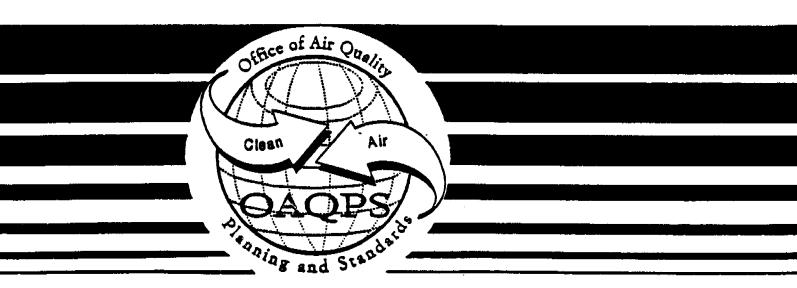
AIR



Final Report

Hot Mix Asphalt Plants
Truck Loading and Silo Filling
Manual Methods Testing

Asphalt Plant C Los Angeles, California

Volume 4 of 8

FINAL REPORT

HOT MIX ASPHALT PLANTS TRUCK LOADING AND SILO FILLING MANUAL METHODS TESTING ASPHALT PLANT C, LOS ANGELES, CALIFORNIA

VOLUME 4 OF 8 APPENDICES G.1 AND G.2

EPA Contract No. 68-D-98-004 Work Assignment No. 3-02

Prepared for:

Mr. Michael L. Toney (MD-19)
Work Assignment Manager
SMTG, EMC, OAQPS
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711

May 2000

Submitted by

PACIFIC ENVIRONMENTAL SERVICES, INC. 5001 S. Miami Blvd., Suite 300 Post Office Box 12077 Research Triangle Park, NC 27709-2077 (919) 941-0333 FAX (919) 941-0234

DISCLAIMER

The information in this document has been funded wholly or in part by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (EPA) under contract to Pacific Environmental Services, Inc. (PES). PES performed the work presented in this document under three EPA contracts and seven Work Assignments; EPA Contract No. 68-D-98-004, Work Assignment Nos. 1-08, 2-07, 3-02, and 3-05, EPA Contract No. 68-D-70002, Work Assignment Nos. 0-05 and 1-07, and EPA Contract No. 68-D-70069, Work Assignment No. 2-16. This document has been prepared by PES, reviewed following PES' internal quality assurance procedures, and approved by PES for distribution. This document has been subjected to the Agency's review, and has been approved by EPA for publication as an EPA document. Mention of trade names does not constitute endorsement by the EPA or PES.

TABLE OF CONTENTS

VOL	UME 1	•	Page
1.0	INTI	RODUCTION	. 1-1
2.0	SUM	MARY OF TEST RESULTS	2-1
	2.1	OVERVIEW	. 2-1
	2.2	TREATMENT OF NON-DETECTS AND ESTIMATES	. 2-2
	2.3	TUNNEL EXHAUST DUCT	
	2.4	SILO EXHAUST DUCT RESULTS	
	2.5	PM AND MCEM DEPOSITION ESTIMATES	2-15
	2.6	METEOROLOGICAL STATION RESULTS	2-15
3.0	PRO	CESS DESCRIPTION	3-1
	3.1	COORDINATION BETWEEN TESTING AND PROCESS	
		OPERATIONS	. 3-3
	3.2	PROCESS MONITORING DURING TESTING	
	3.3	PROCESS SAMPLES	. 3-4
	3.4	VELOCITY OF AIR ACROSS TOP OF TRANSPORT TRUCKS	
		DURING LOAD-OUT	. 3-5
4.0	SAM	IPLING LOCATIONS	. 4-1
	4.1	TUNNEL EXHAUST DUCT	. 4-1
	4.2	SILO EXHAUST DUCT	. 4-1
5.0	SAM	IPLING AND ANALYTICAL PROCEDURES	. 5-1
	5.1	LOCATION OF MEASUREMENT SITES AND	•
		SAMPLE/VELOCITY TRAVERSE POINTS	. 5-1
	5.2	DETERMINATION OF EXHAUST GAS VOLUMETRIC	
		FLOW RATE	. 5-1
	5.3	DETERMINATION OF EXHAUST GAS DRY MOLECULAR	
		WEIGHT	. 5-3
	5.4	DETERMINATION OF EXHAUST GAS MOISTURE CONTENT	. 5-3

TABLE OF CONTENTS (CONTINUED)

VOL	UME 1	(CONTINUED)	Page
	5.5	DETERMINATION OF PM AND MCEM	5-3
	5.6	DETERMINATION OF VOHAPs	
	5.7	DETERMINATION OF SVOHAPs	
	5.8	DETERMINATION OF WIND SPEED, WIND DIRECTION,	
	0.0	AMBIENT TEMPERATURE, AND AMBIENT HUMIDITY	5-7
	5.9	ESTIMATE OF PM AND MCEM ON THE CEILING	
	0.5	OF THE LOAD-OUT TUNNEL DOWNSTREAM OF SILO NO. 5	5-7
	5.10	ESTIMATE OF PM AND MCEM DEPOSITION ON THE INSIDE	
		WALLS OF THE SILO NO. 2 EXHAUST PLENUM	5-9
	5.11	ESTIMATE OF PM AND MCEM DEPOSITION ON THE INSIDE	
	2,11	WALLS OF THE SILO EXHAUST DUCT	5-9
	5.12	ESTIMATE OF PM AND MCEM DEPOSITION ON THE INSIDE	
		WALLS OF THE TUNNEL EXHAUST DUCT	5-10
6.0	OUA	LITY ASSURANCE/QUALITY CONTROL (QA/QC) PROCEDURES	
0,0	~	RESULTS	6-1
	6.1	CALIBRATION AND PREPARATION OF APPARATUS	6-1
	6.2	REAGENTS AND GLASSWARE PREPARATION	
	6.3	ON-SITE SAMPLING	
	6.4	SAMPLE RECOVERY	
	6.5	LABORATORY ANALYTICAL QA/QC PROCEDURES	
	6.6	QA COORDINATOR FIELD AUDIT	
APPI	ENDIX	A - TEST RESULTS AND CALCULATIONS	1
	A . 1	TED TEST RESULTS	3
	A.2	SED TEST RESULTS	101
	A.3	EXAMPLE CALCULATIONS	195
	A .4	PARTICULATE DEPOSITION DATA	
	A .5	CAPTURE EFFICIENCY CALCULATIONS	211
<u>VOL</u>	UME 2		
APP	ENDIX	B - PROCESS DATA	1
	B .1	PRODUCTION RECORDS FOR 7/24/98 THROUGH 7/28/98	3
	B.2	PRODUCT STORAGE RECORDS FOR 7/25/98 THROUGH 7/28/98	9

TABLE OF CONTENTS (CONTINUED)

VOLUME 2 (CONTINUED)

APPENDIX	B - PROCESS DATA (CONTINUED)
B.3	LOAD-OUT RECORDS USED IN TED EMISSION CALCULATIONS 19
В.3 В.4	LOAD-OUT RECORDS USED IN TED EMISSION CALCULATIONS 19 LOAD-OUT RECORDS FOR 6/18/98 THROUGH 7/26/98
B.5	LOAD-OUT RECORDS FOR 7/24/98 THROUGH 7/28/98
B.5 B.6	SILO NO. 2 LOAD-IN RECORDS USED IN SED EMISSION
В.0	CALCULATIONS
B.7	ASPHALT TEMPERATURES AT LOAD-OUT
B.8	MASS CHANGE RESULTS FROM ASTM TESTS PERFORMED ON
3.0	ASPHALT CEMENT SAMPLES
B.9	VELOCITY OF AIR ACROSS TOP OF TRANSPORT TRUCKS
	DURING LOAD-OUT
B .10	METALS ANALYSIS OF PROCESS SAMPLES
VOLUME 3	
APPENDIX	C - FIELD DATA
C .1	TED FIELD DATA
C.2	SED FIELD DATA
C.3	METEOROLOGICAL STATION DATA 89
C.4	ON-SITE GC/MS REPORT AND DATA
APPENDIX	D - QA/QC DATA
APPENDIX	E - PROJECT PARTICIPANTS
APPENDIX	F - TEST METHODS
F.1	EPA METHOD 1
F.2	EPA METHOD 1A
F.3	EPA METHOD 2
F.4	EPA METHOD 4
F.5	EPA METHOD 18
F.6	EPA METHOD 315
F.7	SW-846 METHOD 0010
F.8	SW-846 METHOD 0030

TABLE OF CONTENTS (CONCLUDED)

VOLUME 4	
APPENDIX (G - ANALYTICAL DATA
G.1 G.2	PM AND MCEM DATA
VOLUME 5	
APPENDIX (G - ANALYTICAL DATA (CONTINUED)
G.3	SVOHAPS DATA
VOLUME 6	
APPENDIX (G - ANALYTICAL DATA (CONTINUED)
G.3	SVOHAPS DATA (CONCLUDED)
VOLUME 7	
APPENDIX (G - ANALYTICAL DATA (CONTINUED)
G.4	VOHAPS DATA 1c
VOLUME 8	
APPENDIX (G - ANALYTICAL DATA (CONCLUDED)
G.4 G.5	VOHAPS DATA (CONCLUDED) 1c EPA METHOD 18 REPORT AND DATA 260

LIST OF TABLES

		<u>Page</u>
Table 1.1 Table 1.2	Test Log Tunnel Exhaust Duct, Asphalt Plant C - California	
Table 2.1	Summary of Results, Production Emissions for PM, MCEM, PAH,	
rable 2.1	SVOHAP and VOHAP, Asphalt Plant C, California - July 1998	. 2-3
Table 2.2	Summary of Results, Average PM and MCEM Emissions,	
14510 2.2	Asphalt Plant C, California - July 1998	. 2-4
Table 2.3	Summary of Results, Average PAH and SVOHAP Emissions,	
	Asphalt Plant C, California - July 1998	. 2-5
Table 2.4	Summary of Results, Average VOHAP Emissions,	
	Asphalt Plant C, California - July 1998	. 2-6
Table 2.5	Summary of Results, PAHS, SVOHAPS, & VOHAPS Average	
	Emissions, Silo Exhaust Duct - Asphalt Plant C, California, July 1998	. 2-7
Table 2.6	PM and MCEM Emissions Sampling and Exhaust Gas Parameters	
	Normal Operations, Tunnel Exhaust Duct, Asphalt Plant C - California	2-16
Table 2.7	PM and MCEM Exhaust Gas Concentrations and Emission Rates, Normal	
	Operations, Tunnel Exhaust Duct, Asphalt Plant C - California	2-17
Table 2.8	PAHs and Semi-Volatile Organics Emissions Sampling and	
	Exhaust Gas Parameters, Normal Operations, Tunnel Exhaust Duct,	
	Asphalt Plant C - California	2-18
Table 2.9	PAHs Exhaust Gas Concentrations and Emission Rates, Normal	
	Operations Tunnel Exhaust Duct, Asphalt Plant C - California	2-19
Table 2.10	Semi-Volatile Organics Exhaust Gas Concentrations and Emission Rates,	0.01
	Normal Operations, Tunnel Exhaust Duct, Asphalt Plant C - California	2-21
Table 2.11	Volatile Organics - SW-846 Method 0030 Emissions Sampling and	
	Exhaust Gas Parameters, Normal Operations, Tunnel Exhaust Duct,	0.20
T 11 0 10	Asphalt Plant C - California	2-30
Table 2.12	Volatile Organics - SW-846 Method 0030 Exhaust Gas Concentrations	
	and Emission Rates, Normal Operation, Tunnel Exhaust Duct,	2 21
T-11- 0 12	Asphalt Plant C - California	2-31
Table 2.13	Exhaust Gas Parameters, Normal Operations, Tunnel Exhaust Duct,	
	Asphalt Plant C - California	2-36
Table 2.14	Volatile Organics - EPA Method 18 Exhaust Gas Concentrations	2-50
1 able 2.14	and Emission Rates, Normal Operations, Tunnel Exhaust Duct,	
	Asphalt Plant C - California	2-37
Table 2.15	On-Site GC/MS Volatile Organics Exhaust Gas Concentrations and	
14010 2.15	Emission Rates with Vost (SW-846 Method 0030) and EPA Method 18	
	Comparison, Tunnel Exhaust Duct, Asphalt Plant C - California 7/24/98	2-38
Table 2.16	PM and MCEM Emissions Sampling and Exhaust Gas Parameters,	
	Background Condition, Tunnel Exhaust Duct, Asphalt Plant C - California	2-39

LIST OF TABLES (CONTINUED)

		<u>Page</u>
Table 2.17	PM and MCEM Exhaust Gas Concentrations and Emission Rates,	
14510 2.17	Background Condition, Tunnel Exhaust Duct, Asphalt Plant C - California	2-40
Table 2.18	PAHs and Semi-Volatile Organics Emissions Sampling and Exhaust Gas	
	Parameters Background Condition, Tunnel Exhaust Duct,	
	Asphalt Plant C - California	2-41
Table 2.19	PAHs Exhaust Gas Concentrations and Emission Rates, Background	
	Condition, Tunnel Exhaust Duct, Asphalt Plant C - California	2-42
Table 2.20	Semi-Volatile Organics Exhaust Gas Concentrations and Emission Rates,	
	Background Condition, Tunnel Exhaust Duct, Asphalt	
	Plant C - California	2-44
Table 2.21	Volatile Organics - SW-846 Method 0030 Emissions Sampling and	
	Exhaust Gas Parameters, Background Condition, Tunnel Exhaust Duct,	
· · · · · · · · · · · · · · · · · · ·	Asphalt Plant C - California	2-53
Table 2.22	Volatile Organics - SW-846 Method 0030 Exhaust Gas Concentrations	
	and Emission Rates, Background Condition, Tunnel Exhaust Duct,	
	Asphalt Plant C - California	2-54
Table 2.23	Volatile Organics - EPA Method 18 Emissions Sampling and Exhaust Gas	
	Parameters, Background Condition, Tunnel Exhaust Duct, Asphalt	2 50
	Plant C - California	2-59
Table 2.24	Volatile Organics - EPA Method 18 Exhaust Gas Concentrations and	
	Emission Rates, Background Condition, Tunnel Exhaust Duct,	2.60
	Asphalt Plant C - California	
Table 2.25	Sample Log Silo Exhaust Duct, Asphalt Plant C - California	2-61
Table 2.26	PM and MCEM Emissions Sampling and Exhaust Gas Parameters,	0.60
m 11 007	Silo Exhaust Duct, Asphalt Plant C - California	2-62
Table 2.27	PM and MCEM Exhaust Gas Concentrations and Emission Rates,	2 62
m 11 0 00	Silo Exhaust Duct, Asphalt Plant C - California	2-63
Table 2.28	PAHs and Semi-Volatile Organics Emissions Sampling and Exhaust Gas	2.64
T 11 0 00	Parameters, Silo Exhaust Duct, Asphalt Plant C - California	2-64
Table 2.29	PAHs Exhaust Gas Concentrations and Emission Rates, Silo Exhaust Duct,	2-65
T-11- 2 20	Asphalt Plant C - California	2-03
Table 2.30	Semi-Volatile Organics Exhaust Gas Concentrations and Emission Rates,	2-67
T-1-1- 0 21	Silo Exhaust Duct, Asphalt Plant C - California	2-07
Table 2.31	Volatile Organics - SW-846 Method 0030 Emissions Sampling and Exhaust Gas Parameters, Silo Exhaust Duct, Asphalt Plant C - California	2-76
Table 2.22	Volatile Organics - SW-846 Method 0030 Exhaust Gas Concentrations	2-70
Table 2.32	and Emission Rates, Silo Exhaust Duct, Asphalt Plant C - California	2-77
Table 2.33	On-Site GC/MS Volatile Organics Exhaust Gas Concentrations and	2-11
1 4016 2.33	Emission Rates with Vost (SW-846 Method 0030) Comparison,	
	Silo Exhaust Duct, Asphalt Plant C - California 7/25/98	2-82
Table 2 34	PM and MCFM Deposition Estimates Asphalt Plant C - California	2-83

LIST OF TABLES (CONCLUDED)

		<u>Page</u>
Table 2.35	Meteorological Data Summary, Asphalt Plant C - California	2-84
Table 3.1	Load-out Data Used in TED Emission Calculations	3-6
Table 3.2	Load-in Data for Silo No. 2 Used in SED Emission Calculations	3-7
Table 3.3	Asphalt Temperatures at Load-out, Asphalt Plant C, California	3-8
Table 3.4	Mass Change of Asphalt, Asphalt Plant C, California	
Table 3.5	Results of Metals Analyses of Asphalt Samples, Asphalt Plant C,	
	California	3-10
Table 3.6	Air Velocity Over Transport Trucks During Load-out, Asphalt Plant C,	
	California	3-11
Table 5.1	Summary of Sampling and Analytical Methods, Asphalt Plant C,	
	California	5-2
Table 6.1	Summary of Temperature Sensor Calibration Data	6-8
Table 6.2	Summary of Pitot Tube Dimensional Data	
Table 6.3	Summary of Dry Gas Meter and Orifice Calibration Data	
Table 6.4	Summary of EPA Method 315 and SW-846 Method 0010	
	Field Sampling QA/QC Data	6-11
Table 6.5		6-12
Table 6.6	SW-846 Method 0010 PAHs Field and Laboratory Blanks Results,	
	· · · · · · · · · · · · · · · · · · ·	6-13
Table 6.7	SW-846 Method 0010 PAHs Field and Laboratory Blanks Results,	
	Silo Exhaust Duct	6-14
Table 6.8	SW-846 Method 0010 PAHs Surrogate Recovery Results,	
	Tunnel Exhaust Duct	6-15
Table 6.9	SW-846 Method 0010 Semi-Volatile Surrogate Recovery Results	
	Tuillet 2000 2000 1000 1000 1000 1000 1000 100	6-16
Table 6.10	SW-846 Method 0010 PAHs Surrogate Recovery Results,	
	Silo Exhaust Duct	6-17
Table 6.11	SW-846 Method 0010 Semi-Volatile Surrogate Recovery Results	
	Silo Exhaust Duct	6-18
Table 6.12	SW-846 Method 0030 Field and Laboratory Blanks Results	
	A CHANGE AND	6-19
Table 6.13	• · · · · · · · · · · · · · · · · · · ·	6-20
Table 6.14	SW-846 Method 0030 Surrogate Recovery Results	
	Tunnel Exhaust Duct	6-21
Table 6.15	SW-846 Method 0030 Surrogate Recovery Results	
	Silo Exhaust Duct	6-22

LIST OF FIGURES

	Page		
Figure 1.1	Project Organization - US EPA Hot Mix Asphalt Load-out Operation, Asphalt Plant C, California		
Figure 2.1	Load-out Tunnel and MET Station Location and Average Wind Direction 2-85		
Figure 3.1 Figure 3.2	Process Flow Schematic, Asphalt Plant C, California		
Figure 4.1 Figure 4.2	Tunnel Exhaust Duct Sampling Locations, Asphalt Plant C, California 4-2 Tunnel Exhaust Duct Traverse Point Locations, Asphalt Plant C, California		
Figure 4.3 Figure 4.4	Silo Exhaust Duct Sampling Locations, Asphalt Plant C, California 4-4 Silo Exhaust Duct Traverse Point Locations, Asphalt Plant C, California 4-5		
Figure 5.1 EPA Method 315 Sampling Train Schematic SW-846 Method 0030 Sampling Train Schematic SW-846 Method 0010 Sampling Train Schematic SW-846 Method 0010 Sampling Train Schematic Location of TED Deposition Test Plates T ₁ , T ₂ , and T ₃			
	GLOSSARY OF TERMS		
CEMS – Com CTS – Calibra EMC – Emiss EMAD – Emi ESP – Electro FID – Flame I FTIR – Fourie HAP – Hazard MCEM – Met MRI – Midwe	erican Society for Testing and Materials tinuous Emissions Monitoring System ation Transfer Standard ions Measurement Center ssion Monitoring and Analysis Division ostatic Precipitator fonization Detector er Transform Infrared Spectroscopy dous Air Pollutant thylene Chloride Extractable Matter est Research Institute Environmental Services		

PM - Particulate Matter

SED – Silo Exhaust Duct

PTE – Permanent Total Enclosure

RAP – Recycled Asphalt
RTFOT – Rolling Thin Film Oven Test

GLOSSARY OF TERMS (CONTINUED)

SMTG – Source Measurement Technology Group

SVOHAP - Semi-Volatile Organic Hazardous Air Pollutant

TED – Tunnel Emissions Duct

TFOT - Thin Film Oven Test

THC - Total Hydrocarbons

VOHAP – Volatile Organic Hazardous Air Pollutant

VOST - Volatile Organic Sampling Train

VOLUME 4

APPENDIX G

ANALYTICAL DATA

- G.l PM AND MCEM DATA
- G.2 PAWSVOHAPS CASE NARRATIVE AND PAH DATA

APPENDIX G. 1 PM AND MCEM DATA

P.O. Box 2010 Morrisville, NC 27560 Ph. (919) 468-7800

Narrative

Site: Asphalt Plant C

Prepared for: Frank Phoenix (PES)

Prepared by: Linh Nguyen

Description of Procedures for EPA Method 315 and Observations:

Filters -

Procedure:

The filters (including any loose particles) were transferred to a tared amber jar. The amber jars were placed into a desiccator overnight in a temperature controlled environment. The following day, the samples were weighed and initial weights were taken. To ensure that all conditions remained the same, the samples were placed back into the desiccator and allowed to sit overnight and the second weighings were taken at the same time the next day. Once constant weight had been attained, 100 mL of methylene chloride was added to each jar. The jars were placed in a sonicator and allowed to sonicate for 3 minutes. After sonication was complete, the samples were taken out of the sonicator. Each sample was filtered through a buchner funnel reinforced with an additional Whatman 934-AH filter to prevent cross contamination on the buchner funnels. Once the solutions were vacuum filtered, the extract was placed into a triple rinsed beaker (methylene chloride solvent). The beaker containing the extract was placed onto a hotplate at low heat and the solvent was allowed to evaporate. Once the samples almost reached dryness, the samples were taken off the hotplate and poured into a tared aluminum pan. The beakers were triple rinsed with methylene chloride and then the solvent was poured into the aluminum pan was heated to complete dryness, placed into a desiccator and allowed to sit in the desiccator overnight. The following day, the samples were weighed and the weights recorded.

Observations:

The filters had dark gray/black discoloration, especially in places where the air flowed through the filters. All contents of the filters and any loose particles were transferred to a tared 250 mL amber jar.

Acetone Front Half Rinse-

Procedure:

The rinses were poured into 400 mL tared beakers that were tripie rinsed with methylene chloride. The weights of the beakers including the rinses were taken to give an initial and a final weight from which the volumes of the rinses were calculated. A separate sheet (attached) explains how the volumes were calculated. The beakers containing the rinses were allowed to sit overnight in a hood to allow the acetone solvent to evaporate. The next day the beakers, which now contained no solvent, were placed into the desiccator and allowed to sit in the desiccator overnight. The next day, initial weighings for the samples were taken. The samples were then allowed to sit in the desiccator again for 24 hours. The next day at approximately the same time, the samples were weighed again for the second weighings. Once constant weight was attained, the weights were recorded for the

Particulate Mass (PM) portion of the analysis. Next, 25 mL of methylene chloride was added to each beaker. Aluminum foil was placed over the tops of the beakers. The beakers were then placed into a sonicator and allowed to sonicate for 3 minutes. This fraction was combined with the methylene chloride Front Half Rinse.

Observations:

There were some particulates present in the rinse.

Methylene Chloride Front Half Rinse-

Procedure:

The rinses were poured into 400 **mL** tared beakers triple rinsed with methylene chloride. The weights of the beakers including the rinses were taken to give an initial and a final weight from which the volumes of the rinses were calculated. At this point, the extracts from the Acetone Front Half Rinse were combined with this fraction. The combined fractions were placed onto a **hotplate** and allowed to heat gently at a low temperature setting. **Once** the solution had almost reached dryness, the solution was poured into a tared aluminum pan. The pan was then placed back onto the **hotplate** and taken to complete dryness. The pans were then transferred to the desiccator and allowed to sit overnight. The following day, the samples were weighed and the weights recorded for the MCEM analysis.

Observations:

No conditions out of the ordinary were noted.

Impinger, Back Half Water-

Procedure:

The samples were poured into a clean, pre-weighed, 500 mL amber jar. After the impinger contents had been emptied into the jar, a second weight was obtained. The difference was then used to calculate the volume of the sample. Once the volume had been determined, each sample was poured into a clean, 1000 mL separatory funnel. Once in the separatory funnel, the amber jars containing the original samples were triple rinsed with methylene chloride and the rinses poured into the separatory funnel. The approximate volume of this rinse was 50 mL. The samples were then shaken for 1 minute. After 1 minute, the bottom methylene chloride layer was drained into a clean, 250 mL beaker. After the methylene chloride was drained, an additional 25 mL of MeCl₂ was added. The solution was then shaken for another minute and the bottom methylene chloride layer drained into the same 250 mL beaker. This process was repeated once more. Once the third shake was completed and the methylene chloride drained into the 250 mL beaker, the beaker was placed onto a hotplate and gently heated to evaporate the solvent. Once the solution was evaporated almost to dryness, the solution was transferred to a tared aluminum pan. The pan was then placed back onto the hotplate and heated to complete dryness. After heating, the pans were placed into the desiccator to sit overnight. The following day, the pans were weighed and the weights recorded for the MCEM analysis of the Impinger, Back Half Water Rinse.

Observations:

The samples looked cloudy upon initial inspection. They did not seem to consist solely of water. During the extraction of these samples, the solution formed what seemed like an emulsion between the water and methylene chloride layer. When the methylene chloride was drained, this emulsion layer was left behind, so that only the methylene chloride layer was taken.

Page 2 of 4

Solvent, Back Half Rinse-

Procedure:

The exact same procedure was used for the Back Half Rinse as was used for the Front **Half** Rinse. The only difference was that since PM analysis was not required, when the solvent dried down in the beaker, constant weight was not taken for these samples. After the solvent had evaporated, 25 mL of methylene chloride was added to each beaker and sonicated for 3 minutes each. The rest of the procedure was the same as the Acetone Front Half Rinse.

Observations:

There didn't seem to be total miscibility with the solvents. It seemed that there might have been some water in the solvent rinse.

Field Reagent Blanks-

Procedure:

These final weights were used to calculated the volumes of the reagent blanks. The reagent blanks were allowed to sit on a hotplate at low heat. After the solvents had evaporated, the final weights of the beakers with any contents remaining were taken. Particulate Mass was calculated. For the filter blank, 100 mL of methylene chloride was added to the beaker and sonicated for 3 minutes. Afterwards, the methylene chloride was filtered and poured into a clean beaker. The beaker containing the solvent was heated down to near dryness. The solvent was then transferred to a tared aluminum pan. The pan was placed onto the hotplate and reduced to dryness. The pan was desiccated and weighed the next day for Particulate Mass.

Observations:

No observations out of the ordinary were noticed.

Laboratory Reagent Blanks-

Procedure:

The same procedures were used for Laboratory Reagent blanks as for the Field Reagent Blanks. Solvents that were used during the extraction process were tested in the reagent blank. A filter from the same lot that was sent to the field was used to go through the extraction process.

Observations:

No observations out of the ordinary were noticed

Deposition Samples-

Procedure:

Initial inspection of the deposition samples showed them to have a lot of sedimentation and particulate matter at the bottom of each of the jars. Each one of the deposition samples was poured into a pre-weighed beaker. If the entire sample did not *fit* into one beaker, then it was separated into 2 or more beakers. The samples were allowed to sit in the hood overnight to allow the solvent to evaporate. Once the solvent had evaporated, the

remaining sample had to be heated very gently to allow the sample to go to dryness. The next day, initial weights were taken on the beakers containing the samples. The samples were allowed to sit ovemight before a second weighing was taken. Once the samples had attained constant weights, the weights were recorded for the Particulate Mass (PM) analysis. Once the PM analyses were finished, 25 mL of methylene chloride was added to each beaker. The samples were covered with aluminum foil and placed into a sonicator to sonicate for 3 minutes. After sonication was complete, the samples were filtered through a buchner funnel and MCEM analysis was done using the same method as described in methylene chloride FHR (for MCEM analysis).

Observations:

Some of the samples had very high volumes and so they had to be separated into 2 or more beakers. Slow heating of the samples had to be performed to prevent any of the samples from popping or cracking. Once all the solvent had evaporated, there remained a large amount particulate deposit. It resembled ground sedimentation deposits. The samples had to be slow heated over a 6-g hour period with constant supervision, because as the sample volumes decreased, the samples started to crack and pop. Some of the samples had very high masses, so longer periods of heating were required. Since the samples had to be completely dry, the samples were initially allowed to sit on the hotplate at low heat. After this period of time, some of the sample still had some "tar-like" properties, which indicated that the sample was still not completely dry. This coagulation into a tar-like property raised the question of how long to heat the samples since low heat would not cause the "tar" to evaporate. Eventually, the heat was increased in order to drive the samples to complete dryness. Once the judgment was made that the samples were dry, the samples were desiccated overnight to get constant weights. For the MCEM analysis portion of the extraction process, the same complications arose. Once the samples had evaporated to almost dryness, there remained a small portion of a "tar-like" residue. The samples would not produce a valid weight when weighed "as is" because in doing so, some samples produced an MCEM value which was greater than the PM value, which is not possible. Upon observation of this anomaly, the samples were allowed to sit at high heat until all the "tar-like" appearance had evaporated leaving only a black organic residue. During the evaporation process of this stage, the sample produced smoke, indicating that there might be some organics being driven off as aerosolized particles. One can not conclude, however, how much, if any, organic analytes are being driven off. In conclusion, the values produced for the MCEM analysis for the deposition samples represent minimum values for this analysis.

P.O. Box 2010 Morrisville, NC 27560 Ph. (919) 468-7800

Phoenix (Asphalt Plant C)

Notes on Samples:

The volumes for the Methylene Chloride FHR and the Water Rinses were not taken. This was due to the fact that it was not known that volumes would be used for these samples. For this reason the volumes were not taken. For future samples, all volumes will be taken for any rinses. **This** includes both the Acetone and Methylene Chloride FHR, the Water Rinse as well as the **Solvent BHR**.

Although actual volumes for the **MeCl2** FHR rinse was not taken, approximate volumes for these samples are about **100-120 mL** for each of the Rinses. The conclusion came from the fact that each of the rinses were in 250 **mL** jars and the almost all the jars were less than half full. This approximates the volumes to be -100-120 **mL** per rinse.

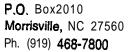
The Water Rinses were not taken as well. Volume approximations ranged from 400-1000 mL. The volumes for the Water Rinses were fairly large. The volumes for each of these rinses were not consistent and so the approximation of volumes for these fractions would be difficult.

Calculations for volumes were done gravimetrically. The initial mass of the container is taken, the rinse is poured into the container, then a final mass is taken. The final mass is subtracted from the initial mass to obtain the mass of the Rinse. Depending on the identity of the Rinse (i.e. Acetone or MeCl2), the proper density is used to calculate the volume.

Calculation:

Volume = Mass of rinse / density of rinse

For the Solvent Rinse, this procedure had to be changed since the density of the rinse was not known. In order to obtain the density of the rinse, three arbitrary Solvent Rinse samples were taken and one **mL** aliquots were taken from each Rinse. Masses for each **of** these rinses were taken and averaged together to obtain a calculated average for the density of the Solvent Rinse. Using this calculated average for the density of the Solvent Rinse, the volumes were then determined gravimetrically using the above calculation. The calculated average density for the Solvent Rinse was 1.1555 **g/mL**.



P.O. Box 2010 **Morrisville,** NC 27560 Ph. (919) **468-7800**

Phoenix (Asphalt Plant C)

Matrix 🛮	<u>FILTERS</u>			
Method =	<u>PM</u>			
	Weight of Petri	Filter Pre-	Avg. wt. Of	Final Weight of
Sample ID:	dish (g)	weight (g)	filter+dish (g)	PM (g)
T-M31 5-1-F	146.9268	0.4491	147.37945	0.0036
T-M31 5-2-F	202.6661	0.4469	203.31780	0.0028
T-M315-3-F	162.1919	0.4530	182.64775	0.0028
T-M315-4-F	157.3657	0.4527	157.62035	0.0020
T-M315-FB-F	155.6757	0.4463	156.12630	0.0043
S-M315-1-F	156.5417	0.4481	157.08355	0.0938
S-M315-2-F	187.4323	0.4466	187.93760	0.0587
S-M31 5-4-F	165.7223	0.4494	166.21560	0.0439
S-M315-FB-F	166.5507	0.4500	167.00225	0.0015
Method =	MCEM			
	Weight of	Weight after		Final weight of
Sample ID:	Alum. pan (g)	•		MCEM (g)
T-M31 5-1-F	1 1.6303	1.6326		0.0023
T-M31 5-2-F	2 1.6458	1.6459		0.0001
T-M315-3-F	3 1.6390	1.6396		0.0006
T-M315-4-F	4 1.6384	1.6384		0.0000
T-M315-FB-F	5 1.6474	1.6474		0.0000
S-M31 5-I-F	6 1.6478	1.6484		0.0006
S-M315-2-F	7 1.6454	1.6461		0.0007
S-M315-4-F	8 1.6501	1.6516		0.0015
S-M315-FB-F	9 1.6501	1.6504		0.0003

Note: Due to rounding and use of additional significant figures by the software, reported final weights may differ slightly from calculated results derived from the displayed values,

Phoenix (Asphalt Plant C)

Matrix =	<u>Acet</u>	one Rinses			
Method =	<u>PM</u>				
Sample ID:		Volume of liquid (mL)	Weight of beaker (g)	Avg. wt. of beaker+cont. (g)	Final weight of PM (g)
Old SED Acet Rin	าร. 1	943.0	•		96.5125
New SED Acet R	Rin: 1	1676.0	·		168.0179
CPE	3	65.2927	102.9535	102.96775	0.0142
CPC	4	143.6677	106.4430	106.50105	0.0560
CPW	5	91.1349	111.1123	111.14225	0.0299
T1	1A ⁻	241.6473	177.5570	162.04745	4.4905
	2 A	229.0183	177.5465	195.26995	17.7235
T2	3 A	244.7422	186.6089	187.30955	0.7006
	4 A	209.1469	173.2646	167.02055	13.7556
T 3	5 A _	336.1920	177.6901	165.32105	7.4310
	6 A	311.4067	177.9773	166.33975	6.3624
	7A	332.3469	177.6120	178.14335	0.3313
TP Blank	6 _	76.5556	113.6445	113.67305	0.0265
Box WN	8A _	274.3465	164.9919	165.20975	0.2176
Box WC	7	135.2032	111.6543	111.96460	0.1305
Box WS	9A _	257.1522	162.8926	162.92600	0.0334
	10A_	216.4566	163.0627	164.05675	0.9761
Box EN	11A_	232.5606	167.1266	167.25665	0.1262
Box EC	6	97.2116	104.6055	104.92560	0.1201
Box ES	12A_	250.9097	137.6304	140.02965	2.3992
	13A_	269.1434	177.7076	177.79090	0.0633
TP Acetone Blank	k 14A_	208.7190	173.0033	173.00340	0.0001
CP Blank	9	40.4942	107.0691	107.07590	0.0066
Box Pipe Blank	10 _	126.2637	104.9096	104.95170	0.0421

See Note on page 1f.

P.O. Box2010 **Morrisville,** NC 27560 Ph. (919) **468-7800**

Phoenix (Asphalt Plant C)

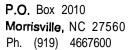
Matrix =	Ace	etone Rinses			
Method =	MC	<u>EM</u>			
		Volume of	Weight of	Weight after	Final weight of
Sample ID:		liquid (mL)	Alum. pan (g)	evaporation (g)	MCEM (g)
Old SED Acet Ri		943.0	0.9989	1.2878	7.2225
New SED Acet F	Rin: 1	1876.0	0.9935	1.0778	2.9505
CPE	3	65.2927	1.6361	1.6451	0.0090
CPC	Ą	143.6877	1.6348	1.6480	0.0132
CPW	5	91.1349	1.6172	1.6259	0.0087
T1	6	241.6473	1.6063	1.9269	0.3206
	7	229.0183	1.6060	2.1379	0.5319
T 2	8	244.7422	1.6263	1.6589	0.0326
	9	209.1469	1.6369	1.7848	0.1479
Т3	1 0	338,1920	1.6265	1.7776	0.1511
	11	311. 4067	1.6288	1.7784	0.1496
	1 2	332.3 489	1.6067	1.6157	0.0090
TP Blank	1 3	76.5556	1.6557	1.6658	0.0101
Box WN	1 4	274.3 465	1.5922	1.5964	0.0042
Box WC	1 5	135.2032	16528	1.6540	0.0012
Box WS	16	257.1 522	1.6529	1.6650	0.0121
	17	216.4 568	1.6298	1.6513	0.0215
Box EN	1 8	232.5 808	1.6400	1.6459	0.0059
Box EC	1 9	97.2118	1.6739	1.8763	0.0024
Box ES	20	250.9097	1.6492	1.7300	0.0808
	21	269.1434	1.5927	1.6053	0.0126
TP Acetone Blan	k 22	208.71 90	1.6196	1.6196	0.0000
CP Blank	1	<u>40.49</u> 42	1.6207	1.6219	0.0012
Box Pipe Blank	2 _	126.2; B37	1.6314	1.6396	0.0082

See Note on page IF.

P.O. Box 2010 **Morrisville,** NC 27560 Ph. (919) **468-7800**

Phoenix (Asphalt Plant C)

Matrix =	<u>Aceto</u>	ne FHR			
Method =	PM				
		Volume of	Weight of	Avg. wt. Of	Final weight of
Sample ID:		liquid (mL)	beaker (g)	beaker+cont. (g)	PM (g)
T-M31 5-1-FH-A		55.1	175.8218	175.83080	0.0092
T-M315-3-FH-A		460591	185.8707	185.87585	0.0050
T-M315-4-FH-A		138.0	184.9791	184.98480	0.0057
T-M315-FB-FH-A	_	213.4	177.8025	177.80915	0.0088
1 1410 10-1 11-14	_		183.1283	183.13095	0.0048
S-M315-2-FH-A		48.0	187.8280	167.88835	0.0404
S-M315-4-FH-A		141 7	178.8901	178.72105	0.0309
S-M315-FB-FH-A		79.7	179.7039	179.71340	0.0095
O-101010-ED-ED-A		7 0.1	170.4733	170.47540	0.0021
Matrix =	Methy	<u>rlene Chloride l</u>	<u> </u>		
Method =	MCEN	İ			
	- W e	ight of	Weight after		Final weight of
Sample ID:	A	Alum. pan (g)	evaporation (g)		MCEM (g)
T-M315-1-FH-M	1	1.8209	1.8282		0.0053
T-M315-2-FH-M	2	1.8273	1.8294		0.0021
T-M315-3-FH-M	3	1.8402	1.8420		0.0018
T-M315-4-FH-M	4	1.8392	1.8422		0.0030
T-M315-FB-FH-M	5	1.8299	1.8340		0.0041
S-M31 5-1 -FH-M	8	1.8383	1.8780		0.0397
S-M31 5-2-FH-M	7	1.8599	1.8874		0.0275
S-M315-4-FH-M	8	1.8598	1.8871		0.0073
O 14045 FD F1114	_	1 0511	4.0504		0.0000


See Note on page 17

1.8531

1.8511

S-M315-FB-FH-M

0.0020

Phoenix (Asphalt Plant C)

Method • MC	CEM		
	Weight of	Weight after	Final weight of
Sample ID:	Alum. pan (g)	evaporation (g)	MCEM (g)
T-M31 5-1 -BH-W 1	1.6620	1.6621	0.0001
T-M315-2-BH-W 2	1.6373	1.6374	0.0001
T-M31 5-3-BH-W 3	1.6064	1.6065	0.0001
T-M315-4-BH-W 4	1.5923	1.5927	0.0004
T-M315-FB-BH-W 5	1.5969	1.5989	0.0000
S-M31 5-I -BH-W 6	1.6170	1.6210	0.0040
S-M31 5-2-BH-W 7	1.6145	1.6160	0.0035
S-M315-4-BH-W1 6	1.6000	1.6011	0.0011
S-M315-4-BH-W2 9	1.6061	1.6064	0.0003
S-M315-4-BH-W3 1	0 1.6134	1.6139	0.0005
S-M315-4-BH-W4 1	1 1.5936	1.5938	0.0002
S-M315-FB-BH-W 1	2 1.6239	1.6240	0.0001

Matrix =	Acetone & MeCi2 Impinge	r rineaa
IVIAU IX 🚍	Acelone & MeGiz IIIIDinge	I IIIISAS

Method =	MCE	<u>M</u>			
Sample ID:		Volume of liquid (mL)	Weight of Alum. pan (g)	Weight after evaporation (g)	Final weight of MCEM (g)
T-M31 5-I -BH-\$	13	236.2	1.0200	1.0236	0.0036
T-M31 5-2-BH-S	1 4	181.0	1.0227	1.0229	0.0002
T-M315-3-BH-S	15	256.6	1.0258	1.0261	0.0003
T-M31 5-4-BH-S	1 6	199.0	1.0267	1.0274	0.0007
T-M315-FB-BH-S	17	125.9	1.0268	1.0268	0.0000
S-M315-1-BH-S	1 6	258.3	1.0189	1.0212	0.0023
S-M31 5-2-BH-S	19	186.8	1.0281	1.0292	0.0011
S-M315-4-BH-S	20	226.0	1.0291	1.0305	0.0014
S-M315-FB-BH-S	2 1	148.2	1.0197	1.0198	0.0001

See Note on page 15.

	,		
11 ANALYSIS			

	•		

APPENDIX G.2 PAH/SVOHAPS CASE NARRATIVE AND PAH DATA

.

xorporated de Parkway ramento, California 95605

373-5600 Telephone 16 372-1059 Fax

October 22, 1998

QUANTERRA INCORPORATED PROJECT NUMBER: 300681

PO/CONTRACT: 104-98-0239

Frank Phoenix Pacific Environmental Services 5001 South Miami Boulevard Suite 300 Research Triangle Park, NC 277092077

Dear Mr. Phoenix:

This report contains the analytical results for the eleven samples which were received under chain of custody by Quanterra Incorporated on 30 July 1998.

The case narrative is an integral part of this report.

If you have any questions, please feel free to call.

Sincerely,

Robert Weidenfeld

Project Manager

Advanced Technology

RW/tw

TABLE OF CONTENTS

QUANTERRA INCORPORATED PROJECT NUMBER 300682

1
Cover Letter1
Table of Contents1a
Chain of Custody Documentation2-4
This page was left blank due to numbering error5
Case Narrative6-8
Sample Description Information9
Summary Report
Polynuclear Aromatic Hydrocarbons - Method HRGC/HRMS 78-658
Sample(s): 1, 3-6, 8-11
Method Blank Raw Data
Sample Raw Data
Laboratory Control Sample Data
Initial Calibration
Continuing Calibration
Sample Extraction/Preparation Log Copies
Semivolatile Organics - Method 0010/8270 659-1794
Semivolatile Organics - Method Government
Sample(s): 1 - 11
Sample Raw Data
Initial Calibration
Continuing Calibration
Method Blank Raw Data
Laboratory/Duplicate Control Sample Data
Sample Extraction/Preparation Log Copies
Analysis Log Copies
Instrument Tune

Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

Sample Chain of Custody Record

PROJECT NO.: R012.001	SAMPLERS: J. Rubio, D.D. Holzschuh
PLANT: US EPA HOT MIX ASPHALT PLANT C	RECOVERY PERSON: D.D. Holzschuh

					Analytical Request	
Sample	Collection	ion	Sample	Number of		Comments
Identification	Date	Time	Name	Containers		
S-MM5-1-F	7/24/98		Filter	Į		
S-MM5-1-FH	7/24/98		Front Half/MeOH MeCl ₂	_		
S-MM5-1-XAD	7/24/98		XAD Trap	_		
S-MM5-1-COND	7/24/98		Condensate and Rinses	1		
S-MM5-1-BH	7/24/98		Back Half Rinse	-		
T-MM5-1-F	7/24/98		Filter	-		
T-MM5-1-FH	7/24/98		Front Half/MeOH MeCl ₂	-		
T-MM5-1-XAD	7/24/98		XAD Trap	1		
T-MM5-1-COND	7/24/98		Condensate and Rinses	1		
T-MM5-1-BH	7/24/98		Half Rinse	1		
- S-MM5-2-F	7/25/98		Filter	-		
S-MM5-2-FH	7/25/98		Front Half/MeOH MeCl ₂	1		
S-MM5-2-XAD	7/25/98		XAD Trap	-		
S-MM5-2-COND	7/25/98		Condensate and Rinses	-		
S-MM5-2-BH	7/25/98		Half Rinse	-		
. S-MM5-1B-F	7/25/98		Filter	-		
S-MM5-1B-FH	7/25/98		Front Half/MeOH MeCl ₂	1		
S-MM5-1B-XAD	7/25/98		XAD Trap	1		
S-MM5-1B-COND	7/25/98		Condensate and Rinses	-		
S-MM5-1B-BH	7/25/98		Back Half Rinse	1		
· T-MM5-2-F	7/25/98		Filter	1		
T-MM5-2-FH	7/25/98		Front Half/MeOH MeCl ₂			
T-MM5-2-XAD	7/25/98		XAD Trap	-		
T-MM5-2-COND	7/25/98		Condensate and Rinses	Ţ		
T-MM5-2-BH	7/25/98		Back Half Rinse	-		
T-MM5-FB-F	7/25/98		Filter	1		
T-MMS-FB-FH	7/25/98		Front Half/MeOH MeCl ₂	_		
T-MMS-FB-XAD	7/25/98		XAD Trap	1		
T-MM5-FB-COND	7/25/98		Condensate and Rinses	1		
T-MM5-FB-BH	7/25/98		Back Half Rinse	1		
T-MM5-4-F	7/26/98		Filter	1		

Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

Sample Chain of Custody Record

ROJECT NO.: R012.001	sample per I Bubio D.D. Holzschuh		
ONTO	[PLANT: US EPA HOI MIX ASPRACI PLANT:	DECOVED DESCOUND DI Hotschuh	NECOVERI ENCOR

				-	Analytical Request	
Sample	Collection	ion		Number of		COMINIENTS
Identification	Date	Time		Containers		
T-MMS-4-FH	7/26/98		Front Half/MeOH MeCl ₂	-		
T MMS 4 XAD	86/92/2		XAD Trap	-		
T MMS-4-COND	7/26/98		Condensate and Rinses	-		
T NAMS-4-BH	7/26/98		Back Half Rinse	-		
T_MANAS_3_F	7/27/98		Filter	-		
T MANAS 3-EH	7/27/98		Front Half/MeOH MeCl ₂	+		
T AMAE 3 VAD	8017C17		XAD Trap	1		
A COV-CIMINI-I	80/20/2		Condensate and Rinses	4 3		
T MAN 3 DH	86/20/2		Back Half Rinse	+		
TIG-C-CMIMI-1	7/77/08		Filter	-		
T-C-CMM-C	7/27/08		Front Half/MeOH MeCl ₂	1		
S-MIND-S-FIT	00/20/2		XAD Trap	ļ		
S-MM5-3-XAU	112//30		Condensate and Rinses	-		
S-MM5-3-COND	1727/98					
S-MM5-3-BH	7/27/98		Back Hall Killse			Field Blank
S-MM5-FB-F	7/26/98		Filter			Field Blank
S-MMS-FB-FH	7/26/98		Front Half/MeOH MeCl ₂			Field Blank
C MAS EB XAD	7/26/98		XAD Trap			Field Blank
CNCC-BE-COND	7/26/98		Condensate and Rinses	-		Field Blank
HA GD SAMA O	7/26/98		Back Half Rinse	-		Readent Blank
S-IMMO-1 D-DIT	7/25/98		Filter	4		Accid topoco
DE GO SAME O	86/3C/7		Front Half/MeOH MeCl ₂	-		Cadden Dank
S-MMS-KD-LTI	20/20/1		XAD Tran	1		Keagerit Diatin
S-MMS-KB-AAD	7.05/08		Condensate and Rinses	-		Reagell Digit
S-MM3-KB-COND	7/25/98			1		Keagen Dann
S-MIND-CNIM-S	7728/98		Filter	-		
S-MMO-4-C	7/28/98		Front Half/MeOH MeCl ₂	-		
0-MMD-4-11	20/07/		XAD Trap	-		
S-MM5-4-AAU V	77.0000		Condensate and Rinses	7		
S-MM5-4-COND	06/07//		Back Half Binse	-		
S-MM5-4-BH	1/28/98		Cach Hall Killso	-		
S-MM5-5-F	7/28/98		- Contraction of the contraction	 -		
S-MM5-5-FH	7/28/98		Front Hall/MeUH MeU12	-		
	3					
	;				Page 2 of 3	

Sample Chain of Custody Record

PROJECT NO.: R012.001	SAMPLERS: J. Rubio, D.D. Holzschuh
PLANT: US EPA HOT MIX ASPHALT PLANT C	RECOVERY PERSON: D.D. Holzschuh

Analytical Request	Sample Number of Comments	Name Containers	AD Trap	ondensate and Rinses 🗡 3	lack Half Rinse 1	Date Time Received by:	1/20/18 1/50	Date Time Repeived for Lab by:	m 200 1100 11 11 11 1200
			XAD Trap 1		Back Half Rinse 1				
	Collection	_ Date Time	7/28/98	7/28/98	7/28/98	0	130hull		
	Sample	Identification	S-MM5-5-XAD	S-MM5-5-COND	S-MM5-5-BH	Relinquished by:	James	Relinquished by:	

Reserved un good condition.

