Exposure

Examples of information gaps

- Inadequate coverage of biological targets.
- Limited capability to address tissue- and organ-level effects.
- Lack of robust integrated approaches to testing and assessment (IATAs).
- Minimal capability for addressing xenobiotic metabolism in *in vitro* test systems.

Danica DeGroot Steve Simmons Todd Zurlinden Andrew Eicher James McCord Kristen Hopperstad Woody Setzer Katie Paul-Friedman Madison Feshuk Rusty Thomas

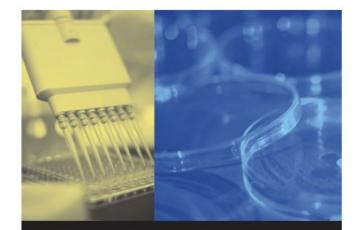
Paul Carmichael Mi-Young Lee

Chemical Safety for Sustainability STRATEGIC RESEARCH ACTION PLAN 2019-2022

CSS.1.5 (High Throughput Toxicology): Develop and apply methods to incorporate endogenous and exogenous xenobiotic metabolism into high-throughput *in vitro* assays.

CSS.1.5.1: Application of the Alginate Immobilization of Metabolic Enzymes (AIME) method to incorporate hepatic metabolism into an Estrogen Receptor transactivation assay.

CSS.1.5.2: Development of a bioprinting approach to adapt the Alginate Immobilization of Metabolic Enzymes metabolism method for high-throughput screening applications.



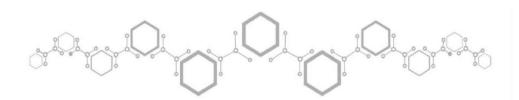
Toxicity Testing in the 21st Century

National Research Council 2007 report calling for a genuine commitment to the reduction, refinement, and replacement of animal testing.

Key Questions for Implementation – Addressing Xenobiotic Metabolism

- "One of the challenges of developing an *in vitro* test system to evaluate toxicity is the current inability of cell assays to mirror metabolism in the integrated whole animal..."
- Methods to Predict Metabolism How can adequate testing for metabolites in the high-throughput assays be ensured?
- Recommendations
 - Screening using computational approaches possible.
 - Limited animal studies that focus on mechanism and specific metabolites.

TOXICITY TESTING IN THE 21ST CENTURY A VISION AND A STRATEGY

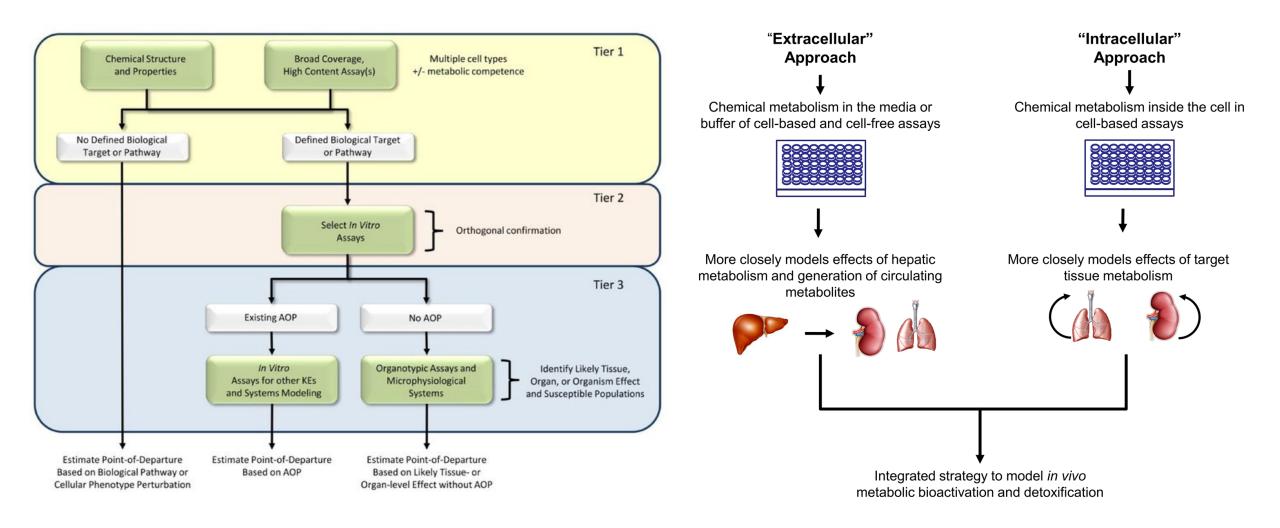

OECD Detailed Review Paper (DRP 97) (2008) - In Vitro Metabolism Systems for Endocrine Disruptors

