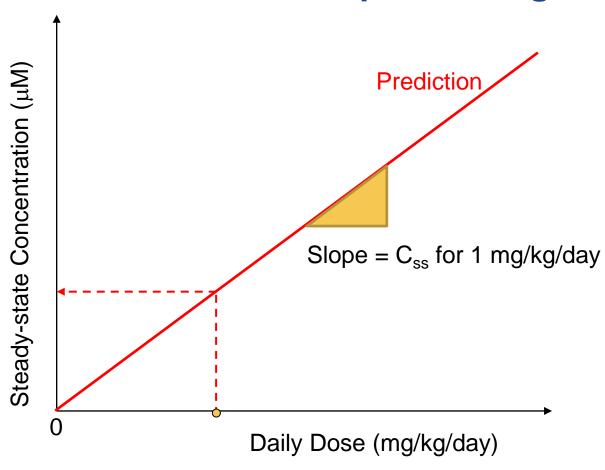


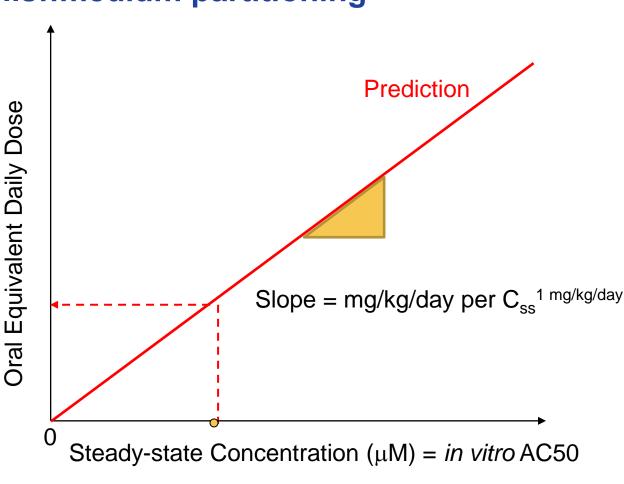
In Vitro Disposition of Tox21 Chemicals: Initial Results and Next Steps

NTP: David Crizer, Nisha Sipes, Suramya Waidyanantha, Stephen Ferguson EPA: Josh Harrill, Greg Honda, Barbara Wetmore, Ann Richard, Antony Williams, John Wambaugh, Rusty Thomas, Mike DeVito, Katie Paul-Friedman

October 20, 2020


IVIVE predictions currently rely on C_{nominal}

- What if the nominal concentration in an assay fails to represent the cellular concentration?
- IVIVE prediction accuracy may be affected.


Steady State IVIVE Assumption

Blood::tissue partitioning ≈ cells::medium partitioning

$$C_{ss} = \frac{\text{oral dose rate}}{\left(\text{GFR *}F_{ub}\right) + \left(Q_1 * F_{ub} * \frac{Cl_{int}}{Q_1 + F_{ub} * Cl_{int}}\right)}$$

Wetmore et al. (2012)

- Swap the axes (this is the "reverse" part of reverse dosimetry)
- Can divide bioactive concentration by C_{ss} for for a 1 mg/kg/day dose to get oral equivalent dose

To date, *in vitro* partitioning has been empirically evaluated for very few chemicals and very few model systems; thus, it is unknown for how many chemicals and to what degree differential chemical partitioning affects the accuracy of IVIVE predictions made across the Tox21 chemical library.

EPA New Approach Methods Work Plan

- Understanding the in vitro distribution of chemicals is essential to the future utility of NAMs such as in vitro assays in a regulatory context
- This work fits into the EPA NAMs workplan under Objective 3 by helping to "Establish Scientific Confidence in NAMs and Demonstrate Application to Regulatory Decisions"

What factors predominately influence in vitro partitioning?