Page 3 of 3

This page was left blank due to numbering error.

CASE NARRATIVE

QUANTERRA INCORPORATED PROJECT NUMBER 300681

All air train samples were split after extraction into three equal aliquots for analysis by 8270, PAH analysis by HRGC/HRMS, and archive.

Polynuclear Aromatic Hydrocarbons - Method HRGC/HRMS

Initial analysis of samples 300681-1, 2, 7, 10 and 11 (referenced in subsequent telephone conversations as 'Silo' samples) were significantly compromised by extensive matrix interferences, including retention-time shifts and co-eluting interferences, and saturated analyte levels. No usable data could be obtained from the initial analysis. Although matrix intereferences and some high analyte levels were also observed in samples 3, 4, 5, 6, 8, and 9 (referenced as 'Tunnel' samples) the impact was substantially less. Selected 'Silo' sample extracts (1, 10, and 11) were therefore diluted 1000X relative to the 'Tunnel' samples and reanalyzed. Since the originally spiked internal standards (IS) used for quantitation were diluted out, the IS were respiked at normal levels for calculation of target analyte levels. The adverse consequence of re-spiking the ISs into the final extract is the loss of the 'recovery correction' feature of the isotope dilution technique as well as information regarding the efficiency of sample extraction and cleanup. The net result is a potential low bias in the reported concentrations for samples 1, 10, and 11.

Some (IS) recoveries in multiple field samples are outside the method recovery goals of 50-150%, as noted on the data sheets. IS recoveries in laboratory QC aliquots are within these limits and the anomalous sample recoveries are attributed to matrix related interferences. For recoveries that are above the upper limit, quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated internal standard recoveries. For recoveries below the lower control limit, data quality is not considered affected if internal standard signal-to-noise is greater than 10:1, which is achieved for all internal standards in all samples.

Detectable concentrations of Naphthalene, 2-Methylnaphthalene, Acenaphthene, Fluorene, and Fluoranthene are reported in the Method Blank associated with these samples. These concentrations are consistent with levels routinely determined in XAD resin. Positives for these analytes in the associated samples are flagged with "B" qualifier and should be reviewed for significance

The concentration of several analytes in multiple samples exceeds the method calibration range, as indicated with an "E" footnote on the appropriate data sheets. The concentration of these analytes are within then linear response range of the detector and dilutions were not performed.

CASE NARRATIVE

Continued

QUANTERRA INCORPORATED PROJECT NUMBER 300681

Semivolatiles by Method 8270C

Sample Surrogate recoveries-Samples 300681-1, 2, 7, 10, and 11 all had severe matrix interferences that required dilutions. As a consequence, the surrogates spiked at the time of extraction, were diluted to the point where they could not be quantitated and are reported as ND. Samples300681-0003 and 0006 have a 2, 4, 6-Tribromophenol recovery that is slightly below the targeted limits. Re-injection of the sample extracts confirmed the original resuls which are reported.

QC Samples-Two procedures (Soxhlet and Seperatory funnel) were utilized in the extraction of these airtrains. Each procedure generated a method blank and DCS pair (duplicate control samples). The DCS and method blank associated with the Soxhlet extraction is labeled 31 JUL 98-16A and is part of the summary package. This set of QC is associated with the extraction of the XAD resin and filter. All of the surrogates associated with this QC set have recoveries within control limits. One of the DCS spike components (Pentachlorophenol) has an RPD of 12 which is slightly above the target limit of 10. The QC set associated with the aqueous samples is found only in the raw data. The method blank has two components with recoveries below targeted limits and the DCS has one surrogate recovery below limits. Re-injection of the QC sample extracts confirmed the original results.

J Values-Due to the difficulty of the matrix, samples 300681-0001,0010, and 0010 all required high dilutions which resulted in mostly non-detects for the analytes of interest. Per client request, the data aquired for these samples were re-processed and recalculated to include J values. This re-processing allowed the laboratory to report positives down to the method detection limit (MDL). Results reported in this manner are flagged with a "J" indicating that the result is reported below the reporting limit and should be considered an estimated concentration.

QUANTERRA INCORPORATED QUALITY CONTROL PROGRAM

Quanterra has implemented an extensive Quality Control (QC) program to ensure the production of scientifically sound, legally defensible data of known documentable quality. This QC program is based upon requirements in "Test Methods for Evaluating Solid Waste", USEPA SW-846, Third Edition. It applies whenever SW-846 analytical methods are used. It also applies in whole or in part whenever project requirements fail to specify some aspect of QC practices described here. It does not apply when other well defined QC programs (e.g. CLP or CLP-like) are specified. This is Quanterra's base QC program for environmental analysis.

Definitions:

Quality Control Batch. The quality control (QC) batch is a set of up to 20 field samples plus associated laboratory QC samples that are similar in composition (matrix) and that are processed within the same time period with the same reagent and standard lots.

Surrogate. A surrogate (or internal standard) is an organic compound similar in chemical behavior to the target analyte, but not normally found in environmental samples. Surrogates (or IS) are added to all samples in a batch to monitor the effects of both the matrix and the analytical process on accuracy.

Method Blank. A method blank (MB) is a control sample prepared using the same reagents used for the samples. As part of the QC batch, it accompanies the samples through all steps of the sample extraction and cleanup procedure. The method blank is used to monitor the level of contamination introduced to a batch of samples as a result of processing in the laboratory.

Laboratory Control Sample. A laboratory control sample (LCS) is prepared using a well characterized matrix (e.g., reagent water or Ottawa sand) that is spiked with known amounts of representative analytes. Alternate matrices (e.g., glass beads) may be used for soil analyses when Ottawa sand is not appropriate. As part of a QC batch, it accompanies the samples through all steps of the sample extraction and cleanup process. The LCS is used to monitor the accuracy of the analytical process independent of possible interference effects due to sample matrix.

<u>Duplicate Control Sample</u>. A duplicate laboratory control sample (DCS) consists of a pair of LCSs analyzed within the same QC batch to monitor precision and accuracy independent of sample matrix effects.

SAMPLE DESCRIPTION INFORMATION for Pacific Environmental Services

		Matrix	Sampled Date Time	Received Date
300681-0001-SA	S-MM5-2-F,FH,XAD,COND,BH Method Blank S-MM5-1B-F,FH,XAD,COND,BH T-MM5-2-F,FH,XAD,COND,BH T-MM5-FB-F,FH,XAD,COND,BH T-MM5-3-F,FH,XAD,COND,BH T-MM5-3-F,FH,XAD,COND,BH S-MM5-3-F,FH,XAD,COND,BH S-MM5-8B-F,FH,XAD,COND,BH S-MM5-FB-F,FH,XAD,COND,BH S-MM5-8B-F,FH,XAD,COND,BH S-MM5-8B-F,FH,XAD,COND,BH S-MM5-5-F,FH,XAD,COND,BH	MATTIX AIRTRAIN	25 JUL 98 25 JUL 98 25 JUL 98 25 JUL 98 25 JUL 98 26 JUL 98 27 JUL 98 27 JUL 98 26 JUL 98 26 JUL 98 25 JUL 98	30 JUL 98 30 JUL 98

Pacific Environmental Services S-MM5-2-F,FH,XAD,COND,BH 300681-0001-SA Client Name:

Client ID:

LAB ID:

Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Matrix: AIRTRAIN 30 JUL 98 Authorized:

Dilution Factor: 100

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol 2,2'-Oxybis(1-chloropropane) 3/4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)-methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/Sample	3000 3000 3000 3000 3000 3000 3000 300	GR

```
Note G = Reporting limit(s) raised due to matrix interference. Note J = Result is detected below the reporting limit or is an estimated concentration. Note R = Reporting limit(s) raised due to sample volume limitations. ND = Not Detected
```

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

10

Client Name:

Pacific Environmental Services S-MM5-2-F,FH,XAD,COND,BH 300681-0001-SA Client ID: LAB ID: Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 AIRTRAIN Matrix: 30 JUL 98 Authorized:

Dilution Factor: 100

Dilution Factor: 100			5	
5114070.	Wet wt.		Reporting Limit	Qualifier
	Result	Units	LIMIC	quarri
Parameter		/Camplo	15000	
Land	ND	ug/Sample	3000	
4-Nitrophenol	ND	ug/Sample	3000	
Dibenzofuran	ND	ug/Sample	3000	
2,4-Dinitrotoluene	ND	ug/Sample ug/Sample	3000	
2,6-Dinitrotoluene	ND	ug/Sample	3000	
Diethyl phthalate 4-Chlorophenyl phenyl ether	ND	ug/Sample ug/Sample	3000	
4-Chiorophenyi phenyi sana	ND	ug/Sample	15000	
Fluorene	ND	ug/Sample	15000	
4-Nitroaniline 4,6-Dinitro-2-methylphenol	ND	ug/Sample	3000	
N-Nitrosodiphenylamine	ND	ug/Sample	3000	
4-Bromophenyl phenyl ether	ND	ug/Sample	3000	
Hexachlorobenzene	ND ND	ug/Sample	15000	-
Pentachlorophenol	950	ug/Sample	3000	J
Phenanthrene	ND	ug/Sample	3000	
Anthracene	ND	ug/Sample	3000	
Di-n-butyl phthalate	ND	ug/Sample	3000	
Fluoranthene	ND	ug/Sample	3000	
Dyvana	ND	ug/Sample	3000	
putul hanzvi natnalate	ND	uq/Sample	6000	
3 3/_Dichioropenziaine	ND	uq/Sample	3000	
0(-\0\0\TBY2CHIH	ND	ug/Sample	3000	
bis(2-Ethylhexyl)-phthalate	ND	ug/Sample	3000 3000	
Chrysene	ND	ug/Sample	3000	
n: n_octvi nntnalale	ND	ug/Sample	3000	
Panza/h)fluorantnene	ND	ug/Sample	3000	
Benzo(K) fluoranthene	ND	ug/Sample	3000	
Danzaiainvrene	ND	ug/Sample		
Indeno(1,2,3-cd)pyrene	ND	ug/Sample		
nibenzia. njancin acene	ND	ug/Sample		
Benzo(g,h,i)perylene	ND	ug/Sample		
Acetophenone	ND	ug/Sample	~~~	
4-Aminobiphenyl	ND	ug/Sample ug/Sample		
Aniline	ND	ug/Sample		
Benzidine 3,3'-Dimethylbenzidine	ND	ug/Sample	3000	
N-Nitrosodimethylamine	ND ND	ug/Sample	3000	
N-Nitrosomorpholine	טא	ug/ Jump 1	-	
Malt of Openior kinds and				

Note J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

11

Client Name: Pacific Environmental Services
Client ID: S-MM5-2-F,FH,XAD,COND,BH
AB ID: 300681-0001-SA

AIRTRAIN 30 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 Matrix: Authorized:

Dilution Factor: 100

	Wet wt.		Reporting	
Parameter	Result	Units	Limit	Qualifier
Pentachloronitrobenzene (PCNB)	ND	ug/Sample	15000	
o-Toluidine	ND	ug/Sample	6000	
2-Methoxybenzenamine	ND	ug/Sample		
Biphenyl	ND	ug/Sample		
Chloroacetophenone	ND	ug/Sample		
Cumene	ND	ug/Sample		
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		
Benzo(e)pyrene	ND	ug/Sample		
N-N-Diethylaniline	ND	ug/Sample		
Dimethylaniline	ND	ug/Sample		
3,3'-Dimethoxybenzidine	ND	ug/Sample		
Hýdroquinone	ND	ug/Sample		
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		
4-Nitrodiphenyl	ND	ug/Sample		
Trifluralin	ND	ug/Sample		

Surrogate	Recovery	Acceptable Range
Nitrobenzene-d5	ND %	45 - 107
2-Fluorobiphenyl	ND %	62 - 110
Terphenyl-d14	ND %	58 - 135
Phenol-d5	ND %	43 - 130
2-Fluorophenol	ND %	36 - 111
2,4,6-Tribromophenol	ND %	58 - 131

ND = Not Detected

Reported By: Emily Uebelhoer Approved By: Mike Orbanosky

Semivolatiles Library Search (20 Compound TID) Method 8270

Client Name:

Pacific Environmental Services S-MM5-2-F,FH,XAD,COND,BH 300681-0001-SA Client ID: Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 Prepared: NA LAB ID: AIRTRAIN Matrix:

30 JUL 98 Authorized:

Dilution Factor: 100

Control of the Contro

Dilution Factor: 100			Reporting	o lifion
Devemotor	Result	Units	Limit	Qualifier
Parameter	7000	ug/Sample		
Unknown alkane	7900	ug/Sample		
Unknown	13000	ug/Sample		
Unknown PAH	15000 8900	ug/Sample		_
Unknown alkene	8600	ug/Sample	- -	0
Undecane	8400	ug/Sample		•
I I a base on the	17000	ug/Sample		0
Dodecane, 2,6,10-trimethyl-	22000	ug/Sample		0
Tetradecane	12000	ug/Sample		0
	18000	ug/Sample		0
Hentadecane, 2,6,10,14 -tetrametry	19000	ug/Sample		U
Undecane. Z-Methy:	13000	ug/Sample		0
Unknown alkane	24000	ug/Sample		ň
Nonadecane a c dimothyl-	15000	ug/Sample		ñ
Heptadecane, 2,6-dimethyl-	32000	ug/Sample		0 0 0 0
Heptadecane, 2,6-dimethyl-	10000	ug/Sample		ŏ
Heptadecane, 2,6-dimethyl-	14000	ug/Sample		Ŏ
Heptadecane, 2,6-dimethyl-	7700	ug/Sample		Ŏ
Nonadecane Heptadecane, 2,6,10,14 -tetramethyl-	9700	ug/Sample		Ō
Nonadecane	7500	ug/Sample		-

Note 0 = 0r structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Vebelhoer

Approved By: Mike Orbanosky

Client Name: Pacific Environmental Services

S-MM5-1B-F, FH, XAD, COND, BH 300681-0002-SA Client ID:

LAB ID:

AIRTRAIN Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Matrix: 30 JUL 98 Authorized:

Dilution Factor: 100

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol 2,2'-Oxybis(1-chloropropane) 3/4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)-methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene	Result ND	ug/Sample	3000 3000 3000 3000 3000 3000 3000 300	Qualifier RG
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	ND ND ND ND	ug/Sample ug/Sample	3000 3000 3000 15000	
2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol	ND ND ND ND ND ND	ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample	3000 3000 3000 3000 3000 15000 15000	
4-Nitrophenol	ND	ug/Sample	15000	

Note G = Reporting limit(s) raised due to matrix interference. Note R = Reporting limit(s) raised due to sample volume limitations. $ND = Not \ Detected$

Reported By: Emily Uebelhoer Approved By: Mike Orbanosky

Client Name:

Client ID:

Pacific Environmental Services S-MM5-1B-F,FH,XAD,COND,BH 300681-0002-SA AIRTRAIN Sampled Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 LAB ID: Matrix: 30 JUL 98 Authorized:

Dilution Factor: 100

Dilution Factor: 100				
	Wet wt. Result	Units	Reporting Limit	Qualifier
Parameter		/C 1 -	3000	
Dibenzofuran	ND	ug/Sample	3000	
2,4-Dinitrotoluene	ND	ug/Sample	3000	
2,6-Dinitrotoluene	ND	ug/Sample	3000	
Diethyl phthalate	ND	ug/Sample	3000	
4-Chlorophenyl phenyl ether	ND	ug/Sample	3000	
Fluorene	ND	ug/Sample	15000	
4-Nitroaniline	ND	ug/Sample	15000	
4,6-Dinitro-2-methylphenol	ND	ug/Sample	3000	
N-Nitrosodiphenylamine	ND	ug/Sample	3000	
4-Bromophenyl phenyl ether	ND	ug/Sample	3000	
Hexachlorobenzene	ND	ug/Sample	15000	
Pentachlorophenol	ND	ug/Sample	3000	
Phenanthrene	ND	ug/Sample ug/Sample	3000	
Anthracene	ND	ug/Sample ug/Sample	3000	
Di-n-butyl phthalate	ND	ug/Sample ug/Sample	3000	
Fluoranthene	ND	ug/Sample	3000	
Pyrene	ND ND	ug/Sample	3000	
Rutyl benzyl phthalate	ND ND	ug/Sample	6000	
3.3'-Dichtoropenziume	ND ND	ug/Sample	3000	
Ronzo(a)anthracene	ND	ug/Sample	3000	
bis(2-Ethylhexyl)-phthalate	ND	ug/Sample	3000	
Chrysene	ND	ug/Sample	3000	
Di-n-octyl phthalale	ND	ug/Sample	3000	
Renzo(D) f luorantinene	ND	ug/Sample	3000	
Benzo(k)fluoranthene	ND	ug/Sample	3000	
Renzo(a)pyrene	ND	uq/Sample	3000	
Indeno(1,2,3-cd)pyrene	ND	ug/Sample	3000	
Dibenz(a,h)anthracene	ND	ug/Sample	3000	
Benzo(ġ,ĥ,i)perylene	ND	ug/Sample	3000	
Acetophenone	ND	ug/Sample	15000	
4-Aminobiphenyl	ND	ug/Sample	3000	
Aniline	ND	ug/Sample	30000	
Benzidine	ND	ug/Sample	6000 3000	
3,3'-Dimethylbenzidine	ND	ug/Sample		
N-Nitrosodimethylamine N-Nitrosomorpholine	ND	ug/Sample		
Pentachloronitrobenzene (PCNB)	ND	ug/Sample		
a Taluidine	ND	ug/Sample	0000	
o-Toluidine				

ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Pacific Environmental Services S-MM5-1B-F,FH,XAD,COND,BH 300681-0002-SA Client Name:

Client ID:

LAB ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 AIRTRAIN Matrix: 30 JUL 98 Authorized:

Dilution Factor: 100

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
2-Methoxybenzenamine	ND	ug/Sample		
Biphenyl	ND	ug/Sample		
Chloroacetophenone	ND	ug/Sample		
Cumene	ND	ug/Sample		
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		
Benzo(e)pyrene	ND	ug/Sample		
N-N-Diethylaniline	ND	ug/Sample		
Dimethylaniline	ND	ug/Sample		
3,3'-Dimethoxybenzidine	ND	ug/Sample		
Hydroquinone	ND	ug/Sample		
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		
4-Nitrodiphenyl	ND	ug/Sample		
Trifluralin	ND	ug/Sample		

Surrogate	Recovery	Acceptable Range
Nitrobenzene-d5	ND %	45 - 107 H
2-Fluorobiphenyl	ND %	62 - 110
Terphenyl-d14	ND %	58 - 135
Phenol-d5	ND %	43 - 130
2-Fluorophenol	ND %	36 - 111
2,4,6-Tribromophenol	ND %	58 - 131

Note H = Spiked analyte not detected because of required sample dilution. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

16

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services Client Name:

S-MM5-1B-F, FH, XAD, COND, BH 300681-0002-SA

Client ID: LAB ID: Received: 30 JUL 98 Sampled: 25 JUL 98 Prepared: NA Analyzed: 31 AUG 98 AIRTRAIN Matrix: 30 JUL 98 Authorized:

Dilution Factor: 100

Difficion ractor. 100	Result	Units	Reporting Limit	Qualifier
Parameter	Kesuit	•		
u. t1kana	7800	ug/Sample		0
Unknown alkane	7800	ug/Sample		U
Dodecane	15000	ug/Sample		
Unknown	17000	ug/Sample		0
Unknown hydrocarbon 3-Hexadecene, (Z)-	10000	ug/Sample		Ŏ
	11000	ug/Sample	~ -	U
Undecane Unknown alkane	20000	ug/Sample		
Unknown alkane	26000	ug/Sample		
41 1	14000	ug/Sample		0
Heptadecane, 2,6,10,14 -tetramethyl-	22000	ug/Sample		ŏ
Dodecane, 3-methyl-	22000	ug/Sample		· ·
Unknown alkane	9900	ug/Sample	- -	0
Nonadecane	26000	ug/Sample	_ _	Ŏ
Nonadecane	18000	ug/Sample	~ ~	Ŏ
Heptadecane, 2,6-dimethyl-	40000	ug/Sample ug/Sample		
Unknown alkane	12000	ug/Sample		0
Nonadecane	17000	ug/Sample		0
Nonadecane	8100	ug/Sample ug/Sample		0 0
Nonadecane	9800	ug/Sample		0
Nonadecane	7800	ug/ sampre		

Note 0 = Or structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Client Name: Pacific Environmental Services

T-MM5-2-F,FH,XAD,COND,BH 300681-0003-SA Client ID:

LAB ID:

Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Matrix: AIRTRAIN Authorized: 30 JUL 98

Dilution Factor: 1.0

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol 2,2'-Oxybis(1-chloropropane) 3/4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)-methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol	RESULT ND N	Units ug/Sample	150 150 150 150 150 150 150	Qualifier R
4-Nitrophenol Dibenzofuran	ND ND	ug/Sample ug/Sample	150 30	

Note R = Reporting limit(s) raised due to sample volume limitations. ND = Not Detected

Reported By: Emily Uebelhoer Approved By: Karin Yee

Pacific Environmental Services T-MM5-2-F,FH,XAD,COND,BH 300681-0003-SA Client Name:

Client ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 LAB ID: AIRTRAIN 30 JUL 98 Matrix: Authorized:

Dilution Factor: 1.0

Dilution Factor: 1.0			n	
	Wet wt.		Reporting Limit	Qualifier
Devemot ov	Result	Units	LIMIC	quaririo
Parameter		um/Cample	30	
2,4-Dinitrotoluene	ND	ug/Sample	30	
2,6-Dinitrotoluene	ND	ug/Sample	30	
nia+bul nhthalate	ND	ug/Sample	30	
4-Chlorophenyl phenyl ether	ND	ug/Sample ug/Sample	30	
Fluorene	ND	ug/Sample	150	
4.Nitroaniline	ND	ug/Sample	150	
4,6-Dinitro-2-methylphenol	ND	ug/Sample	30	
N_Nitrosodinnenviallille	ND	ug/Sample	30	
4-Bromophenyl phenyl ether	ND ND	ug/Sample	30	
Hexachlorobenzene		ug/Sample	150	
Pentachlorophenol	ND ND	ug/Sample	30	
Phenanthrene	DN DN	ug/Sample	30	
Anthracene	ND	ug/Sample	30	
Di-n-butyl phthalate	ND	ug/Sample	30	
Fluoranthene	ND	ug/Sample	30	
Pyrene	ND	ug/Sample	30	
Ruty] benzyl phthalale	ND	ug/Sample	60	
3.3'-Dichloropenziaine	ND	ug/Sample	30	
Benzo(a)anthracene	ND	uq/Sample	30	
bis(2-Ethylhexyl)-phthalate	ND	ug/Sample	30	
Chrysene	ND	ug/Sample	30	
Di-n-octyl phthalate	ND	ug/Sample	30	
Benzo(b)fluoranthene	ND	ug/Sample	30	
Benzo(k)fluoranthene	ND	ug/Sample	30 30	
Benzo(a)pyrene	ND	ug/Sample	30	
Indeno(1,2,3-cd)pyrene	ND	ug/Sample	30 30	
Dibenz(a,h)anthracene	ND	ug/Sample	30	
Benzo(g,h,i)perylene	ND	ug/Sample	150	
Acetophenone 4-Aminobiphenyl	ND	ug/Sample	30	
Aniline	ND	ug/Sample ug/Sample	300	
Benzidine	ND	ug/Sample	60	
3,3'-Dimethylbenzidine	ND	ug/Sample		
N-Nitrosodimethylamine	ND ND	ug/Sample		
N_NitrosomorphOllNe	D ДИ	ug/Sample		
Pentachloronitrobenzene (PCNB)	ND ND	ug/Sample	60	
o-Toluidine	טוּו	43/ Vamp / -		

ND = Not Detected

Approved By: Karin Yee Reported By: Emily Uebelhoer

Pacific Environmental Services T-MM5-2-F,FH,XAD,COND,BH 300681-0003-SA Client Name: Client ID:

LAB ID:

Sampled: 25 JUL 98 Prepared: 31 JUL 98 Matrix: AIRTRAIN Received: 30 JUL 98 Authorized: 30 JUL 98 Analyzed: 31 AUG 98

Dilution Factor: 1.0

	Wet wt.		Reporting	
Parameter	Result	Units	Limit	Qualifier
2-Methoxybenzenamine	ND	ug/Sample		Κ
Biphenyl	ND	ug/Sample		K
Chloroacetophenone	ND	ug/Sample		K
Cumene	ND	ug/Sample		K
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		K
Benzo(e)pyrene	ND	ug/Sample		K
N-N-Diethylaniline	ND	ug/Sample		K
Dimethylaniline	ND	ug/Sample		K
3,3'-Dimethoxybenzidine	ND	ug/Sample		K
Hydroquinone	ND	ug/Sample		K
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		K
4-Nitrodiphenyl	ND	ug/Sample		K
Trifluralin	ND	ug/Sample		K

Surrogate	Recovery	Acceptable Range
Nitrobenzene-d5	87 %	45 - 107
2-Fluorobiphenyl	105 %	62 - 110
Terphenyl-d14	78 %	58 - 135
Phenol-d5	67 %	43 - 130
2-Fluorophenol	62 %	36 - 111
2,4,6-Tribromophenol	49 %	58 - 131 i

Note i = Surrogate recovery is outside of control limits.

Note K = Identified by mass spectrum only; quantitation based on 1:1 response with internal standard.

ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Karin Yee

20

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services

Client Name: Client ID: T-MM5-2-F, FH, XAD, COND, BH 300681-0003-SA

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 LAB ID: AIRTRAIN Matrix: Prepared: NA 30 JUL 98 Authorized:

Dilution Factor: 1.0

Parameter 4-Hydroxy-4-methyl-2-pentanone n-Nonane Unknown alkane 1H-Indene, 1-ethylidene- Undecane Heptadecane, 2,6,10,14 -tetramethyl- Unknown alkane Unknown Heptadecane, 2,6,10,14 -tetramethyl- Pentadecane Nonadecane Heptadecane, 2,6-dimethyl- Heptadecane, 2,6-dimethyl- Unknown alkane Nonadecane Nonadecane Nonadecane Heptadecane, 2,6-dimethyl- Nonadecane Heptadecane, 2,6-dimethyl- Nonadecane Heptadecane, 2,6-dimethyl- Nonadecane	Result 450 370 180 240 180 220 320 200 260 320 290 190 460 160 200 110 130 110 160	Units ug/Sample	Reporting Limit	Qualifier 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Heptadecane, 2,0-4 methy (Nonadecane 3-Octadecene, (E)- Unknown		ug/Sample ug/Sample ug/Sample		ŏ

Note 0 = 0r structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Client Name: Client ID: LAB ID:

Pacific Environmental Services T-MM5-FB-F,FH,XAD,COND,BH 300681-0004-SA AIRTRAIN Sampled 30 JUL 98 Prepared Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Matrix: Authorized:

Dilution Factor: 1.0

Wet wt. Reporting Parameter Result Units Limit Qualific	er
Phenol ND ug/Sample 30 R	
bis(2-Chloroethyl)ether ND ug/Sample 30	
2-Chlorophenol ND ug/Sample 30	
1.3-Dichlorobenzene ND ug/Sample 30	
1,4-Dichlorobenzene ND ug/Sample 30	
Bénzyl alcohol ND ug/Sample 30	
1,2-Dichlorobenzene ND ug/Sample 30	
2-Methylphenol ND ug/Sample 30	
2,2'-Oxybis(I-chloropropane) ND ug/Sample 30	
3/4-Methylphenol ND ug/Sample 30	
N-Nitroso-di-n-propylamine ND ug/Sample 30	
Hexachloroethane ND ug/Sample 30	
Nitrobenzene ND ug/Sample 30	
Isophorone ND ug/Sample 30	
2-Nitrophenol ND ug/Sample 30	
2.4-Dimethylphenol ND ug/Sample 30	
Benzoic acid ND ug/Sample 150	
bis(2-Chloroethoxy)-methane ND ug/Sample 30	
2.4-Dichlorophenol ND ug/Sample 30	
1.2.4-Trichlorobenzene ND ug/Sample 30	
Naphthalene ND ug/Sample 30	
4-Chloroaniline ND ug/Sample 30	
Hexachlorobutadiene ND ug/Sample 30	
4-Chloro-3-methylphenol ND ug/Sample 30	
2-Methylnaphthalene ND ug/Sample 30	
Hexachlorocyclopentadiene ND ug/Sample 30	
2.4.6-Trichlorophenol ND ug/Sample 30	
2.4.5-Trichlorophenol ND ug/Sample 150	
2-Chloronaphthalene ND ug/Sample 30	
2-Nitroaniline ND ug/Sample 30	
Dimethyl phthalate ND ug/Sample 30	
Acenaphthylene ND ug/Sample 30	
3-Nitroaniline ND ug/Sample 150	
Acenaphthene ND ug/Sample 30	
2,4-Dinitrophenol ND ug/Sample 150	
4-Nitrophenol ND ug/Sample 150	
Dibenzofuran ND ug/Sample 30	

Note R = Reporting limit(s) raised due to sample volume limitations. $ND = Not \ Detected$

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Pacific Environmental Services T-MM5-FB-F,FH,XAD,COND,BH 300681-0004-SA Client Name:

Client ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 LAB ID: AIRTRAIN 30 JUL 98 Matrix: Authorized:

Dilution Factor: 1.0

Dilution Factor: 1.0				
	Wet wt.	Units	Reporting Limit	Qualifier
Parameter	Result	011103		·
	ND	ug/Samp]e	30	
2,4-Dinitrotoluene	ND	ug/Sample	30	
2.6-Dinitrotoluene	ND	ug/Sample	30	
Diathyl phthalate	ND	ug/Sample	30	
4-Chlorophenyi phenyi edher	ND	uq/Sample	30	
Fluorene	ND	ug/Sample	150	
4-Nitroaniline	ND	ug/Sample	150	
4,6-Dinitro-2-methylphenol	ND	ug/Sample	30 30	
N-Nitrosodiphenylamine	ND	ug/Sample	30 30	
4-Bromophenyl phenyl ether	ND	ug/Sample	150	
Hexachlorobenzene	ND	ug/Sample	30	
Pentachlorophenol	ND	ug/Sample	30	
Phenanthrene Anthracene	ND	ug/Sample	30	
Di-n-butyl phthalate	ND	ug/Sample ug/Sample	30	
Fluoranthene	ND	ug/Sample	30	
Dyrene	ND ND	ug/Sample	30	
Rutyl benzyl phthalate	ND ND	ug/Sample	60	
3.3'-Dichloropenziaine	ND	ug/Sample	30	
Panza/alanthracene	ND	ug/Sample	30	
bis(2-Ethylnexyl)-pilinalace	ND	ug/Sample	30	
Chrysene	ND	ug/Sample	30	
Di-n-octyl phthalate	ND	ug/Sample	30	
Benzo(b) fluoranthene	ND	ug/Sample	30 30	
Benzo(k)fluoranthene	ND	ug/Sample	30 30	
Benzo(a)pyrene	ND	ug/Sample	30 30	
Indeno(1,2,3-cd)pyrene	ND	ug/Sample	30	
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND	ug/Sample	30	
Acetophenone	ND	ug/Sample ug/Sample	150	
4-Aminobiphenyl	ND	ug/Sample	30	
Aniline	ND ND	ug/Sample	300	
Renzidine	DN GN	ug/Sample	60	
3.3'-Dimethylbenzidine	ИD	ug/Sample	30	
N-Nitrosodimethylamine	ND	ug/Sample	30	
N Nitrocomorpholine	ND	ug/Sample	150	
Pentachloronitropenzene (rend)	ND	ug/Sample	60	
o-Toluidine	_			

ND = Not Detected

Approved By: Karin Yee Reported By: Emily Uebelhoer

Pacific Environmental Services T-MM5-FB-F,FH,XAD,COND,BH 300681-0004-SA Client Name:

Client ID: LAB ID:

Sampled: 25 JUL 98 Prepared: 31 JUL 98 Matrix: AIRTRAIN Received: 30 JUL 98 Authorized: 30 JUL 98 Analyzed: 31 AUG 98

Dilution Factor: 1.0

	Wet wt.		Reporting	
Parameter	Result	Units	Limit	Qualifier
2-Methoxybenzenamine	ND	ug/Sample		Κ
Biphenyl	ND	ug/Sample		K
Chloroacetophenone	ND	ug/Sample		K
Cumene	ND	ug/Sample		K
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		K
Benzo(e)pyrene	ND	ug/Sample		K
N-N-Diethylaniline	ND	ug/Sample		K
Dimethylaniline	ND	ug/Sample		K
3,3'-Dimethoxybenzidine	ND	ug/Sample		K
Hydroquinone	ND	ug/Sample		K
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		K
4-Nitrodiphenyl	ND	ug/Sample		K
Trifluralin	ND	ug/Sample		K

Surrogate	Recove	ery Acceptable Ran	ge
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	60 5 85 5 94 5 65 5 70 5	% 62 - 110 % 58 - 135 % 43 - 130 % 36 - 111	

Note K = Identified by mass spectrum only; quantitation based on 1:1 response with internal standard.

ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services T-MM5-FB-F,FH,XAD,COND,BH 300681-0004-SA Client Name:

Client ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 LAB ID: Sampled: 25 JUL 98 AIRTRAIN 30 JUL 98 Matrix: Prepared: NA Authorized:

Dilution Factor: 1.0

Dilution Factor: 1.0			Reporting	
Parameter	Result	Units	Limit	Qualifier
Parameter 4-Hydroxy-4-methyl-2-pentanone n-Nonane Benzaldehyde Unknown Hexadecanoic acid Unknown Unknown Unknown Unknown Unknown Unknown Unknown 5-Eiconsene,(E) - Unknown Unknown Unknown	260 260 22 23 29 54 48 42 62 160 55 40 20 58	Units ug/Sample	Limit	0 0 0 0
Unknown Unknown alkene	73 75	ug/Sample		
Unknown	74 46	ug/Sample ug/Sample		
Unknown alkene Unknown Unknown	40 29	ug/Sample ug/Sample		

Note 0 = 0r structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Pacific Environmental Services Client Name:

Client ID:

LAB ID:

T-MM5-4-F,FH,XAD,COND,BH 300681-0005-SA AIRTRAIN Sa 30 JUL 98 Pre Sampled: 26 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Matrix: Authorized:

Dilution Factor: 1.0

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol 2,2'-Oxybis(1-chloropropane) 3/4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)-methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-(Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol		ug/Sample	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R
Dibenzofuran		· J/		

Note R = Reporting limit(s) raised due to sample volume limitations. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Karin Yee

The cover letter is an integral part of this report.

Rev 230787

U

Client Name:

Client ID:

Pacific Environmental Services T-MM5-4-F,FH,XAD,COND,BH 300681-0005-SA LAB ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 26 JUL 98 Prepared: 31 JUL 98 AIRTRAIN Matrix: 30 JUL 98 Authorized:

Dilution Factor: 1.0

Dilucton raccor. 1.0				
	Wet wt.		Reporting	0.116100
	Result	Units	Limit	Qualifier
Parameter	NESULO	U 11		
, with a second	NO	ua/Samala	30	
2,4-Dinitrotoluene	ND	ug/Sample	30	
2,4-01111110010010	ND	ug/Sample		
2,6-Dinitrotoluene	ND	ug/Sample	30	
Diethyl phthalate	ND	ug/Sample	30	
4-Chlorophenyl phenyl ether	ND	ug/Sample	30	
Fluorene		ug/Sample	150	
4-Nitroaniline	ND	uy/Sample	150	
4,6-Dinitro-2-methylphenol	ND	ug/Sample		
4,0-Uillitho-Z-methyiphene	ND	ug/Sample	30	
N-Nitrosodiphenylamine	ND	ug/Sample	30	
4-Bromophenyl phenyl ether	ND	ug/Sample	30	
Hexachlorobenzene	ND	ug/Sample	150	
Pentachlorophenol		ug/Sample	30	
Phenanthrene	ND	ug/Sample	30	
	ND	ug/Sample		
Anthracene	ND	ug/Sample	30	
Di-n-butyl phthalate	ND	ug/Sample	30	
Fluoranthene	ND	ug/Sample	30	
Pyrene	ND	ug/Sample	30	
Rutyl henzyl phthalate		ug/Sample	60	
3,3'-Dichlorobenzidine	ND	ug/Sample	30	
Benzo(a)anthracene	ND	ug/Sample	30	
benzo(a)antin accho	ND	ug/Sample		
bis(2-Ethylhexyl)-phthalate	ND	ug/Sample	30	
Chrysene	ND	ug/Sample	30	
Di-n-octyl phthalate	ND	ug/Sample	30	
Renzo(h)fluoranthene		ug/Sample	30	
Benzo(k)fluoranthene	ND	ug/Sampio	30	
Benzo(a)pyrene	ND	ug/Sample	30	
tudama(1 2 3 cd\nyrene	ND	ug/Sample		
Indeno(1,2,3-cd)pyrene	П	ug/Sample	30	
Dibenz(a,h)anthracene	ND	uq/Sample	30	
Benzo(g,h,i)perylene	ND	ug/Sample	30	
Acetophenone	ND	ug/Sample	150	
4-Aminobiphenyl		ug/Sample	30	
Aniline	ND	uy/ Samp to	300	
	ND	ug/Sample		
Benzidine	ND	ug/Sample	60	
3,3'-Dimethylbenzidine	ND	ug/Sample	30	
N-Nitrosodimethylamine	ND	ug/Sample	30	
N-Nitrosomorpholine (DCMR)	ND	ug/Sample	150	
Pentachloronitrobenzene (PCNB)		ug/Sample	60	
o-Toluidine	ND	ag/ sampre		
O TOTALISTIC				

ND = Not Detected

Approved By: Karin Yee Reported By: Emily Uebelhoer

Pacific Environmental Services Client Name:

T-MM5-4-F,FH,XAD,COND,BH 300681-0005-SA Client ID:

LAB ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 26 JUL 98 Prepared: 31 JUL 98 Matrix: AIRTRAIN 30 JUL 98 Authorized:

Dilution Factor: 1.0

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
2-Methoxybenzenamine	ND	ug/Sample		K
Biphenyl	ND	ug/Sample		K
Chloroacetophenone	ND	ug/Sample		K
Cumene	ND	ug/Sample	• •	K
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		K
Benzo(e)pyrene	ND	ug/Sample	- -	K
N-N-Diethylaniline	ND	ug/Sample		K
Dimethylaniline	ND	ug/Sample		K
3,3'-Dimethoxybenzidine	ND	ug/Sample		K
Hydroquinone	ИD	ug/Sample		K
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		K
4-Nitrodiphenyl	ND	ug/Sample		K
Trifluralin	ND	ug/Sample		K

Surrogate	Recovery	Acceptable Range
Nitrobenzene-d5	62 %	45 - 107
2-Fluorobiphenyl	86 %	62 - 110
Terphenyl-d14	110 %	58 - 135
Phenol-d5	61 %	43 - 130
2-Fluorophenol	54 %	36 - 111
2,4,6-Tribromophenol	65 %	58 - 131

Note K = Identified by mass spectrum only; quantitation based on 1:1 response with internal standard.

ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services T-MM5-4-F,FH,XAD,COND,BH Client Name:

Client ID:

300681-0005-SA

Received: 30 JUL 98 Analyzed: 31 AUG 98 LAB ID: Sampled: 26 JUL 98 Prepared: NA AIRTRAIN Matrix: 30 JUL 98 Authorized:

Dilution Factor: 1.0

Difficion ractor. 1.0			D	
Parameter	Result	Units	Reporting Limit	Qualifier
	40	ug/Sample		0
Benzaldehyde	43	ug/Sample		0
Pentadecane	61	ug/Sample ug/Sample		0
Nonadecane	66	ug/Sample ug/Sample		Ō
Hentadecane, 2.6-dimethyl-	41	ug/Sample		0 0 0 0
Heptadecane, 2,6-dimethyl-	120	ug/Sample		Õ
Nonadecane	45	ug/Sample		Ŏ
Nonadecane	36	ug/Sample		•
Unknown	<u> 36</u>	ug/Sample		
Unknown	97	ug/Sample		
Unknown	40	ug/Sample		0
Tricosane	37	ug/Sample		ŏ
4-Hydroxy-4-methyl-2-pentanone	320	ug/Sample		V
	63	ug/Sample		
Unknown	58	ug/Sample		0
Unknown	120	ug/Sample		U
5-Eiconsene,(E) -	42	ug/Sample		^
Unknown	350	ug/Sample		0
n-Nonane	63	ug/Sample		
Unknown	38	ug/Sample		0
3-Octadecene, (E)- Unknown	47	ug/Sample		

Note 0 = Or structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Client Name: Pacific Environmental Services

T-MM5-3-F,FH,XAD,COND,BH 300681-0006-SA Client ID:

LAB ID:

Sampled: 27 JUL 98 Prepared: 31 JUL 98 Matrix: AIRTRAIN Received: 30 JUL 98 Analyzed: 31 AUG 98 Authorized: 30 JUL 98

Dilution Factor: 1.0

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
DI 3				•
Phenol	53	ug/Sample	30	R
bis(2-Chloroethyl)ether	ND	ug/Sample	30	
2-Chlorophenol	ND	ug/Sample	30	
1,3-Dichlorobenzene	ND	ug/Sample	30	
1,4-Dichlorobenzene	ND	ug/Sample	30	
Benzyl alcohol	ND	ug/Sample	30	
1,2-Dichlorobenzene	ND	ug/Sample	30	
2-Methylphenol	ND	ug/Sample	30	
2,2'-Oxybis(1-chloropropane)	ND	ug/Sample	30	
3/4-Methylphenol	ND	ug/Sample	30	
N-Nitroso-di-n-propylamine	ND	ug/Sample	30	
Hexachloroethane	ND	ug/Sample	30	
Nitrobenzene	ND	ug/Sample	30	
Isophorone	ND ND	ug/Sample	30	
2-Nitrophenol	ND ND	ug/Sample	30	
2,4-Dimethylphenol Benzoic acid	ND	ug/Sample	30	
	ND ND	ug/Sample	150	
bis(2-Chloroethoxy)-methane 2,4-Dichlorophenol	ND ND	ug/Sample	30	
1,2,4-Trichlorobenzene	ND ND	ug/Sample	30	
Naphthalene	39	ug/Sample	30 30	
4-Chloroaniline	ND	ug/Sample	30	
Hexachlorobutadiene	ND ND	ug/Sample	30	
4-Chloro-3-methylphenol	ND ND	ug/Sample	30 30	
2-Methylnaphthalene	74	ug/Sample ug/Sample	30 30	
Hexachlorocyclopentadiene	ND	ug/Sample ug/Sample	30 30	
2,4,6-Trichlorophenol	ND	ug/Sample	30	
2,4,5-Trichlorophenol	ND	ug/Sample	150	
2-Chloronaphthalene	ND	ug/Sample ug/Sample	30	
2-Nitroaniline	ND	ug/Sample	30	
Dimethyl phthalate	ND	ug/Sample	30	
Acenaphthylene	ND	ug/Sample	30	
3-Nitroaniline	ND	ug/Sample	150	
Acenaphthene	ND	ug/Sample	30	
2,4-Dinitrophenol	ND	ug/Sample	150	
4-Nitrophenol	ND	ug/Sample	150	
Dibenzofuran	ND	ug/Sample	30	

Note R = Reporting limit(s) raised due to sample volume limitations. $ND = Not \ Detected$

Reported By: Emily Uebelhoer Approved By: Karin Yee

Pacific Environmental Services T-MM5-3-F,FH,XAD,COND,BH 300681-0006-SA

Client Name: Client ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 27 JUL 98 Prepared: 31 JUL 98 LAB ID: AIRTRAIN Matrix: 30 JUL 98 Authorized:

Dilution Factor: 1.0

Dilution Factor: 1.0				
	Wet wt.	11 14-	Reporting Limit	Qualifier
Parameter	Result	Units	Limic	quarrir
	ND	ug/Sample	30	
2,4-Dinitrotoluene	ND	ug/Sample	30	
2.6-Dinitrotoluene	ND	uq/Sample	30	
Diethyl phthalate	ND	uq/Sample	30 30	
4-Chlorophenyl phenyl ether	ИD	ug/Sample	150	
Fluorene 4-Nitroaniline	ND	ug/Sample ug/Sample	150	
4,6-Dinitro-2-methylphenol	ND ND	ug/Sample	30	
N-Nitraconibhenvialline	ND ND	ug/Sample	30	
4-Bromophenyl pnenyl ether	ND	ug/Sample	30	
Hexachloropenzene	ND	ug/Sample	150	
Pentachlorophenol	ND	ug/Sample	30 30	
Phenanthrene Anthracene	ND	ug/Sample	30	
Di-n-butyl phthalate	ND	ug/Sample ug/Sample	30	
Fluoranthene	DN DN	ug/Sample	30	
Dyrene	ND	uq/Sample	30	
Rutyl benzyl phthalate	ND	uq/Sample	60	
3,3'-Dichlorobenzidine	ND	ug/Sample	30 30	
Benzo(a)anthracene bis(2-Ethylhexyl)-phthalate	ND	ug/Sample	30	
Chrysene	ND	ug/Sample ug/Sample	30	
Di-n-octyl phthalate	DN GN	ug/Sample	30	
Renzo(b)fluorantnene	ND	ug/Sample	30	
Benzo(k)fluorantnene	ND	uq/Sample	30	
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	ND	uq/Sample	30	
Indeno(1,2,3-cd)pyrene	ND	ug/Sample	30 30	
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND	ug/Sample ug/Sample	30	
Acetophenone	ND ND	ug/Sample	150	
4-Aminobiphenyl	ND ND	ug/Sample	30	
Aniline	ND	ug/Sample	300	
Benzidine	ND	uq/Sample	90	
3,3'-Dimethylbenzidine	ND	ug/Sample		
N-Nitrosodimethylamine N-Nitrosomorpholine	ND	ug/Sample ug/Sample		
Pentachloronitrobenzene (PCNB)	ND ND	ug/Sample		
o-Toluidine	טא	ag/ Jampi J		

ND = Not Detected

Approved By: Karin Yee Reported By: Emily Uebelhoer

Pacific Environmental Services T-MM5-3-F,FH,XAD,COND,BH 300681-0006-SA Client Name:

Client ID:

LAB ID:

Sampled: 27 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Matrix: AIRTRAIN 30 JUL 98 Authorized:

Dilution Factor: 1.0

	Wet wt.		Reporting	
Parameter	Result	Units	Limit	Qualifier
2-Methoxybenzenamine	ND	ug/Sample		K K
Biphenyl	ND	ug/Sample		K
Chloroacetophenone	ND	ug/Sample		K
Cumene	ND	ug/Sample		K
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		K
Benzo(e)pyrene	ND	ug/Sample		K
N-N-Diethylaniline	ND	ug/Sample		K
Dimethylaniline	ND	ug/Sample		K
3,3'-Dimethoxybenzidine	ND	ug/Sample		K
Hydroquinone	ND	ug/Sample		K
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		K
4-Nitrodiphenyl`	ND	ug/Sample		K
Trifluralin	ND	ug/Sample		K

Surrogate	Recovery	Acceptable Range
Nitrobenzene-d5	78 %	45 - 107
2-Fluorobiphenyl	106 %	62 - 110
Terphenyl-d14 Phenol-d5	80 % 69 %	58 - 135 43 - 130
2-Fluorophenol	71 %	36 - 111
2,4,6-Tribromophenol	52 %	58 - 131 i

Note i = Surrogate recovery is outside of control limits. Note K = Identified by mass spectrum only; quantitation based on 1:1 response with internal standard.

ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Karin Yee

32

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services Client Name:

Client ID:

T-MM5-3-F,FH,XAD,COND,BH
300681-0006-SA
AIRTRAIN
30 JUL 98
Pre Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 27 JUL 98 LAB ID: Matrix: Prepared: NA Authorized:

Dilution Factor: 1.0

Dilution Factor: 1.0			Reporting	O. lifian
Parameter	Result	Units	Limit	Qualifier
Lat ameret	390	ug/Sample		0
n-Nonane	270	ug/Sample		0
Unknown	180	ug/Sample		0 0
Undecane	160	ug/Sample		U
Dodecane	240	ug/Sample		Λ
Unknown alkane	170	ug/Sample		0
1H-Indene, 1-ethylidene-	240	ug/Sample		0 0 0
Undecane, 4, 7-dimethyl-	350	ug/Sample		Ŏ
4-Hydroxy-4-methyl-2-pentanone Heptadecane, 2,6,10,14 -tetramethyl-	250	ug/Sample		Ŏ
Heptadecane, 2,0,10,14 - ccor amount	430	ug/Sample		U
Tetradecane	230	ug/Sample		0
Unknown aromatic hydrocarbon Heptadecane, 2,6,10,14 -tetramethyl-	300	ug/Sample		J
Heptadecane, 2,0,10,14 best amosts	440	ug/Sample	= =	0
Pentadecane	400	ug/Sample		ŏ
Nonadecane Heptadecane, 2,6-dimethyl-	230	ug/Sample		ŏ
Heptadecane, 2,6-dimethyl-	520	ug/Sample		ŏ
Heptadecane, 2,0 disactory.	170	ug/Sample		Ö
Nonadecane	180	ug/Sample		ŏ
Nonadecane	150	ug/Sample		0 0
Nonadecane 9-Eicosene (E)-	240	ug/Sample		J

Note 0 = 0r structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Semivolatile Organics Method 0010/8270

Pacific Environmental Services S-MM5-3-F,FH,XAD,COND,BH 300681-0007-SA Client Name:

Client ID:

LAB ID:

Matrix: AIRTRAIN Sampled: 27 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Authorized: 30 JUL 98

Dilution Factor: 100

Parameter	Wet wt. Result	Units	Reporting Limit	Oualifian
	ncsu i c	0111 03	LIMIL	Qualifier
Phenol	ND	ug/Sample	3000	GR
bis(2-Chloroethyl)ether	ND	ug/Sample	3000	un.
2-Chlorophenol	ND	ug/Sample	3000	
1,3-Dichlorobenzene	ND	ug/Sample	3000	
1,4-Dichlorobenzene	ND	ug/Sample	3000	
Benzyl alcohol	ND	ug/Sample	3000	
1,2-Dichlorobenzene	ND	ug/Sample	3000	
2-Methylphenol	ND	ug/Sample	3000	
2,2'-0xybis(1-chloropropane)	ND	ug/Sample	3000	
3/4-Methylphenol	ND	ug/Sample	3000	
N-Nitroso-di-n-propylamine	ND	ug/Sample	3000	
Hexachloroethane	ND	ug/Sample	3000	
Nitrobenzene	ND	ug/Sample	3000	
Isophorone	ND	ug/Sample	3000	
2-Nitrophenol	ND	ug/Sample	3000	
2,4-Dimethylphenol Benzoic acid	ND ND	ug/Sample	3000	
bis(2-Chloroethoxy)-methane	ND ND	ug/Sample	15000	
2,4-Dichlorophenol	ND ND	ug/Sample	3000	
1,2,4-Trichlorobenzene	ND	ug/Sample	3000	
Naphthalene	3200	ug/Sample	3000	
4-Chloroaniline	ND	ug/Sample ug/Sample	3000 3000	
Hexachlorobutadiene	ND	ug/Sample	3000	
4-Chloro-3-methylphenol	ND	ug/Sample	3000	
2-Methylnaphthalene	6300	ug/Sample	3000	
Hexachlorocyclopentadiene	ND	ug/Sample	3000	
2,4,6-Trichlorophenol	ND	ug/Sample	3000	
2,4,5-Trichlorophenol	ND	ug/Sample	15000	
2-Chloronaphthalene	ND	ug/Sample	3000	
2-Nitroaniline	ND	ug/Sample	3000	
Dimethyl phthalate	ND	ug/Sample	3000	
Acenaphthylene	ND	ug/Sample	3000	
3-Nitroaniline	ND	ug/Sample	15000	
Acenaphthene	ND	ug/Sample	3000	
2,4-Dinitrophenol	ND	ug/Sample	15000	
4-Nitrophenol	ND	ug/Sample	15000	

Note G = Reporting limit(s) raised due to matrix interference. Note R = Reporting limit(s) raised due to sample volume limitations. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Client Name:

Client ID:

Pacific Environmental Services S-MM5-3-F,FH,XAD,COND,BH 300681-0007-SA Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 27 JUL 98 Prepared: 31 JUL 98 LAB ID: AIRTRAIN Matrix: 30 JUL 98 Authorized:

Dilution Factor: 100

Dilution Factor: 100				
	Wet wt. Result	Units	Reporting Limit	Qualifier
Parameter	• • • • • • • • • • • • • • • • • • • •	_	2000	
nul Euron	ND	ug/Sample	3000 3000	
Dibenzofuran	ND	ug/Sample	3000	
2,4-Dinitrotoluene	ND	ug/Sample	3000	
2,6-Dinitrotoluene	ND	ug/Sample	3000	
Diethyl phthalate	ND	ug/Sample		
4-Chlorophenyl phenyl ether	ND	ug/Sample	3000	
Fluorene	ПN	ug/Sample	15000	
4-Nitroaniline	ND	ug/Sample	15000	
4,6-Dinitro-2-methylphenol	ND	uğ/Sample	3000	
N_Nitrosodinnenvidiiiie	ND	ug/Sample	3000	
4-Bromophenyl phenyl ether	ND	ug/Sample	3000	
Hexachiorobenzene	ND	ug/Sample	15000	
Pentachlorophenol	ND	ug/Sample	3000	
Phenanthrene	ND	ug/Sample	3000	
Anthracene	ND	ug/Sample	3000	
Di-n-butyl phthalate	ND	uq/Sample	3000	
Fluoranthene	ND	ug/Sample	3000	
Pyrene	ND	ug/Sample	3000	
Butyl benzyl phthalate	ЙĎ	ug/Sample	6000	
3.3'-Dichloropenziaine	ND	uq/Sample	3000	
Panza/alanthracene	ND	ug/Sample	3000	
bis(2-Ethylhexyl)-phthalate	ND	ug/Sample	3000	
Chrysene	ND	ug/Sample	3000	
Di-n-octyl phthalate	ND	ug/Sample	3000	
Benzo(b)fluoranthene	ND	ug/Sample	3000	
Benzo(k)fluoranthene	ND	ug/Sample	3000	
Renzolainvrene	ЙD	ug/Sample	3000	
Indeno(1,2,3-cd)pyrene	ND	ug/Sample	3000	
Dibenz(a, n) anthracene	ND	ug/Sample	3000	
Benzo(g,n,1)peryrene	ЙĎ	uq/Sample	3000	
Acetophenone _	ЙĎ	ug/Sample	15000	
4-Aminobipheny:	ND	ug/Sample	3000	
Aniline	ND	ug/Sample	30000	
Benzidine	ND	uq/Sample	6000	
3,3'-Dimethylbenzidine	ND	uq/Sample	3000	
N-Nitrosodimethylamine	ND	ug/Sample	3000	
N_NitrosomorphollNe	ND	ug/Sample	12000	
Pentachloronitrobenzene (PCNB)	ND	ug/Sample	6000	
o-Toluidine				

ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Pacific Environmental Services S-MM5-3-F,FH,XAD,COND,BH 300681-0007-SA Client Name:

Client ID: LAB ID:

Matrix: AIRTRAIN Sampled: 27 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Authorized: 30 JUL 98

Dilution Factor: 100

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
2-Methoxybenzenamine	ND	ug/Sample		
Biphenyl	ND	ug/Sample		
Chloroacetophenone	ИD	ug/Sample		
Cumene	ND	ug/Sample		
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		
Benzo(e)pyrene	ND	ug/Sample		
N-N-Diethylaniline	ND	ug/Sample		
Dimethylaniline	ND	ug/Sample		
3,3'-Dimethoxybenzidine	ND	ug/Sample		
Hydroquinone	ND	ug/Sample		
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		
4-Nitrodiphenyl	ND	ug/Sample		
Trifluralin	ND	ug/Sample		

Surrogate	Recovery	Acceptable Range	
Nitrobenzene-d5	ND %	45 - 107 H	
2-Fluorobipheny1	ND %	62 - 110	
Terpheny1-d14	ND %	58 - 135	
Phenol-d5	ND %	43 - 130	
2-Fluorophenol	ND %	36 - 111	
2,4,6-Tribromophenol	ND %	58 - 131	

Note H = Spiked analyte not detected because of required sample dilution. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services S-MM5-3-F,FH,XAD,COND,BH 300681-0007-SA

Client Name: Client ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 LAB ID: Sampled: 27 JUL 98 AIRTRAIN Matrix: Prepared: NA 30 JUL 98 Authorized:

Dilution Factor: 100

Dilution Factor: 100			Reporting	
Parameter	Result	Units	Limit	Qualifier
Parameter		ug/Sample		0
Undecane	10000	ug/Sample ug/Sample		0
Decane, 2,5,6-trimethyl-	12000	ug/Sample		0 0 0
Undecane, 2,6-dimethyl-	9900	ug/Sample		
Unknown	11000	ug/Sample		0
Unknown Heptadecane, 2,6-dimethyl-	19000	ug/Sample		•
Helmann	13000	ug/Sample		0
Unknown Decane, 2,4-dimethyl	19000	ug/Sample	_	Ū
	9100	ug/Sample		
Unknown	22000	ug/Sample		
Unknown alkane	36000	ug/Sample		0
Unknown alkane	16000	ug/Sample		ň
Naphthalene, 1,3-dimethyl- Heptadecane, 2,6,10,14 -tetramethyl-	26000	ug/Sample		0
Heptadecane, 2,0,10,14 -test amount	35000	ug/Sample		U
Dodecane, 3-methyl-	11000	ug/Sample		0
Unknown alkane	35000	ug/Sample		0 0
Nonadecane	22000	ug/Sample		Ö
Nonadecane O. C. dimathyl	46000	uq/Sample		U
Heptadecane, 2,6-dimethyl-	14000	ug/Sample		^
Unknown alkane	17000	ug/Sample		0 0
Nonadecane	10000	ug/Sample		U
Heptadecane, 2,6-dimethyl-	1000	· ·		

Note 0 = Or structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Semivolatile Organics Method 0010/8270

Client Name: Client ID: LAB ID: Pacific Environmental Services S-MM5-FB-F,FH,XAD,COND,BH

300681-0008-SA AIRTRAIN Matrix: Sampled: 26 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Authorized: 30 JUL 98

Dilution Factor: 1.0

David 1	Wet wt.		Reporting	
Parameter	Result	Units	Limit	Qualifier
Pheno1	ND	ua/Camala	20	n
bis(2-Chloroethyl)ether	ND	ug/Sample ug/Sample	30	R
2-Chlorophenol	ND	ug/Sample	30 30	
1,3-Dichlorobenzene	ND	ug/Sample	30 30	
1,4-Dichlorobenzene	ND	ug/Sample	30	
Benzyl alcohol	ND	ug/Sample	30 30	
1,2-Dichlorobenzene	ND	ug/Sample	30	
2-Methylphenol	ND	ug/Sample	30	
2,2'-Oxybis(1-chloropropane)	ND	ug/Sample	30	
3/4-Methylphenol	ND	ug/Sample	30	
N-Nitroso-di-n-propylamine	ND	ug/Sample	30	
Hexachloroethane	ND	ug/Sample	30	
Nitrobenzene	ND	ug/Sample	30	
Isophorone	ND	ug/Sample	30	
2-Nitrophenol	ND	ug/Sample	30	
2,4-Dimethylphenol	ND	ug/Sample	30	
Benzoic acid	ND	ug/Sample	150	
bis(2-Chloroethoxy)-methane	ND	ug/Sample	30	
2,4-Dichlorophenol	ND	ug/Sample	30	
1,2,4-Trichlorobenzene	ND	ug/Sample	30	
Naphthalene 4-Chloroaniline	ND	ug/Samp]e	30	
Hexachlorobutadiene	ND	ug/Sample	30	
4-Chloro-3-methylphenol	ND	ug/Sample	30	
2-Methylnaphthalene	ND ND	ug/Sample	30	
Hexachlorocyclopentadiene	ND ND	ug/Sample	30	
2,4,6-Trichlorophenol	ND ND	ug/Sample	30	
2,4,5-Trichlorophenol	ND	ug/Sample	30	
2-Chloronaphthalene	ND	ug/Sample ug/Sample	150 30	
2-Nitroaniline	ND	ug/Sample ug/Sample	30 30	
Dimethyl phthalate	ND	ug/Sample ug/Sample	30 30	
Acenaphthylene	ND	ug/Sample	30	
3-Nitroaniline	ЙĎ	ug/Sample	150	
Acenaphthene	ND	ug/Sample	30	
2,4-Dinitrophenol	ND	ug/Sample	150	
4-Nitrophenol	ND	ug/Sample	150	
Dibenzofuran	ND	ug/Sample	30	

Note R = Reporting limit(s) raised due to sample volume limitations. $ND = Not \ Detected$

Reported By: Emily Uebelhoer Approved By: Karin Yee

Semivolatile Organics Method 0010/8270

Pacific Environmental Services S-MM5-FB-F,FH,XAD,COND,BH 300681-0008-SA Client Name: Client ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 LAB ID: Sampled: 26 JUL 98 Prepared: 31 JUL 98 AIRTRAIN 30 JUL 98 Matrix: Authorized:

Dilution Factor: 1.0

Dilution Factor. 1.0				
	Wet wt.		Reporting	0 1/6/
D	Result	Units	Limit	Qualifier
Parameter	•••			
a a Birihandalueno	ND	ug/Sample	30	
2,4-Dinitrotoluene	ND	ug/Sample	30	
2,6-Dinitrotoluene	ND	ug/Sample	30	
Diethyl phthalate	ND	ug/Sample	30	
4-Chlorophenyl phenyl ether	ND	ug/Sample	30	
Fluorene	ND	ug/Sample	150	
4-Nitroaniline	ND	ug/Sample	150	
4,6-Dinitro-2-methylphenol	ЙĎ	ug/Sample	30	
N-Nitrosodiphenylamine	ND	ug/Sample	30	
4-Bromophenyl phenyl ether	ND	ug/Sample	30	
Hexachlorobenzene	ND	ug/Sample	150	
Pentachlorophenol	ND	ug/Sample	30	
Phenanthrene	ND	ug/Sample	30	
Anthracene	ND	ug/Sample	30	
Di-n-butyl phthalate	ND	ug/Sample	30	
Fluoranthene	ND ND	ug/Sample	30	
Pyrene	ND	ug/Sample	30	
Butyl benzyl phthalate	ND	ug/Sample	60	
3.3'-Dichlorobenzidine	ND ND	ug/Sample	30	
Renzo(a)anthracene	ND	ug/Sample	30	
bis(2-Ethylhexyl)-phthalate	ND	ug/Sample	30	
Chrvsene	ND	ug/Sample	30	
Di-n-octyl phthalate	ND ND	ug/Sample	30	
Renzo(h)fluoranthene	ND ND	ug/Sample	30	
Benzo(k)fluoranthene	ND ND	ug/Sample	30	
Benzo(a)pyrene		ug/Sample	30	
Indeno(1,2,3-cd)pyrene	ND	ug/Sample	30	
Dibenz(a,h)anthracene	ND ND	ug/Sample	30	
Benzo(ġ,ĥ,i)perylene	ND ND	ug/Sample	30	
Acetophenone		ug/Sample ug/Sample	150	
4-Aminobiphenyl	ИD	ug/Sample	30	
Aniline	ND	ug/Sample	300	
Benzidine	ND ND	ug/Sample	60	
3,3'-Dimethylbenzidine	ND	ug/Sample	30	
N-Nitrosodimethylamine	ND	ug/Sample	30	
N-Nitrosomorpholine	ND	ug/Sample	150	
Pentachloronitrobenzene (PCNB)	ND	ug/Sample ug/Sample	60	
o-Toluidine	ND	ug/ Jampie	• •	

ND = Not Detected

Approved By: Karin Yee Reported By: Emily Uebelhoer

Pacific Environmental Services S-MM5-FB-F,FH,XAD,COND,BH 300681-0008-SA AIRTRAIN Sampled Client Name:

Client ID:

LAB ID:

Matrix: Sampled: 26 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 30 JUL 98 Authorized:

Dilution Factor: 1.0

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
2-Methoxybenzenamine Biphenyl Chloroacetophenone Cumene DBCP (1,2-Dibromo-3-chloropropane) Benzo(e)pyrene N-N-Diethylaniline Dimethylaniline 3,3'-Dimethoxybenzidine Hydroquinone 4,4'-Methyl-bis(2-chloroaniline) 4-Nitrodiphenyl Trifluralin	ND ND ND ND ND ND ND ND ND ND	ug/Sample		KKKKKKKKKKK
	.10	ag/ Jamp I e		K

Surrogate	Recovery	Acceptable Range
Nitrobenzene-d5	58 %	45 - 107
2-Fluorobiphenyl	79 %	62 - 110
Terphenyl-d14	101 %	58 - 135
Phenol-d5	59 %	43 - 130
2-Fluorophenol	54 %	36 - 111
2,4,6-Tribromophenol	74 %	58 - 131

Note K = Identified by mass spectrum only; quantitation based on 1:1 response with ... internal standard. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services Client Name: Client ID: LAB ID:

S-MM5-FB-F, FH, XAD, COND, BH 300681-0008-SA

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 26 JUL 98 AIRTRAIN Matrix: Prepared: NA 30 JUL 98 Authorized:

Dilution Factor: 1.0

Darameter	Result	Units	Reporting Limit	Qualifier
Parameter n-Nonane Benzaldehyde Heptadecane, 2,6-dimethyl- 4-Hydroxy-4-methyl-2-pentanone Hexadecanoic acid Unknown alkane	360 29 52 380 33 51	Units ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample	 	0 0 0 0 0 0
Tricosane Unknown alkane Unknown Unknown alkane 5-Eiconsene,(E) - Unknown	31 30 36 45 150 49 34 26 57 77 58 42 30 27	ug/Sample		0

Note O = Or structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Semivolatile Organics Method 0010/8270

Pacific Environmental Services S-MM5-RB-F,FH,XAD,COND,BH 300681-0009-SA AIRTRAIN Sampled: Client Name: Client ID:

LAB ID:

Matrix: Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Authorized: 30 JUL 98

Dilution Factor: 1.0

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
Pheno1	ND	ug/Sample	30	•
bis(2-Chloroethyl)ether	ND	ug/Sample	30 30	R
2-Chlorophenol	ND	ug/Sample	30	
1,3-Dichlorobenzene	ND	ug/Sample	30	
1,4-Dichlorobenzene	ND	ug/Sample	30	
Benzyl alcohol	ND	ug/Sample	30	
1,2-Dichlorobenzene	ND	ug/Sample	30	
2-Methylphenol	ND	ug/Sample	30	
2,2'-Oxybis(1-chloropropane)	ND	ug/Sample	30	
3/4-Methylphenol	ND	ug/Sample	30	
N-Nitroso-di-n-propylamine	ND	ug/Sample	30	
Hexachloroethane	ND	ug/Sample	30	
Nitrobenzene	ND	ug/Sample	30	
Isophorone	ND	ug/Sample	30	
2-Nitrophenol	ND	ug/Sample	30	
2,4-Dimethylphenol	ND	ug/Sample	30	
Benzoic acid	ND	ug/Sample	150	
bis(2-Chloroethoxy)-methane	ND	ug/Sample	30	
2,4-Dichlorophenol	ND	ug/Sample	30	
1,2,4-Trichlorobenzene Naphthalene	ND	ug/Sample	30	
4-Chloroaniline	ND	ug/Sample	30	
Hexachlorobutadiene	ND	ug/Sample	30	
4-Chloro-3-methylphenol	ND	ug/Sample	30	•
2-Methylnaphthalene	ND	ug/Sample	30	
Hexachlorocyclopentadiene	ND ND	ug/Sample	30	
2,4,6-Trichlorophenol	ND ND	ug/Sample	30	
2,4,5-Trichlorophenol	ND	ug/Sample	30	
2-Chloronaphthalene	ND ND	ug/Sample	150	
2-Nitroaniline	ND	ug/Sample	30	
Dimethyl phthalate	ND	ug/Sample	30 30	
Acenaphthylene	ND	ug/Sample ug/Sample	30 30	
3-Nitroaniline	ND	ug/Sample	150	
Acenaphthene	ND	ug/Sample	30	
2,4-Dinitrophenol	ND	ug/Sample	150	
4-Nitrophenol	ND	ug/Sample	150	
Dibenzofuran	ND	ug/Sample	30	

Note R = Reporting limit(s) raised due to sample volume limitations. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Pacific Environmental Services S-MM5-RB-F,FH,XAD,COND,BH 300681-0009-SA

Client Name: Client ID:

LAB ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 AIRTRAIN 30 JUL 98 Matrix: Authorized:

Dilution Factor: 1.0

Dilucion Factor: 1.0	Wet wt.	Units	Reporting Limit	Qualifier
Parameter	Nesure	• • • • • • • • • • • • • • • • • • • •		
Parameter 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl)-phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(x)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Acetophenone 4-Aminobiphenyl Aniline Benzidine 3,3'-Dimethylbenzidine	Wet sult Result NDD NDD NDD NDD NDD NDD NDD NDD NDD ND	Units ug/Sample	limit 30 30 30 30 30 150 150 30 30 30 30 30 30 30 30 30 30 30 30 30	Qualifier
N-Nitrosodimethylamine N-Nitrosomorpholine Pentachloronitrobenzene (PCNB)	ND ND ND	ug/Sample ug/Sample ug/Sample	30 150 60	
o-Toluidine	110	37 1		

ND = Not Detected

Approved By: Karin Yee Reported By: Emily Uebelhoer

Client Name: Pacific Environmental Services

Client ID:

LAB ID:

S-MM5-RB-F,FH,XAD,COND,BH 300681-0009-SA AIRTRAIN San Matrix: Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Authorized: 30 JUL 98

Dilution Factor: 1.0

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
2-Methoxybenzenamine	ND	ug/Sample		K
Biphenyl	ND	ug/Sample		Ŕ
Chloroacetophenone	ND	ug/Sample		Ŕ
Cumene	ND	ug/Sample		Ŕ
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		K
Benzo(e)pyrene	ND	ug/Sample		K
N-N-Diethylaniline	ND	ug/Sample		K
Dimethylaniline	ND	ug/Sample		K
3,3'-Dimethoxybenzidine	ND	ug/Sample		K
Hydroquinone	ND	ug/Sample		K
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		K
4-Nitrodiphenyl	ND	ug/Sample		K
Trifluralin	ND	ug/Sample		K

Surrogate	Recovery	Acceptable Range
Nitrobenzene-d5	61 %	45 - 107
2-Fluorobiphenyl	86 %	62 - 110
Terphenyl-d14	97 %	58 - 135
Phenol-d5	67 %	43 - 130
2-Fluorophenol	62 %	36 - 111
2,4,6-Tribromophenol	84 %	58 - 131

Note K = Identified by mass spectrum only; quantitation based on 1:1 response with internal standard. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Karin Yee

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services S-MM5-RB-F,FH,XAD,COND,BH 300681-0009-SA

Client Name: Client ID:

LAB ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 Sampled: 25 JUL 98 AIRTRAIN Matrix: Prepared: NA 30 JUL 98 Authorized:

Dilution Factor: 1.0

Parameter	Result	Units	Reporting Limit	Qualifier
n-Nonane Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown	400 51 77 71 42 63 99 250 94 63 27	ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample		0
Unknown alkane Unknown Unknown 4-Hydroxy-4-methyl-2-pentanone Unknown Unknown Unknown 9-Eicosene (E)- Unknown Unknown	35 140 270 110 81 26 57 61 72	ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample ug/Sample		0

Note O = Or structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Karin Yee

45

Semivolatile Organics Method 0010/8270

Pacific Environmental Services S-MM5-4-F,FH,XAD,COND,BH 300681-0010-SA Client Name:

Client ID:

LAB ID:

Matrix: AIRTRAIN Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Authorized: 30 JUL 98 Analyzed: 31 AUG 98

Dilution Factor: 100

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
Pheno1	ND	ug/Sample	3000	GR
bis(2-Chloroethyl)ether	ND	ug/Sample	3000	
2-Chlorophenol	ND	ug/Sample	3000	
1,3-Dichlorobenzene	ND	ug/Sample	3000	
1,4-Dichlorobenzene	ND	ug/Sample	3000	
Benzyl alcohol	ND	ug/Sample	3000	
1,2-Dichlorobenzene	ND	ug/Sample	3000	
2-Methylphenol	ND	ug/Sample	3000	
2,2'-Oxybis(1-chloropropane)	ND	ug/Sample	3000	
3/4-Methylphenol	ND	ug/Sample	3000	
N-Nitroso-di-n-propylamine	ND	ug/Sample	3000	
Hexachloroethane	ND	ug/Sample	3000	•
Nitrobenzene Tsanbanana	ND	ug/Sample	3000	
Isophorone	ND	ug/Sample	3000	
2-Nitrophenol	ND	ug/Sample	3000	
2,4-Dimethylphenol Benzoic acid	ND	ug/Sample	3000	
his/2-Chlanaothavy) mathema	ND	ug/Sample	15000	
bis(2-Chloroethoxy)-methane 2,4-Dichlorophenol	ND	ug/Sample	3000	
1,2,4-Trichlorobenzene	ND	ug/Sample	3000	
Naphthalene	ND	ug/Sample	3000	_
4-Chloroaniline	1500	ug/Sample	3000	J
Hexachlorobutadiene	ND	ug/Sample	3000	
4-Chloro-3-methylphenol	ND ND	ug/Sample	3000	
2-Methylnaphthalene	2300	ug/Sample	3000	-
Hexachlorocyclopentadiene	2300 ND	ug/Sample	3000	J
2,4,6-Trichlorophenol	ND	ug/Sample	3000	
2,4,5-Trichlorophenol	ND	ug/Sample	3000	
2-Chloronaphthalene	ND	ug/Sample ug/Sample	15000	
2-Nitroaniline	ND	ug/Sample	3000	
Dimethyl phthalate	ND	ug/Sample	3000 3000	
Acenaphthylene	ND	ug/Sample	3000	
3-Nitroaniline	ND	ug/Sample ug/Sample	15000	
Acenaphthene	ND	ug/Sample ug/Sample	3000	
2,4-Dinitrophenol	ND	ug/Sample	15000	
•	110	ag/ sampic	12000	

Note G = Reporting limit(s) raised due to matrix interference. Note J = Result is detected below the reporting limit or is an estimated concentration. Note R = Reporting limit(s) raised due to sample volume limitations.

ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

46

Semivolatile Organics Method 0010/8270

Client Name:

Client ID:

Pacific Environmental Services S-MM5-4-F,FH,XAD,COND,BH 300681-0010-SA

Received: 30 JUL 98 Analyzed: 31 AUG 98 LAB ID: Matrix: Sampled: 25 JUL 98 Prepared: 31 JUL 98 AIRTRAIN 30 JUL 98 Authorized:

Dilution Factor: 100

Difficion ractor: 200				
	Wet wt.		Reporting	0146400
D	Result	Units	Limit	Qualifier
Parameter		_		
	ND	ug/Sample	15000	
4-Nitrophenol	ND	ug/Sample	3000	
Dibenzofuran	ND	ug/Sample	3000	
2,4-Dinitrotoluene	ND	ug/Sample	3000	
2,6-Dinitrotoluene	ND	ug/Sample	3000	
Diethyl phthalate	ND	ug/Sample	3000	
4-Chlorophenyl phenyl ether	ND	ug/Sample	3000	
Fluorene	ND	ug/Sample	15000	
4-Nitroaniline		ug/Sample	15000	
4,6-Dinitro-2-methylphenol	ND	ug/Sample	3000	
N-Nitrosodiphenylamine	ND	uy/Sample	3000	
4-Bromophenyl phenyl ether	ИD	ug/Sample	3000	
Hexachlorobenzene	ND	ug/Sample	15000	
Pentachlorophenol	ND	ug/Sample	3000	J
Phenanthrene	590	ug/Sample		U
Anthracene	ND	ug/Sample	3000	
Di-n-butyl phthalate	ND	ug/Sample	3000	
Fluoranthene	ND	ug/Sample	3000	
• • •	ND	ug/Sample	3000	
Pyrene	ND	ug/Sample	3000	
Butyl benzyl phthalate	ND	ug/Sample	6000	
3,3'-Dichlorobenzidine	ND	ug/Sample	3000	•
Bénzo(a)anthracene	ЙĎ	ug/Sample	3000	
bis(2-Ethylhexyl)-phthalate	ЙĎ	ug/Sample	3000	
Chrysene	ND	ug/Sample	3000	
Di-n-octyl phthalate	ND	ug/Sample	3000	
Benzo(b)fluoranthene	ND	ug/Sample	3000	
Benzo(k)fluoranthene	ND	ug/Sample	3000	
Benzo(a)pyrene	ND	ug/Sample	3000	
Indeno(1,2,3-cd)pyrene		ug/Sample	3000	
Dibenz(a,h)anthracene	ND	ug/Sample	3000	
Benzo(ġ,h,i)perylene	ND	ug/Sample	3000	
Acetophenone	ND	ug/Sample	15000	
4-Aminobiphenyl	ND	ug/Sample	3000	
Aniline	ND	ug/Sample	30000	
Benzidine	ND	ug/Sample	6000	
3,3'-Dimethylbenzidine	ND	ug/Sample	3000	
N-Nitrosodimethylamine	ND	ug/Sample		
N-Nitrosomorpholine	ND	ug/Sample	3000	
M-MICI 02000 bust use				

Note J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

47

Client Name:

Client ID:

LAB ID:

Pacific Environmental Services S-MM5-4-F,FH,XAD,COND,BH 300681-0010-SA AIRTRAIN Sampled: Matrix: Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 31 AUG 98 Authorized: 30 JUL 98

Dilution Factor: 100

	Wet wt.		Reporting	
Parameter	Result	Units	Limit	Qualifier
Pentachloronitrobenzene (PCNB)	ND	ug/Sample	15000	
o-Toluidine	ND	ug/Sample	6000	
2-Methoxybenzenamine	ND	ug/Sample		
Bipheny1 Table 1	ND	ug/Sample		
Chloroacetophenone	ND	ug/Sample		
Cumene	ND	ug/Sample		
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		
Benzo(e)pyrene	ND	ug/Sample		
N-N-Diethylaniline	ND	ug/Sample		
Dimethylaniline	ND	ug/Sample		
3,3'-Dimethoxybenzidine	ND	ug/Sample		
Hydroquinone	ND	ug/Sample		
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		
4-Nitrodiphenyl	ND	ug/Sample		
Trifluralin	ND	ug/Sample		

Surrogate	Recovery	Acceptable Range
Nitrobenzene-d5	ND %	45 - 107 H
2-Fluorobiphenyl	ND %	62 - 110
Terphenyl-d14	ND %	58 - 135
Phenol-d5	ND %	43 - 130
2-Fluorophenol	ND %	36 - 111
2,4,6-Tribromophenol	ND %	58 - 131

Note H = Spiked analyte not detected because of required sample dilution. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services S-MM5-4-F,FH,XAD,COND,BH 300681-0010-SA Client Name:

Client ID:

Received: 30 JUL 98 LAB ID: Sampled: 25 JUL 98 AIRTRAIN Analyzed: 31 AUG 98 Matrix: Prepared: NA 30 JUL 98 Authorized:

Dilution Factor: 100

District Factor 1 200			Reporting	Olifion
Parameter	Result	Units	Limit	Qualifier
11. 1	7600	ug/Sample		0
Undecane	7500	ug/Sample		
Unknown	7100	ug/Sample		^
Unknown alkane	6200	ug/Sample		0
Decane, 2,5,9-Trimethyl-	12000	ug/Sample		
Unknown	12000	ug/Sample		
Unknown alkane	6900	ug/Sample		0
Unknown hydrocarbon	9800	ug/Sample		U
Octane, 3,5-dimethyl-	6400	ug/Sample		^
Unknown Heptadecane, 2,6-dimethyl-	13000	ug/Sample		0 0
Heptadecane, 2,0-dimeens	18000	ug/Sample		U
Tetradecane	8600	ug/Sample		0
Unknown Heptadecane, 2,6,10,14 -tetramethyl-	12000	ug/Sample		0 0
Heptadecane, 2,0,10,14 ccordings	14000	ug/Sample		U
Pentadecane	6400	ug/Sample		
Unknown	16000	ug/Sample		Λ
Nonadecane	13000	ug/Sample		0 0
Undecane, 2,6-dimethyl- Heptadecane, 2,6-dimethyl-	28000	ug/Sample		U
Unknown alkane	7600	ug/Sample		0
Heptadecane, 2,6-dimethyl-	9800	ug/Sample		0

Note O = Or structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Semivolatile Organics Method 0010/8270

Client Name:

Client ID:

LAB ID:

Pacific Environmental Services S-MM5-5-F,FH,XAD,COND,BH 300681-0011-SA AIRTRAIN Sampled: Matrix: Sampled: 28 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Authorized: 30 JUL 98 Analyzed: 31 AUG 98

Dilution Factor: 100

Parameter	Wet wt. Result	Units	Reporting Limit	Qualifier
Phenol	ND	ug/Sample	3000	GR
bis(2-Chloroethyl)ether 2-Chlorophenol	ND ND	ug/Sample	3000	
1,3-Dichlorobenzene	ND ND	ug/Sample	3000	
1,4-Dichlorobenzene	ND	ug/Sample ug/Sample	3000 3000	
Benzyl alcohol	ND	ug/Sample	3000	
1,2-Dichlorobenzene	ND	ug/Sample	3000	
2-Methylphenol	ND	ug/Sample	3000	
2,2'-0xybis(1-chloropropane)	ND	ug/Sample	3000	
3/4-Methylphenol	ND	ug/Sample	3000	
N-Nitroso-di-n-propylamine	ND	ug/Sample	3000	
Hexachloroethane	ND	ug/Sample	3000	
Nitrobenzene	ND	ug/Sample	3000	
Isophorone	ND	ug/Sample	3000	
2-Nitrophenol	ND	ug/Sample	3000	
2,4-Dimethylphenol Benzoic acid	ND ND	ug/Sample	3000	
bis(2-Chloroethoxy)-methane	ND ND	ug/Sample	15000	
2,4-Dichlorophenol	ND ND	ug/Sample	3000	
1,2,4-Trichlorobenzene	ND	ug/Sample ug/Sample	3000 3000	
Naphthalene	2600	ug/Sample ug/Sample	3000	J
4-Chloroaniline	ND	ug/Sample	3000	J
Hexachlorobutadiene	ND	ug/Sample	3000	
4-Chloro-3-methylphenol	ND	ug/Sample	3000	
2-Methylnaphthalene	4400	ug/Sample	3000	
Hexachlorocyclopentadiene	ND	ug/Sample	3000	
2,4,6-Trichlorophenol	ND	ug/Sample	3000	
2,4,5-Trichlorophenol	ND	ug/Sample	15000	
2-Chloronaphthalene	ND	ug/Sample	3000	
2-Nitroaniline	ND	ug/Sample	3000	
Dimethyl phthalate Acenaphthylene	ND	ug/Sample	3000	
3-Nitroaniline	ND ND	ug/Sample	3000	
Acenaphthene	ND ND	ug/Sample	15000	
2,4-Dinitrophenol	ND ND	ug/Sample	3000	
-) · o · ii · o i opiiciio i	טוו	ug/Sample	15000	

Note G = Reporting limit(s) raised due to matrix interference. Note J = Result is detected below the reporting limit or is an estimated concentration. Note R = Reporting limit(s) raised due to sample volume limitations. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

50

Pacific Environmental Services Client Name:

S-MM5-5-F, FH, XAD, COND, BH 300681-0011-SA Client ID:

LAB ID:

Received: 30 JUL 98 Sampled: 28 JUL 98 Prepared: 31 JUL 98 Analyzed: 31 AUG 98 AIRTRAIN 30 JUL 98 Matrix: Authorized:

Dilution Factor: 100

Dilation Lacrott Too				
	Wet wt.		Reporting	
	Result	Units	Limit	Qualifier
Parameter	Vezair	0,,,,,	•	
	ND.	/Campla	15000	
4-Nitrophenol	ND	ug/Sample	3000	
4-MIC Obligio:	ND	ug/Sample		
Dibenzofuran	ND	ug/Sample	3000	
2,4-Dinitrotoluene	ND	ug/Sample	3000	
2,6-Dinitrotoluene	ND	ug/Sample	3000	
Niethyl nhthalate		ug/Sample	3000	
4-Chlorophenyl phenyl ether	ND	ug/Sampic	3000	J
Fluorene	560	ug/Sample	15000	-
4-Nitroaniline	ND	ug/Sample		
4-Nitrodiffile	ND	ug/Sample	15000	
4,6-Dinitro-2-methylphenol	ND	ug/Sample	3000	
N-Nitrosodiphenylamine	ND	ug/Sample	3000	
4-Bromophenyl phenyl ether	ND	ug/Sample	3000	
Hexachlorobenzene		ug/Sample	15000	
Pentachlorophenol	ND	uy/Sample	3000	J
Phenanthrene	1200	ug/Sample		•
Alleliations cue	ЙN	ug/Sample	3000	
Anthracene	ND	ug/Sample	3000	
Di-n-butyl phthalate	ND	ug/Sample	3000	
Fluoranthene	ND	ug/Sample	3000	
Pyrene	ND	ug/Sample	3000	
Butyl benzyl phthalate		ug/Sample	6000	
3,3'-Dichlorobenzidine	ND	ug/Sample	3000	
Benzo(a)anthracene	ND	ug/Sample	3000	
bis(2-Ethylhexyl)-phthalate	ND	ug/Sample		
BI2(Z-Erithtuey)1) buongrass	ND	ug/Sample	3000	
Chrysene	ND	ug/Sample	3000	
Di-n-octyl phthalate	ND	ug/Sample	3000	
Benzo(b)fluoranthene	ND	ug/Sample	3000	
Benzo(k)fluoranthene		ug/Sample	3000	
Benzo(a)pyrene	ND	uy/Sample	3000	
Indeno(1,2,3-cd)pyrene	ND	ug/Sample	3000	
Dibenz(a,h)anthracene	ND	ug/Sample		
Dipenz(a, n) and n acenc	ND	ug/Sample	3000	
Benzo(ġ,h,i)perylene	ND	ug/Sample	3000	
Acetophenone	ND	ug/Sample	15000	
4-Aminobiphenyl	ND	ug/Sample	3000	
Aniline		ug/Sample	30000	
Benzidine	ND	uy/Sample	6000	
3,3'-Dimethylbenzidine	ND	ug/Sample	3000	
N-Nitrosodimethylamine	ND	ug/Sample		
M-Mither company of ind	ND	ug/Sample	3000	
N-Nitrosomorpholine		<u> </u>		

Note J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

51

Client Name: Pacific Environmental Services

Client ID:

LAB ID:

S-MM5-5-F, FH, XAD, COND, BH 300681-0011-SA AIRTRAIN Sa Matrix: Sampled: 28 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Authorized: 30 JUL 98 Analyzed: 31 AUG 98

Dilution Factor: 100

_	Wet wt.		Reporting	
Parameter	Result	Units	Limit	Qualifier
Pentachloronitrobenzene (PCNB)	ND	ug/Sample	15000	
o-Toluidine	ND	ug/Sample	6000	
2-Methoxybenzenamine	ND	ug/Sample		
Biphenyl	ND	ug/Sample		
Chloroacetophenone	ND	ug/Sample		
Cumene	ND	ug/Sample		
DBCP (1,2-Dibromo-3-chloropropane)	ND	ug/Sample		
Benzo(e)pyrene	ND	ug/Sample		
N-N-Diethylaniline	ND	ug/Sample		
Dimethylaniline	ND	ug/Sample		
3,3'-Dimethoxybenzidine	ND	ug/Sample		
Hydroquinone	ND	ug/Sample		
4,4'-Methyl-bis(2-chloroaniline)	ND	ug/Sample		
4-Nitrodiphenyl	ND	ug/Sample	+ -	
Trifluralin	ND	ug/Sample		

Surrogate	Recovery	Acceptable Range	
Nitrobenzene-d5	ND %	45 - 107	Н
2-Fluorobiphenyl	ND %	62 - 110	
Terphenyl-d14	ND %	58 - 135	
Phenol-d5	ND %	43 - 130	
2-Fluorophenol	ND %	36 - 111	
2,4,6-Tribromophenol	ND %	58 - 131	

Note H = Spiked analyte not detected because of required sample dilution. ND = Not Detected

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

Semivolatiles Library Search (20 Compound TID) Method 8270

Pacific Environmental Services S-MM5-5-F,FH,XAD,COND,BH 300681-0011-SA Client Name:

Client ID:

Received: 30 JUL 98 Analyzed: 31 AUG 98 LAB ID: Sampled: 28 JUL 98 Prepared: NA AIRTRAIN Matrix: 30 JUL 98 Authorized:

Dilution Factor: 100

Danamotar	Result	Units	Reporting Limit	Qualifier
Unknown Unknown Decane. 2,9-dimethyl- Undecane, 2,6-dimethyl- Unknown Unknown alkane Unknown Unknown Unknown Unknown Unknown Unknown Heptadecane, 2,6,10-trimethyl- Tetradecane Unknown Heptadecane, 2,6,10,14 -tetramethyl- Dodecane, 3-methyl- Oxirane, hexadecyl- Unknown alkane Unknown alkane Heptadecane, 2,6-dimethyl- Nonadecane	11000 13000 9200 9500 15000 12000 12000 12000 12000 15000 25000 15000 25000 13000 27000 14000 28000 11000	ug/Sample		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note 0 = Or structurally similar compound (isomer). NA = Not Applicable

Reported By: Emily Uebelhoer

Approved By: Mike Orbanosky

53

QC LOT ASSIGNMENT REPORT - MS QC Semivolatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK/LCS)	MS QC Run Number (SA,MS,SD,DU)
300681-0003-SA 300681-0004-SA 300681-0005-SA 300681-0006-SA 300681-0008-SA 300681-0009-SA	FILTER FILTER FILTER FILTER FILTER FILTER	8270-G 8270-G 8270-G 8270-G 8270-G 8270-G	31 JUL 98-16A 31 JUL 98-16A 31 JUL 98-16A 31 JUL 98-16A	31 JUL 98-16A 31 JUL 98-16A 31 JUL 98-16A 31 JUL 98-16A 31 JUL 98-16A 31 JUL 98-16A	- - - -

METHOD BLANK REPORT Semivolatile Organics by GC/MS Project: 300681

Test: 8270-TCL-G Method: 0010/8270 Matrix: FILTER QC Lot: 31 JUL 98-16A Analyzed: 31 AUG 98 Semivolatile Organics

QC Run: 31 JUL 98-16A Time: 16:02

Analyzed: 31 AUG 98	Time:	16:02		Reporting	
Analyte		Result	Units	Limit	Qualifier
_		ND	ug/Samp]e	10	
Phenol		ND	uq/Sample	10	
bis(2-Chloroethyl)ether		ND	ug/Sample	10	
2-Chlorophenol 1,3-Dichlorobenzene		ND	ug/Sample	10	
1,4-Dichlorobenzene		ND	ug/Sample	10	
Benzyl alcohol		ND	ug/Sample	10	
1,2-Dichlorobenzene		ND	ug/Sample	10	
2-Methylphenol		ND	ug/Sample	10	
2,2'-0xybis(1-chloropropane)		ND	ug/Sample	10 10	
3/4-Methylphenol		ND	ug/Sample	10	
N-Nitroso-di-n-propylamine		ND	ug/Sample	10	
Hexachloroethane		ND	ug/Sample	10	
Nitrobenzene		ND	ug/Sample	10	
Isophorone		ND	ug/Sample	10	
2-Nitrophenol		ND	ug/Sample	10	
2,4-Dimethylphenol		ND	ug/Sample ug/Sample	50	
Renzoic acid		ND	ug/Sample	10	
bis(2-Chloroethoxy)-methane		ND ND	ug/Sample	10	
2.4-Dichlorophenol		ND	ug/Sample	10	
1,2,4-Trichlorobenzene		ND ND	ug/Sample	10	
Naphthalene		ДИ	ug/Sample	10	
4-Chloroaniline		ND ND	ug/Sample	10	
Hexachlorobutadiene		ND	ug/Sample	10	
4-Chloro-3-methylphenol		ND	ug/Sample	10	
2-Methylnaphthalene		ND	ug/Sample	10	
Hexachlorocyclopentadiene		ND	ug/Sample	10	
2,4,6-Trichlorophenol		ND	ug/Sample	50	
2,4,5-Trichlorophenol		ND	ug/Sample	10	
2-Chloronaphthalene		ND	ug/Sample	10	
2-Nitroaniline		ND	ug/Sample	10	
Dimethyl phthalate		ND	ug/Sample	10	
Acenaphthylene 3-Nitroaniline		ND	ug/Sample	50	
Acenaphthene		ND	ug/Sample	10	
2,4-Dinitrophenol		ND	ug/Sample	50	
4-Nitrophenol		ND	ug/Sample	50 10	
Dibenzofuran _		ND	ug/Sample	10	
2,4-Dinitrotoluene		ND	ug/Sample	10	
2,6-Dinitrotoluene		ND	ug/Sample	10 10	
Diethyl phthalate		ND	ug/Sample		
4-Chlorophenyl phenyl ether		ND	ug/Sample		
Fluorene		ND	ug/Sample		•
4-Nitroaniline		ND	ug/Sample		
4.6-Dinitro-2-methylphenol		ND	ug/Sample ug/Sample		!
N-Nitrosodiphenylamine		ND	ug/ Samp re	. 10	·
• • • • • • • • • • • • • • • • • • •					

METHOD BLANK REPORT (cont.) Semivolatile Organics by GC/MS Project: 300681

Test: 8270-TCL-G Method: 0010/8270 Matrix: FILTER QC Lot: 31 JUL 98-16A Analyzed: 31 AUG 98 Semivolatile Organics

QC Run: 31 JUL Time: 16:02 31 JUL 98-16A

	i ine:	10:02			
Analyte		Result	Units	Reporting Limit	Qualifier
4-Bromophenyl phenyl ether		ND			Z==
Hexachlorobenzene		ND	ug/Sample	10	
Pentachlorophenol		ND	ug/Sample	10	
Phenanthrene		ND	ug/Sample	50	
Anthracene		ND	ug/Sample	10	
Di-n-butyl phthalate		ND	ug/Sample	10	
Fluoranthene		ND	ug/Sample	10	
Pyrene		ND	ug/Sample	10	
Butyl benzyl phthalate		ND	ug/Sample	10	
3,3'-Dichlorobenzidine		ND	ug/Sample	10	
Renzo(a)anthoneone		ND	ug/Sample	20	
Benzo(a)anthracene		ND	ug/Sample	ĨŎ	
bis(2-Ethylhexyl)-phthalate Chrysene		ND	ug/Sample	îŏ	
Di-n-octul mb+b-l-+-		ND	ug/Sample	io	
Di-n-octyl phthalate		ND	ug/Sample	ìŏ	
Benzo(b)fluoranthene		ND	ug/Sample	iŏ	
Benzo(k)fluoranthene		ND	ug/Sample	10	
Benzo(a)pyrene		ND	ug/Sample	iŏ	
Indeno(1,2,3-cd)pyrene		ND	ug/Sample	10	
Dibenz(a,h)anthracene		ND	ug/Sample	10	
Benzo(g,h,i)perylene		ND	ug/Sample	10	
Acetophenoné		NĎ	ug/Sample	10	
4-Aminobiphenyl		ND	ug/Sample	50	
Aniline		ÑĎ	ug/Sample	10	
Benzidine		ND	ug/Sample	100	
3,3'-Dimethylbenzidine		ND	ug/Sample	20	
N-Nitrosodimethylamine		NĎ	ug/Sample	10	
N-Nitrosomorpholine		ND	ug/Sample	10	
Pentachloronitrobenzene (PCNB)		ND	ug/Sample	50	
0-101U1a1ne		ND	ug/Sample	20	
2-Methoxybenzenamine		ND	ug/Sample	20 	
Biphenyl		ND	ug/Sample		
Chloroacetophenone		ND	ug/Sample		
Cumene		ND	ug/Sample ug/Sample	~ -	
DBCP (1,2-Dibromo-3-chloropropane)		ND		• -	
Benzo(e)pyrene N-N-Diethylaniline	•	ND	ug/Sample	~ -	
N-N-Diethylaniline		ND	ug/Sample	- +	
uimetnylaniline		ND	ug/Sample		
3,3'-Dimethoxybenzidine		ND	ug/Sample		
nyaroquinone		ND	ug/Sample		
4,4'-Methyl-bis(2-chloroaniline)		ND	ug/Sample	- -	
4-Nitrodiphenvi		ND	ug/Sample	- -	
Trifluralin		ND	ug/Sample		
		110	ug/Sample		

METHOD BLANK REPORT (cont.) Semivolatile Organics by GC/MS Project: 300681

Surrogate % Recovery Acceptable F Nitrobenzene-d5 86 45 -107 2-Fluorobiphenyl 102 62 -110 Terphenyl-d14 85 43 -130 Phenol-d5 82 36 -111 2-Fluorophenol 94 58 -131	
---	--

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS Project: 300681

Category: 8270-G Testcode: 8270-TCL-G Acid, Base and Neutrals by GC/MS.