Unclassified	ENV/JM/MONO(2008)2
Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development	29-Jul-2008
ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND THE WORKING PARTY ON CHEMICALS, PESTICIDES AND	English - Or. Englis BIOTECHNOLOGY
SERIES ON TESTING AND ASSESMENT Number 97	
	NG SYSTEMS FOR IN VITRO

The Validation Management Group for Non-animal Testing (VMG-NA) meeting (2003)

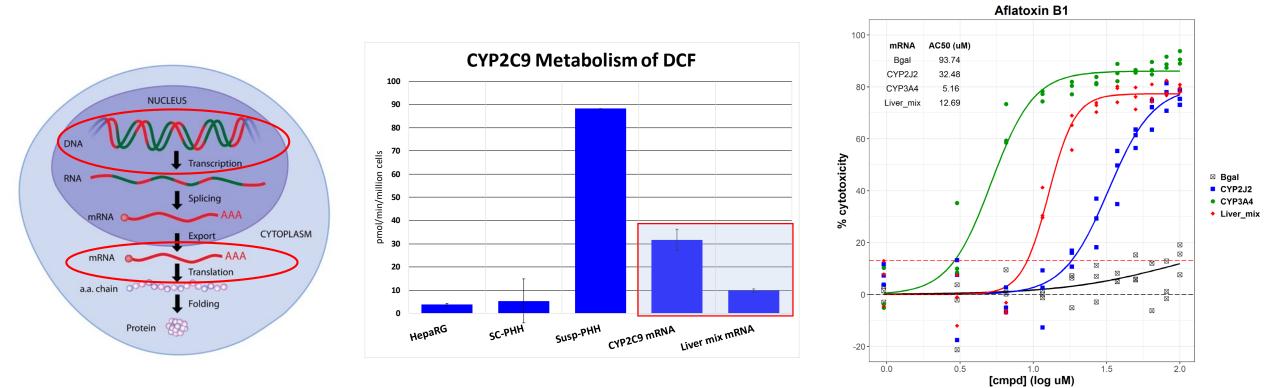
- "...it was necessary to consider and preferably incorporate metabolism of compounds when considering the development of *in vitro* tests for endocrine active substances, to reflect the real *in vivo* situation, and so reduce the risks of false positives and false negatives."
- "Tests to detect EAS and tests that can predict the influence of chemicals on metabolism of endogenous or exogenous substances, or the influence metabolism of a chemical on its ultimate effect, are still being developed."
- "...the eventual need to combine the outcome of these developments will be an important component of the development of each field."

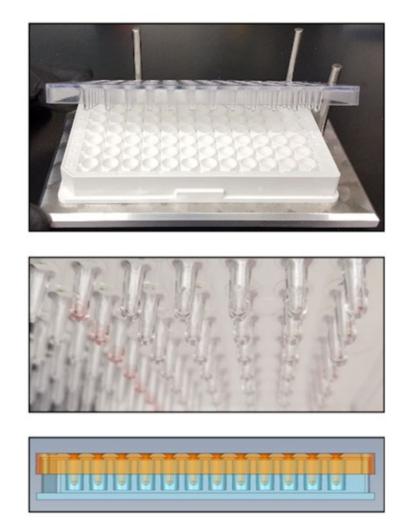
TRANSFORM TOX TESTING CHALLENGE

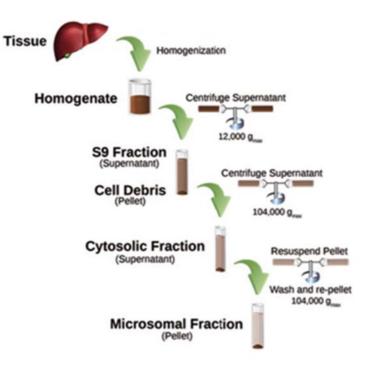

INNOVATING FOR METABOLISM

Identify innovative solutions to retrofit high-throughput assays with metabolic competence (2016-2017) EPA, NTP, NCATS