- Armitage et al. (2014) suggest that in vitro partitioning relates strongly to LogK_{ow} and concentration of serum in the medium
- Sorption to plastic played a smaller role in determining the cellular concentration

$C_{W} = \frac{M_{T}}{K_{AW}V_{A} + V_{W} + K_{SaW}V_{Sa} + K_{SIW}V_{Sl} + K_{DW}V_{D} + K_{CW}V_{C}}$ (1)

Diagram of in vitro compartments

Environmental Science & Technology

Article

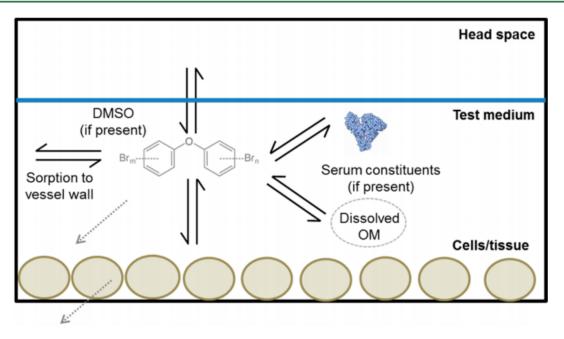


Figure 1. Conceptual representation of an in vitro test system. DMSO: dimethyl sulfoxide, an example of a cosolvent. OM: organic matter.

The physicochemical properties of a given chemical can be used to predict the difference between 'nominal' concentration of a chemical in the medium and 'true' medium and cellular concentrations.

Unknown unknowns?

In vitro chemical partitioning between media and cells (in metabolically-incompetent cells) is dependent on:

- amount of serum in the media;
- the relative binding of the chemical to serum binding proteins;
- LogK_{ow} of the chemical;
- chemical binding to plastic.

- Approximately 200 chemicals
- 92.5% ToxCast chemicals.
- 44.5% low fraction unbound, 27% moderate, 28.5% high.
- 50% neutral, 30% anionic, and 17% cationic at pH 7.4.
- 60% of the compounds were inactive in Attagene ER, 4.5% were potent at < 0.1 μ M, 17.5% were potent at less than 10 μ M.
- 20.5% have an existing NTP method.
- 3.5% have radiolabeled compound available somewhere at EPA.
- For these chemicals, the Armitage et al. (2014) model predicts that the cellular concentration will be 100-fold lower than media concentration for 10.5%, will be 3.2-fold lower than media concentration for 14.5%, within 3.2-fold of media concentration for 18%, greater than 3.2-fold the media concentration for 36%, and greater than 100-fold the media concentration for 18%.

- Sample generation and sample handling workflow
- Are we getting the information that we want?
- Efficient data collection and analysis

10 Chemical Pilot

Carbendazim

10605-21-7 | DTXSID4024729

Acetaminophen

103-90-2 | DTXSID2020006

111988-49-9 | DTXSID7034961

Rosiglitazone

122320-73-4 | DTXSID7037131

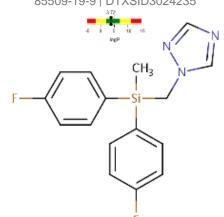
Rifampicin

13292-46-1 | DTXSID6021244

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3

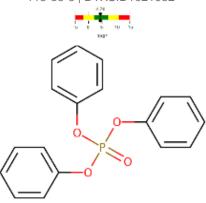
N-Phenyl-1,4-benzenediamine

101-54-2 | DTXSID7025895



Atrazine

1912-24-9 | DTXSID9020112


Flusilazole

85509-19-9 | DTXSID3024235

Triphenyl phosphate

115-86-6 | DTXSID1021952

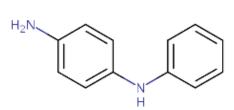


Table 2. Plate Matrix

Pilot 1.0 Study Design

Table 1. Sample Calculations **Design Parameter:** Multiplier **Comments** Cell Type(s) MCF7 **Number of Plates** See Plate Matrix **Technical Replicates** See Plate Map Chemicals 10 See Chemical List 10 μM Concentrations 3 Time Points 1, 6, 24 hours Media Types 2 Either 1% and 10% FBS