Method: 0010/8270 Matrix:

FILTER 31 JUL 98-16A Concentration Units: ug/sample Analyzed Date: 31 AUG 98 Time: 18:30 QC Lot:

		-			Time. It).JU			
Analyte	Spiked	-Concentra Me DCSI	tion easured DCS2	Accu DCS1	racy %) DCS2	Limits	Precis (RPE DCS L))	
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-	100 100 50.0	83.4 83.7 43.4	87.9 87.9 44.9	83 84 87	88 88 90	47-108 47-113 42-114	5.3 4.9 3.4	18 20 22	
n-propylamine 1,2,4-	50.0	38.3	40.9	77	82	46-107	6.6	15	
Trichlorobenzene 4-Chloro-3-	50.0	43.1	45.9	86	92	45-118	6.3	16	
methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	100 50.0 100 50.0 100 50.0	78.6 46.6 78.8 45.3 83.4 48.0	85.8 50.2 89.6 49.0 93.6 50.7	79 93 79 91 83 96	86 100 90 98 94 101	55-118 54-119 43-166 59-113 59-128 45-140	8.8 7.4 13 7.8 12 5.5	13 10 17 10 10	4
Surrogate	Spiked	Concentrat Me DCS1	ion asured DCS2	Accur DCS1	acy(%) DCS2	Limits			
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	50 50 50 100 100	40 45 40 80 77 84	40 46 40 81 74 84	79 90 79 80 77 84	79 92 80 81 74 84	45-107 62-110 58-135 43-130 36-111 58-131			

Note *: Outside of RPD limits. Calculations are performed before rounding to avoid round-off errors in calculated results.

POLYNUCLEAR AROMATIC HYDROCARBONS HIGH RESOLUTION GC/MS Method HRGC/HRMS

Client Name: Pacific Environmental Services
Client ID: Method Blank
Lab ID: 300681-0001-MB
Matrix: AIRTRAIN Sampled: NA
Authorized: 30 JUL 98 Prepared: 31 Received: NA Analyzed: 20 AUG 98 Sampled: NA Prepared: 31 JUL 98

Authorized: 30 JUL 98	Prepared: 01 001		
	_ ••		eporting Limit
Parameter	Result	Units	Limito
	280	ng/sample	
Naphthalene	120	ng/sample	6.6
2-Methylnaphthalene	ŊD	ng/sample	0.0
Acenaphthylene	43	ng/sample	
Acenaphthene Fluorene	43	ng/sample ng/sample	
Phenanthrene	82 ND	ng/sample	7.2
Anthracene	16	ng/sample	
Fluoranthene	ÑĎ	ng/sample	8.0_
Dyrene	ND	ng/sample	V.65
Benzo(a)anthracene	ND	ng/sample	1.4
Chrysene Benzo(b)fluoranthene	ND	ng/sample	2.0
Benzo(k) fluoranthene	ND	ng/sample ng/sample	4.3
Benzo(e)pyrene	ND ND	ng/sample	3.2
Benzo(a)pyrene	ND	ng/sample	2.5
Pervlene	ND	ng/sample	5.5
Indeno(1,2,3-cd)pyrene	ND	ng/sample	3.1
Dibenz(a, h) anthracene	ND	ng/sample	3.7
Benzo(g,h,i)perylene	-		
Surrogate	Recovery		
-	86	%	
Naphthalene-d8	62	%	
Acenaphthylene-d8	71	%	
Acenaphthene-dl0	77	% % %	
Fluorene-d10 Phenanthrene-d10	72	% e/	
Fluoranthene-d10	82	% %	
Dyrana-d10	84 77	%	
Benzo(a)anthracene-d12	92	%	
Charcana-dl7	92	%	
Benzo(k) fluoranthene-dl2 Benzo(k) fluoranthene-dl2	100	%	
Benzo(k) fluoranthene-uiz	80	% % % %	
Benzo(a)pyrene-d12	87	%	
Perylene-dl2 Indeno(123-cd)pyrene-dl2	92	% %	
Dibenz(a,h)anthracene-d14	84 98	/• %	
Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	70	70	
Field Surrogate	•	o/	
13C-Fluorene	96	%	
ND = Not detected			
NA = Not applicable		d Rv: Andr	n Alaszi
-	Ληηνονο	a Rv: Andr	e Algazi 🕳 🔾

Reported By: Mike Flournoy

Approved By: Andre Algazi

59

POLYNUCLEAR AROMATIC HYDROCARBONS HIGH RESOLUTION GC/MS Method HRGC/HRMS

Client Name: Pacific Environmental Services

Matrix: AIRTRAIN Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 06 OCT 98 Authorized: 30 JUL 98

Parameter	Result	Units	Reporting Limit
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	800 2800 ND 190 600 970 57 55 230 17 64 ND ND ND ND ND	ug/sample	15 15 15 15 15 15 15 15 15 15 15 15
Surrogate	Recovery	ug/sample	15
Naphthalene-d8 Acenaphthylene-d8 Acenaphthene-d10 Fluorene-d10 Phenanthrene-d10 Fluoranthene-d10	90 140 127 96 102 34	% % % % %	m
Pyrene-d10 Benzo(a)anthracene-d12 Perylene-d12 Indeno(123-cd)pyrene-d12	33 38 98 95	% % %	m m m
Chrysene-d12 Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12 Benzo(a)pyrene-d12 Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	32 128 101 98 87 86	% % % % % %	m

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Eric Redman

POLYNUCLEAR AROMATIC HYDROCARBONS HIGH RESOLUTION GC/MS (CONT.) Method HRGC/HRMS

Client Name: Pacific Environmental Services
Client ID: S-MM5-2-F,FH,XAD,COND,BH

300681-0001-SA

Received: 30 JUL 98 Analyzed: 06 OCT 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 Lab ID: AIRTRAIN Matrix: Authorized: 30 JUL 98

Field Surrogate

% NA 13C-Fluorene

Note m : Internal Standard recovery is outside method recovery goal.

ND = Not detected NA = Not applicable

Approved By: Eric Redman Reported By: Mike Flournoy

POLYNUCLEAR AROMATIC HYDROCARBONS HIGH RESOLUTION GC/MS Method HRGC/HRMS

Client Name: Pacific Environmental Services
Client ID: T-MM5-2-F,FH,XAD,COND,BH
Lab ID: 300681-0003-SA

Matrix: AIRTRAIN Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 21 AUG 98 Authorized: 30 JUL 98

Parameter	Result	Units	Reporting Limit	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	19000 38000 470 4500 21000 21000 1700 1200 3200 370 2100 160 47 180 48 530 20	ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample		EB EB EB EB EB E
Benzo(g,h,i)perylene Surrogate	44	ng/sample ng/sample		
Naphthalene-d8 Acenaphthylene-d8 Acenaphthene-d10 Fluorene-d10 Phenanthrene-d10 Fluoranthene-d10 Pyrene-d10 Benzo(a)anthracene-d12 Chrysene-d12 Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12 Benzo(a)pyrene-d12	Recovery 65 73 56 42 61 30 30 62 52 101 67 83	% % % % % % % %		m m m
Perylene-d12 Indeno(123-cd)pyrene-d12 Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	62 174 181 177	% % %		m m m

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Andre Algazi

POLYNUCLEAR AROMATIC HYDROCARBONS HIGH RESOLUTION GC/MS (CONT.) Method HRGC/HRMS

Client Name: Pacific Environmental Services

T-MM5-2-F, FH, XAD, COND, BH Client ID:

Received: 30 JUL 98 Analyzed: 21 AUG 98 300681-0003-SA Sampled: 25 JUL 98 Prepared: 31 JUL 98 Lab ID: **AIRTRAIN** Matrix: 30 JUL 98 Authorized:

Field Surrogate

% 134 13C-Fluorene

Note E: Concentration exceeds calibration range. Value is

estimated.

Note B : Compound is also detected in the blank.

Note m : Internal Standard recovery is outside method recovery goal.

ND = Not detected NA = Not applicable

Approved By: Andre Algazi Reported By: Mike Flournoy

POLYNUCLEAR AROMATIC HYDROCARBONS HIGH RESOLUTION GC/MS Method HRGC/HRMS

Client Name: Pacific Environmental Services
Client ID: T-MM5-FB-F, FH, XAD, COND, BH
Lab ID: 300681-0004-SA

Matrix: AIRTRAIN Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 24 AUG 98 Authorized: 30 JUL 98

			-	
Parameter	Result	Units	Reporting Limit	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Jindeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	290 280 ND 60 160 320 ND 42 40 ND 22 ND ND ND ND ND ND ND ND ND ND ND	ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample	6.1 11 3.7 -4.5 2.0 2.8 4.2 2.9 5.6	B B B B
Surrogate	Recovery	3 7	0.0	
Naphthalene-d8 Acenaphthylene-d8 Acenaphthene-d10 Fluorene-d10 Phenanthrene-d10 Fluoranthene-d10 Pyrene-d10 Benzo(a)anthracene-d12 Chrysene-d12 Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12 Benzo(a)pyrene-d12 Perylene-d12 Indeno(123-cd)pyrene-d12 Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	54 78 84 60 77 105 104 157 145 104 105 85 79 107 110 108	% % % % % % % %		m

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Andre Algazi

POLYNUCLEAR AROMATIC HYDROCARBONS HIGH RESOLUTION GC/MS (CONT.) Method HRGC/HRMS

Client Name: Pacific Environmental Services
Client ID: T-MM5-FB-F,FH,XAD,COND,BH
300681-0004-SA Received: 30 JUL 98 Analyzed: 24 AUG 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 AIRTRAIN Matrix:

Authorized: 30 JUL 98

Field Surrogate

% 102 13C-Fluorene

Note B : Compound is also detected in the blank.

Note m : Internal Standard recovery is outside method recovery goal.

ND = Not detected NA = Not applicable

Approved By: Andre Algazi Reported By: Mike Flournoy

POLYNUCLEAR AROMATIC HYDROCARBONS HIGH RESOLUTION GC/MS Method HRGC/HRMS

Client Name: Pacific Environmental Services Client ID: T-MM5-4-F,FH,XAD,COND,BH

Lab ID: 300681-0005-SA

Matrix: AIRTRAIN Sampled: 26 JUL 98 Received: 30 JUL 98 Authorized: 30 JUL 98 Prepared: 31 JUL 98 Analyzed: 24 AUG 98

Machor Izea. Go Got 30			,	
		F	Reporting	
Parameter	Result	Units	Limit	
r at afficet	Nesu i e	011105	21	
Naphthalene	1400	ng/sample		. EB
2-Methylnaphthalene	2600	ng/sample		EB
Acenaphthylene	80	ng/sample		
Acenaphthene	550	ng/sample		EB
Fluorene	1600	ng/sample		EB
Phenanthrene	4000	ng/sample		EB
Anthracene	220	ng/sample		_
Fluoranthene	300	ng/sample		B E
Pyrene	600	ng/sample		Ł
Benzo(a)anthracene	15	ng/sample		
Chrysene	310	ng/sample		
Benzo(b)fluoranthene	18	ng/sample	 4 O	
Benzo(k)fluoranthene	ND 13	ng/sample	4.8	
Benzo(e)pyrene	ND	ng/sample	2.0	
Benzo(a)pyrene	ND ND	ng/sample ng/sample	3.4	
Perylene Indeno(1,2,3-cd)pyrene	ND ND	ng/sample	3.4	
Dibenz(a,h)anthracene	ND	ng/sample	3.3	
Benzo(g,h,i)perylene	7.5	ng/sample		
benzo(g,n, r)per y rene	, , ,	119/ Jump 10		
Surrogate	Recovery			
Naphthalene-d8	90	%		
Acenaphthylene-d8	88	%		
Acenaphthene-d10	86	%		
Fluorene-d10	62	%		
Phenanthrene-d10	74	%		
Fluoranthene-d10	100	%		
Pyrene-d10	98	%		
Benzo(a)anthracene-d12	148	% %		
Chrysèné-d12	130 108			
Benzo(b)fluoranthene-dl2 Benzo(k)fluoranthene-dl2	94	/o o/		
Benzo(a)pyrene-d12	90	% % %		
Perylene-d12	82	%		
Indeno(123-cd)pyrene-d12	90	%		
Dibenz(a,h)anthracene-d14	84	%		
Benzo(g,h,i)perylene-d12	94	%		
# = = = \ () / · · / / / · · · · · · · · · · · ·	- -			

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy Approved By: Andre Algazi

Client Name: Pacific Environmental Services Client ID: T-MM5-4-F,FH,XAD,COND,BH

300681-0005-SA Lab ID:

Received: 30 JUL 98 Sampled: 26 JUL 98 Prepared: 31 JUL 98 **AIRTRAIN** Analyzed: 24 AUG 98 Matrix: 30 JUL 98 Authorized:

Field Surrogate

104 % 13C-Fluorene

Note E: Concentration exceeds calibration range. Value is

estimated.

Note B: Compound is also detected in the blank.

Note m: Internal Standard recovery is outside method recovery goal.

ND = Not detected NA = Not applicable

Approved By: Andre Algazi Reported By: Mike Flournoy

Client Name: Pacific Environmental Services Client ID: T-MM5-3-F,FH,XAD,COND,BH Lab ID: 300681-0006-SA

Matrix: AIRTRAIN Sampled: 27 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Authorized: 30 JUL 98 Analyzed: 25 AUG 98

Parameter	Result		porting Limit	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(c)pyrene Benzo(a)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	24000 47000 590 5000 9800 13000 1100 930 2700 310 1900 130 34 120 35 280 ND ND 33	ng/sample	11 7.6	EB EB EB EB EB E
Surrogate	Recovery	ng/ samp re		
Naphthalene-d8 Acenaphthylene-d8 Acenaphthene-d10 Fluorene-d10 Phenanthrene-d10 Fluoranthene-d10 Pyrene-d10 Benzo(a)anthracene-d12 Chrysene-d12 Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12 Benzo(a)pyrene-d12 Perylene-d12 Indeno(123-cd)pyrene-d12 Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	25 57 40 49 61 96 80 121 103 97 89 73 67 95 103 92	% % % % % % % % % %		m m

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Andre Algazi

Client Name: Pacific Environmental Services Client ID: T-MM5-3-F,FH,XAD,COND,BH

300681-0006-SA

Received: 30 JUL 98 Analyzed: 25 AUG 98 Lab ID: Sampled: 27 JUL 98 Prepared: 31 JUL 98 **AIRTRAIN** Matrix: 30 JUL 98 Authorized:

%

Field Surrogate

85 13C-Fluorene

Note E: Concentration exceeds calibration range. Value is

estimated.

Note B: Compound is also detected in the blank.

Note m : Internal Standard recovery is outside method recovery goal.

ND = Not detected NA = Not applicable

Approved By: Andre Algazi Reported By: Mike Flournoy

Client Name: Pacific Environmental Services

Client ID: S-MM5-FB-F, FH, XAD, COND, BH

Lab ID: 300681-0008-SA

Matrix: AIRTRAIN Sampled: 26 JUL 98 Received: 30 JUL 98 Authorized: 30 JUL 98 Prepared: 31 JUL 98 Analyzed: 25 AUG 98

Parameter	Result	R	Reporting	
i ai anecei	Kesuit	Units	Limit	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene	410 490 ND 150 420 1600 130 350 53 300 26 ND 25 ND 70	ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample	11 4.5 -7.8	B B B B B B
Dibenz(a,h)anthracene	ND	ng/sample	2.4	
Benzo(g,h,i)perylene	21	ng/sample		
Surrogate	Recovery			
Naphthalene-d8 Acenaphthylene-d8 Acenaphthene-d10 Fluorene-d10 Phenanthrene-d10 Fluoranthene-d10 Pyrene-d10 Benzo(a)anthracene-d12 Chrysene-d12 Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12 Benzo(a)pyrene-d12 Perylene-d12 Indeno(123-cd)pyrene-d12 Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	61 77 80 62 77 113 111 151 125 106 101 93 90 118 124 115	% % % % % % % % %		m

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Andre Algazi

Client Name: Pacific Environmental Services Client ID: S-MM5-FB-F,FH,XAD,COND,BH

300681-0008-SA Lab ID:

Received: 30 JUL 98 Analyzed: 25 AUG 98 Sampled: 26 JUL 98 Prepared: 31 JUL 98 AIRTRAIN Matrix: Authorized: 30 JUL 98

Field Surrogate

% 94 13C-Fluorene

Note B : Compound is also detected in the blank.

Note m : Internal Standard recovery is outside method recovery goal.

ND = Not detected NA = Not applicable

Approved By: Andre Algazi Reported By: Mike Flournoy

Client Name: Pacific Environmental Services
Client ID: S-MM5-RB-F, FH, XAD, COND, BH
Lab ID: 300681-0009-SA
Matrix: AIRTRAIN Sampled: 25 Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Authorized: 30 JUL 98 Analyzed: 25 AUG 98

			•	
Parameter	Result	R Units	eporting	
i ai dilicoci	Result	OHILS	Limit	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene	270 140 ND 38 43 110 ND 26 18 ND ND ND ND ND ND	ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample ng/sample	6.1 7.9 1.1 4.6 1.7 0.58 1.2 0.85 1.1	B B B B B
Dibenz(a,h)anthracene	ND	ng/sample	0.31	
Benzo(g,h,i)perylene	ND	ng/sample	1.3	
Surrogate	Recovery			
Naphthalene-d8 Acenaphthylene-d8 Acenaphthene-d10 Fluorene-d10 Phenanthrene-d10 Pyrene-d10 Benzo(a)anthracene-d12 Chrysene-d12 Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12 Benzo(a)pyrene-d12 Perylene-d12 Indeno(123-cd)pyrene-d12 Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	59 71 74 63 75 86 88 139 127 105 102 93 90 121 120 119	% % % % % % % %		

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Andre Algazi

Client Name: Pacific Environmental Services Client ID: S-MM5-RB-F,FH,XAD,COND,BH

300681-0009-SA Lab ID:

Received: 30 JUL 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 AIRTRAIN Analyzed: 25 AUG 98 Matrix: Authorized: 30 JUL 98

Field Surrogate

113 % 13C-Fluorene

Note B: Compound is also detected in the blank.

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Andre Algazi

Client Name: Pacific Environmental Services Client ID: S-MM5-4-F,FH,XAD,COND,BH

300681-0010-SA Lab ID:

Sampled: 25 JUL 98 Prepared: 31 JUL 98 Received: 30 JUL 98 Analyzed: 06 OCT 98 Matrix: AIRTRAIN Authorized: 30 JUL 98

Parameter	Result	Reporting Units Limit	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(e)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	720 2000 ND 170 340 640 56 67 170 26 97 ND ND ND ND ND ND	ug/sample 15	
Surrogate	Recovery		
Naphthalene-d8 Acenaphthylene-d8 Acenaphthene-d10 Fluorene-d10 Phenanthrene-d10 Fluoranthene-d10 Pyrene-d10 Benzo(a)anthracene-d12 Perylene-d12 Indeno(123-cd)pyrene-d12 Chrysene-d12 Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12 Benzo(a)pyrene-d12 Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	85 121 113 92 98 49 47 52 94 85 44 134 98 98	% % 9% 9% 9% 9% 9% 9%	m m

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Eric Redman

Client Name: Pacific Environmental Services

S-MM5-4-F, FH, XAD, COND, BH Client ID:

300681-0010-SA Lab ID:

Received: 30 JUL 98 Analyzed: 06 OCT 98 Sampled: 25 JUL 98 Prepared: 31 JUL 98 AIRTRAIN Matrix: Authorized: 30 JUL 98

Field Surrogate

% NA 13C-Fluorene

Note m : Internal Standard recovery is outside method recovery goal.

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Eric Redman

Client Name: Pacific Environmental Services Client ID: S-MM5-5-F,FH,XAD,COND,BH

300681-0011-SA Lab ID:

Sampled: 28 JUL 98 Prepared: 31 JUL 98 Matrix: AIRTRAIN Received: 30 JUL 98 Analyzed: 06 OCT 98 Authorized: 30 JUL 98

Parameter	Result	Units	Reporting Limit	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(c)pyrene Benzo(a)pyrene Perylene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	1300 3400 22 370 640 1200 94 100 290 43 160 ND ND ND 15 ND ND 28 ND ND	ug/sample	15 15 15 15 15 15 15 15 15 15 15 15 15	
Surrogate	Recovery			
Naphthalene-d8 Acenaphthylene-d8 Acenaphthene-d10 Fluorene-d10 Phenanthrene-d10 Fluoranthene-d10 Pyrene-d10 Benzo(a)anthracene-d12 Perylene-d12 Indeno(123-cd)pyrene-d12	84 122 108 88 93 50 48 51 94 82	% % % % % % %		m
Chrysene-d12 Benzo(b)fluoranthene-d12 Benzo(k)fluoranthene-d12 Benzo(a)pyrene-d12 Benzo(a)pyrene-d12 Dibenz(a,h)anthracene-d14 Benzo(g,h,i)perylene-d12	42 125 96 95 76 73	% % % % %		m

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Eric Redman

Client Name: Pacific Environmental Services
Client ID: S-MM5-5-F,FH,XAD,COND,BH

300681-0011-SA Lab ID:

Received: 30 JUL 98 Sampled: 28 JUL 98 Prepared: 31 JUL 98 AIRTRAIN Matrix: Analyzed: 06 OCT 98 Authorized: 30 JUL 98

Field Surrogate

NA % 13C-Fluorene

Note m : Internal Standard recovery is outside method recovery goal.

ND = Not detected NA = Not applicable

Reported By: Mike Flournoy

Approved By: Eric Redman

Method Blank

mm/sma 9-2-48

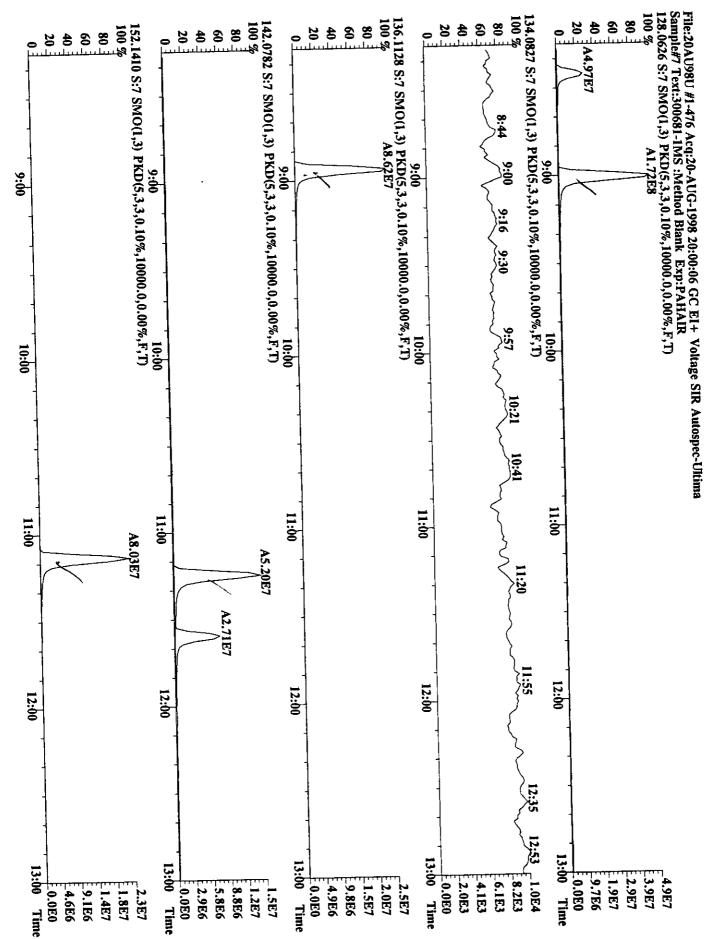
02-SEP-1998 07:49:40 PM Dioxin Furan Unknown RESULTS

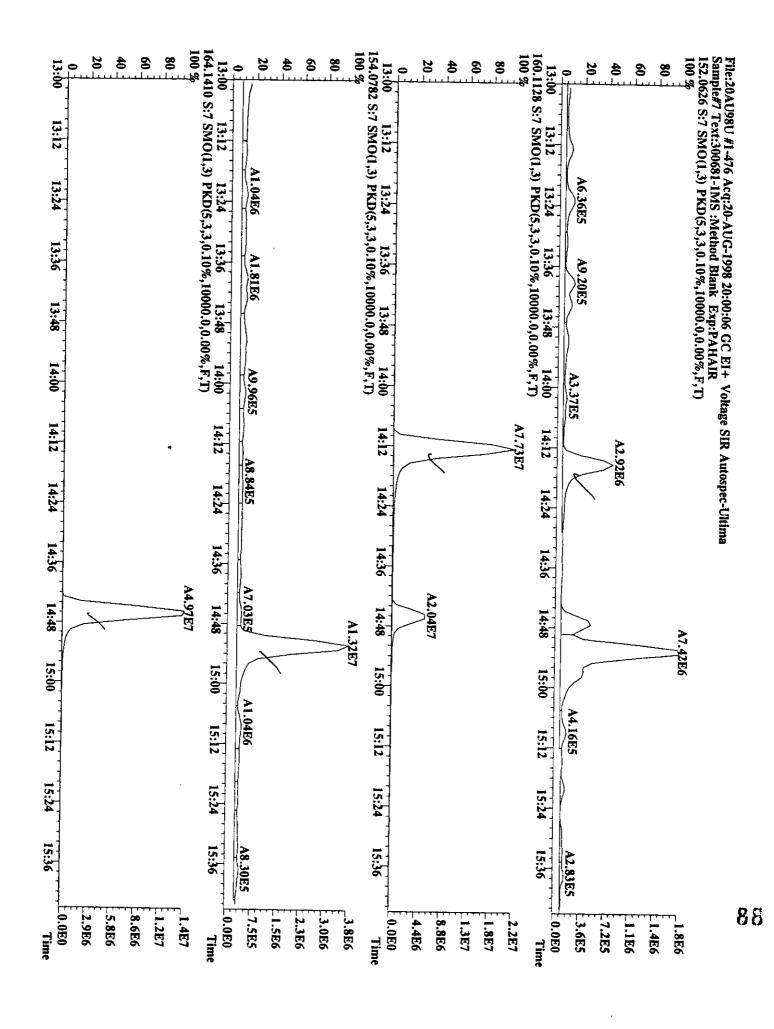
02-285-1990 07.40.40		
GC Column : DB-5 Data file : 20AU98U Weight : 0.333 Name	Results: 20A03000711R20	PAHX.TRG 20-AUG-98 PAHX081998U.RRF ng/ Rec/ SAMP MDL
d10-2-Methylnaphthalene / d8-Naphthalene Naphthalene 2-Methylnaphthalene	160610600 1.00 Y 11: 8 Y 1 172466600 1.00 Y 8: 56 Y 1 242308000 1.00 Y 9: 0 Y 1	.00 50.00 .25 43.10 86 .05 283.71 .77 117.47
d8-Acenaphthylene Acenaphthylene		.55 31.05 62 .86 6.57=DL
d10-Acenaphthene Acenaphthene		.88 35.28 71 .93 42.88
d10-Anthracene d10-Fluorene Fluorene	88692000 1.00 Y 16: 28 Y 1	.00 50.00 .13 38.63 77 .05 43.10:
d10-Phenanthrene Phenanthrene Anthracene	89206800 1.00 Y 19: 42 Y 0	.63 36.21 72 0.84 82:19* 0.83 7.24=DL
d12-Benzo(e)pyrene d10-Fluoranthene Fluoranthene	193255000 1.00 Y 23: 32 Y 0	00 50.00).80 40.78 82 04 25:62
d10-Pyrene Pyrene	201750000 1.00 1 21. 19 V	0.81 42.23 84 1.11 8.58=DL
d12-Benzo(a)anthracene Benzo(a)anthracene	148246400 1.00 1 20. 10 7	0.65 38.64 77 L.06 0.85=DL
d12-Chrysene Chrysene	230100000 1.00 1 20. 10 V	0.85 45.98 92 0.97 1.37=DL
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	169046000 1.00 Y 31: 39 Y	1.00 50.00 0.63 45.77 92 1.07 2.84=DL
d12-Benzo(k)fluoranthend Benzo(k)fluoranthend	263266000 1.00 1 31. 10 V	0.90 49.80 100 1.16 2.25=DL
d12-Benzo(a)pyren Benzo(e)pyren Benzo(a)pyren	7488380 1.00 Y 32: 45 Y	0.75 40.25 80 1.46 4.31=DL 1.02 3.17=DL
d12-Perylen Perylen	e 157592000 1.00 Y 33: 9 Y	0.61 43.47 87 1.62 2.47=DL
d12-Indeno(123-cd)pyren Indeno(123-cd)pyren	e 192155200 1.00 1 50. 0 V	0.71 46.10 92 0.61 5.52=DL
d14-Dibenz (ah) anthracen Dibenz (ah) anthracen	e 109863200 1.00 Y 38: 1 Y	0.44 42.21 84 1.11 3.10=DL
d12-Benzo(ghi)perylen Benzo(ghi)perylen	e 182400000 1.00 Y 39: 19 N	0.63 49.05 98 0.99 3.71=DL
d8-Naphthalen 13C-Naphthalen	e 172466600 1.00 Y 8: 56 Y	1.00 50.00 9 1.00 0.00 0
		1

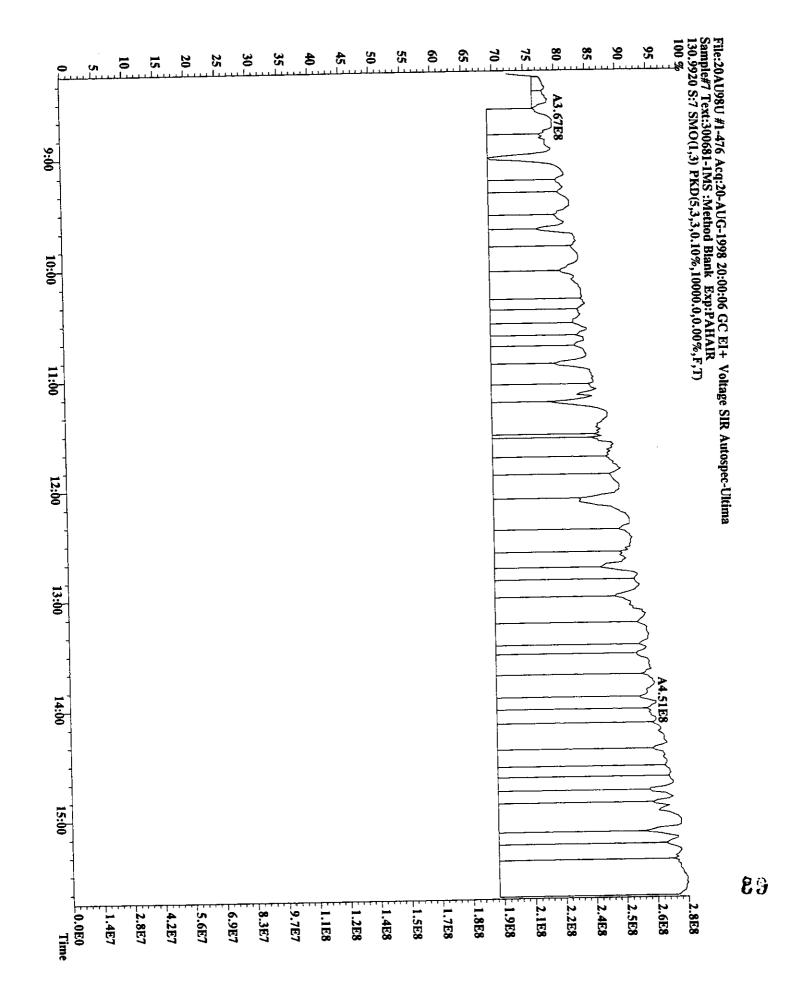
d10-Fluorene 88692000 1.00 Y 16: 28 Y 1.00 50.00 13C-Fluorene 72085200 1.00 Y 16: 34 Y 0.81 50.36 101 4/48

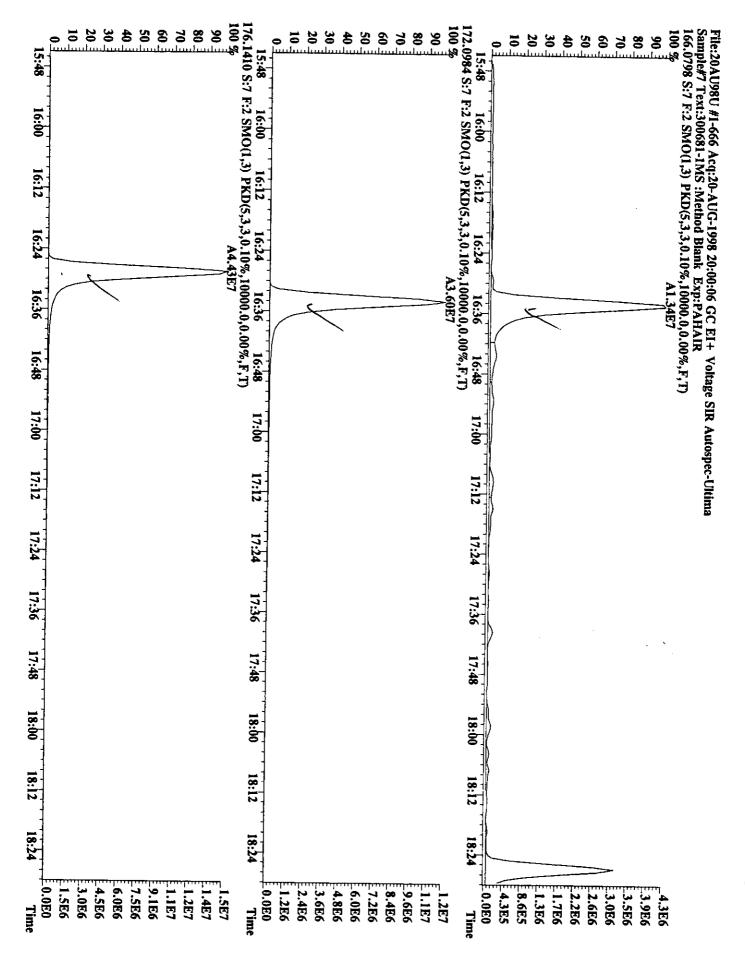
01-2F6-1330 03:1	3.03	
HX.TRG -AUG-98 HX081998U.RRF ng/ Rec/ SAMP MDL	0.333	
50.00	80305300	80305300
43.10 86	86233300	86233300
283.77 0.000	171654000	171654000
117.47 0.000	51999700	51999700
31.05 62	77300800	77300800
6.57 0.000	2922000	2922000
35.28 71	49712600	49712600
42.88 0.000	13201700	13201700
50.00	50821200	50821200
38.63 77	44346000	44346000
43.10 0.000	13365200	13365200
36.21 72	96758500	96758500
82.19 0.000	44603400	44603400
7.24 0.000	3870000	3870000
50.00	147490000	147490000
40.78 82	96627500	96627500
15.62 0.000	10458400	10458400
42.23 84	100875000	100875000
8.58 0.000	6382070	6382070
38.64 77	74123200	74123200
0.85 0.000	444229	444229
45.98 92	115053000	115053000
1.37 0.000	1019590	1019590
50.00	147490000	147490000
45.77 92	84523000	84523000
2.84 0.000	1706740	1706740
49.80 100	131633000	131633000
2.25 0.000	2282980	2282980
40.25 80 4.31 0.000 3.17 0.000	89177000 3744190 1925790	3744190
43.47 87	78796000	78796000
2.47 0.000	2100000	2100000
46.10 92 5.52 0.000		
42.21 84 3.10 0.000		54931600 1261970
49.05 98	91200000	91200000
3.71 0.000	2230000	2230000

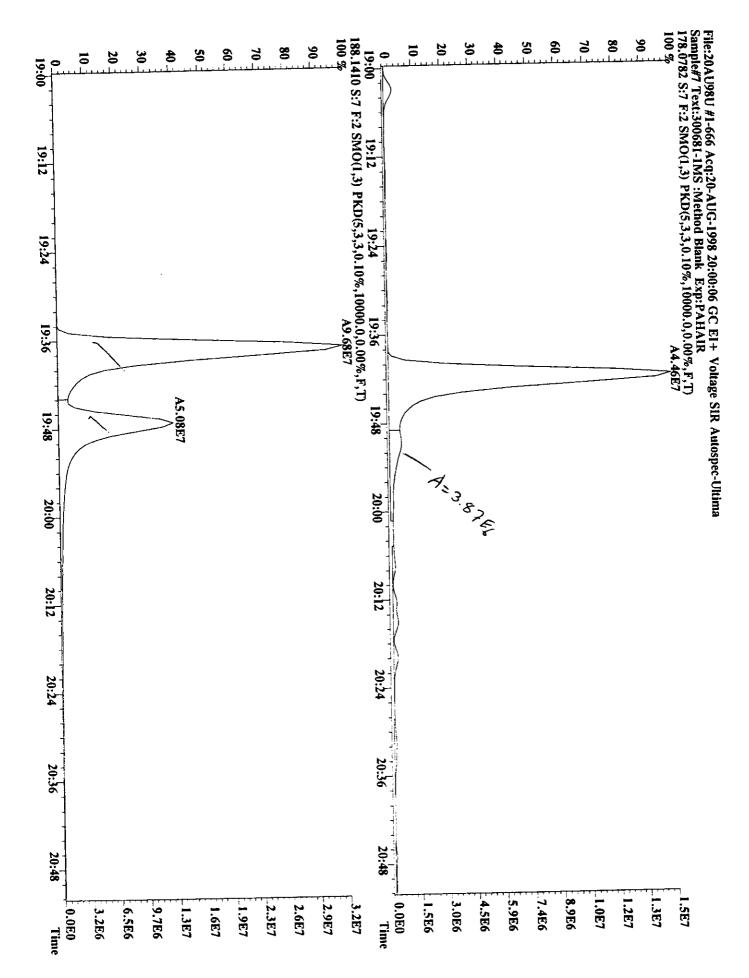
50.00 44346000 44346000 50.36 101 36042600 36042600