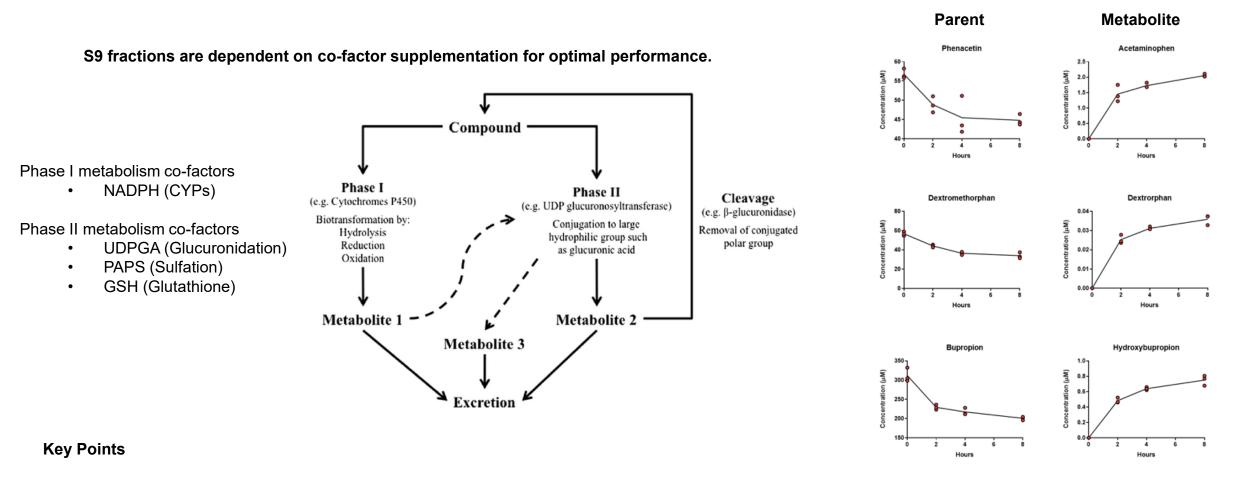
Content States Environmental Protection Agency


The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency

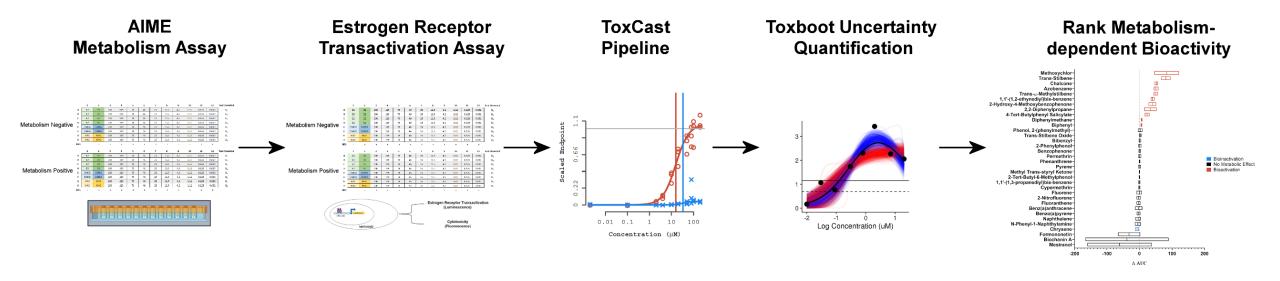

Steve Simmons (EPA)


- Traditional DNA-based gene delivery methods use viral gene promoters to drive mRNA transcription.
- mRNA transfection is a novel approach that bypasses cellular DNA transcription.
- Rapid expression of metabolizing enzymes (steady state within 8-16 hours).
- User-defined composition and ratios of multiple input mRNAs.