Cell Plating Chemical Dispensing

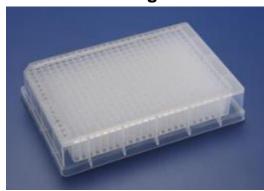
BioTek MultiFlo FX Peristaltic Dispenser

LabCyte Echo 550 Acoustic Dispenser

Media Transfer


Integra ViaFlo 384 Guided Pipetting System

Acetonitrile Addition


Gyger Certus Flex Solenoid Microdispenser

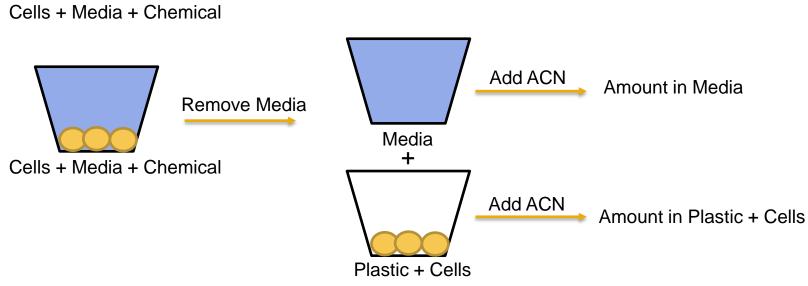
Test Plate

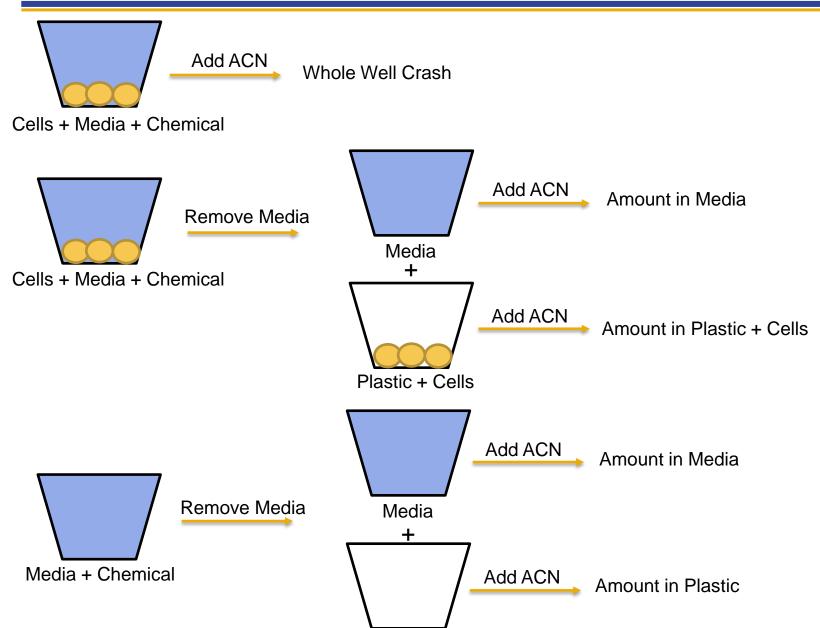
Corning 3985BC Polystyrene

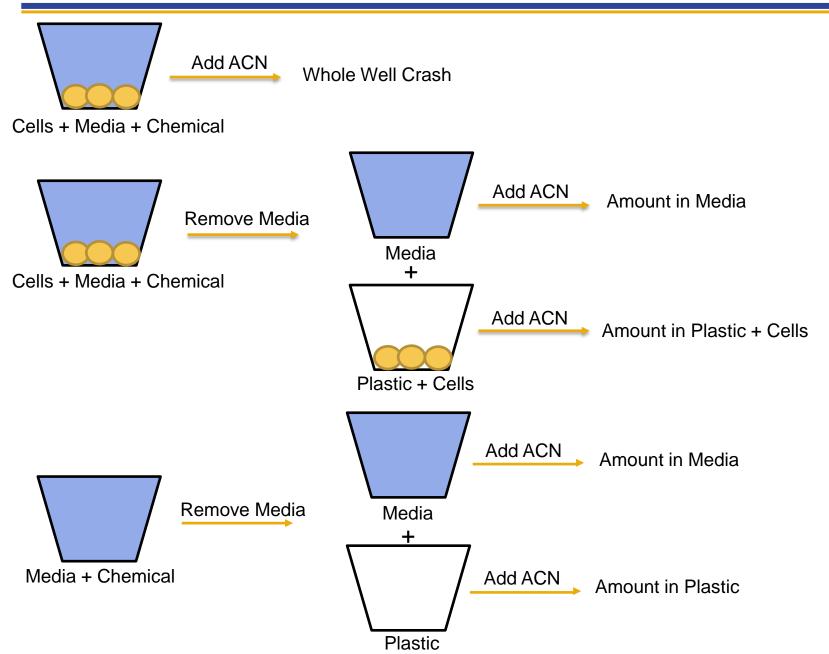
Receiving Plate

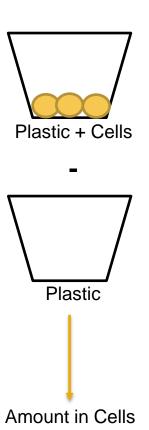
PlateOne 384 Deep Well Polystyrene

Test Plate Test Plate Barcode Plating Condition Exposure Duration (hr) Measured Compartment Medium - cells Medium TC00284721 Α Medium - cells 1 Plastic Medium + cells 1 Medium В TC00284722 Medium + cells 1 Plastic + Cells С TC00284723 Medium + cells 1 Whole Well Crash Medium - cells 6 Medium D TC00284724 6 Medium - cells Plastic Medium + cells 6 Medium Ε TC00284725 Medium + cells 6 Plastic + Cells TC00284726 Medium + cells Whole Well Crash F 6 Medium - cells 24 Medium G TC00284727 24 Medium - cells Plastic Medium + cells 24 Medium Н TC00284728 24 Plastic + Cells Medium + cells Medium + cells 24 Whole Well Crash TC00284729

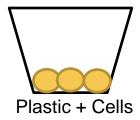



Cells + Media + Chemical





Plastic



- LC (Thermo Vanquish)
 - LC method is a 7 minute run on a C18 column
 - Mobile Phase A: Water with 0.1% formic acid
 - Mobile Phase B: Acetonitrile with 0.1% formic acid
 - 10% B to 100% B over 5 minutes
 - 100% B for 1 minute
 - 100% B to 10% B for 1 minute
- MS (Thermo Q Exactive Plus)
 - Targeted Single Ion Monitoring Mode

Calculating Concentrations and Amounts

- Calculating Concentrations in Media and Whole Well Samples
 - Final Conc. = Raw Conc. x Post-Incubation Dilution Factor x Analytical Dilution Factor
- Calculating Amounts
 - Final Amount = Raw Conc. x Post-Incubation Dilution Factor x Analytical Dilution Factor x Volume in Well
- Calculating Concentrations in Cells
 - Final Conc. = (Amount in Plastic + Cells Amount in Plastic) / (Molecular Weight * Volume of Cells)
 - Volume of Cells = 10,000 cells * 2.0 pL/cell = 20 nL