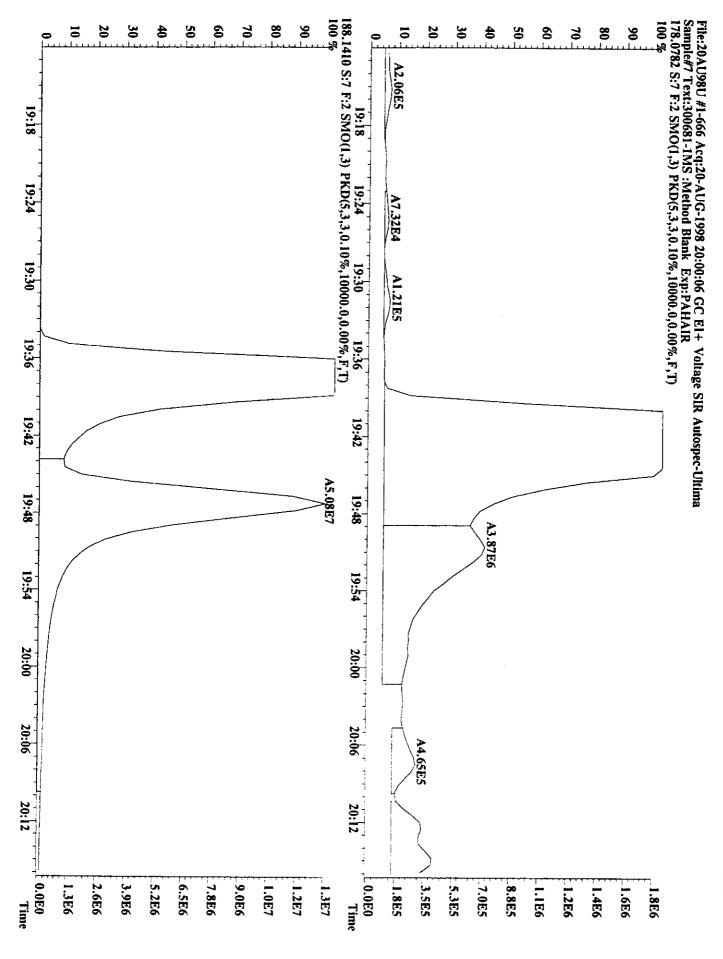

: PAHX.TRG Results : 20AU98U071.RES Mass Spec : ULTIMA Date analyzed: 20-AUG-98 :Method Blank Ex Cal : PAHX081998U.RRF GC Column : DB-5 300681-1MS Data file : 20AU98U ng/ Rec/ RRF R. T. Isotope Total : 0.333 MDL SAMP Weight Ratio mm:ss Response Name 1.00 50.00 8 Y 160610600 1.00 Y 11: d10-2-Methylnaphthalene 43.10 86 1.25 8: 56 Y 172466600 1.00 Y d8-Naphthalene 283.77 0.000 1.05 9: 0 Y 343308000 1.00 Y Naphthalene 117.47 0.000 0.77 11: 15 Y 103999400 1.00 Y 2-Methylnaphthalene 31.05 62 1.55 14: 13 Y 154601600 1.00 Y d8-Acenaphthylene 6.57 0.000 0.86 14: 15 Y 5844000 1.00 Y Acenaphthylene 71 35.28 0.88 14: 46 Y 99425200 1.00 Y d10-Acenaphthene 42.88 0.000 0.93 14: 52 Y 26403400 1.00 Y Acenaphthene 50.00 1.00 19: 47 101642400 1.00 Y Y d10-Anthracene 38.63 77 1.13 16: 28 Y 88692000 1.00 Y d10-Fluorene 43.10 0.000 1.05 16: 34 Y 26730400 1.00 Y Fluorene 72 2.63 36.21 19: 37 Y 193517000 1.00 Y d10-Phenanthrene 0.000 0.84 82.19 19: 42 89206800 1.00 Y Phenanthrene 0.00 0.000 0.83 19: 50 N 0.00 N * No Peak Anthracene 50.00 1.00 32: 38 Y 294980000 1.00 Y d12-Benzo(e)pyrene 82 40.78 0.80 23: 32 Y 193255000 1.00 Y d10-Fluoranthene 15.62 0.000 1.04 23: 35 Y 20916800 1.00 Y Fluoranthene 84 0.81 42.23 24: 14 Y 201750000 1.00 Y d10-Pyrene 8.58 0.000 24: 18 Y 1.11 12764140 1.00 Y Pyrene 77 38.64 0.65 6 Y 28: 148246400 1.00 Y d12-Benzo(a) anthracene 0.85 0.000 28: 10 Y 1.06 888458 1.00 Y Benzo(a) anthracene 92 45.98 0.85 230106000 1.00 Y 28: 13 Y d12-Chrysene 1.37 0.000 0.97 28: 18 Y 2039180 1.00 Y Chrysene 50.00 1.00 32: 38 Y 294980000 1.00 Y d12-Benzo(e)pyrene 92 45.77 0.63 31: 39 Y 169046000 1.00 Y d12-Benzo(b) fluoranthene 2.84 0.000 1.07 31: 44 Y 3413480 1.00 Y Benzo(b) fluoranthene 100 0.90 49.80 31: 44 Y 263266000 1.00 Y d12-Benzo(k) fluoranthene 2.25 0.000 1.16 31: 49 Y 4565960 1.00 Y Benzo(k) fluoranthene 40.25 80 0.75 32: 51 Y 178354000 1.00 Y d12-Benzo(a)pyrene 4.31 0.000 1.46 32: 45 Y 7488380 1.00 Y Benzo(e)pyrene 3.17 0.000 32: 57 Y 1.02 3851580 1.00 Y Benzo(a)pyrene 87 43.47 0.61 9 Y 157592000 1.00 Y 33: d12-Perylene 1.95 0.000 1.62 Y 16 3314100 1.00 Y 33: Perylene 92 0.71 46.10 0 Y 192155200 1.00 Y 38: d12-Indeno(123-cd)pyrene 0.00 0.000 0.61 2 N 0.00 N 38: * No Peak Indeno (123-cd) pyrene 84 42.21 0.44 1 Y 38: 109863200 1.00 Y d14-Dibenz (ah) anthracene 3.10 0.000 1.11 38: 13 Y 2523940 1.00 Y Dibenz (ah) anthracene 0.00 gg *NoINOIS 0 39: 19 N 0.63 0.00 N * No Peak d12-Benzo(ghi)perylene 0.99 39: 28 N 0.00 N No Peak Benzo(ghi)perylene 50.00 1.00 8: 56 Y 172466600 1.00 Y d8-Naphthalene 0 0.00 1.00 8: 60 N 0.00 N * No Peak 13C-Naphthalene

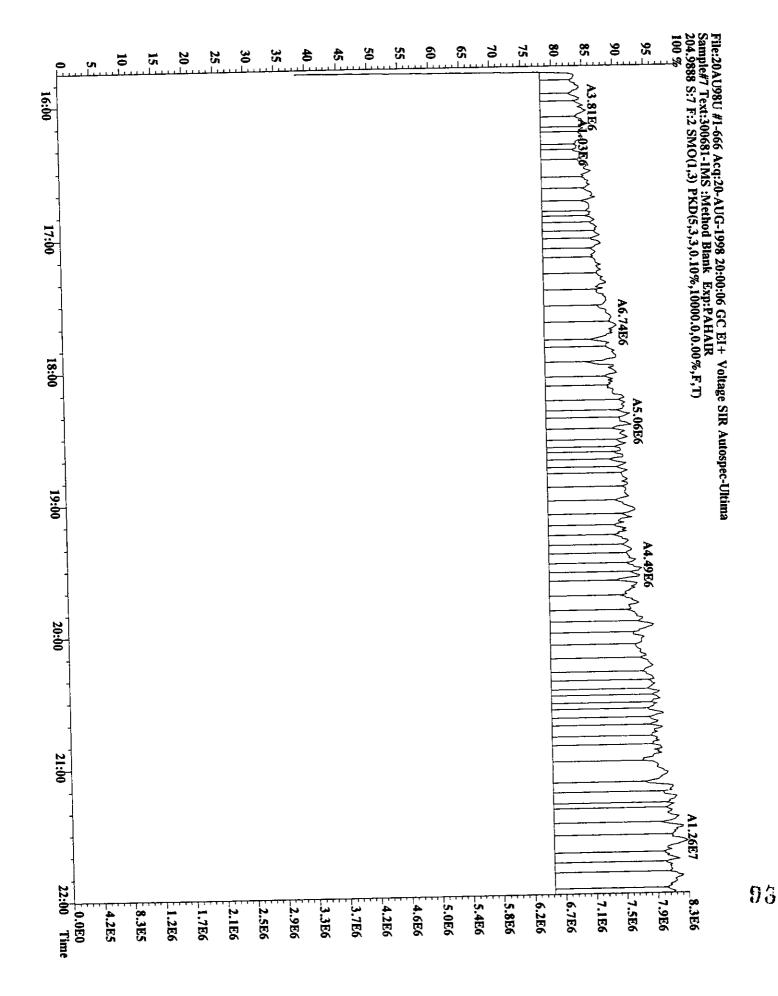

88692000 1.00 Y 16: 28 Y 1.00 50.00 72085200 1.00 Y 16: 34 Y 0.81 50.36 101 d10-Fluorene 13C-Fluorene

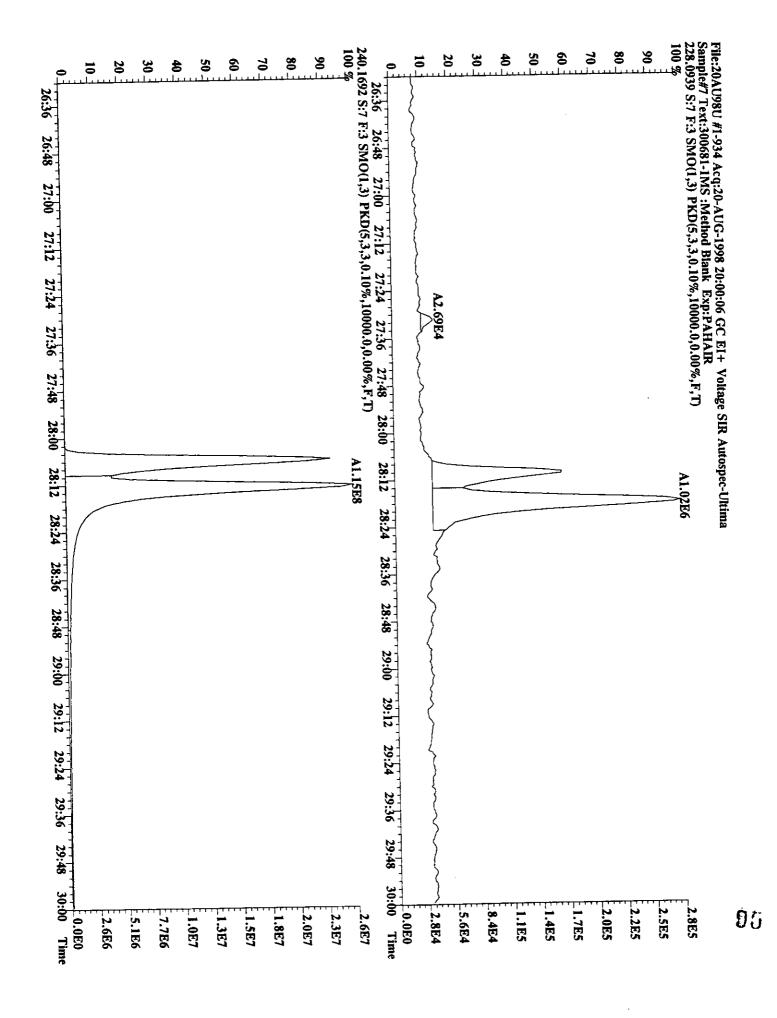

24-AUG-1998 12:39:59 PM	PAH Unknown RESULTS	1
Mass Spec : ULTIMA GC Column : DB-5 Data file : 20AU98U Weight : 0.333 Name	Results: 20AU98U071.RES Date analyzed 300681-1MS: Method Blank Ex Cal Total Isotope R. T. RRF Response Ratio mm:ss	: PAHPRESPIKED.TRG : 20-AUG-98 : PAHAIR081998U.RR ng/ Rec/ SAMP MDL
d10-2-Methylnaphthalene	160610600 1.00 Y 11: 8 Y	1.00 50.00
d8-Naphthalene	172466600 1.00 Y 8: 56 Y	1.25 43.10 86
Naphthalene	343308000 1.00 Y 9: 0 Y	1.05 283.77 0.000
2-Methylnaphthalene	103999400 1.00 Y 11: 15 Y	0.77 117.47 0.000
d8-Acenaphthylene	154601600 1.00 Y 14: 13 Y	1.55 31.05 62
Acenaphthylene	5844000 1.00 Y 14: 15 Y	0.86 6.57 0.000
d10-Acenaphthene	99425200 1.00 Y 14: 46 Y	0.88 35.28 71
Acenaphthene	26403400 1.00 Y 14: 52 Y	0.93 42.88 0.000
d10-Anthracene	101642400 1.00 Y 19: 47 Y	1.00 50.00
d10-Fluorene	88692000 1.00 Y 16: 28 Y	1.13 38.63 77
Fluorene	26730400 1.00 Y 16: 34 Y	1.05 43.10 0.000
d10-Phenanthrene	193517000 1.00 Y 19: 37 Y	2.63 36.21 72
Phenanthrene	89206800 1.00 Y 19: 42 Y	0.84 82.19 0.000
Anthracene	* No Peak 0.00 N 19: 51 N	0.83 0.00 0.000
d14-Terphenyl	214170000 1.00 Y 24: 53 Y	1.00 50.00
d10-Fluoranthene	193255000 1.00 Y 23: 32 Y	1.01 44.83 90
Fluoranthene	20916800 1.00 Y 23: 35 Y	1.04 15.62 0.000
d10-Pyrene	201750000 1.00 Y 24: 14 Y	1.01 46.54 93
Pyrene	12764140 1.00 Y 24: 18 Y	1.11 8.58 0.000
d12-Benzo(a)anthracene	148246400 1.00 Y 28: 6 Y	0.82 42.46 85
Benzo(a)anthracene	888458 1.00 Y 28: 10 Y	1.06 0.85 0.000
d12-Chrysene Chrysene	230106000 1.00 Y 28: 13 Y	1.06 50.47 101 0.97 1.37 0.000
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	169046000 1.00 1 31: 39 1	1.00 50.00 0.63 45.77 92 1.07 2.84 0.000
d12-Benzo(k)fluoranthen	263266000 1.00 Y 31: 44 Y	0.90 49.80 100
Benzo(k)fluoranthen	4565960 1.00 Y 31: 49 Y	1.16 2.25 0.000
d12-Benzo(a) pyren Benzo(e) pyren Benzo(a) pyren	7488380 1.00 1 32: 43 1	0.75 40.25 80 1.46 4.31 0.000 1.02 3.17 0.000
d12-Perylen	157592000 1.00 Y 33: 9 Y	0.61 43.47 87
Perylen	3314100 1.00 Y 33: 16 Y	1.62 1.95 0.000
d12-Indeno(123-cd)pyren	e 192155200 1.00 Y 38: 0 Y	0.71 46.10 92
Indeno(123-cd)pyren	e 4324000 1.00 Y 38: 9 Y	0.61 5.53 0.000
d14-Dibenz(ah)anthracen Dibenz(ah)anthracen	e 109863200 1.00 Y 38: 1 Y	0.44 42.21 84 1.11 3.10 0.000
d12-Benzo(ghi)peryler Benzo(ghi)peryler	e 182477600 1.00 Y 39: 24 Y	0.63 49.07 98 0.99 3.70 0.000
d8-Naphthaler 13C-Naphthaler	e 172466600 1.00 Y 8: 56 Y	1.00 50.00 1.00 0.00 0

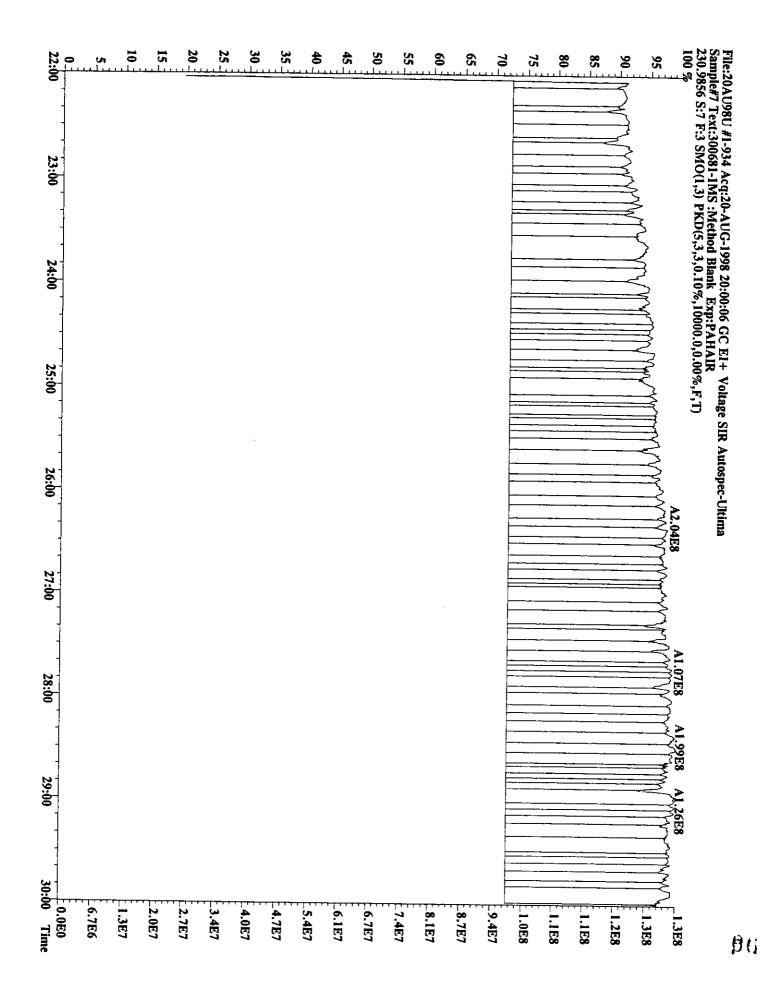

2

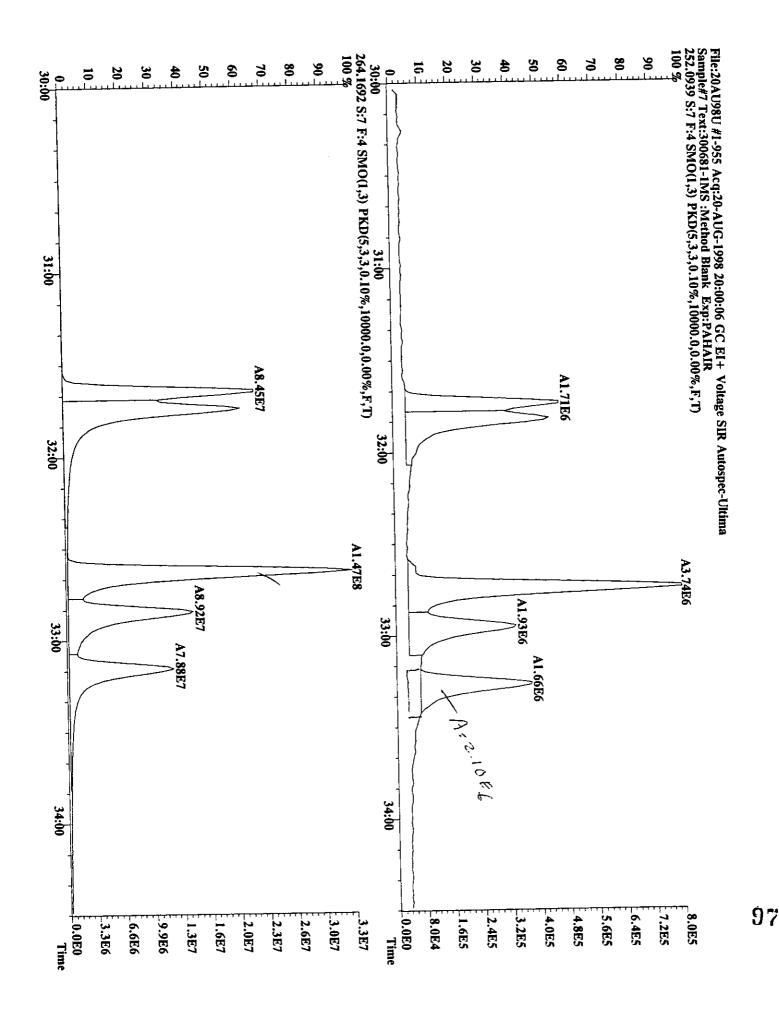

d10-Fluorene 88692000 1.00 Y 16: 28 Y 1.00 50.00 13C-Fluorene 72085200 1.00 Y 16: 34 Y 1.00 40.64 81

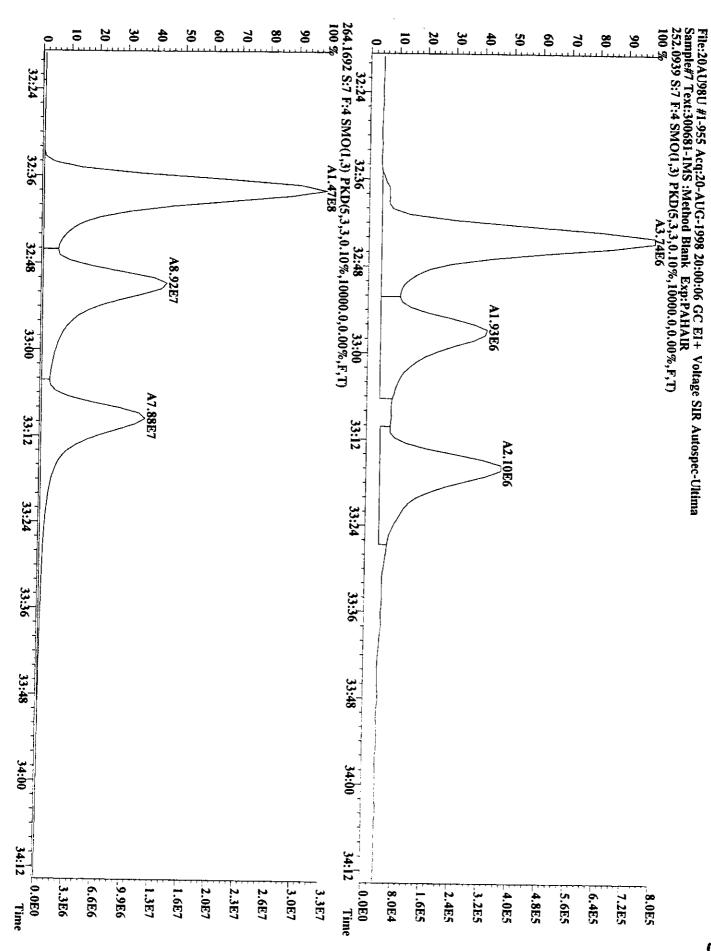


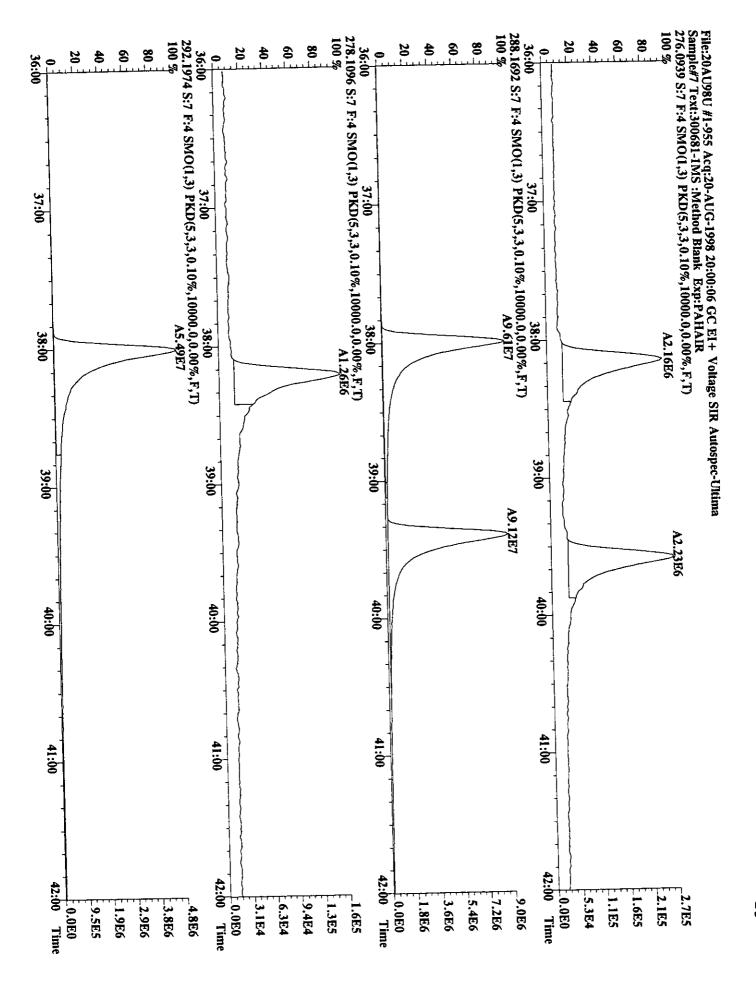


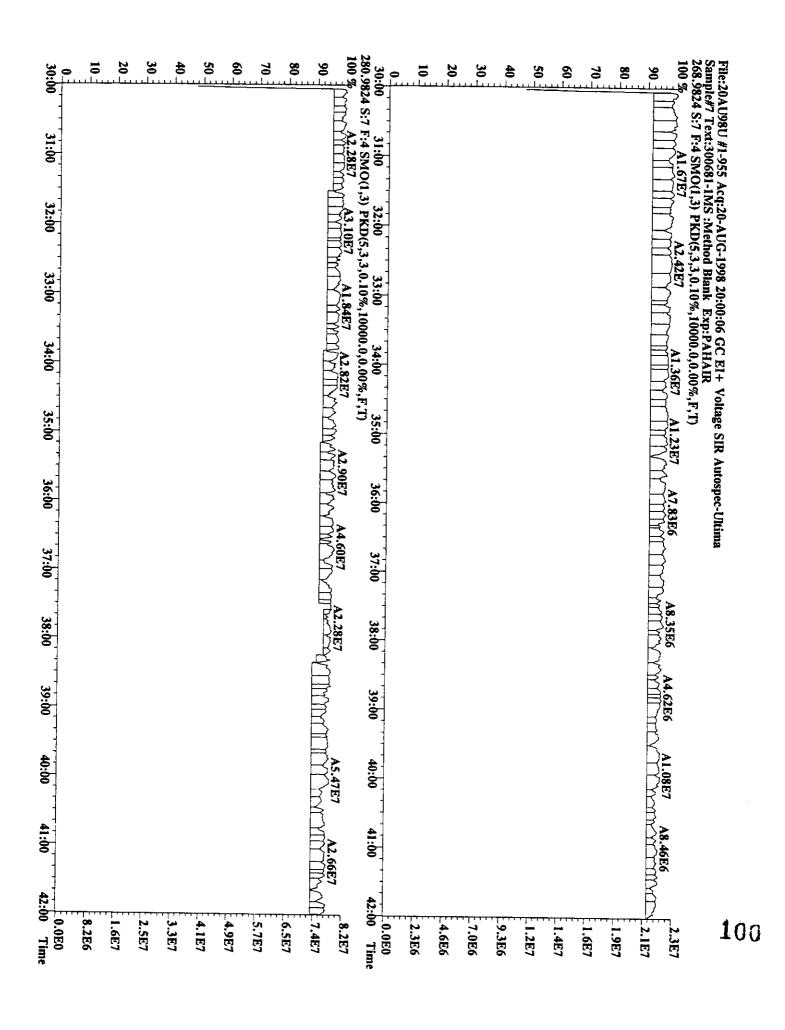












·		

Sample Data

15-OCT-1998 10:26:08 AM Dioxin Furan Unknown RESULTS

15-OCT-1998 10:26:08 AM	Dioxin Furan Unknown RESULIS	
	Results: 050C98U271.RES : PAHAIR.TRG Date analyzed: 05-OCT-98	
GC Column : DB-5 Data file : 050C98U	300681-1DI :1000X S-MM5-2- Ex Cal : PARAIRIU01980.RC	
Weight : 0.00033 Name	Response Ratio mm:ss SAMPLE MDL 2	
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene	87453800 1.00 Y 10: 27 Y 1.00 0.05 139709200 1.00 Y 8: 18 Y 1.78 0.04 889458000 1.00 Y 8: 21 Y 1.20 803.60 1719680000 1.00 Y 10: 34 Y 0.66 2839.41	
2-Methylnaphthalene	1715000000 1717 121 29 V 1 16 0.07 140	
d8-Acenaphthylene Acenaphthylene	13040000 1.00 Y 13: 31 Y 1.02 13.49 <rl=15< td=""><td></td></rl=15<>	
d10-Acenaphthene Acenaphthene	75989000 1.00 Y 14: 3 1 0.00 111200000 1.00 Y 14: 10 Y 1.14 194.56	
d10-Anthracene d10-Fluorene Fluorene	76622400 1.00 Y 15. 51 V 1.15 600.56	
d10-Phenanthrene Phenanthrene Anthracene	994324000 1.00 Y 10. 5 Y 0.97 56.71	
d14-Terphenyl d10-Fluoranthene Fluoranthene	352630000 1.00 Y 24: 10 Y 1.00 0.05 177834000 1.00 Y 22: 46 Y 1.49 0.02 34 M	
d10-Pyrene Pyrene	182455600 1.00 Y 23: 28 Y 1.58 0.02 33 M	
d12-Benzo(a) anthracene Benzo(a) anthracene	108326400 1.00 Y 27: 20 Y 0.81 0.02 38 M	
d12-Chrysene Chrysene	= 130275400 1.00 Y 27: 26 Y 1.17 0.02 32 m	
d12-Benzo(e) pyrene d12-Benzo(b) fluoranthene Benzo(b) fluoranthene	9 152767800 1.00 Y 31: 40 Y 1.00 0.05 9 94234800 1.00 Y 30: 45 Y 0.48 0.06 128 9 94234800 1.00 Y 30: 50 Y 1.30 6.76 <rl=15< td=""><td></td></rl=15<>	
d12-Benzo(k) fluoranthen Benzo(k) fluoranthen	e 151677600 1.00 Y 30: 51 Y 0.99 0.05 101	
d12-Benzo(a) pyren Benzo(e) pyren Benzo(a) pyren	e 110385800 1.00 Y 31: 51 Y 0.74 0.05 98 e 9983200 1.00 Y 31: 46 Y 1.62 8.45 <rl=15 e 9983200 1.00 Y 31: 56 Y 1.11 3.81<rl=15< td=""><td></td></rl=15<></rl=15 	
d12-Perylen Perylen	e 96580200 1.00 Y 32: 9 Y 0.65 0.05 98	
d12-Indeno(123-cd)pyren Indeno(123-cd)pyren	Le 53871600 1.00 Y 36: 33 Y 0.37 0.05 95 Le 944000 1.00 Y 36: 41 Y 0.60 4.40 <rl=15< td=""><td></td></rl=15<>	
d14-Dibenz (ah) anthracer Dibenz (ah) anthracer	te 27068800 1.00 Y 36: 39 Y 0.20 0.04 87 te 548000 1.00 Y 36: 49 Y 1.28 2.39 <rl=15< td=""><td></td></rl=15<>	
d12-Benzo(ghi)peryler Benzo(ghi)peryler	ne 53827000 1.00 Y 37: 49 Y 0.41 0.04 86	
	mat Odisms	

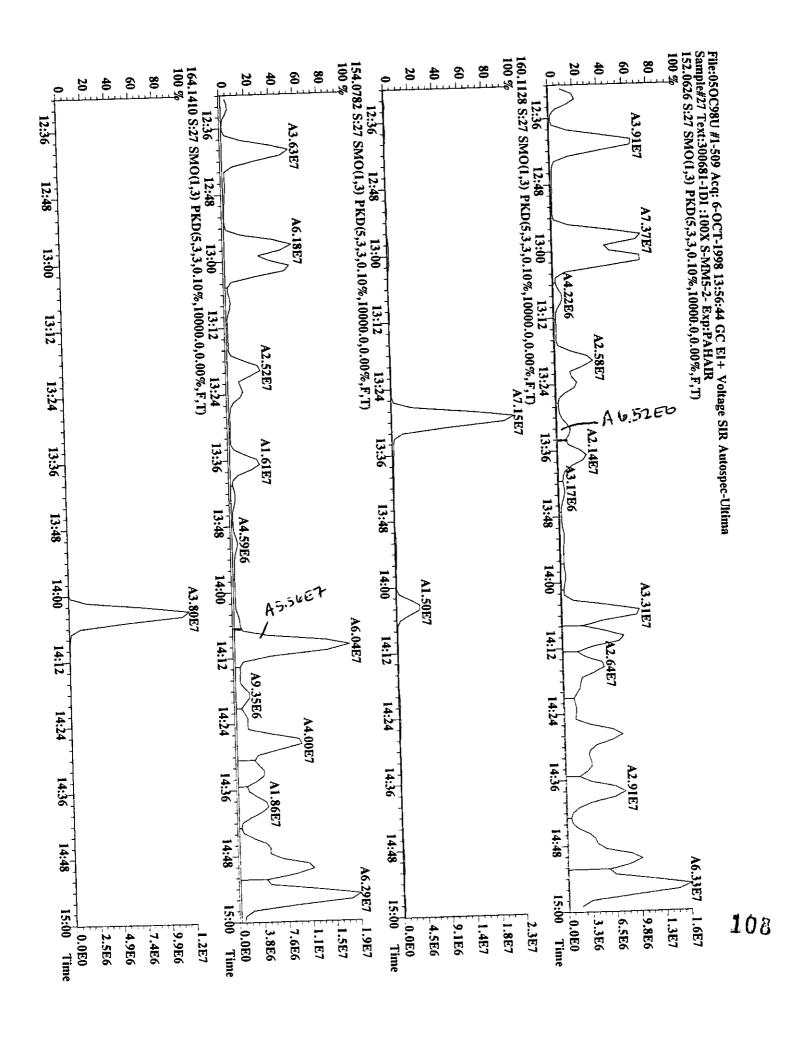
050C98U271.RES

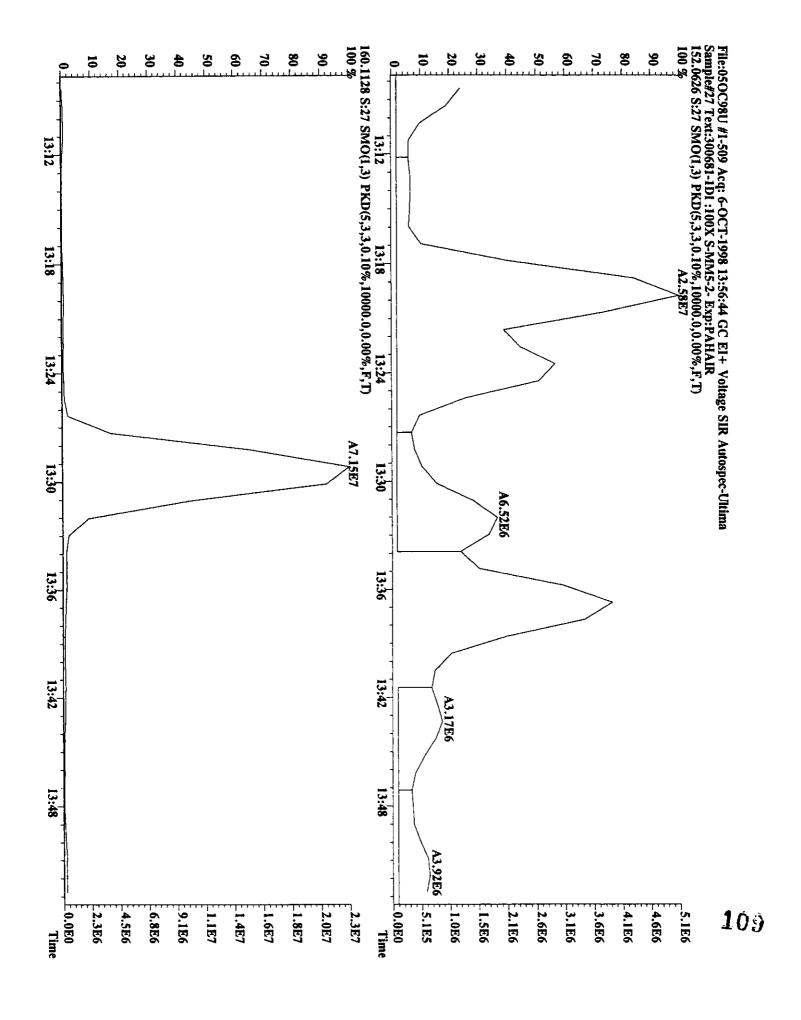
15-OCT-1998 10:27:33 AM

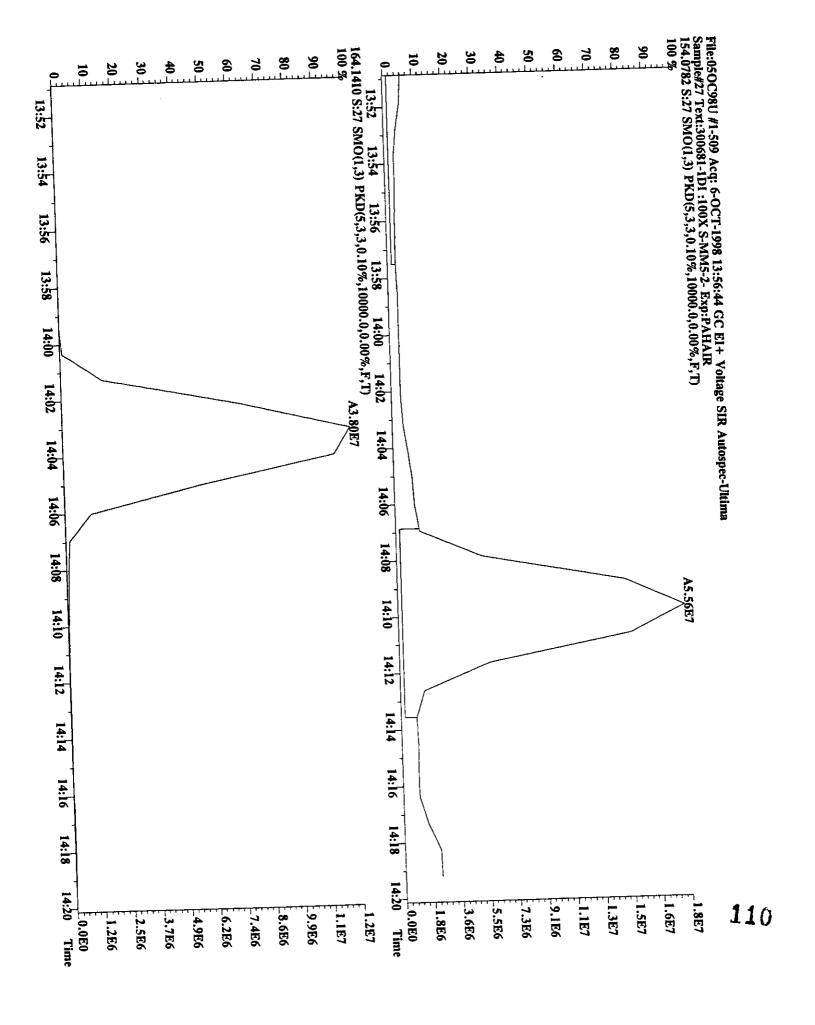
: PAHAIR.TRG

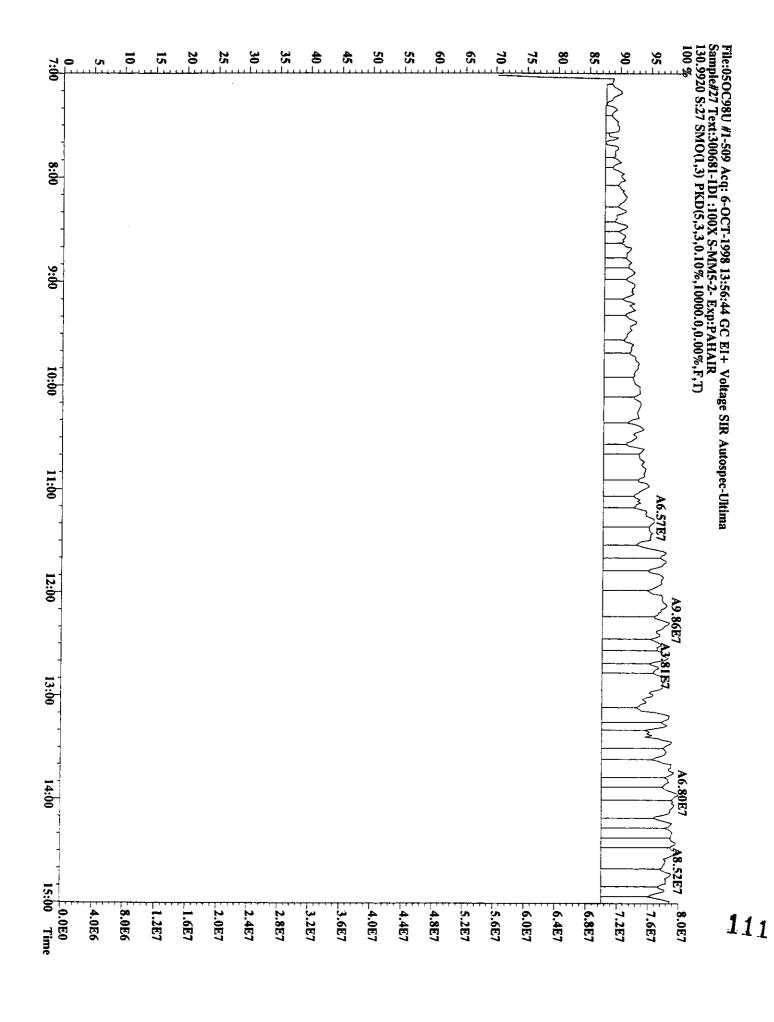
Date analyzed: 05-OCT-98 0.00033 1000X S-MM5-2- Ex Cal : PAHAIR100198U.RRF ug/ Rec/ Isotope R. T. RRF MDL SAMPLE mm:ss Ratio 43726900 43726900 1.00 0.05 10: 27 Y 1.00 Y 69854600 69854600 0.04 90 1.78 1.00 Y 8: 18 Y 444729000 444729000 803.60 8: 21 Y 1.20 1.00 Y 859840000 859840000 0.66 2839.41 10: 34 Y 1.00 Y 140 71461800 71461800 0.07 13: 29 Y 1.16 1.00 Y 6520000 13.49<RL=15 6520000 13: 31 Y 1.02 1.00 Y 37994500 0.68 0.06 127 37994500 1.00 Y 14: 3 Y 55600000 55600000 14: 10 Y 1.14 194.56 1.00 Y 29248300 0.05 29248300 1.00 Y 2 Y 1.00 19: 38311200 38311200 1.36 0.05 96 15: 45 Y 1.00 Y 174000000 174000000 1.15 600.56 1.00 Y 15: 51 Y 81881400 2.74 81881400 0.05 102 18: 52 Y 1.00 Y 497162000 965.90 497162000 0.95 18: 57 Y 1.00 Y 29800000 29800000 0.97 56.71 19: 5 Y 1.00 Y 176315000 176315000 1.00 0.05 24: 10 Y 1.00 Y 88917000 34 88917000 1.49 0.02 1.00 Y 22: 46 Y 39693100 39693100 54.91 1.00 Y 22: 49 Y 1.23 91227800 91227800 1.58 23: 28 Y 0.02 33 1.00 Y 173684000 173684000 1.00 Y 23: 31 Y 229.43 1.26 54163200 0.81 0.02 38 54163200 27: 20 Y 27: 24 Y 1.00 Y 7780000 17.00 7780000 1.28 1.00 Y 65137700 65137700 0.02 32 27: 26 Y 1.17 1.00 Y 31900000 31900000 27: 31 Y 1.16 63.94 1.00 Y 76383900 76383900 31: 40 Y 1.00 0.05 1.00 Y 47117400 47117400 128 0.48 0.06 30: 45 Y 1.00 Y 2730000 6.76<RL=15 2730000 30: 50 Y 1.30 1.00 Y 75838800 0.05 101 75838800 30: 51 Y 0.99 1.00 Y 1860000 1860000 30: 50 Y 1.20 3.09<RL=15 1.00 Y 55192900 55192900 0.05 98 31: 51 Y 0.74 1.00 Y 4991600 4991600 8.45<RL=15 1.00 Y 31: 46 Y 1.62 1543330 1543330 31: 56 Y 3.81<RL=15 1.00 Y 1.11 48290100 48290100 0.05 98 0.65 1.00 Y 32: 9 Y 11769100 11769100 32: 14 Y 1.74 21.18 1.00 Y 0.05 95 26935800 26935800 1.00 Y 0.37 36: 33 Y 472000 4.40<RL=15 472000 36: 41 Y 0.60 1.00 Y 13534400 13534400 1.00 Y 36: 39 Y 0.20 0.04 87 274000 2.39<RL=15 274000 1.28 1.00 Y 36: 49 Y 26913500 0.04 26913500 0.41 86 1.00 Y 37: 49 Y 2.90<RL=15 569000 569000 37: 58 Y 1.11 1.00 Y