Extracellular Approach: Alginate Immobilization of Metabolic Enzymes (AIME)

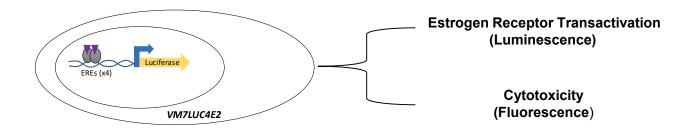


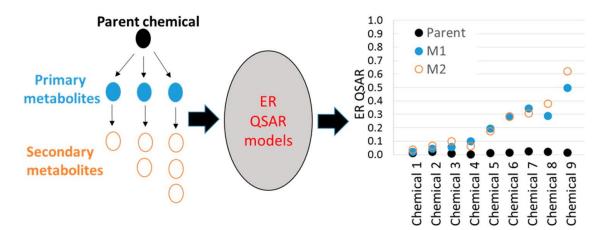
- Liver Metabolism: Phenobarbital/β-naphthoflavone-induced male Sprague Dawley rat hepatic S9.
- **Alginate Hydrogel:** Widely used in a variety of pharmaceutical and biomedical applications due to high biocompatibility, low toxicity, and mild gelation by divalent cations.
- **AIME:** The Alginate Immobilization of Metabolic Enzymes (AIME) platform consists of custom 96-well microplate lids containing solid supports attached to encapsulated hepatic S9-alginate microspheres.


Evaluation of Cytochrome P450 Metabolism

- AIME method optimized for Phase I metabolism.
- Metabolic activity validated across a diverse profile of CYPs with reference chemicals.
- 2-hour incubation period suitable for parent compound depletion and metabolite accumulation.

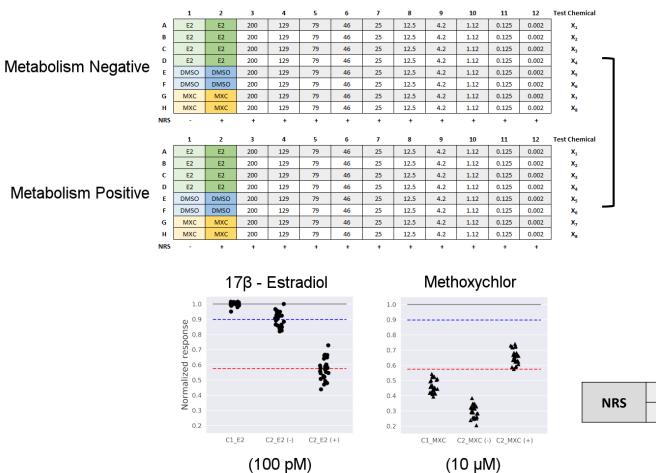
Substrate	Human	Rat
Phenacetin	CYP1A2	1A1, 1A2
Bupropion	CYP2B6	2B1 , 2B2, 2B3
Diclofenac	CYP2C9	2C6 , 2C7, 2C11, 2C12, 2C13, 2C22, 2C23
Dextromethorphan	CYP2D6	2D1, 2D2 , 2D3, 2D4, 2D5, 2D18
Chlorzoxazone	CYP2E1	2E1


Study Highlights


- Reprioritization of hazard based on metabolism-dependent bioactivity.
- Demonstrated utility of applying the AIME method for identification of false positive and false negative target assay effects.
- Enhanced *in vivo* concordance with the rodent uterotrophic bioassay.

Retrofitting Metabolism to an Estrogen Receptor Transactivation Assay

	Assay Design Specifications						
Assay	VM7Luc4E2 (Formerly BG1Luc4E2 of TG 457)						
Metabolism	AIME (PB-βNF Induced Rat S9); 2 Hours						
Matrix Alginate + 10% S9							
NADPH Regeneration System (NRS)	Optimized concentrations of NADP+, G6P, G6PDH for cell-based assay						
Format	Metabolism Negative (Alginate Only)						
Format	Metabolism Positive (Alginate + S9)						
Endpoints	ER Transactivation (Luciferase) and Viability (Fluorescence)						
Plate Format	96-well						
Dose Spacing	10 pt; alternative dose spacing						
Concentration Range	2 nM - 200 μM						
	17β - Estradiol (ER Transactivation)						
Controls	DMSO (Vehicle)						
	Methoxychlor (Bioactivation)						
Data Analysis	ToxCast Pipeline						