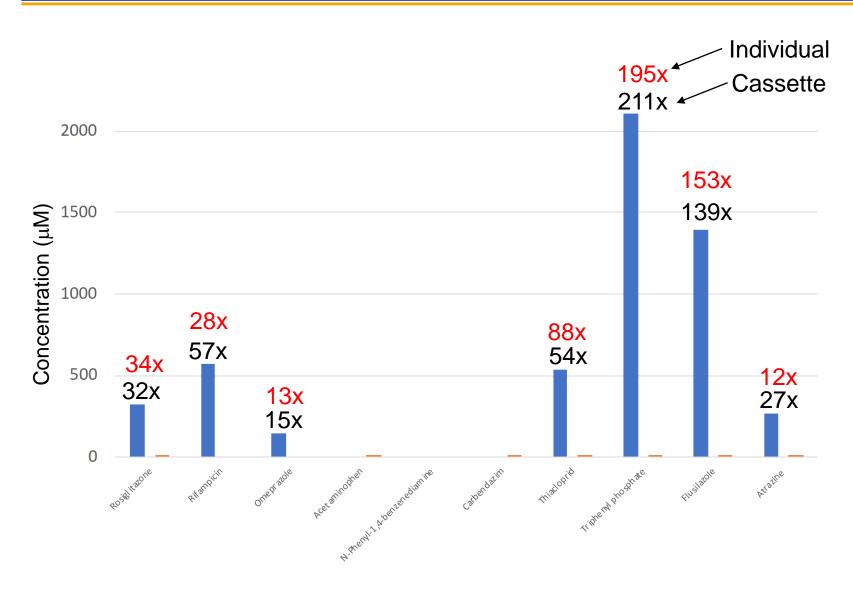
Individual vs. Cassette Analysis

 All samples are incubated individually and then analytically measured both as individual samples (1 chemical) and as cassette samples (5 chemicals) – Goal is to decrease LCMS analysis time

Single Chemical Incubations

Individual Sample Analysis

All samples are analyzed individually be LCMS


Cassette Sample Analysis

Samples from 5 different chemicals are analyzed via LCMS in a single injection

Concentration in Cells vs. Media at 24 hours – Cassette Analysis

Similar results between individual and cassette analysis

Comparing "Plastic + Cells" vs. "Plastic"

Compound	384-well Difference (ng)
Rosiglitazone	2.3
Rifampicin	9.4
Omeprazole	1.0
Acetaminophen	
N-Phenyl-1,4- benzenediamine	-0.5
Carbendazim	
Thiacloprid	2.7
Triphenyl phosphate	13.8
Flusilazole	8.8
Atrazine	1.4

Small differences between "Plastic + Cells" and "Plastic" fractions to determine amount of chemical in cells versus bound to plastic creates a challenge from an analytical measurement perspective

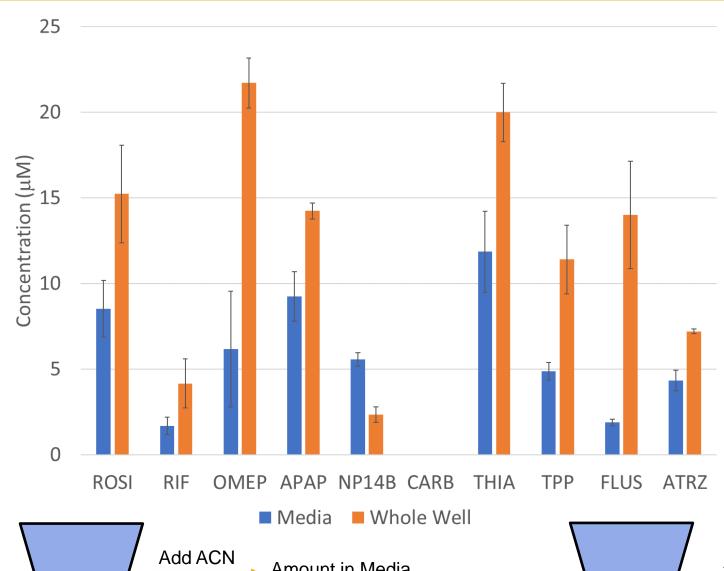
- Cassette analysis for analytical measurements produced similar results to individual analysis
 - major reduction in run time
 - 282 days vs 56 days
- A challenge is the small differences in the amount of chemical observed in the cells versus the amount bound to plastic

- Move from 384 well format to 96 well format
- Greater number of cells in each well per surface area
- Added wash step to remove residual chemical not actually in cells or bound to plastic
- Single media composition with 10% FBS (no longer looking at 1% FBS media)

LCMS drift issues with first pilot 2.0 analytical measurements

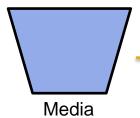
Reanalyzed samples from Pilot 2.0 incubations