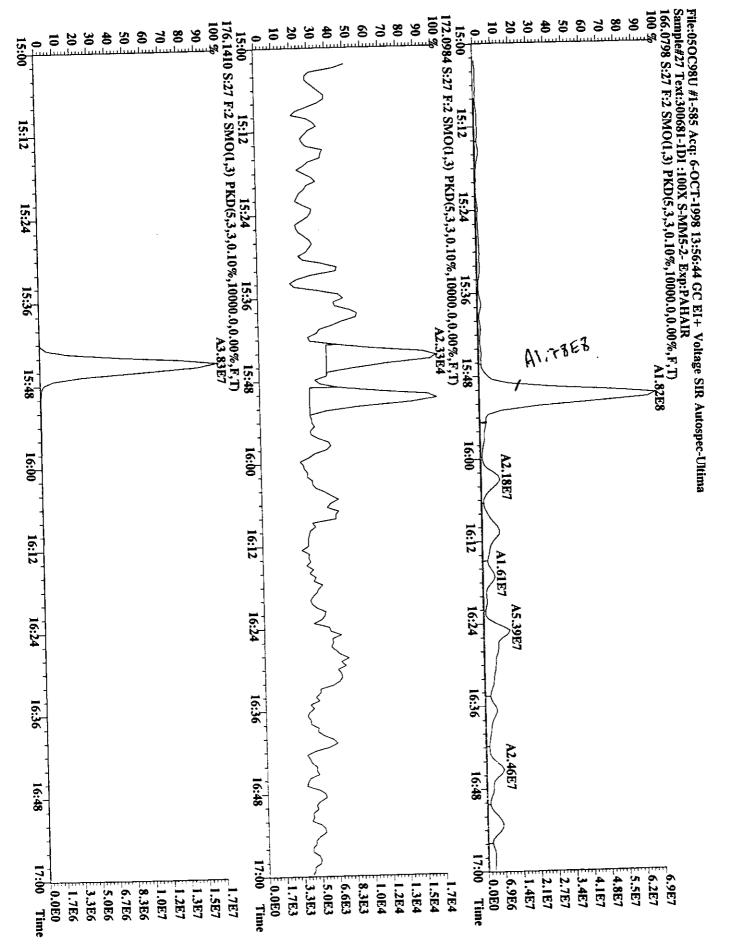

10 M/N x SOOR= Sicher = 100000 = 10 M

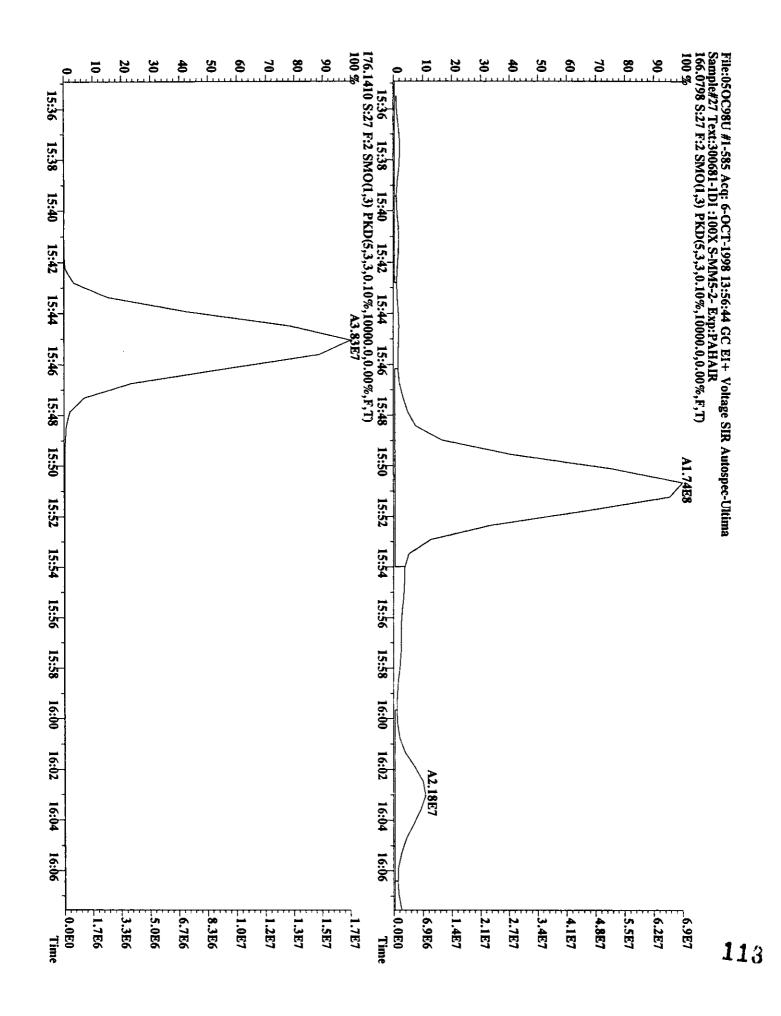

	' '	2002		13mg
13-OCT-1998 10:37:32 AM	Dioxin Furan Unkno		mp.	. 7
GC Column : DB-5	Results : 050C98U	-MM5-2- Ex Cal	: PANAIRIOUIS ug/	
Weight : 0.000533 Name	Total Isotope Response Ratio	mm:ss	SAMPLE	MDL
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene	87453800 1.00 Y 139709200 1.00 Y 889458000 1.00 Y 1719680000 1.00 Y	8: 18 Y 8: 21 Y	1.00 0.05 1.78 0.04 1.20 530.38 0.66 1874.01	90
2-Methylnaphthalene d8-Acenaphthylene	142923600 1.00 1 13040000 1.00 1	13: 29 Y		140, RL=108=40
Acenaphthylene d10-Acenaphthene	75989000 1.00	Y 14: 3 Y	0.68 0.06 1.14 128.41	127
Acenaphthene	111200000 1.00		1.00 0.05	2.5
d10-Anthracene d10-Fluorene Fluorene	76622400 1.00 348000000 1.00	Y 15: 45 Y	1.36 0.05 1.15 396.37	96
d10-Phenanthrene Phenanthrene Anthracene	163762800 1.00 994324000 1.00 59600000 1.00	Y 18: 57 Y		<rL=100</r
d14-Terphenyl d10-Fluoranthene Fluoranthene	352630000 1.00 177834000 1.00 79386200 1.00	Y 22: 46 I		34 m < RL=100
d10-Pyrene Pyrene	182455600 1.00 347368000 1.00	Y 23: 28 Y Y 23: 31 Y	1.58 0.02 1.26 151.42	2
d12-Benzo(a)anthracene Benzo(a)anthracene	108326400 1.00 15560000 1.00	Y 27: 20 Y Y 27: 24 Y		2 <rl-100< td=""></rl-100<>
d12-Chrysene Chrysene	130275400 1.00 63800000 1.00	Y 27: 26 Y Y 27: 31 Y		0 <rl-100< td=""></rl-100<>
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	152767800 1.00 94234800 1.00 5460000 1.00	Y 30: 45 X	1.00 0.0 0.48 0.0 1.30 4.4	5 6 128 6< RL=100=0 i
d12-Benzo(k) fluoranthene Benzo(k) fluoranthene	151677600 1.00 3720000 1.00	Y 30: 51 Y Y 30: 50 Y	0.99 0.0 1.20 2.0	5 101 4< RL=100=0
d12-Benzo(a) pyrene Benzo(e) pyrene Benzo(a) pyrene	110385800 1.00 9983200 1.00	Y 31: 46 Y	1.11 2.5	8 <rL=100 = 1 2<rL=100 = 1</r</r
d12-Perylen Perylen	96580200 1.00	Y 32: 9 Y Y 32: 14 Y		8< RL=10 0 = €
d12-Indeno (123-cd) pyren Indeno (123-cd) pyren	53871600 1.00) Y 36: 33 Y) Y 36: 41 Y	****	00< RL=10 0= 0
d14-Dibenz (ah) anthracen Dibenz (ah) anthracen	27068800 1.00) Y 36: 39 Y) Y 36: 49 Y	0.20 0.0 1.28 1.5	58< RL=100 50
d12-Benzo(ghi)perylen Benzo(ghi)perylen	53827000 1.00	0 Y 37: 49 Y 0 Y 37: 58 Y	0.41 0.0 1.11 1.	04 86 9 1 (kd=1 00~{

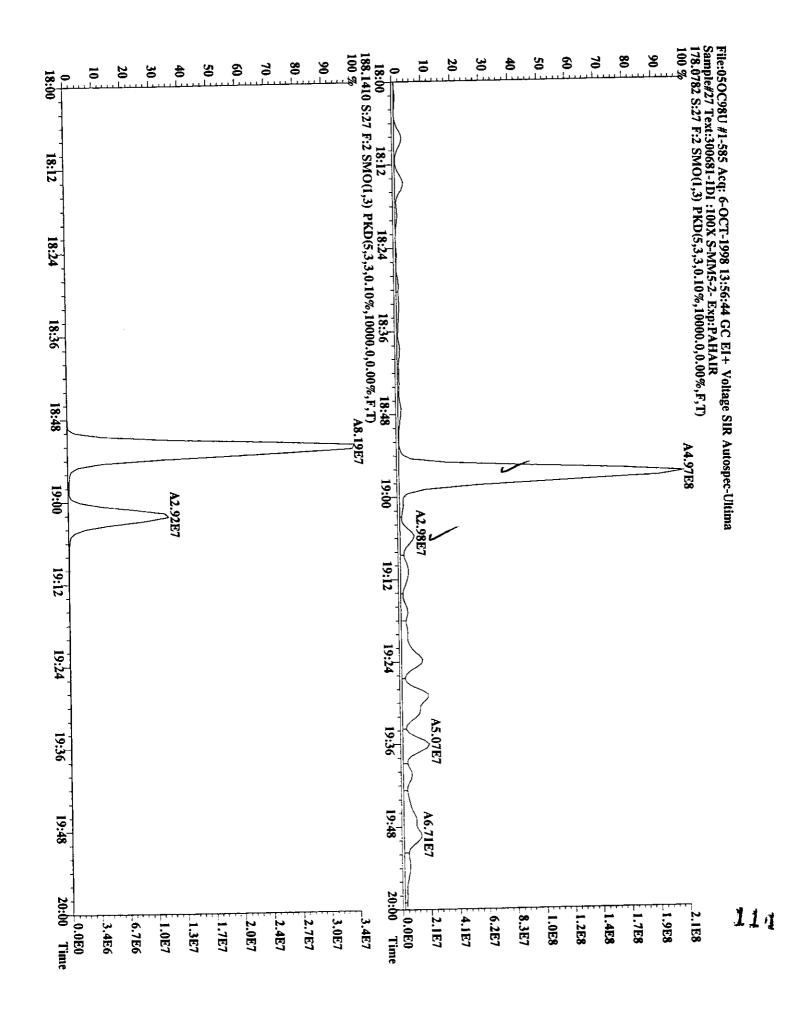

Date analyzed	: PAHAIR.TRG : 05-OCT-98 : PAHAIR100198U.RRF ug/ Rec/ SAMPLE MDL	0.0005
1.00 Y 10: 27 Y 1.00 Y 8: 18 Y 1.00 Y 8: 21 Y 1.00 Y 10: 34 Y	1.00 0.05 1.78 0.04 90	43726900 43726900 69854600 69854600 444729000 444729000 859840000 859840000
1.00 Y 13: 29 Y	1.16 0.07 140	71461800 71461800
1.00 Y 13: 31 Y	1.02 8.90 <rl=100< td=""><td>6520000 6520000</td></rl=100<>	6520000 6520000
1.00 Y 14: 3 Y	0.68 0.06 127	37994500 37994500
1.00 Y 14: 10 Y	1.14 128.41	55600000 55600000
1.00 Y 19: 2 Y	1.00 0.05	29248300 29248300
1.00 Y 15: 45 Y	1.36 0.05 96	38311200 38311200
1.00 Y 15: 51 Y	1.15 396.37	174000000 174000000
1.00 Y 18: 52 Y 1.00 Y 18: 57 Y 1.00 Y 19: 5 Y	0.95 637.50	81881400 81881400 497162000 497162000 29800000 29800000
1.00 Y 24: 10 Y	1.00 0.05	176315000 176315000
1.00 Y 22: 46 Y	1.49 0.02 34	88917000 88917000
1.00 Y 22: 49 Y	1.23 36.24 <rl=100< td=""><td>39693100 39693100</td></rl=100<>	39693100 39693100
1.00 Y 23: 28 Y	1.58 0.02 33	91227800 91227800
1.00 Y 23: 31 Y	1.26 151.42	173684000 173684000
1.00 Y 27: 20 Y	0.81 0.02 38	54163200 54163200
1.00 Y 27: 24 Y	1.28 11.22 <rl=100< td=""><td>7780000 7780000</td></rl=100<>	7780000 7780000
1.00 Y 27: 26 Y	1.17 0.02 32	65137700 65137700
1.00 Y 27: 31 Y	1.16 42.20 <rl=100< td=""><td>31900000 31900000</td></rl=100<>	31900000 31900000
	1.00 0.05 0.48 0.06 128 1.30 4.46 <rl=100< td=""><td>76383900 76383900 47117400 47117400 2730000 2730000</td></rl=100<>	76383900 76383900 47117400 47117400 2730000 2730000
1.00 Y 30: 51 Y	0.99 0.05 101	75838800 75838800
1.00 Y 30: 50 Y	1.20 2.04 <rl=100< td=""><td>1860000 1860000</td></rl=100<>	1860000 1860000
1.00 Y 31: 51 Y	0.74 0.05 98	55192900 55192900
1.00 Y 31: 46 Y	1.62 5.58 <rl=100< td=""><td>4991600 4991600</td></rl=100<>	4991600 4991600
1.00 Y 31: 56 Y	1.11 2.52 <rl=100< td=""><td>1543330 1543330</td></rl=100<>	1543330 1543330
1.00 Y 32: 9 Y	0.65 0.05 98	48290100 48290100
1.00 Y 32: 14 Y	1.74 13.98 <rl=100< td=""><td>11769100 11769100</td></rl=100<>	11769100 11769100
1.00 Y 36: 33 Y	0.37 0.05 95	26935800 26935800
1.00 Y 36: 41 Y	0.60 2.90 <rl=100< td=""><td>472000 472000</td></rl=100<>	472000 472000
1.00 Y 36: 39 Y	0.20 0.04 87	13534400 13534400
1.00 Y 36: 49 Y	1.28 1.58 <rl=100< td=""><td>274000 274000</td></rl=100<>	274000 274000
1.00 Y 37: 49 Y	0.41 0.04 86	26913500 26913500
1.00 Y 37: 58 Y	1.11 1.91 <rl=100< td=""><td>569000 569000</td></rl=100<>	569000 569000

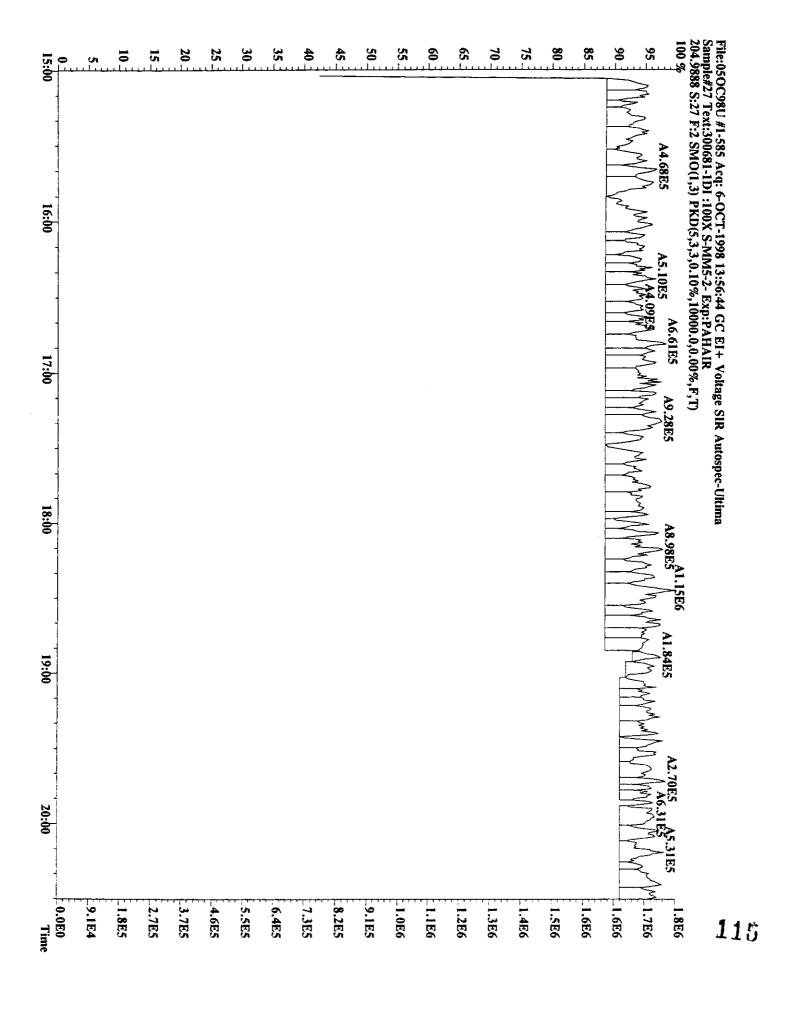

07-OCT-1998 05:13:25 PM Dioxin Furan Unknown RESULTS

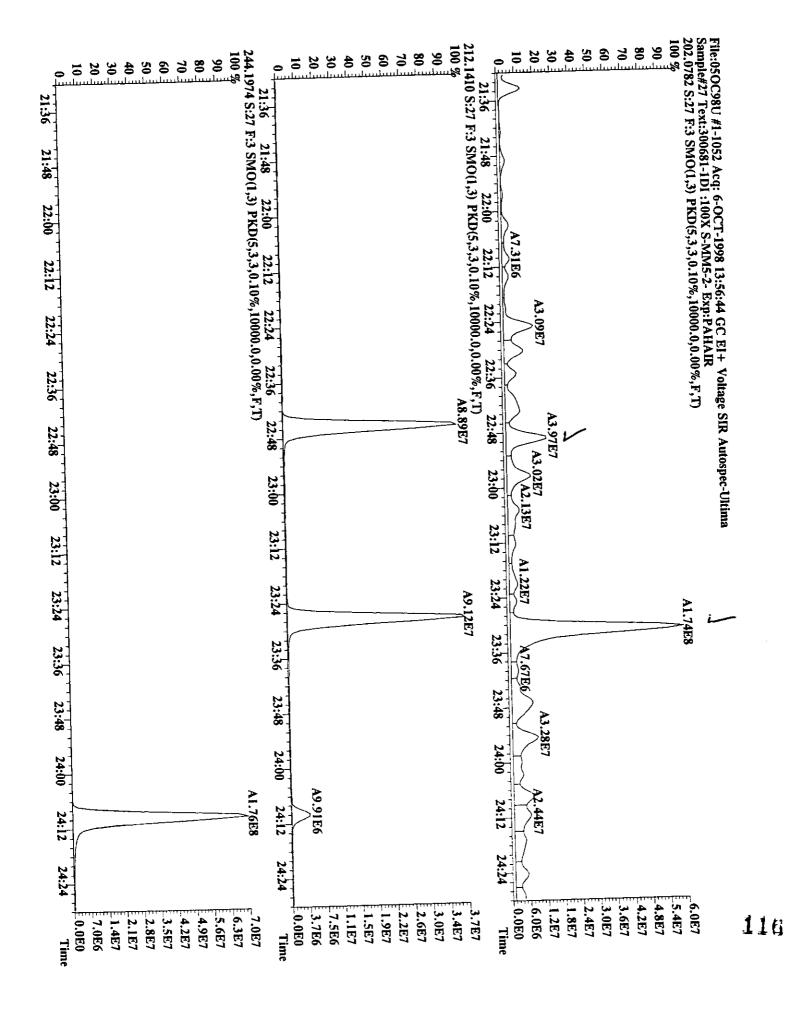

07-OCT-1998 05:13:25 PM D	Loxin Furan Unknown RESULTS
Mass Spec : ULTIMA GC Column : DB-5 Data file : 050C98U 30	Results: 050C98U271.RES : PAHAIR.TRG Date analyzed: 05-OCT-98 0681-1DI:100X S-MM5-2- Ex Cal: PAHAIR100198U.RR Total Isotope R. T. RRF ng/ Rec/ Total Isotope R. T. SAMPLE MDL Response Ratio mm:ss 1.00 50.00
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	87453800 1.00 Y 10. 27 1 1.78 44.79 90 139709200 1.00 Y 8: 18 Y 1.20 530.38 0.000 889458000 1.00 Y 8: 21 Y 0.66 1874.01 0.000 1719680000 1.00 Y 10: 34 Y
an Agonaphthylene	142923600 1.00 Y 13: 29 Y 1.16 70.22 140 No Peak 0.00 N 13: 31 Y 1.02 0.00 0.000
d10-Acenaphthene	75989000 1.00 Y 14: 3 Y 0.68 63.70 127
Acenaphthene	120826600 1.00 Y 14: 10 Y 1.14 139.53 0.000
d10-Anthracene	58496600 1.00 Y 19: 2 Y 1.00 50.00
d10-Fluorene	76622400 1.00 Y 15: 45 Y 1.36 48.08 96
Fluorene	363956000 1.00 Y 15: 51 Y 1.15 414.54 0.000
d10-Phenanthrene	163762800 1.00 Y 18: 52 Y 2.74 51.12 102
Phenanthrene	994324000 1.00 Y 18: 57 Y 0.95 637.50 0.000
Anthracene	* No Peak 0.00 N 19: 5 N 0.97 0.00 0.000
d14-Terphenyl	352630000 1.00 Y 24: 10 Y 1.00 50.00
d10-Fluoranthene	177834000 1.00 Y 22: 46 Y 1.49 16.91 34
Fluoranthene	79386200 1.00 Y 22: 49 Y 1.23 36.24 0.000
d10-Pyrene	182455600 1.00 Y 23: 28 Y 1.58 16.42 33
Pyrene	347368000 1.00 Y 23: 31 Y 1.26 151.42 0.000
d12-Benzo(a)anthracene	108326400 1.00 Y 27: 20 Y 0.81 18.91 38
Benzo(a)anthracene	23512800 1.00 Y 27: 24 Y 1.28 16.95 0.000
d12-Chrysene	130275400 1.00 Y 27: 26 Y 1.17 15.82 32
Chrysene	78755600 1.00 Y 27: 31 Y 1.16 52.10 0.000
d12-Benzo(e)pyrene	152767800 1.00 Y 31: 40 Y 1.00 50.00
d12-Benzo(b)fluoranthene	94234800 1.00 Y 30: 45 Y 0.48 64.12 128
Benzo(b)fluoranthene	9206940 1.00 Y 30: 50 Y 1.30 7.52 0.000
d12-Benzo(k) fluoranthene	151677600 1.00 Y 30: 51 Y 0.99 50.34 101
Benzo(k) fluoranthene	9206940 1.00 Y 30: 50 Y 1.20 5.05 0.000
d12-Benzo(a)pyrene	110385800 1.00 Y 31: 51 Y 0.74 48.90 98
Benzo(e)pyrene	9983200 1.00 Y 31: 46 Y 1.62 5.58 0.000
Benzo(a)pyrene	3086660 1.00 Y 31: 56 Y 1.11 2.52 0.000
d12-Perylene	96580200 1.00 Y 32: 9 Y 0.65 48.90 98
Perylene	23538200 1.00 Y 32: 14 Y 1.74 13.98 0.000
d12-Indeno(123-cd)pyrene	53871600 1.00 Y 36: 33 Y 0.37 47.36 95
Indeno(123-cd)pyrene	439952 1.00 Y 36: 41 Y 0.60 1.35 0.000
d14-Dibenz(ah)anthracene	27068800 1.00 Y 36: 39 Y 0.20 43.56 87
Dibenz(ah)anthracene	338982 1.00 Y 36: 49 Y 1.28 0.98 0.000
d12-Benzo(ghi)perylene Benzo(ghi)perylene	53827000 1.00 Y 37: 49 Y 0.41 43.05 10 B6 685812 1.00 Y 37: 58 Y 1.11 1.15 0.000

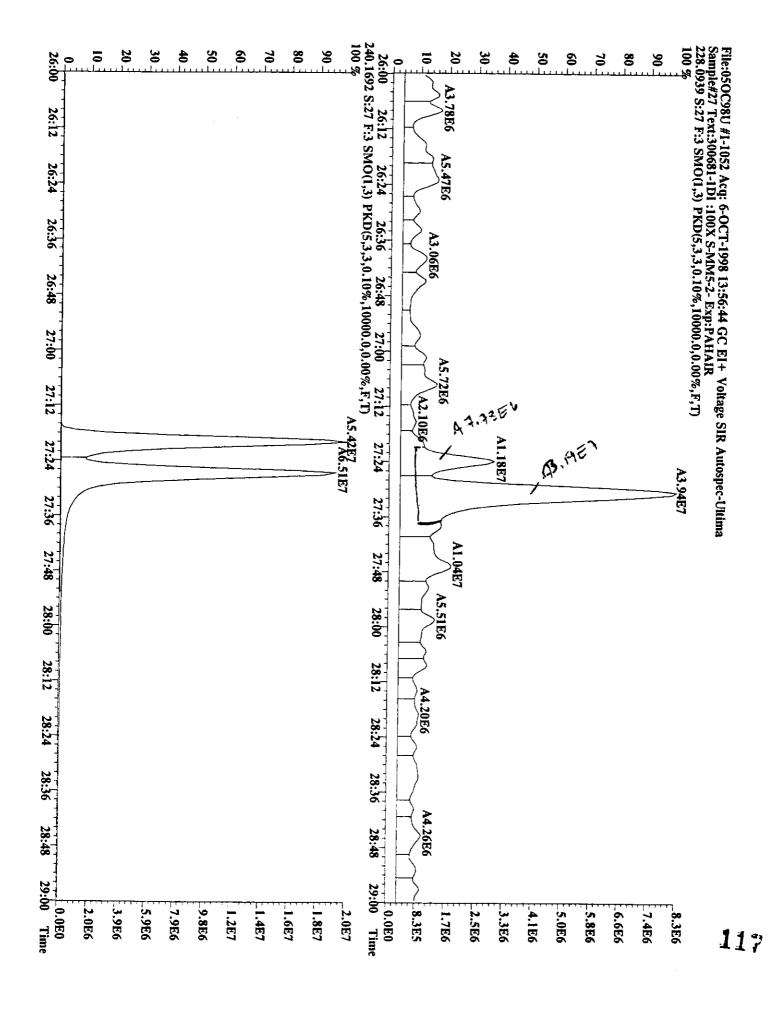


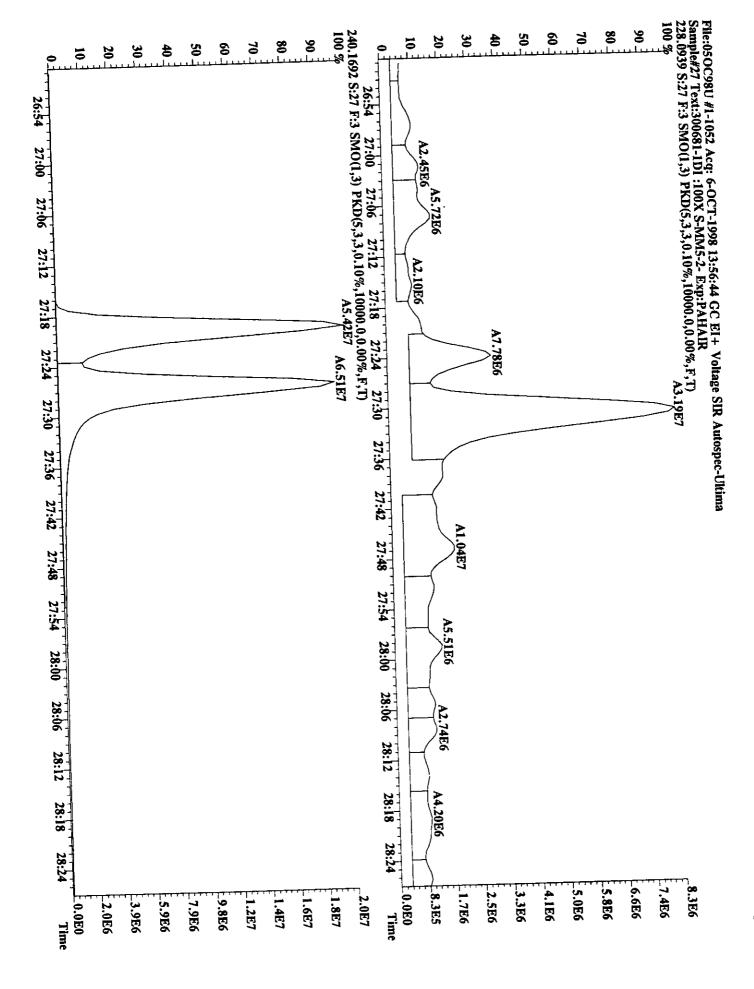


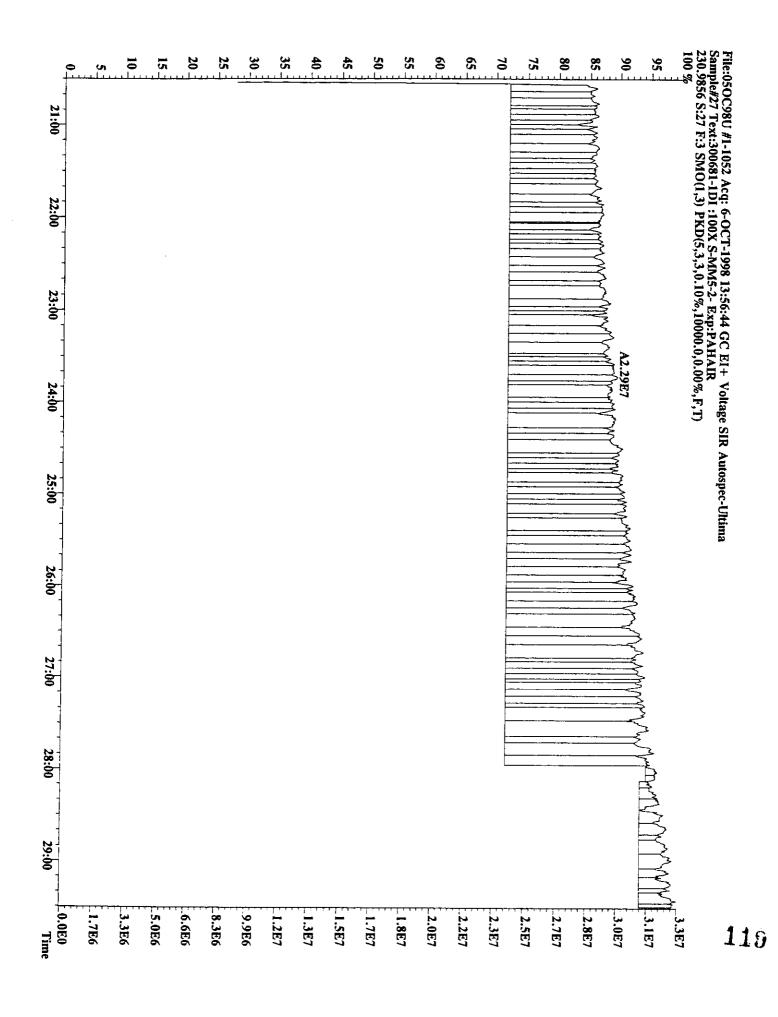


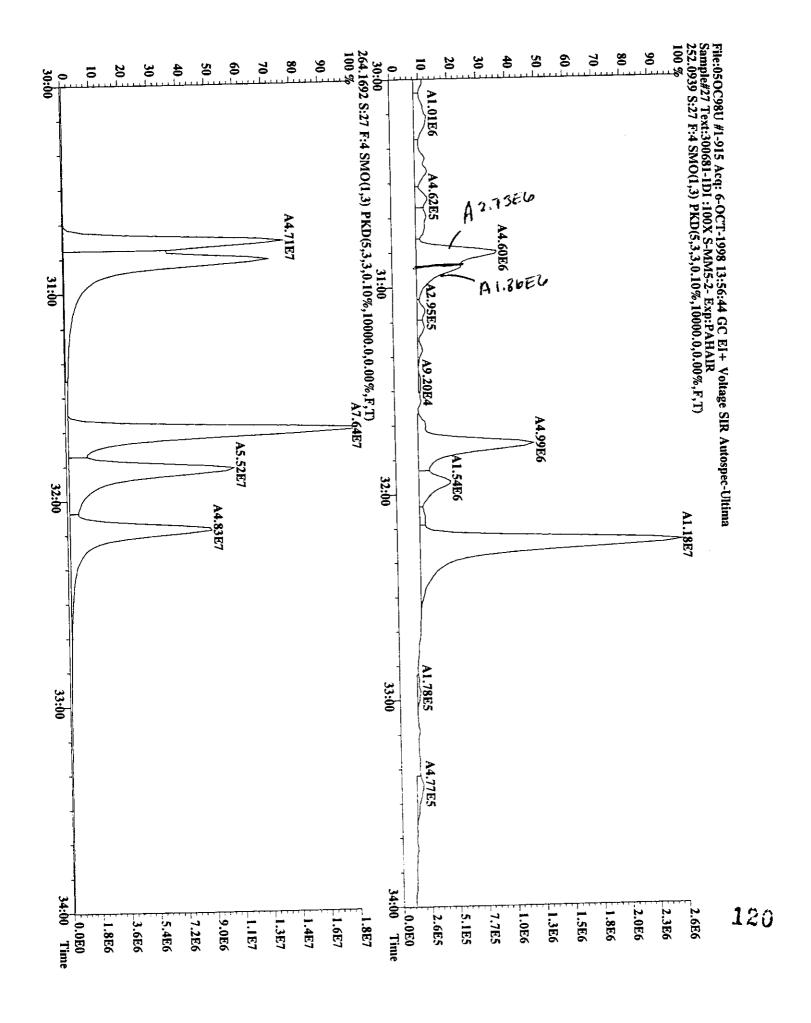


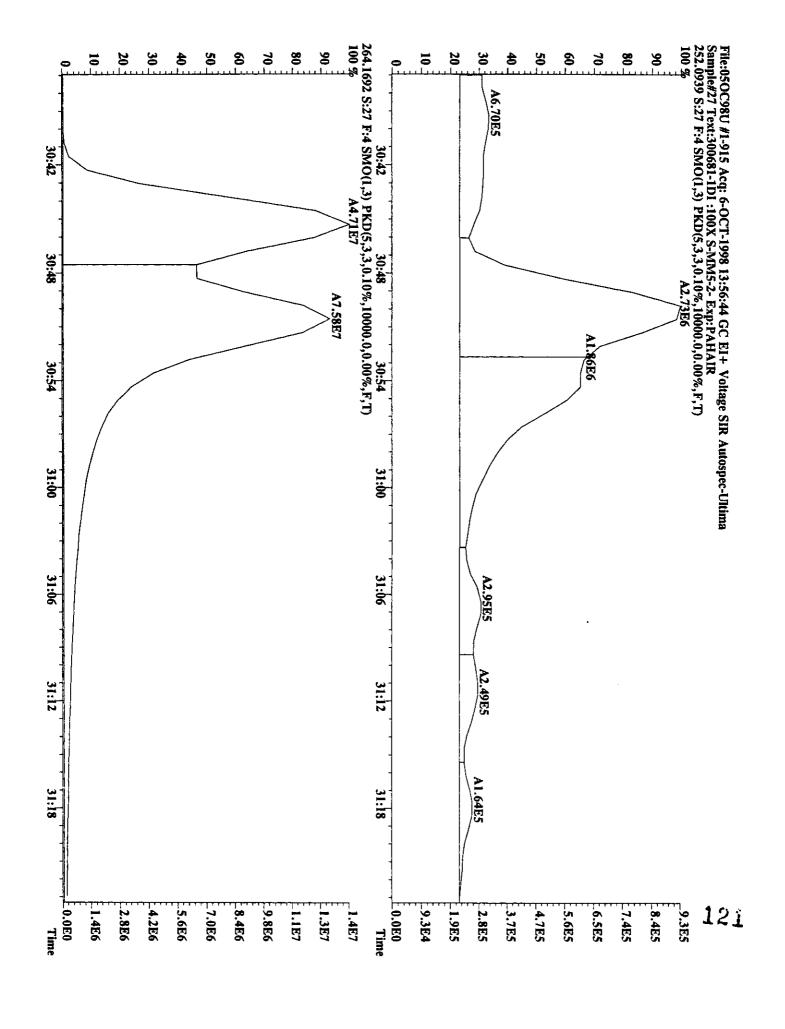


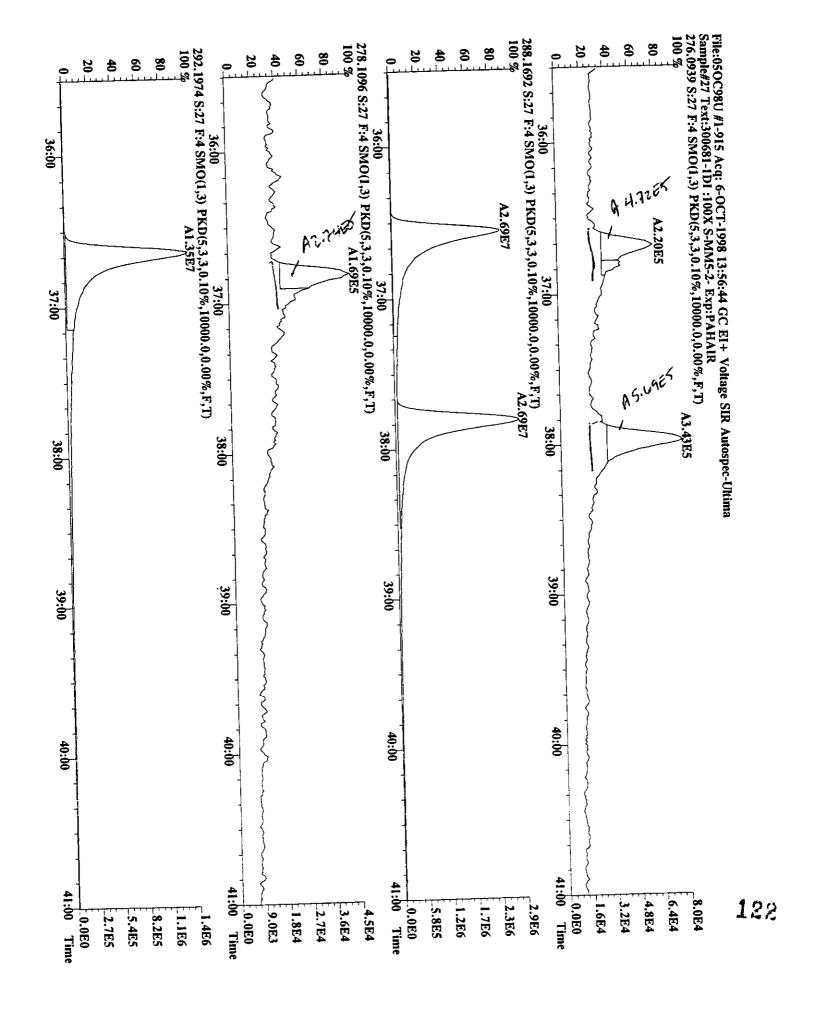


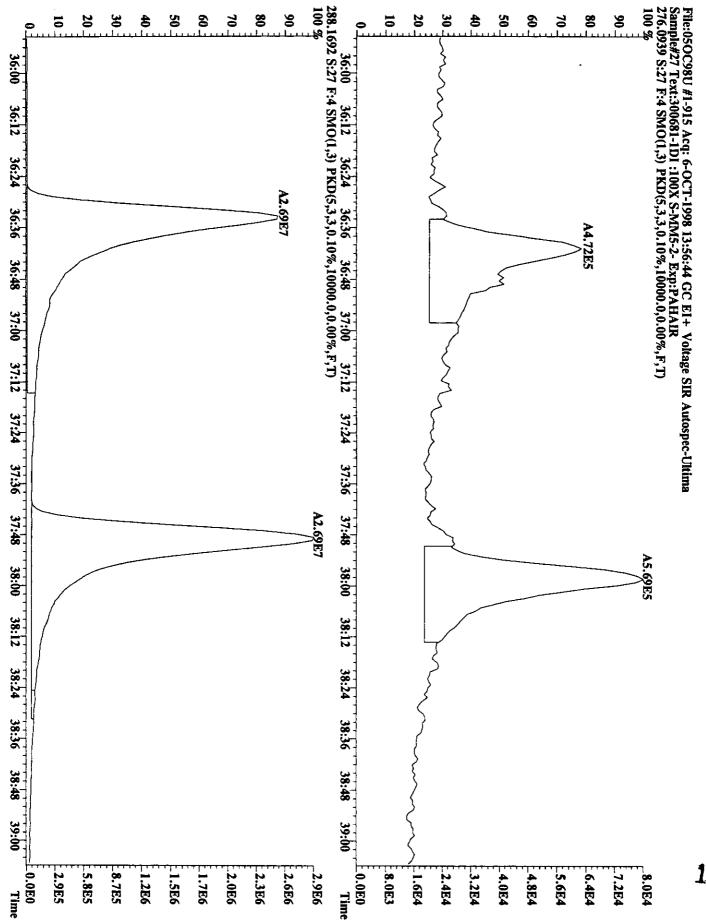


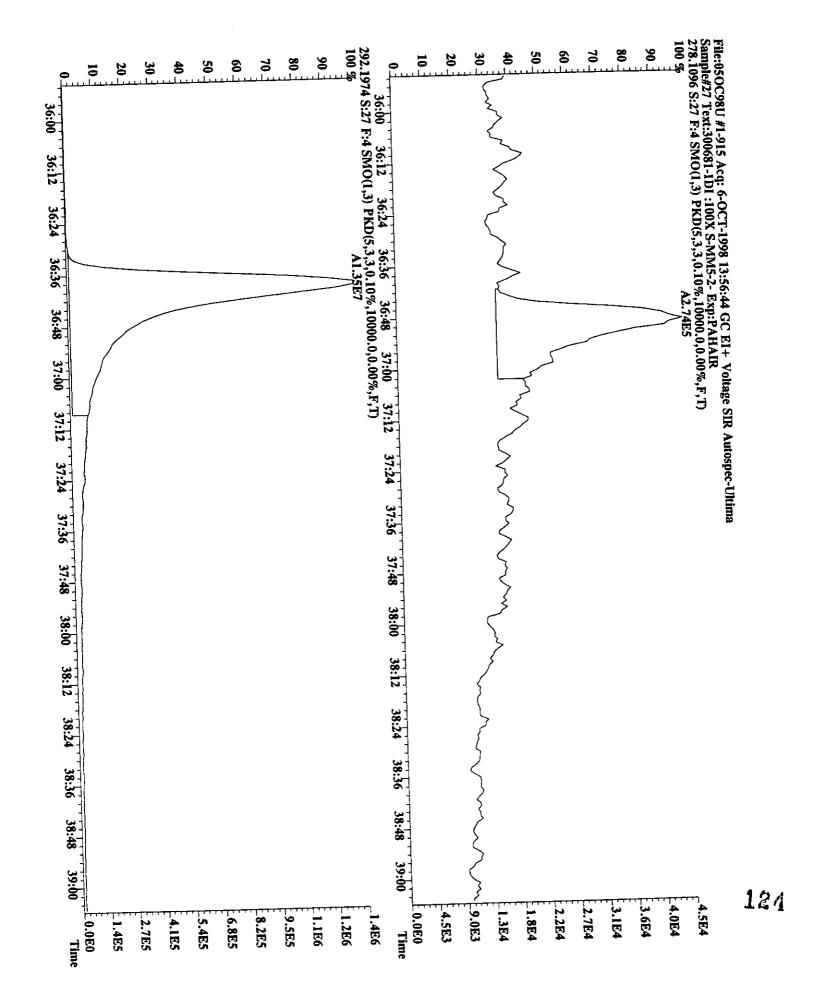


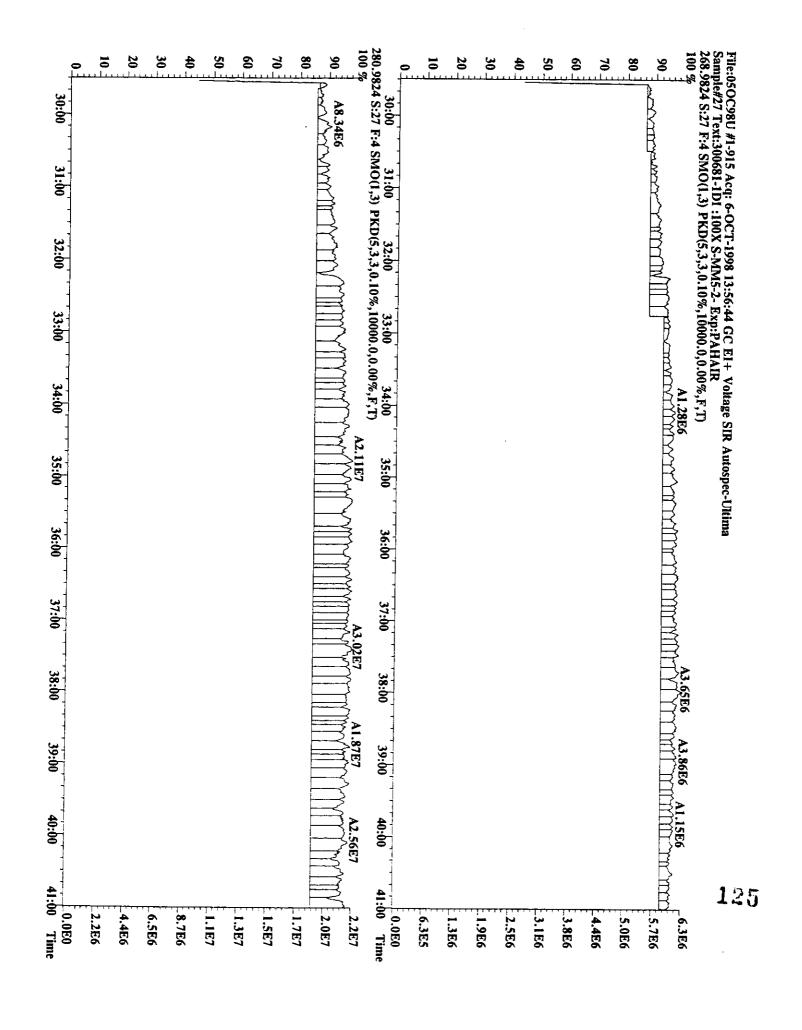












mAT 9-2.97

: PAHX.TRG Results: 20AU98U171.RES Date analyzed : 20-AUG-98 GC Column : DB-5 : PAHX081998U.RRF 300681-3 :T-MM5-2-F :Trai Ex Cal Data file : 20AU98U Rec/ RRF nq/ R. T. Isotope Total : 0.333 Weight MDL SAMP mm:ss Ratio Response Name 50.00 1.00 11: 11 Y 65564600 1.00 Y 65 BB d10-2-Methylnaphthalene 1.25 32.64 8: 57 Y 53317400 1.00 Y d8-Naphthalene 1.9e+04 9: 1 Y 1.05 6996500000 1.00 Y Naphthalene 11: 17 Y 0.77 3.8e + 0410409320000 1.00 Y 2-Methylnaphthalene 73 6.60 36.60 58.30 74 400000 1.55 14: 16 Y 118503200 1.00 Y 9/03/9 d8-Acenaphthylene 296.45 472.18 14: 18 Y 0.86 202000000 1.00 Y Acenaphthylene 0.88 28.04 32254800 1.00 Y 14: 49 Y d10-Acenaphthene 0.93 4510.28 E 14: 55 Y 900880000 1.00 Y Acenaphthene 50.00 19: 46 Y 1.00 27200000 1.00 Y d10-Anthracene 1.13 21.15 12997740 1.00 Y 16: 31 Y d10-Fluorene 1.05 2.1e+04 16: 37 Y 1880666000 1.00 Y Fluorene 30.74 2.63 43964200 1.00 Y 19: 41 Y d10-Phenanthrene 0.84 2.1e+04 5240000000 1.00 Y 19: 40 Y Phenanthrene 6 0.83 1746.65 19: 46 Y 424000000 1.00 Y Anthracene 50.00 32: 39 Y 1.00 198459000 1.00 Y d12-Benzo(e)pyrene 30 14.99 0.80 23: 33 Y 47800000 1.00 Y d10-Fluoranthene 1.04 1213.66 € \mathcal{B} 23: 38 Y 402000000 1.00 Y Fluoranthene 15.12 30 👡 24: 16 Y 0.81 48600000 1.00 Y d10-Pyrene 1.11 3180.44 🖺 1140000000 1.00 Y 24: 20 Y Pyrene 31.07 62 0.65 7 Y 80200000 1.00 Y 28: d12-Benzo(a) anthracene 365.48 1.06 28: 11 Y 206000000 1.00 Y Benzo (a) anthracene 0.85 26.20 52 28: 14 Y 88200000 1.00 Y d12-Chrysene 0.97 2113.76 € 28: 18 Y 1206000000 1.00 Y Chrysene 1.00 50.00 32: 39 Y 198459000 1.00 Y d12-Benzo(e)pyrene 101 0.63 50.56 31: 39 Y 125629800 1.00 Y d12-Benzo(b) fluoranthene 159.19 31: 45 Y 1.07 142400000 1.00 Y Benzo(b) fluoranthene 0.90 67 33.72 31: 45 Y 119946200 1.00 Y d12-Benzo(k) fluoranthene 46.58 31: 48 Y 1.16 43000000 1.00 Y Benzo(k) fluoranthene 41.54 83 32: 51 Y 0.75 123865000 1.00 Y d12-Benzo(a)pyrene 180.47 1.46 32: 45 Y 218000000 1.00 Y Benzo(e)pyrene 47.60 32: 57 Y 1.02 40200000 1.00 Y Benzo(a) pyrene 62 31.09 0.61 33: 10 Y 75828400 1.00 d12-Perylene 531.08 1.62 33: 15 Y 434000000 1.00 Y Perylene 0.71 87.24 174 244686000 1.00 Y 37: 58 Y d12-Indeno(123-cd)pyrene 20.27 0.61 6 Y 20200000 1.00 Y 38: Indeno(123-cd)pyrene 90.50 181 m 37: 0.44 59 Y 158472400 1.00 Y d14-Dibenz (ah) anthracene 15.57 9 Y 1.11 18280000 1.00 Y 38: Dibenz(ah)anthracene 88.1336 44.47 177 m 0.63 22 Y 39: 220988000 1.00 Y d12-Benzo(ghi)perylene 0.99 39: 31 Y 64842800 1.00 Y Benzo(ghi)perylene 1.00 50.00 8: 57 Y 53317400 1.00 Y d8-Naphthalene 0.42 1 1 Y 1.00 446652 1.00 Y 13C-Naphthalene

d10-Fluorene 13C-Fluorene	12997740 1.00 14759680 1.00				- 0:81	50.00 70.36 61.05	141 ajs/18
------------------------------	--------------------------------	--	--	--	-------------------	------------------------------------	------------