Chemical Selection	n	Classification
	8	ER Agonist (OECD TG 455)
Assay Controls	3	ER Antagonist (OECD TG 455)
	3	Negative (OECD TG 455)
	34	Metabolism Positive
Pinto Library	14	Metabolism Negative

Retrofitting Metabolism to an Estrogen Receptor Transactivation Assay

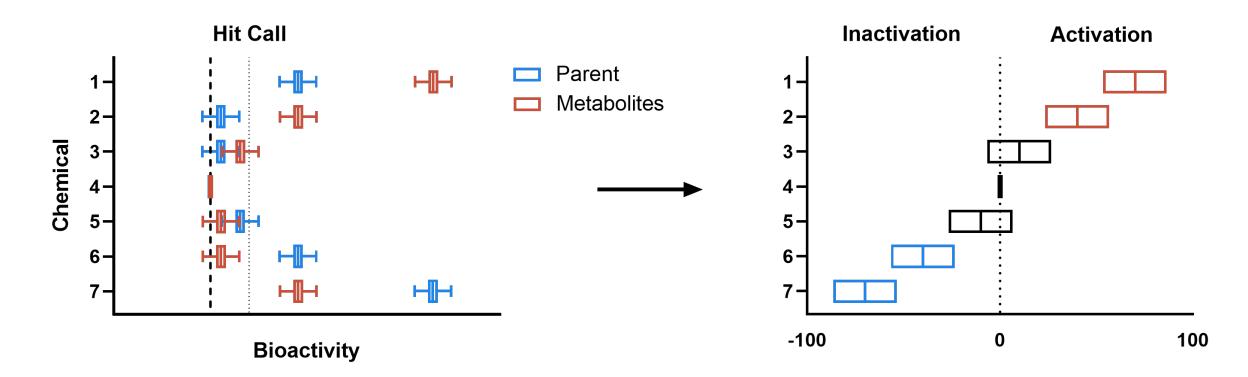
Paired Plate Format: Test compounds run +/- metabolism in parallel

Plate Design

- Column 1: No AIME. Guideline-like test conditions .
- Column 2: AIME. +/- Metabolism test conditions ٠
- Column 3-12: Alternative dose spacing of test compound ٠
- Cell culture medium: +/- NADPH Regeneration System (NRS) ٠

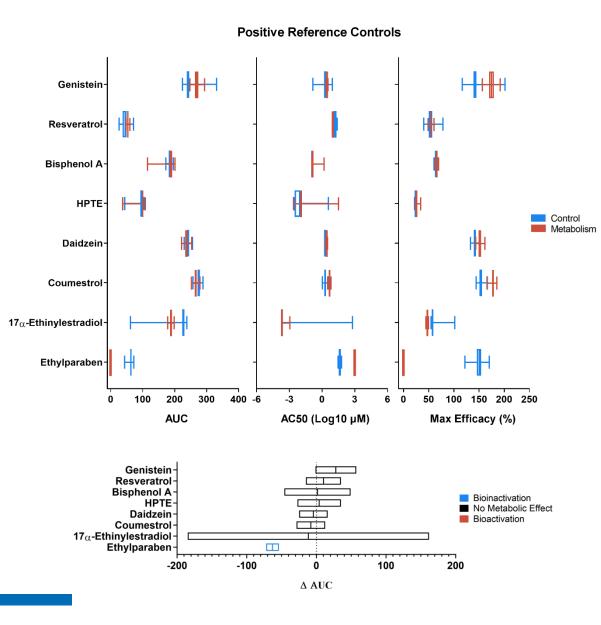
Reference Compounds

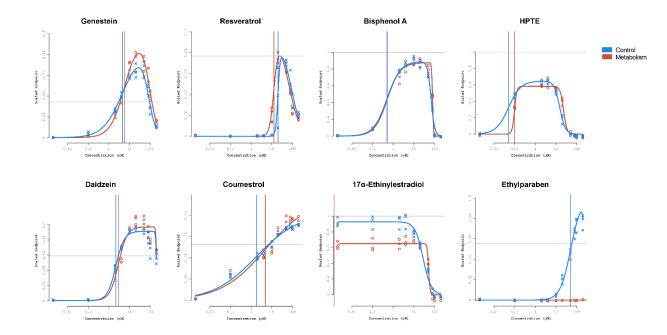
- Target Assay 17β-estradiol (E2) ٠
- Metabolism Assay Methoxychlor (MXC) ٠
- Solvent DMSO (0.2%) ٠