 Used a data normalization method to account for LCMS instrument changes over runtime

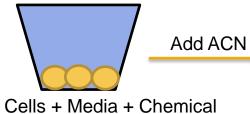

 Inject a standard every 10 injections that is used to normalize signal intensity across a run


Calculating Concentrations and Amounts for 96-well Format

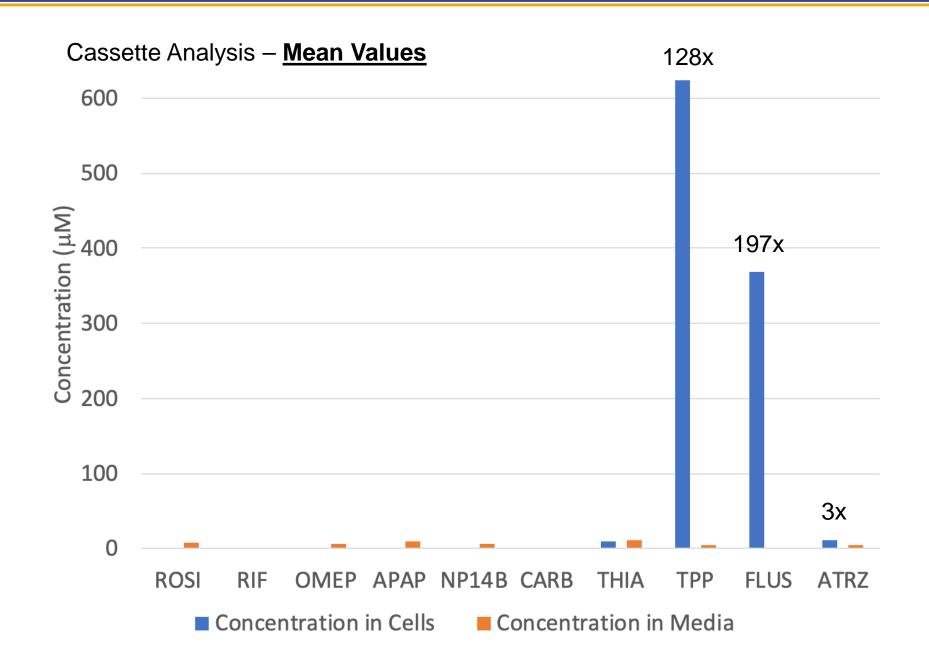
- Calculating Concentrations in Media and Whole Well Samples
 - Final Conc. = Raw Conc. x Post-Incubation Dilution Factor x Analytical Dilution
- Calculating Amounts
 - Final Amount = Raw Conc. x Post-Incubation Dilution Factor x Analytical Dilution Factor x Volume in Well
- Calculating Concentrations in Cells
 - Final Conc. = (Amount in Plastic + Cells Amount in Plastic) / (Molecular Weight * Volume of Cells)
 - Volume of Cells = 5.11×10^4 cells * 2.0 pL/cell = 102.2 nL