: PAHX.TRG 20AU98U171.RES

02-SEP-1998 07:05:33 PM

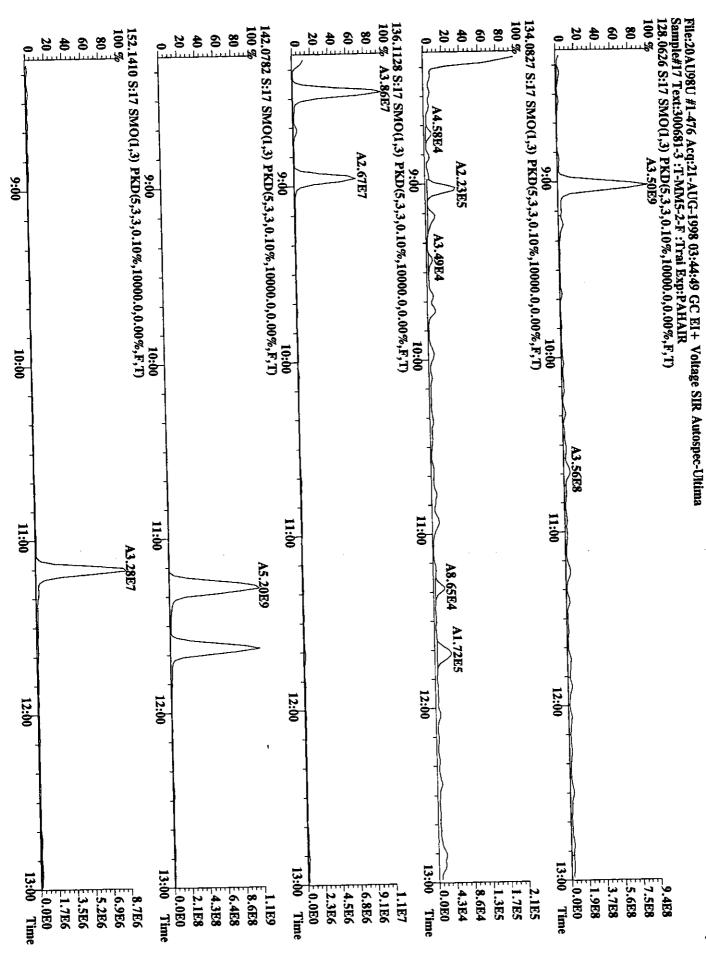
0.333 Date analyzed: 20-AUG-98

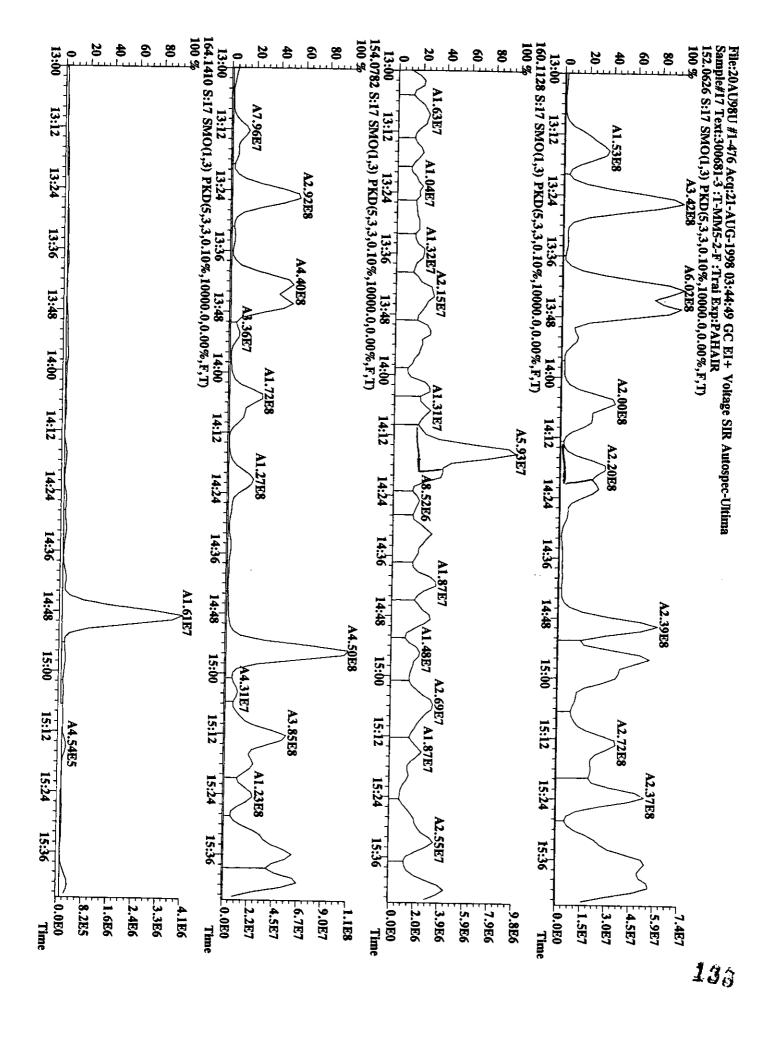
MM5-2-F :Trai Ex Cal : PAHX081998U.RRF ng/ Rec/ RRF R. T. Isotope SAMP MDL mm:ss Ratio 32782300 32782300 50.00 1.00 11: 11 Y 1.00 Y 26658700 26658700 8: 57 Y 1.25 32.64 65 1.00 Y 3498250000 3498250000 9: 1 Y 1.05 1.9e+04 1.00 Y 5204660000 5204660000 0.77 3.8e+04 11: 17 Y 1.00 Y 59251600 59251600 58.30 117 1.55 14: 16 Y 1.00 Y 101000000 101000000 14: 18 Y 0.86 296.45 1.00 Y 16127400 16127400 28.04 56 14: 49 Y 0.88 1.00 Y 450440000 450440000 0.93 4510.28 14: 55 Y 1.00 Y 13600000 13600000 1.00 50.00 19: 46 Y 1.00 Y 6498870 6498870 1.13 21.15 42 16: 31 Y 1.00 Y 940333000 940333000 1.05 2.1e+04 16: 37 Y 1.00 Y 21982100 21982100 61 19: 41 Y 2.63 30.74 1.00 Y 2620000000 2620000000 0.84 2.1e+04 19: 40 Y 1.00 Y 212000000 212000000 0.83 1746.65 19: 46 Y 1.00 Y 99229500 99229500 50.00 1.00 32: 39 Y 1.00 Y 23900000 23900000 30 23: 33 Y 14.99 0.80 1.00 Y 201000000 201000000 1.04 1213.66 23: 38 Y 1.00 Y 24300000 24300000 15.12 30 24: 16 Y 0.81 1.00 Y 570000000 570000000 24: 20 Y 1.11 3180.44 1.00 Y 40100000 40100000 0.65 31.07 28: 7 Y 1.00 Y 103000000 103000000 365.48 1.00 Y 28: 11 Y 1.06 44100000 52 44100000 0.85 26.20 1.00 Y 28: 14 Y 603000000 603000000 0.97 2113.76 28: 18 Y 1.00 Y 99229500 99229500 50.00 1.00 32: 39 Y 1.00 Y 62814900 62814900 31: 39 Y 0.63 50.56 101 1.00 Y 71200000 71200000 1.07 159.19 31: 45 Y 1.00 Y 59973100 59973100 67 33.72 0.90 31: 45 Y 1.00 Y 21500000 21500000 46.58 31: 48 Y 1.16 1.00 Y 61932500 61932500 83 0.75 41.54 32: 51 Y 1.00 Y 109000000 109000000 180.47 32: 45 Y 1.46 1.00 Y 20100000 20100000 47.60 32: 57 Y 1.02 1.00 Y 37914200 37914200 0.61 31.09 62 33: 10 Y 1.00 Y 217000000 217000000 1.62 531.08 33: 15 Y 1.00 Y 122343000 174 122343000 87.24 0.71 37: 58 Y 1.00 Y 10100000 10100000 20.27 6 Y 0.61 1.00 Y 38: 79236200 79236200 0.44 90.50 181 37: 59 Y 1.00 Y 9140000 9140000 15.57 1.11 9 Y 1.00 Y 38: 110494000 110494000 0.63 88.33 177 39: 22 Y 1.00 Y 32421400 32421400 1.00 Y 44.47 39: 31 Y 0.99 26658700 26658700 50.00 8: 57 Y 1.00 1.00 Y 223326 223326 1 0.42 1.00 Y 9: 1 Y 1.00

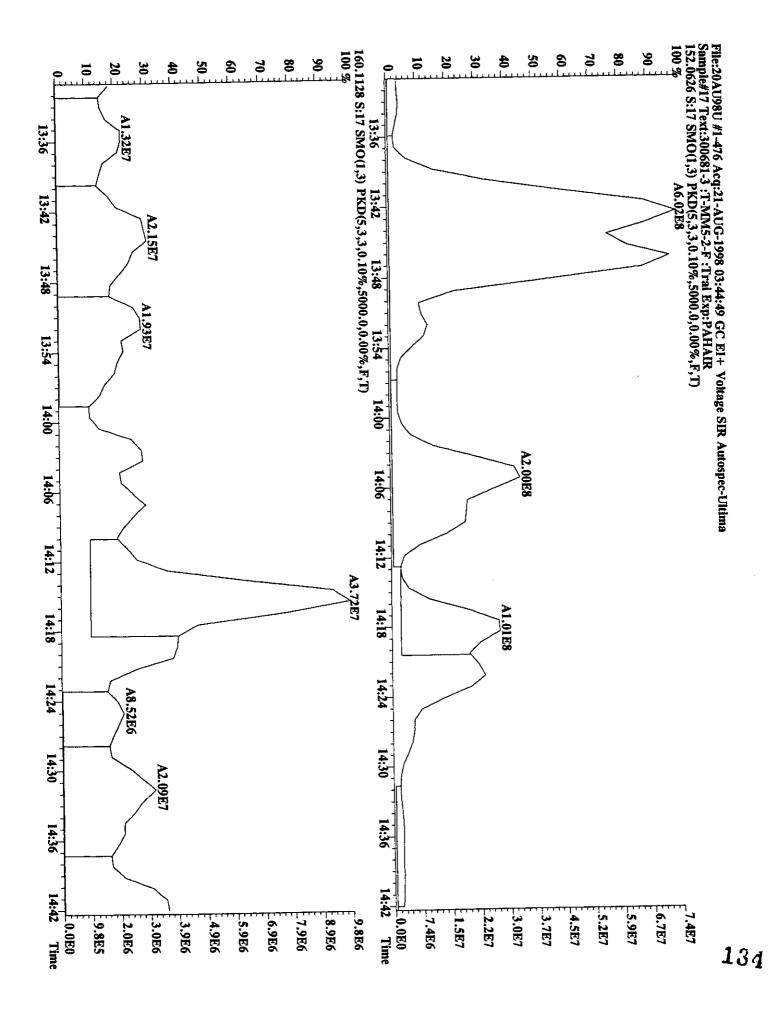
128

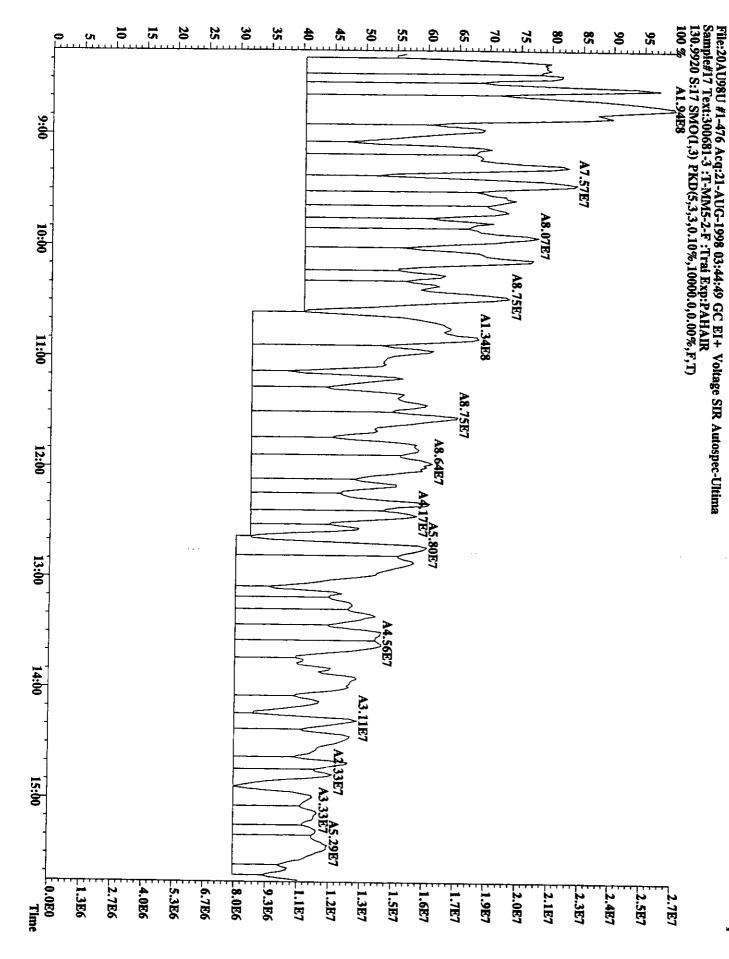
1.00 Y 16: 31 Y 1.00 50.00 6498870 6498870 1.00 Y 16: 37 Y 0.81 70.36 141 7379840 7379840

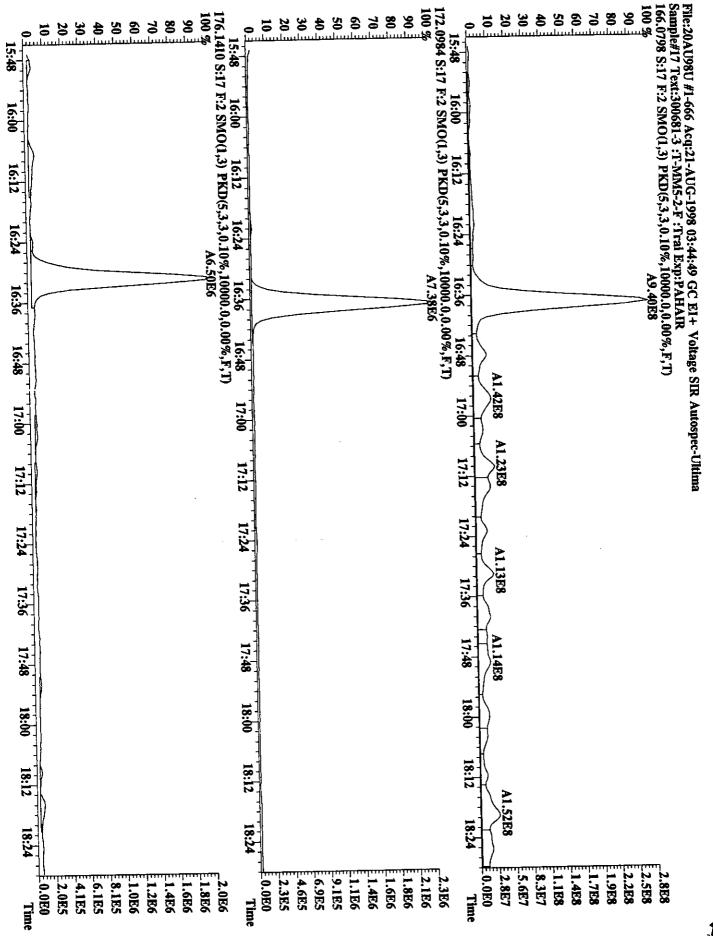
Mass Spec : ULTIMA GC Column : DB-5 Data file : 20AU98U Weight : 0.333 Name	Results: 20AU98U171.RES : PAHX.TRG Date analyzed: 20-AUG-98 300681-3:T-MM5-2-F:Trai Ex Cal: PAHX081998U Total Isotope R. T. RRF ng/ Response Ratio mm:ss SAMP	RRF Rec/ MDL
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	6996500000 1.00 Y 9: 1 Y 1.05 1.9e+04	65 0.000 0.000
d8-Acenaphthylene Acenaphthylene	118503200 1.00 Y 14: 16 Y 1.55 58.30 440010000 1.00 Y 14: 18 Y 0.86 645.74	
d10-Acenaphthene Acenaphthene	900880000 1.00 1 14: 55 1 0.55 1520120	56 0.000
d10-Anthracene d10-Fluorene Fluorene	12997740 1.00 Y 16: 31 Y 1.13 WORK	
d10-Phenanthrene Phenanthrene Anthracene	* No Peak 0.00 N 19: 40 Y 0.04 0.00	0.000
d12-Benzo(e)pyrene d10-Fluoranthene Fluoranthene	e * No Peak 0.00 N 23: 33 N 0.60 *NoT	0
d10-Pyrene Pyrene		
d12-Benzo(a)anthracene Benzo(a)anthracene	e 75165200 1.00 Y 28: 7 Y 0.65 29.12 e 379224000 1.00 Y 28: 11 Y 1.06 717.87	58 0.000
d12-Chrysene Chrysene		48 0.000
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	e 125629800 1.00 Y 31: 39 I 0.03 30.30	
d12-Benzo(k) fluoranthen Benzo(k) fluoranthen	e 119946200 1.00 Y 31: 45 Y 0.90 33.72 e 206552000 1.00 Y 31: 45 Y 1.16 223.77	2 67 7 0.000
d12-Benzo(a) pyren Benzo(e) pyren Benzo(a) pyren	le 270934000 1.00 Y 32: 45 I 1.40 221.23	83 3 0.000 4 0.000
d12-Perylen Perylen	ne 75828400 1.00 Y 33: 10 Y 0.61 31.09 ne 494680000 1.00 Y 33: 15 Y 1.62 605.33	9 62 3 0.000
d12-Indeno (123-cd) pyren Indeno (123-cd) pyren	ne 244686000 1.00 Y 37: 58 Y 0.71 87.24 ne 27197600 1.00 Y 38: 6 Y 0.61 27.29	4 174 9 0.000
d14-Dibenz (ah) anthracen Dibenz (ah) anthracen	ne 158472400 1.00 Y 37: 59 Y 0.44 90.50 ne 41365000 1.00 Y 38: 9 Y 1.11 35.2	0 181 3 0.000
d12-Benzo(ghi)perylen Benzo(ghi)perylen	ne 220988000 1.00 Y 39: 22 Y 0.63 88.3 ne 64842800 1.00 Y 39: 31 Y 0.99 44.4	$^{3}_{7}$ $^{177}_{000}$
d8-Naphthaler 13C-Naphthaler	ne 53317400 1.00 Y 8: 57 Y 1.00 50.0 ne 446652 1.00 Y 9: 1 Y 1.00 0.4	