Assay Performance

- Z'-factor, coefficient of variation (CV)
- +/- Metabolism
- +/- NADPH Regeneration System (NRS) ٠

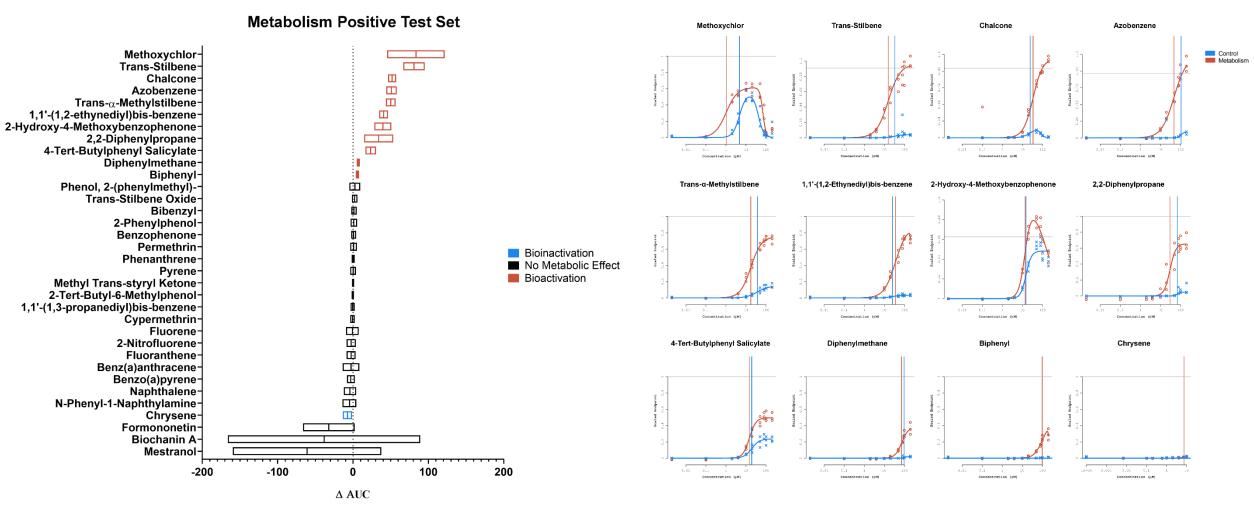
		Metabolism								
		Neg	Pos	Neg	Pos	Neg	Pos	Neg	Pos	
NDC	Neg	0.90	NA	6.75	NA	2.77	NA	5.39	NA	
NRS	Pos	0.91	0.69	8.93	17.17	2.82	8.51	2.98	5.23	
		Z	,	CV: D	MSO	CV	E2	CV: MXC		