Media vs. Whole Well Concentration at 24 Hours

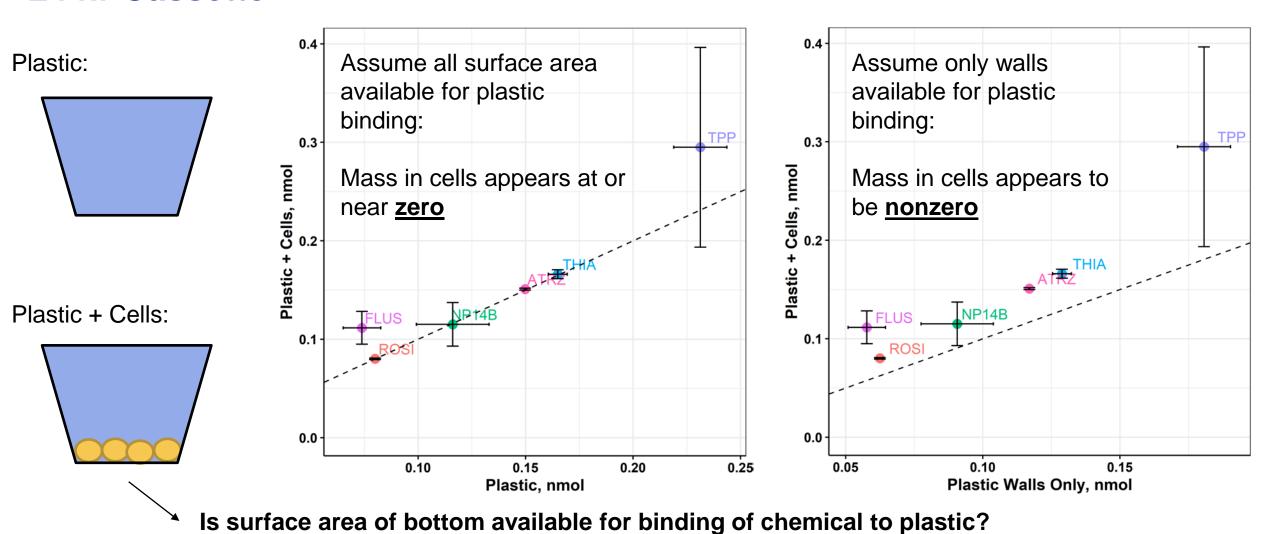


Remove Media



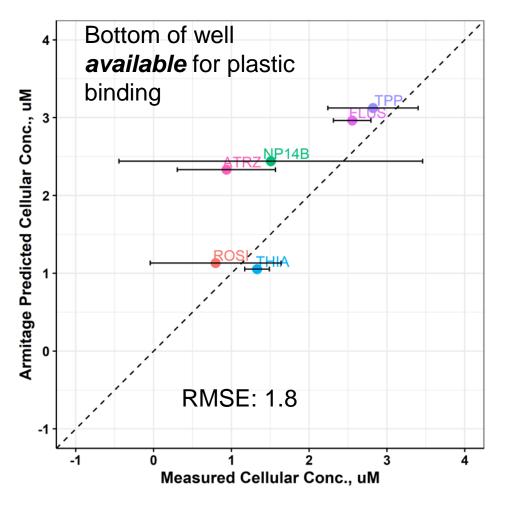
Amount in Media

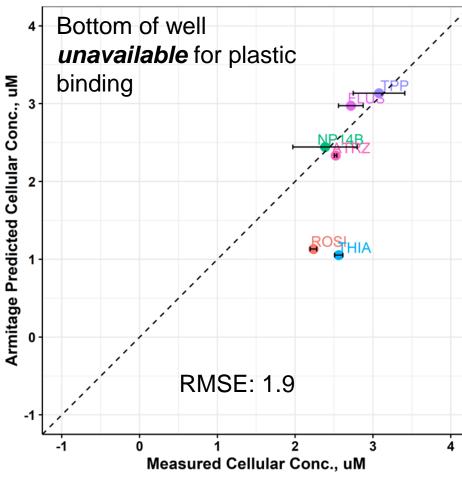
Whole Well Crash


Concentration in Cells vs. Media at 24 Hours

Plastic Binding – 96 Well Plate Format

24 hr Cassette

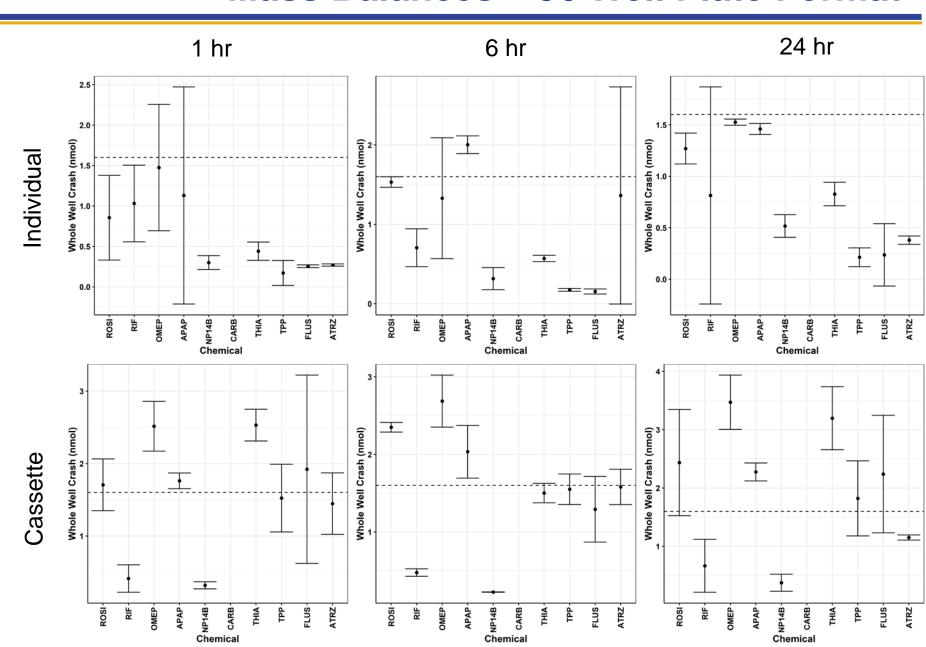



SA total: 137 mm² SA walls: 107 mm²

Armitage Model Predictions

24 hr Cassette – 96 well plate format comparison

In vitro disposition model (Armitage et al. 2014) reasonable prediction of experimental results whether well bottom is included or not


Mass Balances – 96 Well Plate Format

Whole Well Crash – measured total mass balance in experiment with cells

1.6 nmol theoretical maximum

Error bars ± 2 SD (4 possible repeated measures – measurements from separate wells)

Mass balances are poor. Cassette method shows generation of mass.

Observations

Initial results suggest that nominal concentration ≠ cellular concentration

 Most cell concentrations are near zero for 96 well format unless we assume the bottom surface area is unavailable to plastic binding

 Armitage model (LogK_{ow} based) reasonable estimate of experimental cell concentration measurement