 $CI = (\mu_p - \mu_n) \pm q \times \sqrt{\sigma_p^2 + \sigma_n^2}$

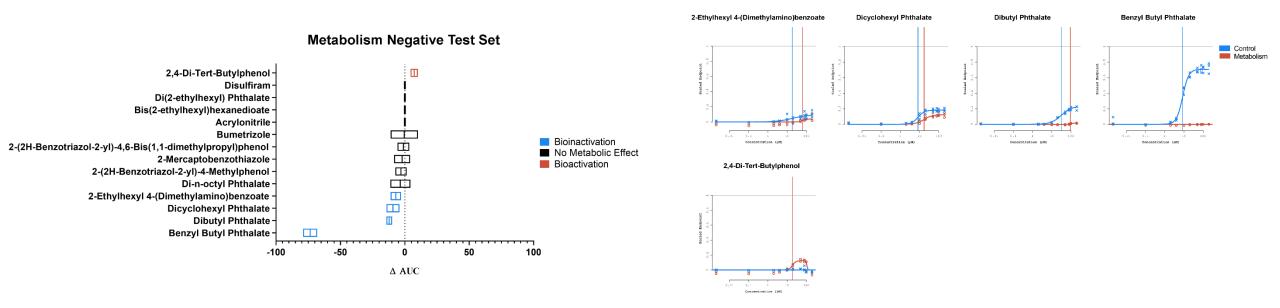


- Problem: Focus on false-positive and false-negative target assay effects alone omits a lot of important biology.
- **Objective**: Discriminate metabolism-dependent effects from target assay-dependent effects.
- **Solution**: Prioritize metabolism-dependent effects on a continuous scale using ΔAUC .
 - Cl: confidence interval
 - μ_p and μ_n : mean ERTA AUC signal in metabolism positive and negative modes
 - *q*: quantile of the standard normal distribution
 - σ_p and σ_n : standard deviation for the ERTA AUC signal in metabolism positive and negative modes

AIME-coupled ERTA Positive Reference Compound Screening

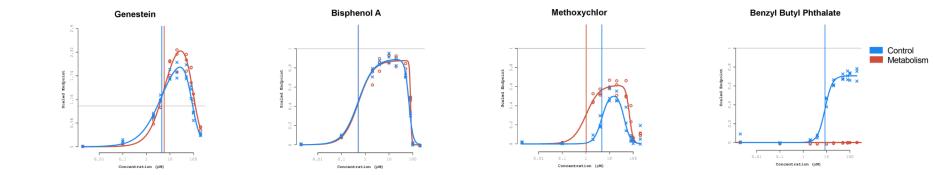


- Toxboot analysis of Area Under the Curve (AUC), potency (AC50), and efficacy.
- Positive ERTA reference chemicals perform primarily as expected.
- Ethylparaben is significantly bioinactived (false-positive).


AIME-coupled ERTA Metabolism Positive Test Set Screening

- 29/34 (85%) of parent chemicals from the positive test set were active in the absence of metabolism according to TCPL hit calls.
- 11/34 (32%) of chemicals exhibit significant metabolism-dependent bioactivation.

AIME-coupled ERTA Metabolism Negative Test Set Screening



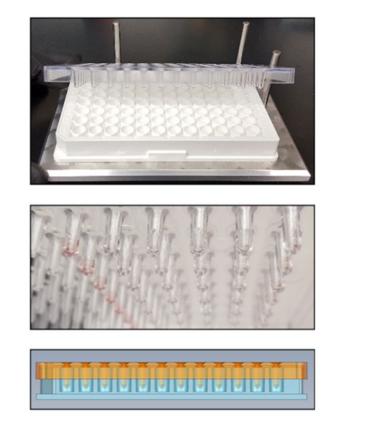
- 6/14 (43%) of parent chemicals from the negative test set were active in the absence of metabolism according to TCPL hit calls.
- 4/16 (25%) of chemicals exhibit significant metabolism-dependent bioinactivation.

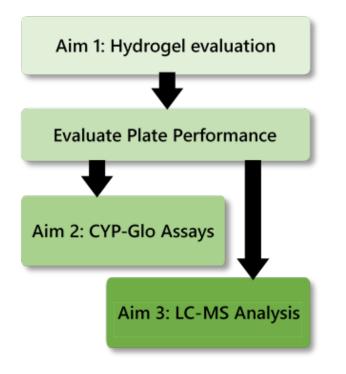
AIME - VM7Luc ERTA Assay: Relevance to the ToxCast ER Model and Uterotrophic Bioassay Data

			ToxCast ER Model ^a	Uterot	rophic S	tudies ^b		AIM	Concordance with In Vivo ^d						
CASRN	Chemical Name	Classification	AUC_Agonist	GL_Neg	GL_Pos	GL_WoE	Hitc_Met_Neg	Hitc_Met_Pos	ΔHitc _{er}	ΔAUC	ΔΑUC CI	Met_Effect	Met_Neg	Met_Pos	ΔMet
446-72-0	Genistein	Reference_Agonist	0.54	0	8	POS	1	1	0	27.96	[-1.37, 57.29]	NEG	1	1	0
80-05-7	Bisphenol A	Reference_Agonist	0.45	4	10	POS	1	1	0	1.57	[-46.01, 49.15]	NEG	1	1	0
72-43-5	Methoxychlor	Metabolism_Positive	0.25	1	3	POS	1	1	0	83.56	[45.44, 121.67]	POS	1	1	0
85-68-7	Benzyl butyl phthalate	Metabolism_Negative	0.18	1	0	NEG	1	0	-1	-73.48	[-78.91, -68.05]	POS	0	1	1

- The 63 chemicals screened in the AIME-VM7Luc ERTA assay compared to ToxCast ER Model scores and Guideline-like Uterotrophic Studies (GL-UT) database.
- aToxCast ER Model (Browne et al. 2015) scores for agonist mode (AUC_Agonist).
- ^bUterotrophic data derived from guideline-like (GL) studies in the curated uterotrophic database (Kleinstreuer et al. 2016).
- ^cResults for binary TCPL hit calls in metabolism negative (Hitc_Met_Neg) and positive (Hitc_Met_Pos) modes.
- dAIME-VM7Luc ERTA concordance (1) or non-concordance (0) to *in vivo* uterotrophic study data (GL_WoE).

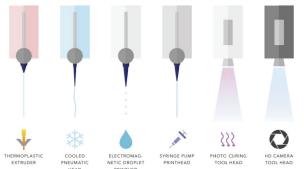
AIME – VM7Luc ERTA ToxCast Screening


										AIME	/Assay De	stination P	late (uM):	dest plate	1-12									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Α	DMSO	DMSO	DMSO	DMSO	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
В	DMSO	DMSO	DMSO	DMSO	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
С	DMSO	DMSO	DMSO	DMSO	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
D	DMSO	DMSO	DMSO	DMSO	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
E	DMSO	DMSO	DMSO	DMSO	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
F	E2	E2	E2	E2	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
G	E2	E2	E2	E2	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
н	E2	E2	E2	E2	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
I	E2	E2	E2	E2	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
J	E2	E2	E2	E2	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
к	TSB	TSB	TSB	TSB	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
L	TSB	TSB	TSB	TSB	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
М	TSB	TSB	TSB	TSB	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
N	EPB	EPB	EPB	EPB	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
0	EPB	EPB	EPB	EPB	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
P	EPB	EPB	EPB	EPB	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002	200	129	79	45.7	25	12.5	4.16	1.12	0.125	0.002
AIME	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+


	Design Specifications	Plate Stats	S/B	Z'	Metabolism	Control Mode
Chemical Library	768 compounds (ph1_v2, ph2, e1K)	E2:DMSO	10.1	0.7	Negative	ER Assay Dynamic Range
Assay	VM7LUC4E2	TSB(Pos):TSB(Neg)	2.8	0.7	Positive	Bioactivation
Metabolism	AIME (induced rat S9)	EPB(Neg):EPB(Pos)	21.1	0.8	Positive	Bioinactivation
Endpoints	ER Transactivation (Luciferase) and Viability (Fluorescence)		and the second sec		and the second	
Plate Format	384 +/- Metabolism					BAPPRUI
Dose Spacing	10 pt; alternative dose spacing		13666666			
Concentration Range	2 nM - 200 µM					

Range	2 nM - 200 µM					
	17-β Estradiol (ER Transactivation)					
Controls	DMSO (Vehicle)					
Controis	<i>trans</i> -Stilbene (Bioactivation)					
	Ethylparaben (Bioinactivation)					
Data Analysis	ToxCast Pipeline					

Development of a Bioprinting Approach to Adapt the AIME Method for High-throughput Screening Applications



Goal: Adapt AIME method to an automated approach using bioprinting.

Objective: Evaluate various S9/hydrogel combinations, phase I and II optimization, and cross-linking approaches to increase workflow efficiency for metabolism screening.

Questions?

Contact: Chad Deisenroth, deisenroth.chad@epa.gov