Mass balances aren't great

- 20 chemicals
 - 10 chemicals used in previous pilots
 - 10 new chemicals to further cover chemical space

• 3 concentrations – 5, 10, and 20 μM

1,3-Diphenylguanidine

Sulfentrazone

Flutamide

Gemfibrozil

Pirimiphos-methyl

Genistein

Oxytetracycline dihydrate

Fluroxypyr

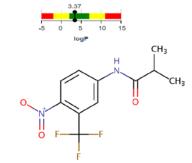
Dinoseb

Butylparaben

Additional 10 Chemicals

1,3-Diphenylguanidine

102-06-7 | DTXSID3025178



Sulfentrazone

122836-35-5 | DTXSID6032645

Flutamide

13311-84-7 | DTXSID7032004

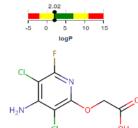
Gemfibrozil

25812-30-0 | DTXSID0020652

Pirimiphos-methyl

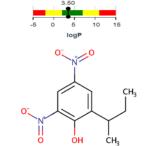
29232-93-7 | DTXSID0024266

Genistein

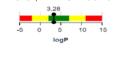

446-72-0 | DTXSID5022308

Oxytetracycline dihydrate

6153-64-6 | DTXSID4023412


Fluroxypyr

69377-81-7 | DTXSID2034627


Dinoseb

88-85-7 | DTXSID3020207

Butylparaben

94-26-8 | DTXSID3020209

Analytical methods completed for all 20 compounds

Incubation completed in February

LCMS analysis end of 2020/beginning of 2021

NTP

- Steve Ferguson
- Nisha Sipes
- Suramya Waidyanatha

EPA

- Josh Harrill
- Greg Honda
- John Wambaugh
- Rusty Thomas
- Barbara Wetmore
- Ann Richard
- Antony Williams