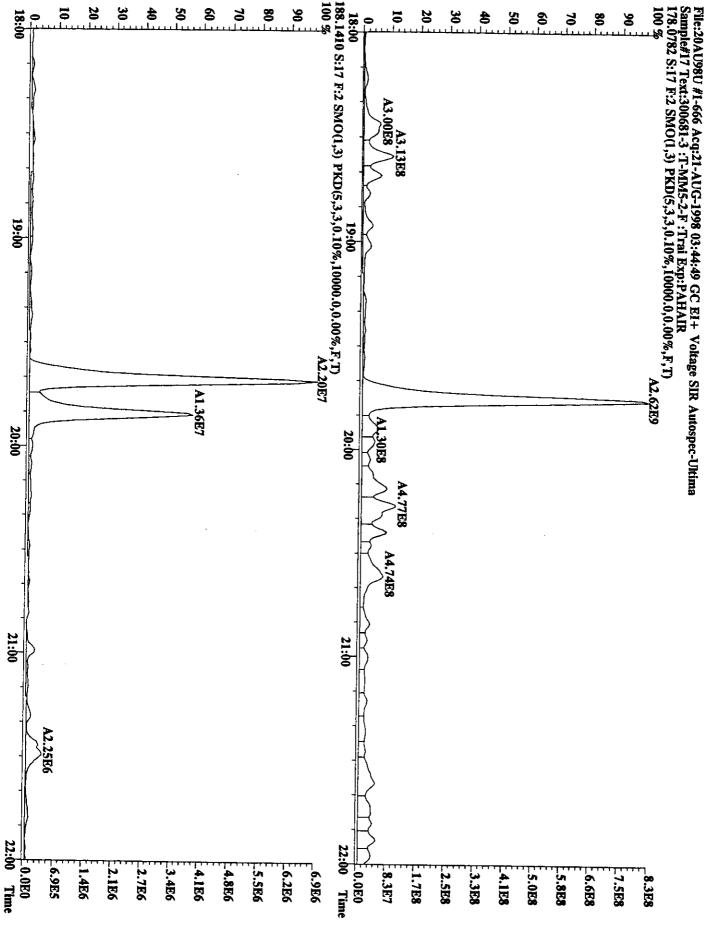

2

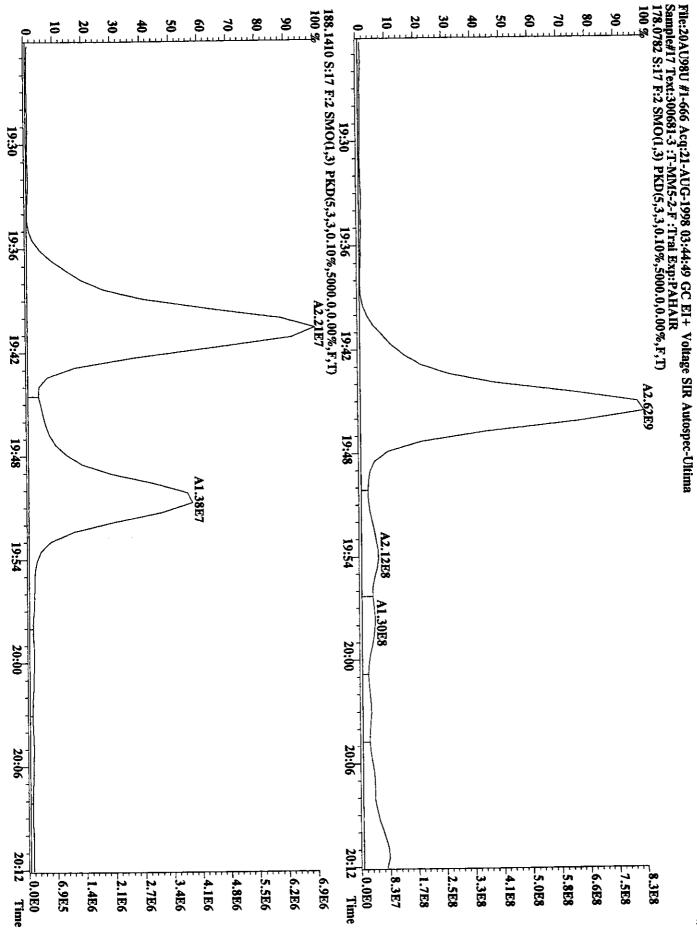

d10-Fluorene 13C-Fluorene

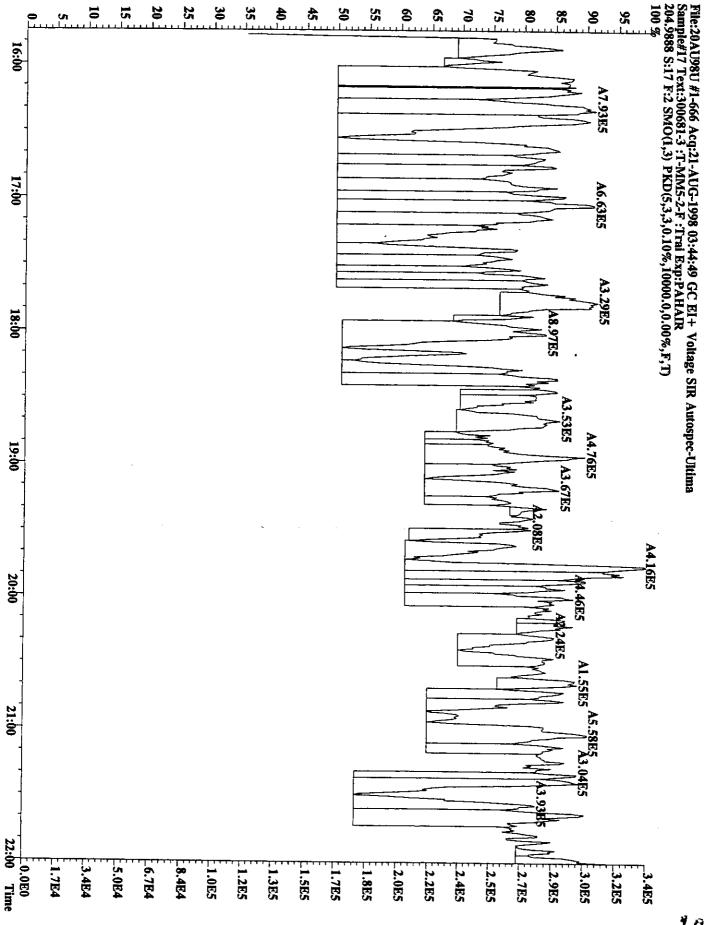

12997740 1.00 Y 16: 31 Y 1.00 14759680 1.00 Y 16: 37 Y 0.81

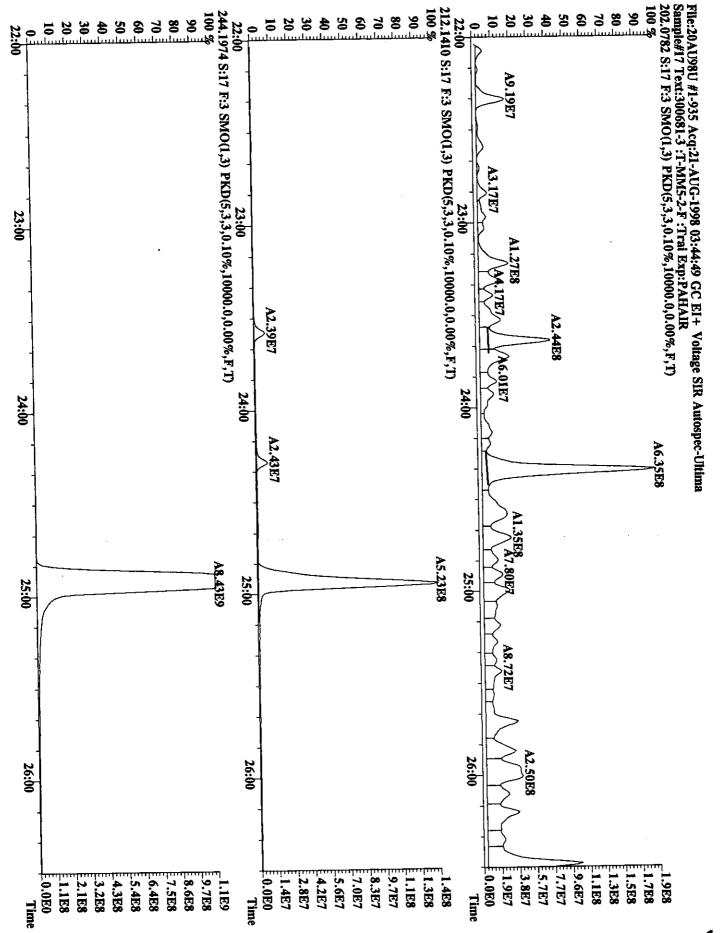

50.00 70.36

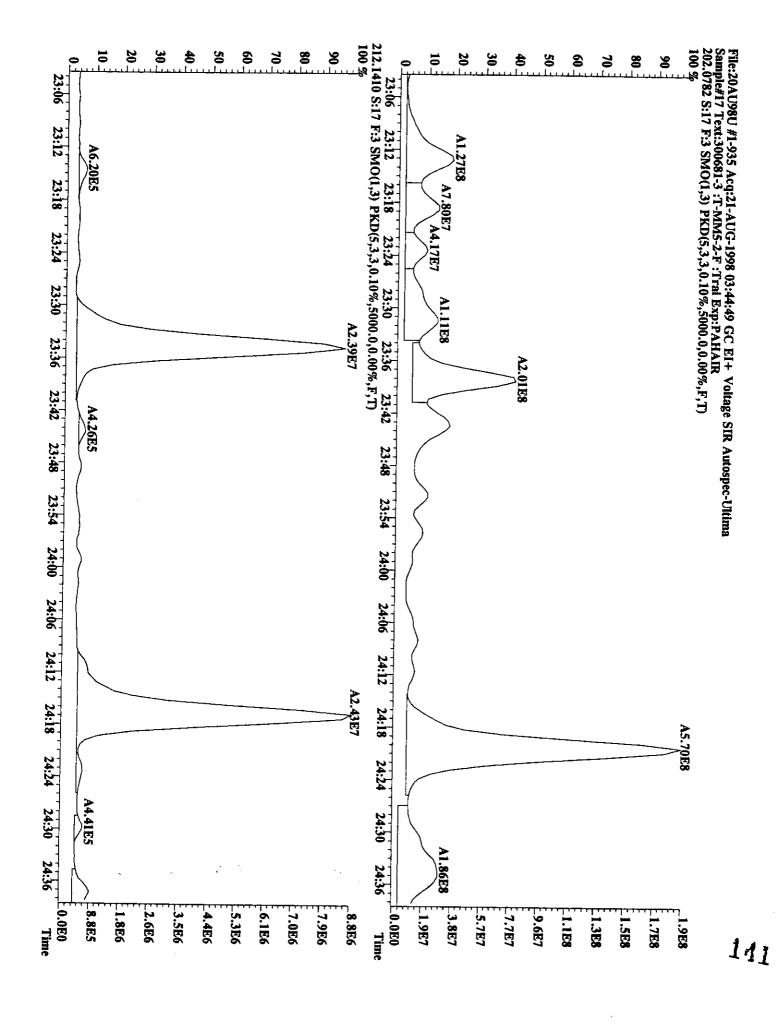

141

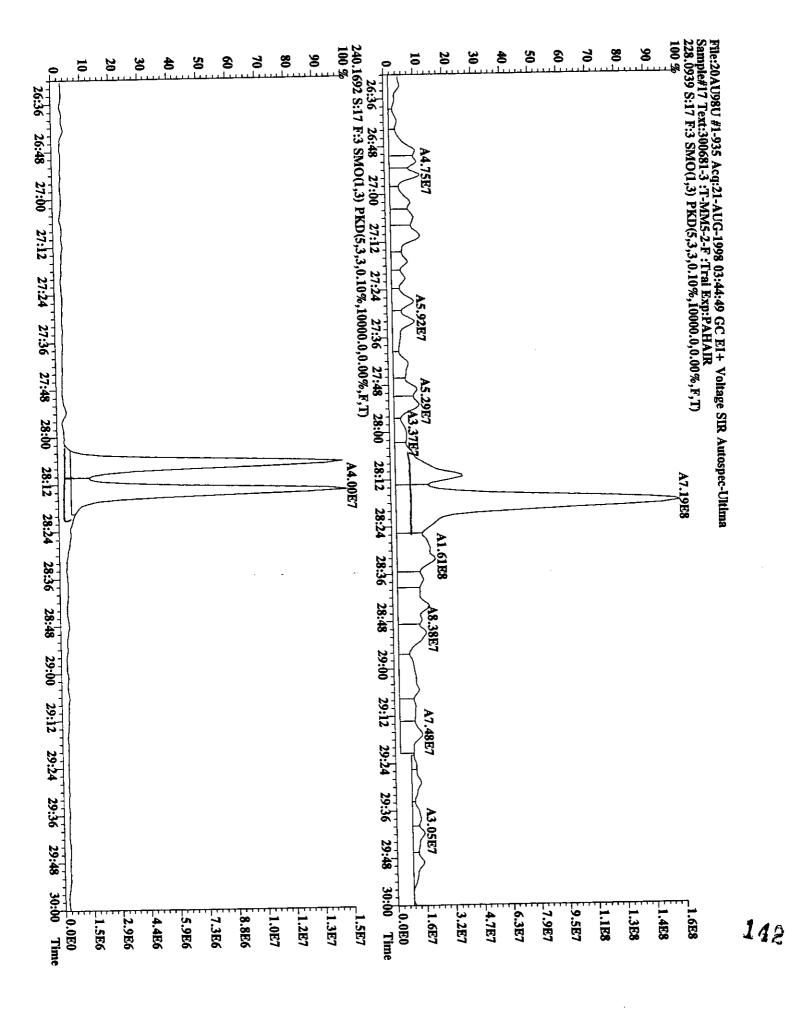


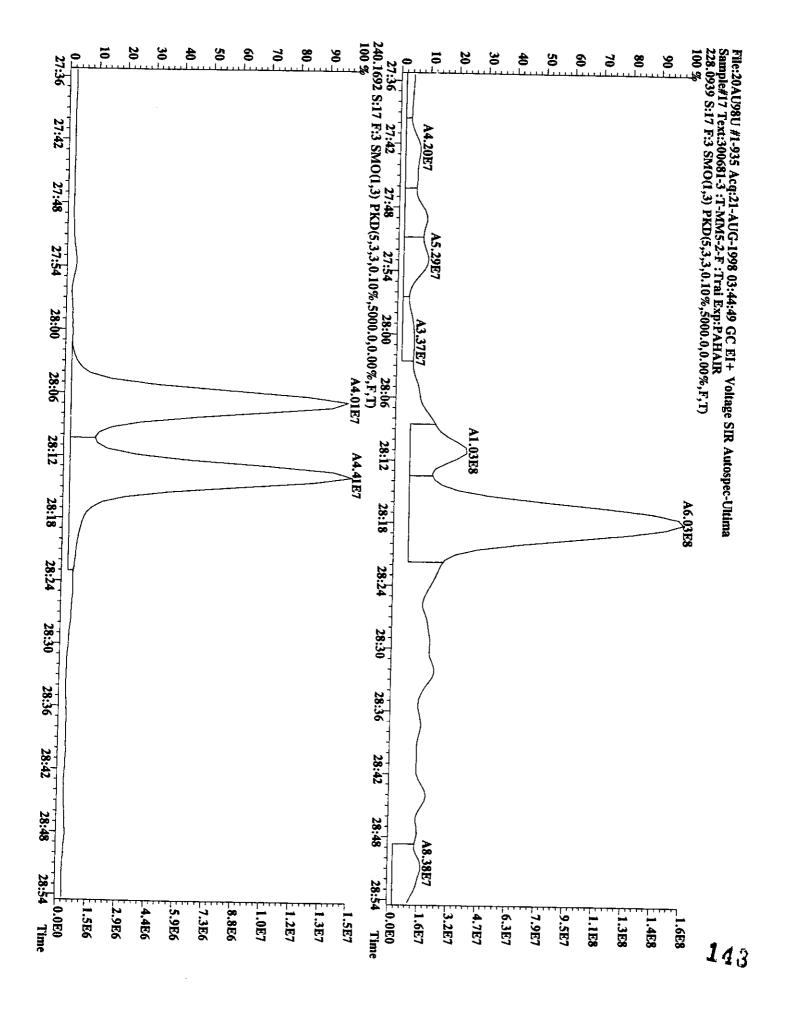


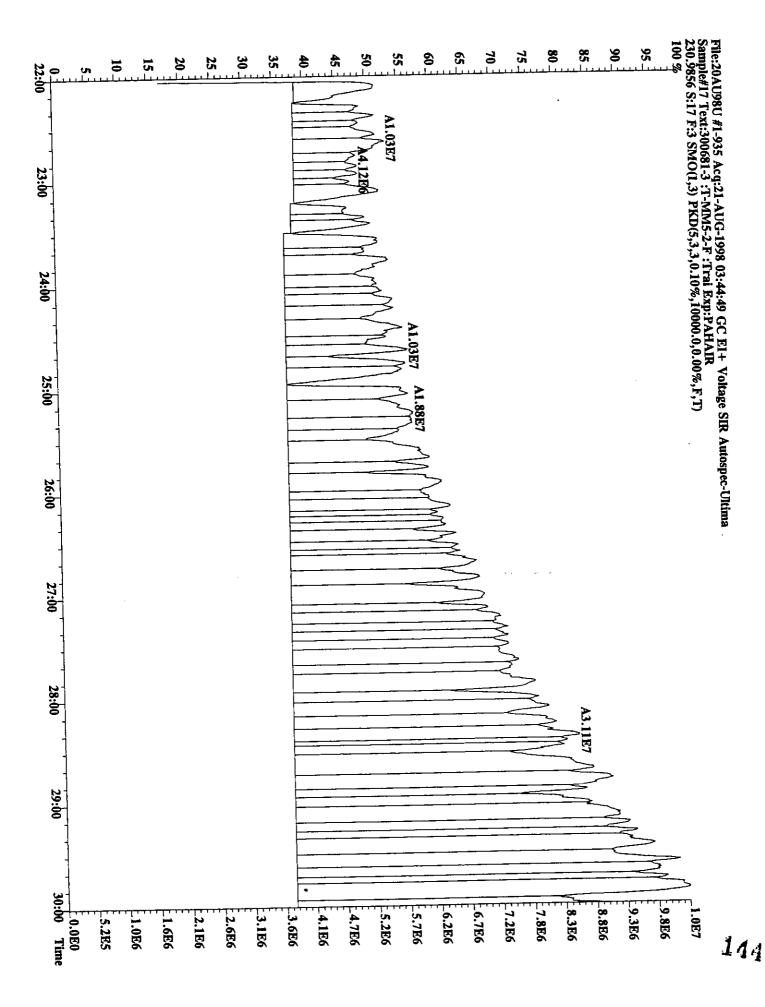


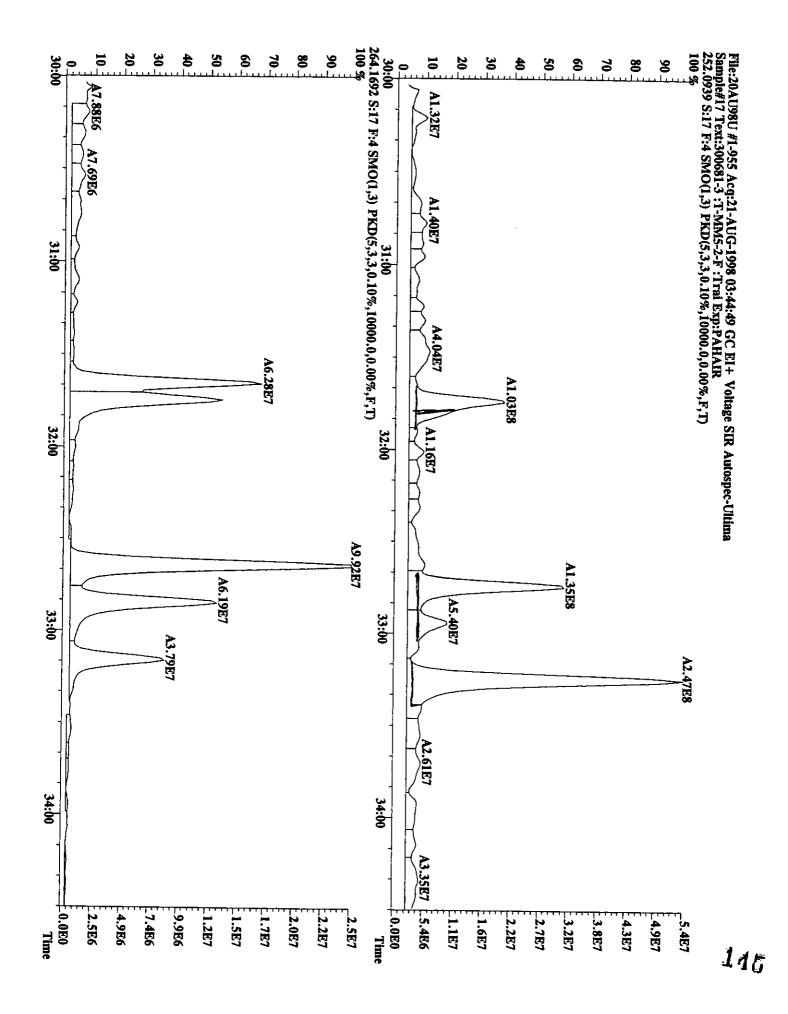


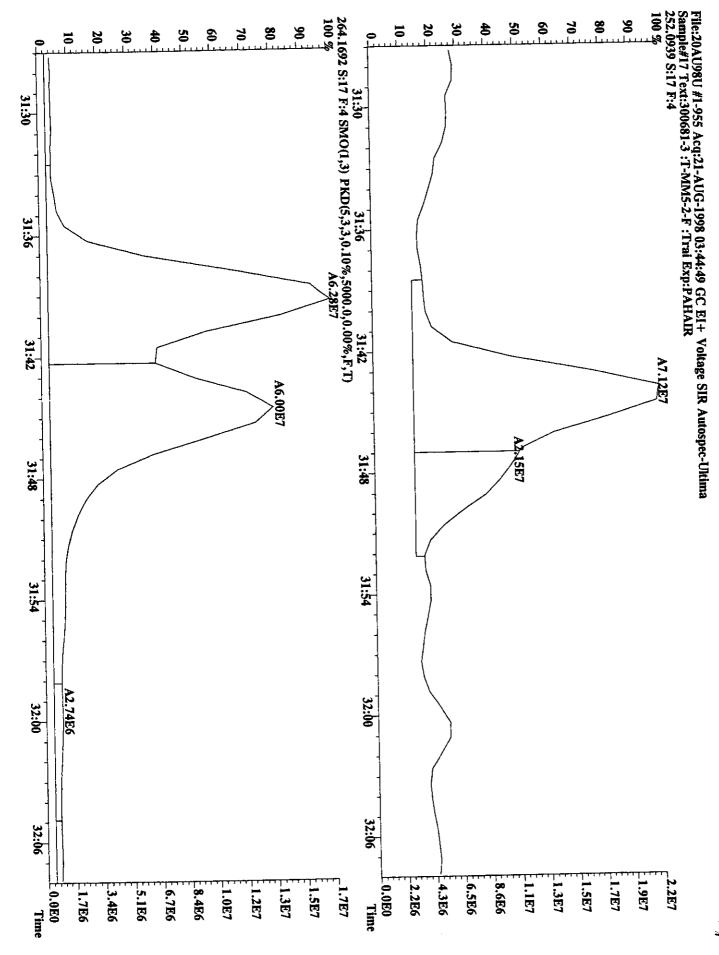


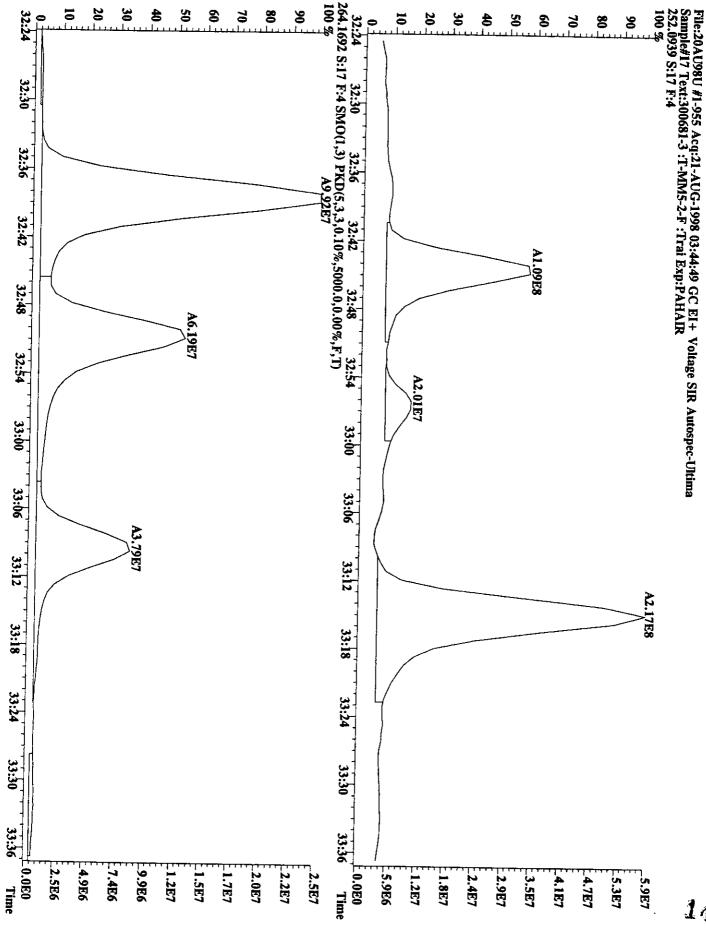


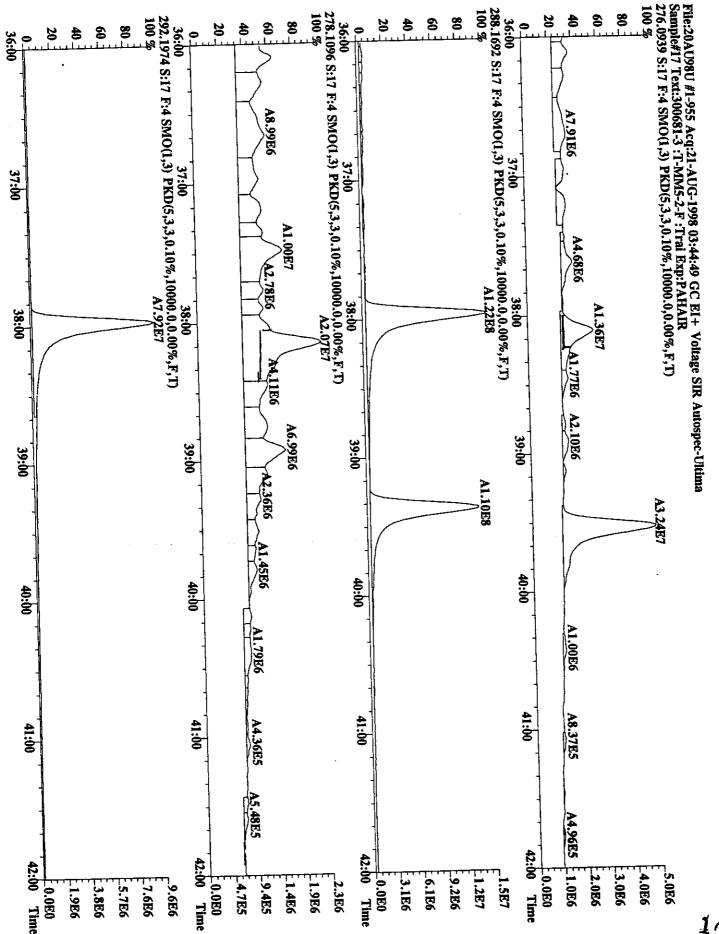


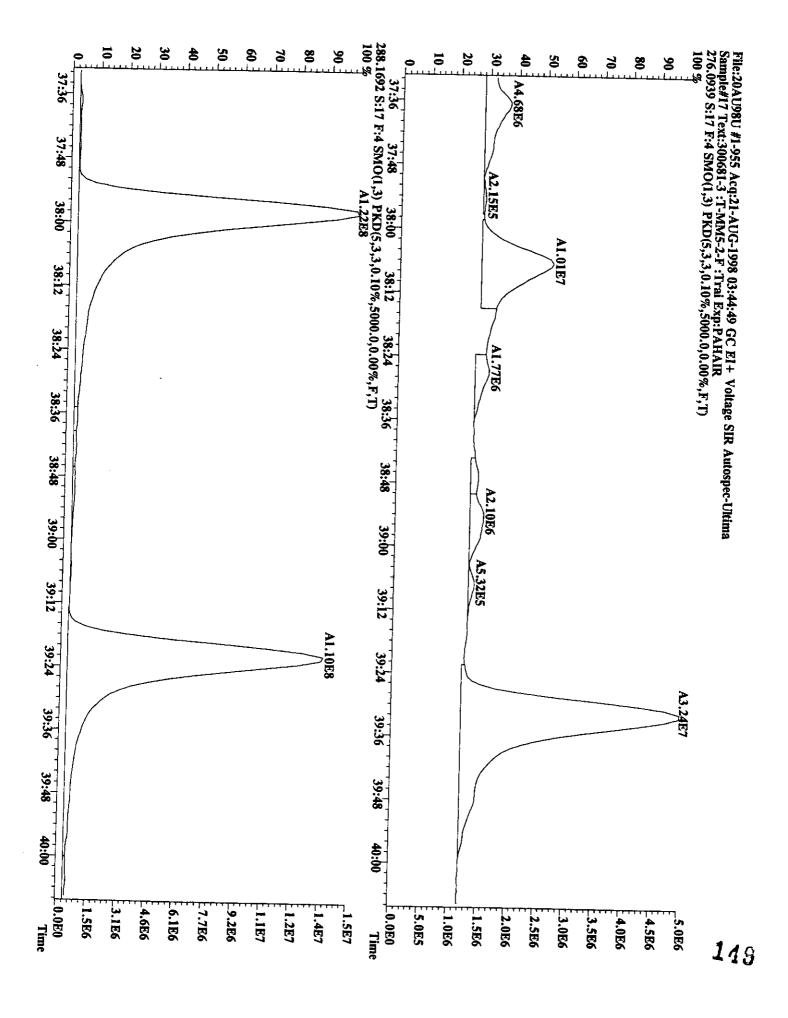


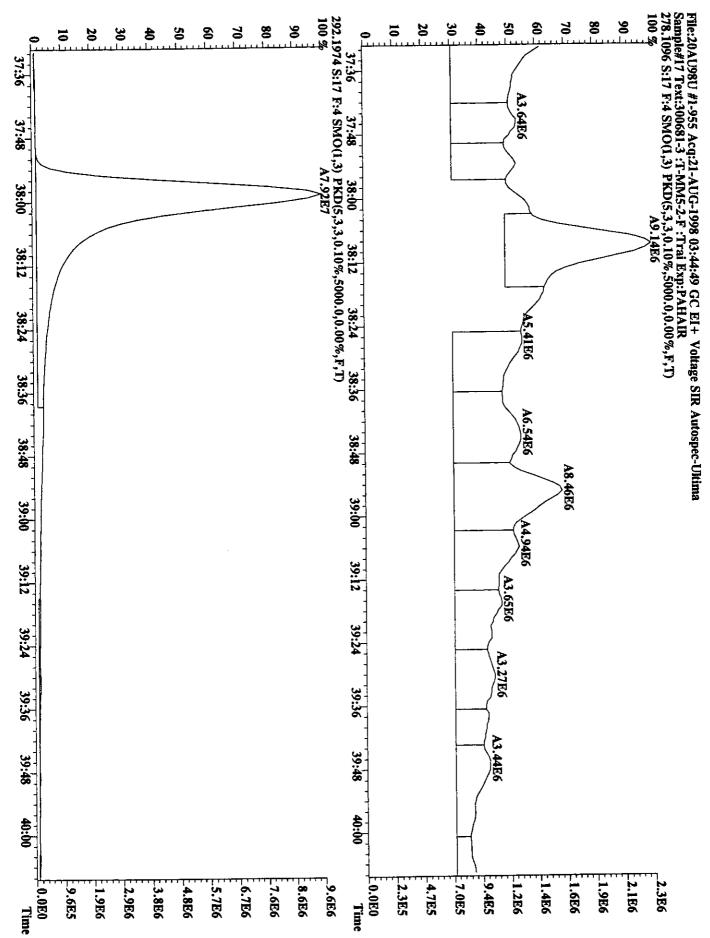


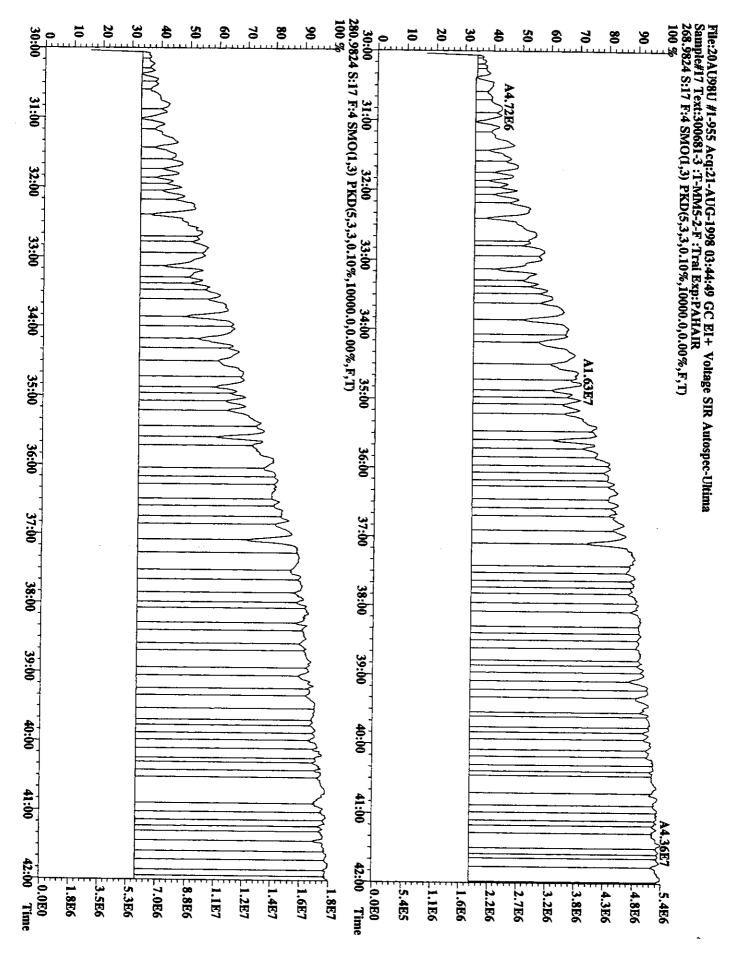






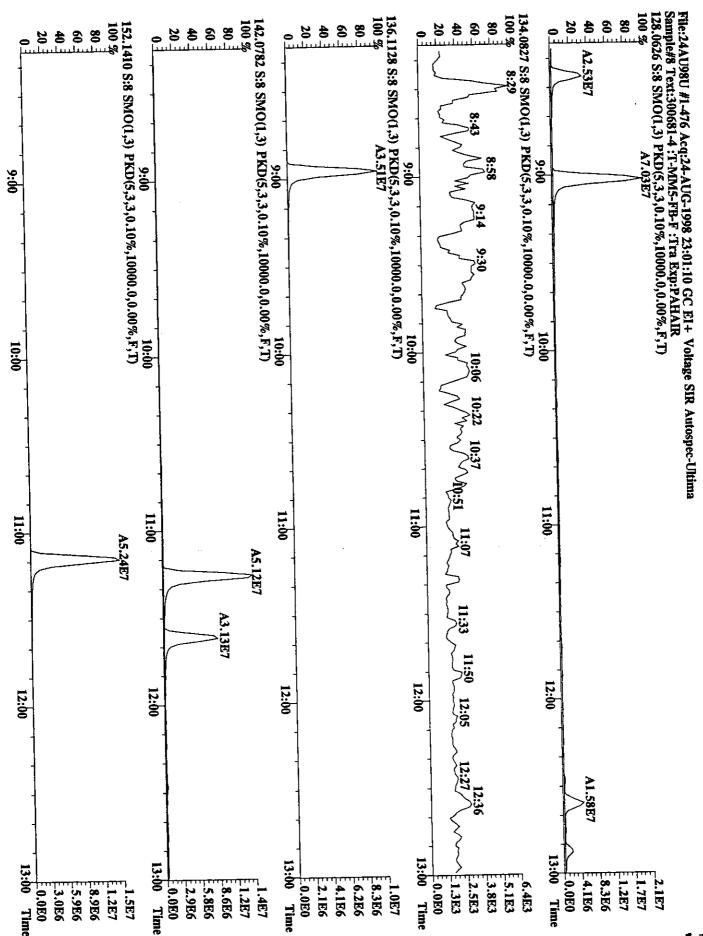


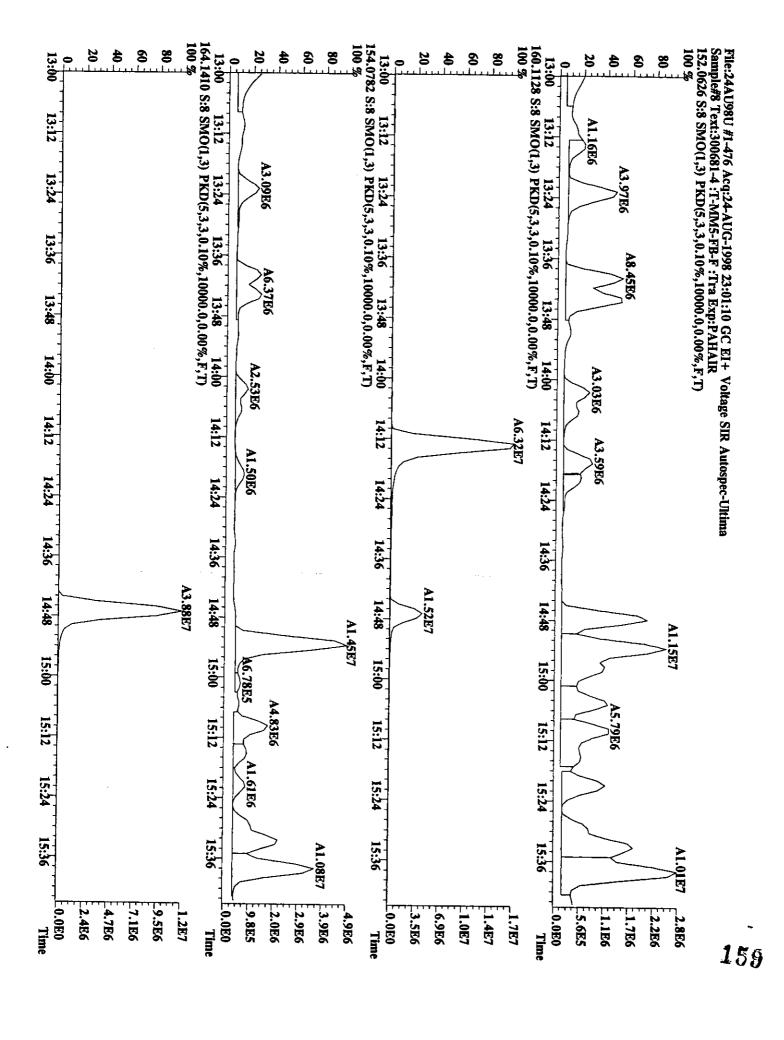


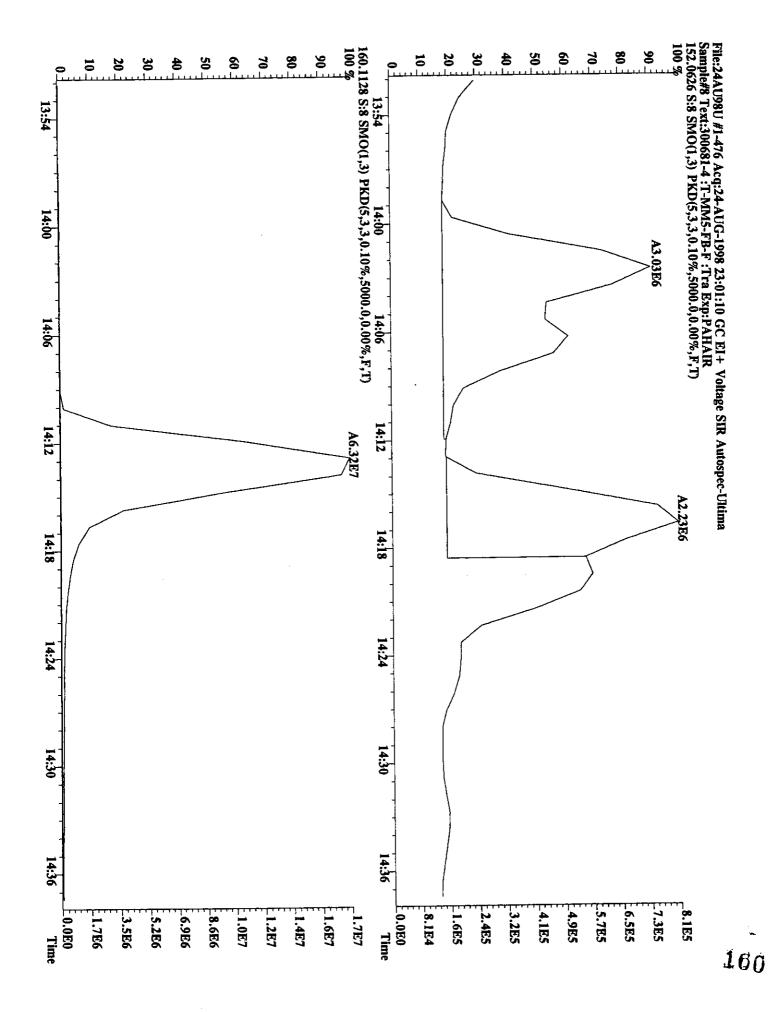


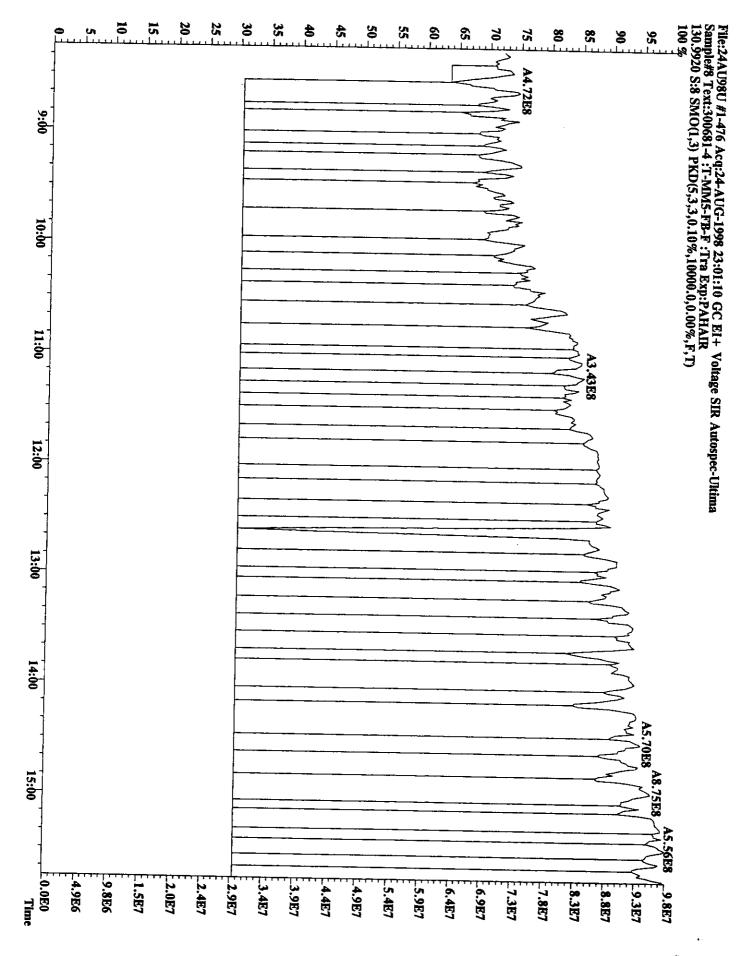
mAr 9-1-48

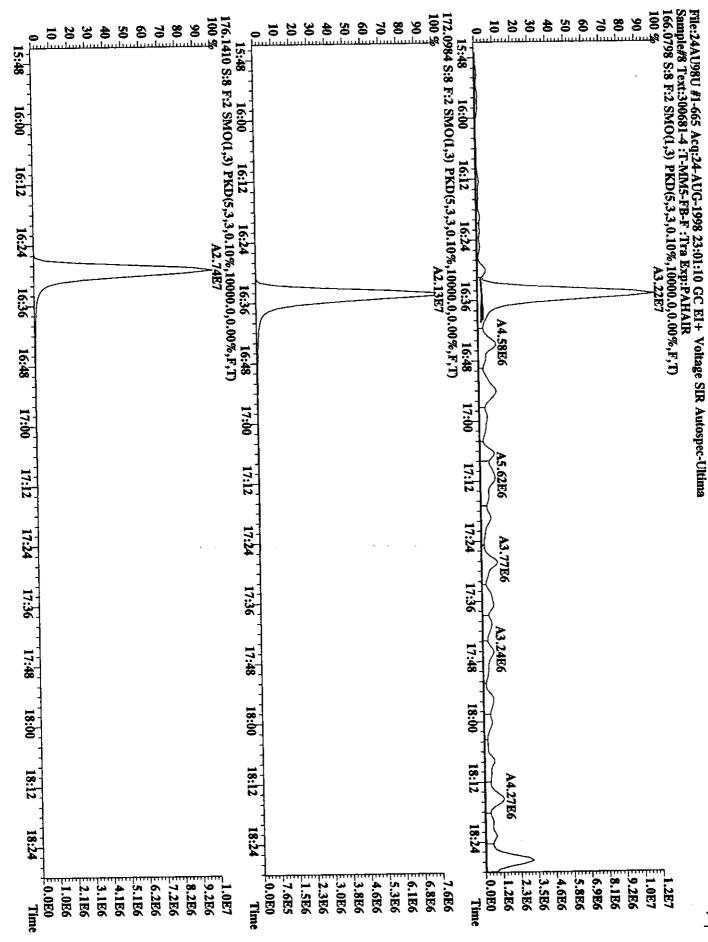
d10-Fluorene 54876400 1.00 Y 16: 29 Y 1.00 50.00 13C-Fluorene 42566400 1.00 Y 16: 34 Y 0.76 51.17 102

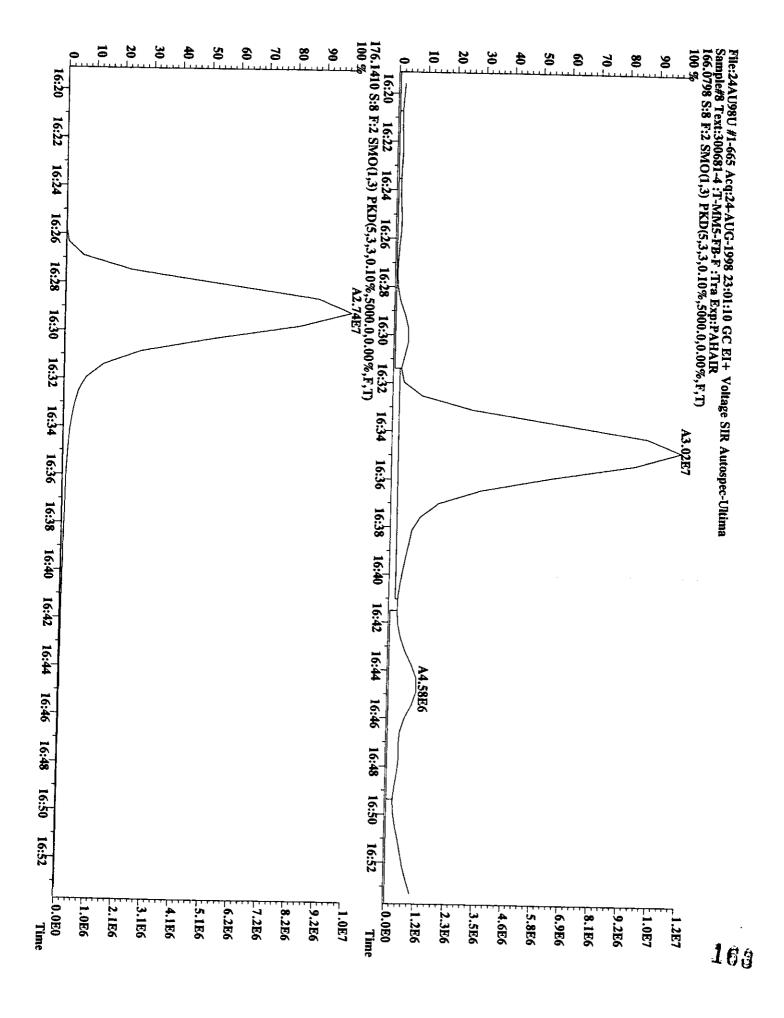

<u> </u>	DATIV MDA	
24AU98U081.RES Date analyzed MM5-FB-F:Tra Ex Cal Isotope R. T. RRF Ratio mm:ss	: PAHX.TRG : 24-AUG-98 : PAHX081998U.RRF ng/ Rec/ SAMPLE MDL	0.333
1.00 Y 11: 10 Y	1.00 50.00	52383900 52383900
1.00 Y 8: 57 Y	1.25 26.87 54	35070600 35070600
1.00 Y 9: 1 Y	1.05 285.91	70336900 70336900
1.00 Y 11: 15 Y	0.77 284.35	51190600 51190600
1.00 Y 14: 13 Y	1.55 38.91 78	63192900 63192900
1.00 Y 14: 17 Y	0.86 6.14=DL	2230000 2230000
1.00 Y 14: 47 Y	0.88 42.23 84	38822400 38822400
1.00 Y 14: 53 Y	0.93 60.45	14533000 14533000
1.00 Y 19: 48 Y	1.00 50.00	40373400 40373400
1.00 Y 16: 29 Y	1.13 30.09 60	27438200 27438200
1.00 Y 16: 35 Y	1.05 157.40	30200000 30200000
1.00 Y 19: 38 Y	2.63 38.70 77	82157700 82157700
1.00 Y 19: 42 Y	0.84 319.02	147000000 147000000
1.00 Y 19: 51 Y	0.83 11.35=DL	5150000 5150000
1.00 Y 32: 39 Y	1.00 50.00	71306700 71306700
1.00 Y 23: 32 Y	0.80 52.53 105	60177100 60177100
1.00 Y 23: 36 Y	1.04 41.97	17500000 17500000
1.00 Y 24: 14 Y	0.81 52.18 104	60255100 60255100
1.00 Y 24: 18 Y	1.11 40.50	18000000 18000000
1.00 Y 28: 6 Y	0.65 78.69 157	72973000 72973000
1.00 Y 28: 11 Y	1.06 3.74=DL	1920000 1920000
1.00 Y 28: 13 Y	0.85 72.45 145	87644400 87644400
1.00 Y 28: 17 Y	0.97 21.87	12400000 12400000
1.00 Y 32: 39 Y	1.00 50.00	71306700 71306700
1.00 Y 31: 39 Y	0.63 52.22 104	46624700 46624700
1.00 Y 31: 45 Y	1.07 4.46=DL	1480000 1480000
1.00 Y 31: 45 Y	0.90 52.34 105	66883000 66883000
1.00 Y 31: 51 Y	1.16 2.27=DL	1170000 1170000
1.00 Y 32: 52 Y	0.75 42.36 85	45375000 45375000
1.00 Y 32: 45 Y	1.46 4.99=DL	2210000 2210000
1.00 Y 32: 58 Y	1.02 2.21=DL	685000 685000
1.00 Y 33: 11 Y	0.61 39.53 79	34644900 34644900
1.00 Y 33: 17 Y	1.62 3.78=DL	1410000 1410000
1.00 Y 38: 1 Y	0.71 53.28 107	53694100 53694100
1.00 Y 38: 4 Y	0.61 4.23±DL	924000 924000
1.00 Y 38: 2 Y	0.44 55.00 110	34600000 34600000
1.00 Y 38: 13 Y	1.11 2.92=DL	748000 748000
1.00 Y 39: 20 Y	0.63 53.84 108	48400000 48400000
1.00 Y 39: 29 Y	0.99 5.57=DL	1780000 1780000
1.00 Y 8: 57 Y	1.00 50.00	35070600 35070600
0.00 N 9: 1 N	0.98 0.00 0	0 0

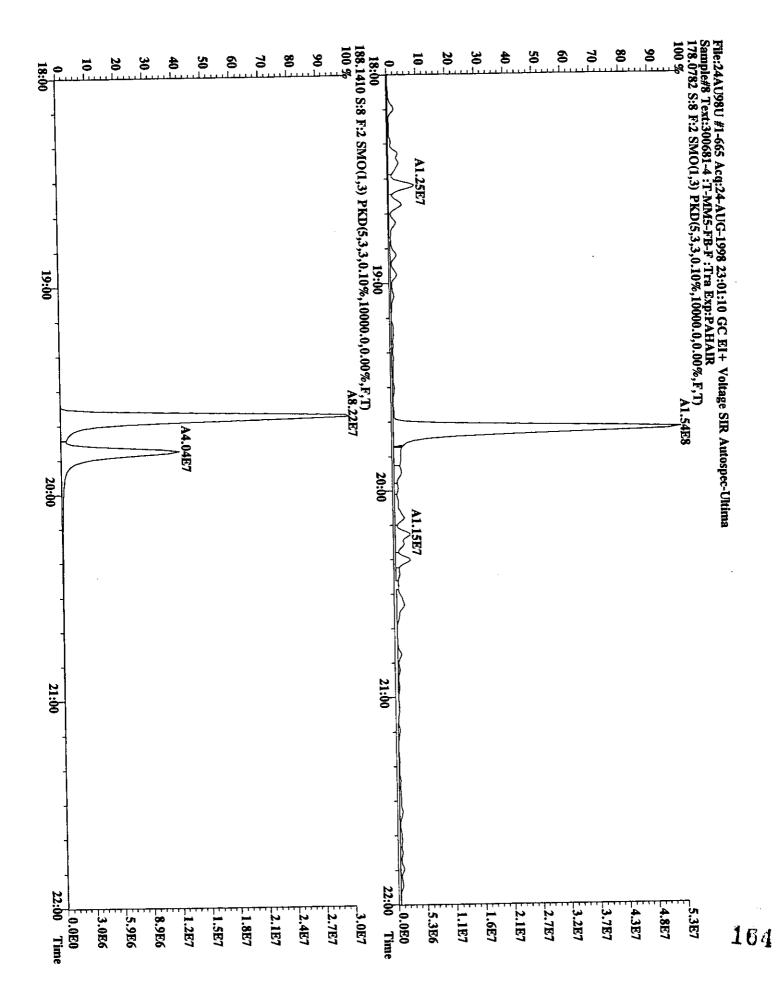

1.00 Y 16: 29 Y 1.00 50.00 27438200 27438200 1.00 Y 16: 34 Y 0.76 51.17 102 21283200 21283200

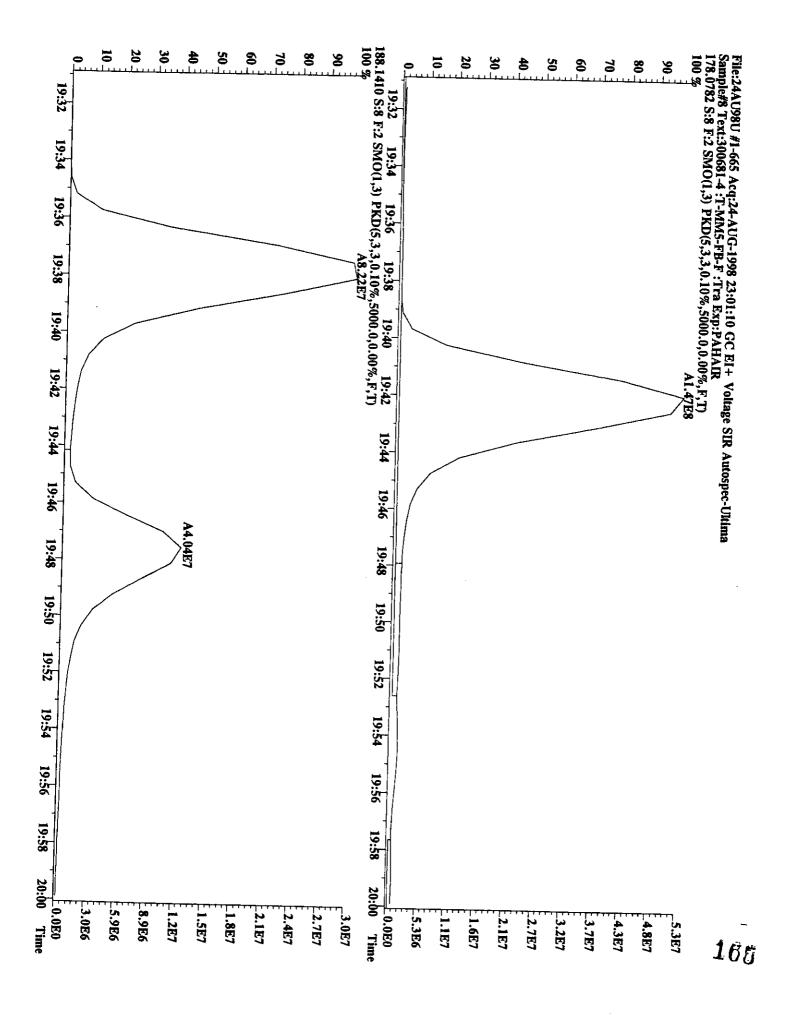

	PAH Unknown RESULTS	1
25-AUG-1998 09:28:32 AM	DAUY TOC	
Mass Spec : ULTIMA GC Column : DB-5 Data file : 24AU98U Weight : 0.333 Name	Results: 24AU98U081.RES : PAHX.TRG Date analyzed: 24-AUG-98 300681-4:T-MM5-FB-F:Tra Ex Cal: PAHX081998U.RRF Total Isotope R. T. RRF ng/ Rec/ Response Ratio mm:ss SAMPLE MDL	
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	104767800 1.00 Y 11: 10 Y 1.00 50.00 70141200 1.00 Y 8: 57 Y 1.25 26.87 54 140673800 1.00 Y 9: 1 Y 1.05 285.91 0.000 102381200 1.00 Y 11: 15 Y 0.77 284.35 0.000)
d8-Acenaphthylene Acenaphthylene	126385800 1.00 Y 14: 13 Y 1.55 38.91 78 7182220 1.00 Y 14: 17 Y 0.86 9.88 0.000	
d10-Acenaphthene Acenaphthene	77644800 1.00 Y 14: 47 Y 0.88 42.23 84 29066000 1.00 Y 14: 53 Y 0.93 60.45 0.000	
d10-Anthracene d10-Fluorene Fluorene	80746800 1.00 Y 19: 48 Y 1.00 50.00 54876400 1.00 Y 16: 29 Y 1.13 30.09 60 64376000 1.00 Y 16: 35 Y 1.05 167.76 0.000)
d10-Phenanthrene Phenanthrene Anthracene	164315400 1.00 Y 19: 38 Y 2.63 38.70 77 308956000 1.00 Y 19: 42 Y 0.84 335.25 0.000 * No Peak 0.00 N 19: 51 N 0.83 0.00 0.000	0
d12-Benzo(e)pyrene d10-Fluoranthene Fluoranthene	142613400 1.00 Y 32: 39 Y 1.00 50.00 120354200 1.00 Y 23: 32 Y 0.80 52.53 10! 42686600 1.00 Y 23: 36 Y 1.04 51.18 0.000	
d10-Pyrene Pyrene	120510200 1.00 Y 24: 14 Y 0.81 52.18 104 40310800 1.00 Y 24: 18 Y 1.11 45.35 0.00	
d12-Benzo(a)anthracene Benzo(a)anthracene	145946000 1.00 Y 28: 6 Y 0.65 78.69 15 4884160 1.00 Y 28: 11 Y 1.06 4.76 0.00	
d12-Chrysene Chrysene	175288800 1.00 Y 28: 13 Y 0.85 72.45 14 25155800 1.00 Y 28: 17 Y 0.97 22.19 0.00	
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	142613400 1.00 Y 32: 39 Y 1.00 50.00 93249400 1.00 Y 31: 39 Y 0.63 52.22 10 5083260 1.00 Y 31: 45 Y 1.07 7.66 0.00	
d12-Benzo(k) fluoranthene Benzo(k) fluoranthene	133766000 1.00 Y 31: 45 Y 0.90 52.34 10 5083260 1.00 Y 31: 45 Y 1.16 4.94 0.00	
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	4472620 1.00 Y 32: 45 Y 1.46 5.05 0.00	35)0)0
d12-Perylene Perylene	69289800 1.00 Y 33: 11 1 0.61 33.21 0.00	79 00
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene	10/388200 1.00 1 30: 4 1 0.61 0.00 0.00	07 00
d14-Dibenz(ah)anthracene Dibenz(ah)anthracene	66604400 1.00 1 30 12 1 1 1 2 13 0.00	06 00
d12-Benzo(ghi)perylene Benzo(ghi)perylene	* No Peak 0.00 N 39: 20 N 0.63 0.00 * No Peak 0.00 N 39: 29 N 0.99 * No No Is	0
d8-Naphthalene 13C-Naphthalene	70141200 1.00 Y 8: 57 Y 1.00 50.00	0
4		

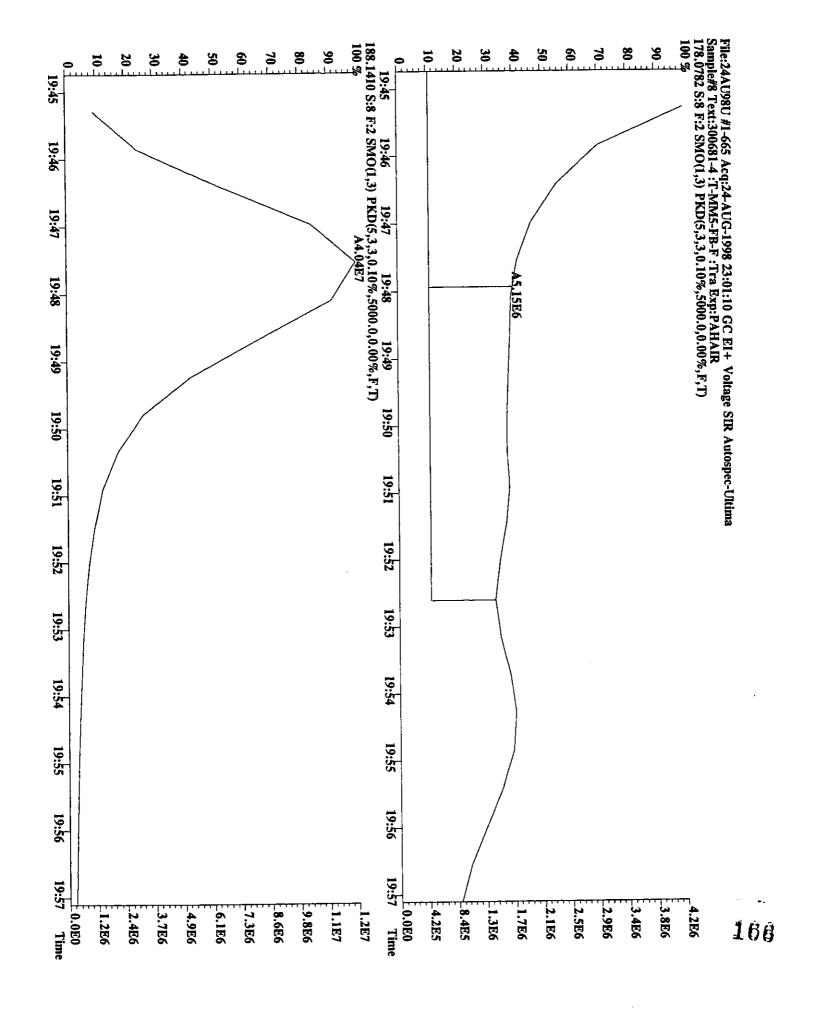

2

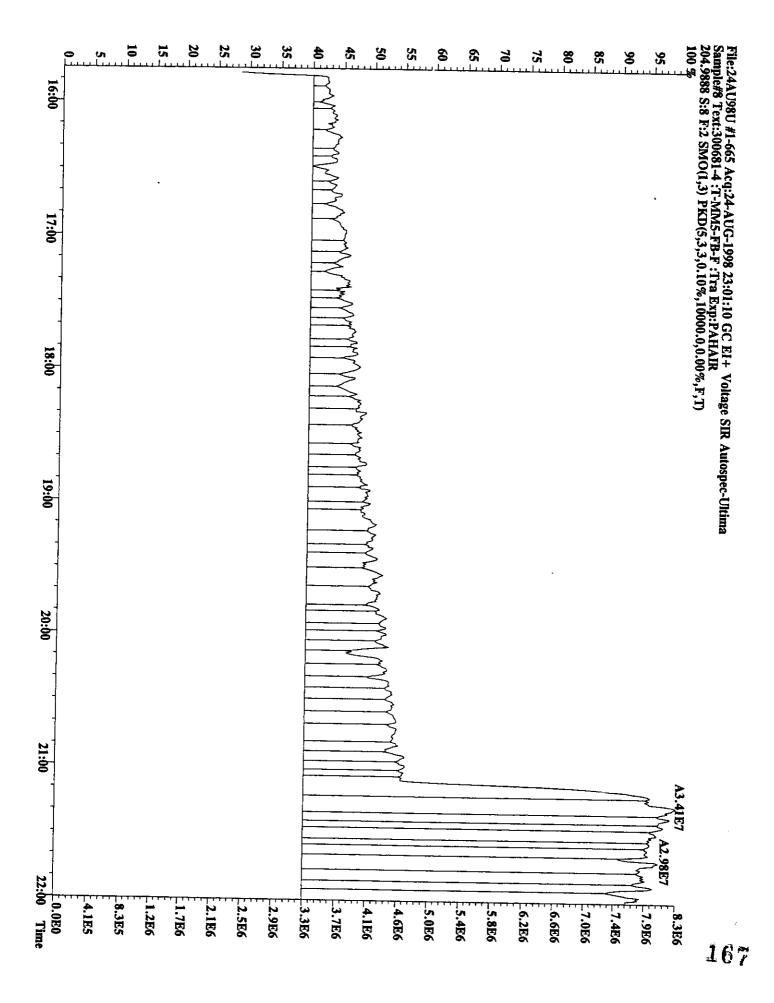

d10-Fluorene 54876400 1.00 Y 16: 29 Y 1.00 50.00 13C-Fluorene 42566400 1.00 Y 16: 34 Y 0.76 51.17 102

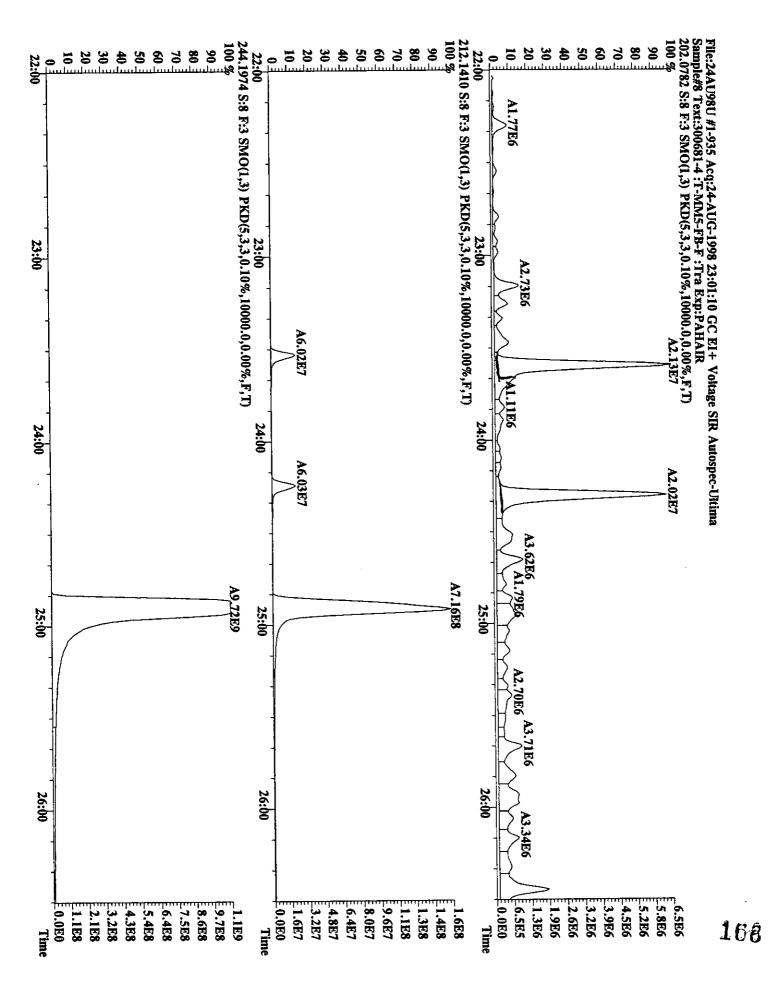


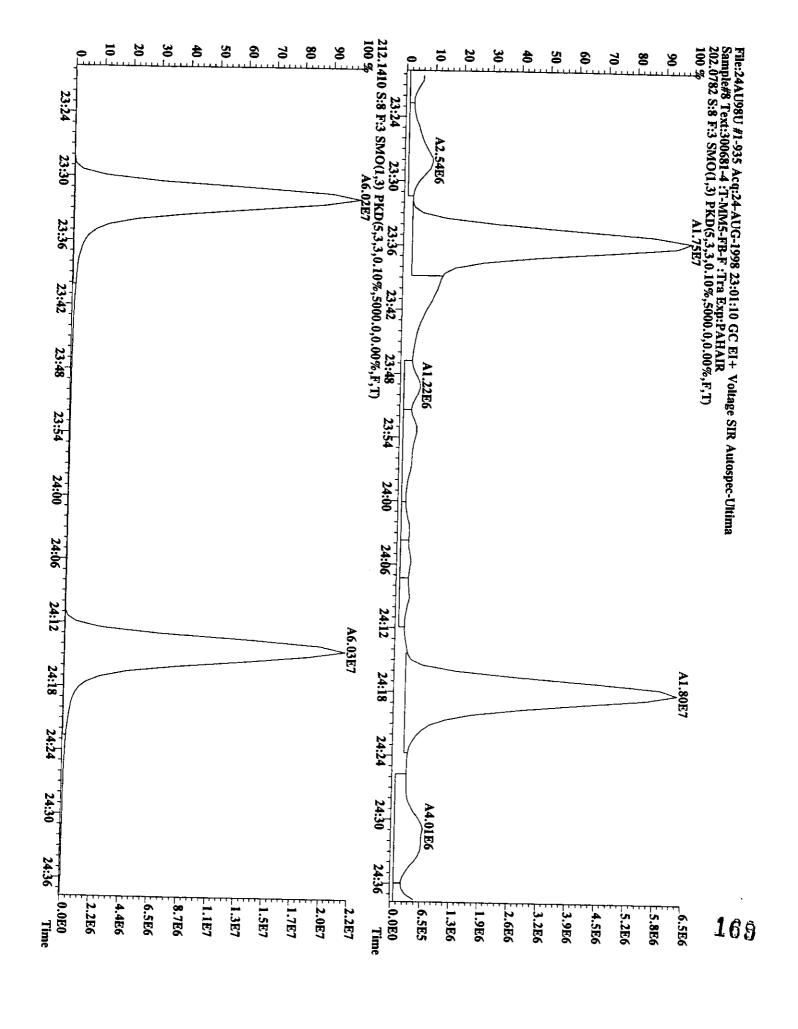


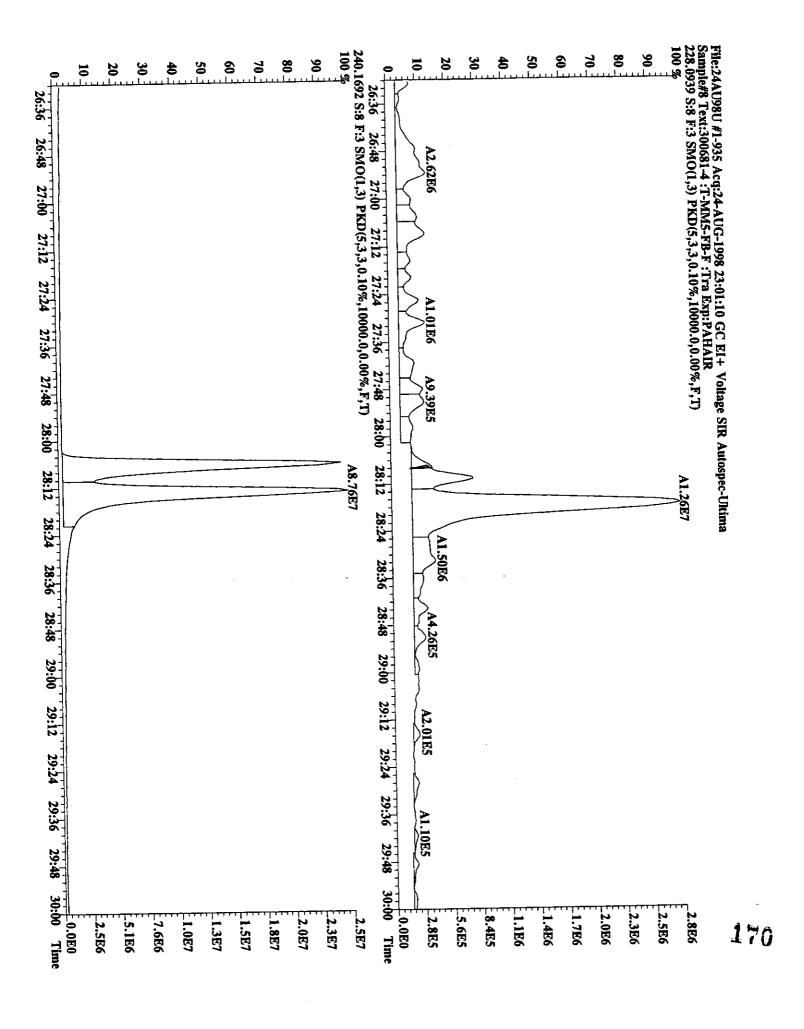


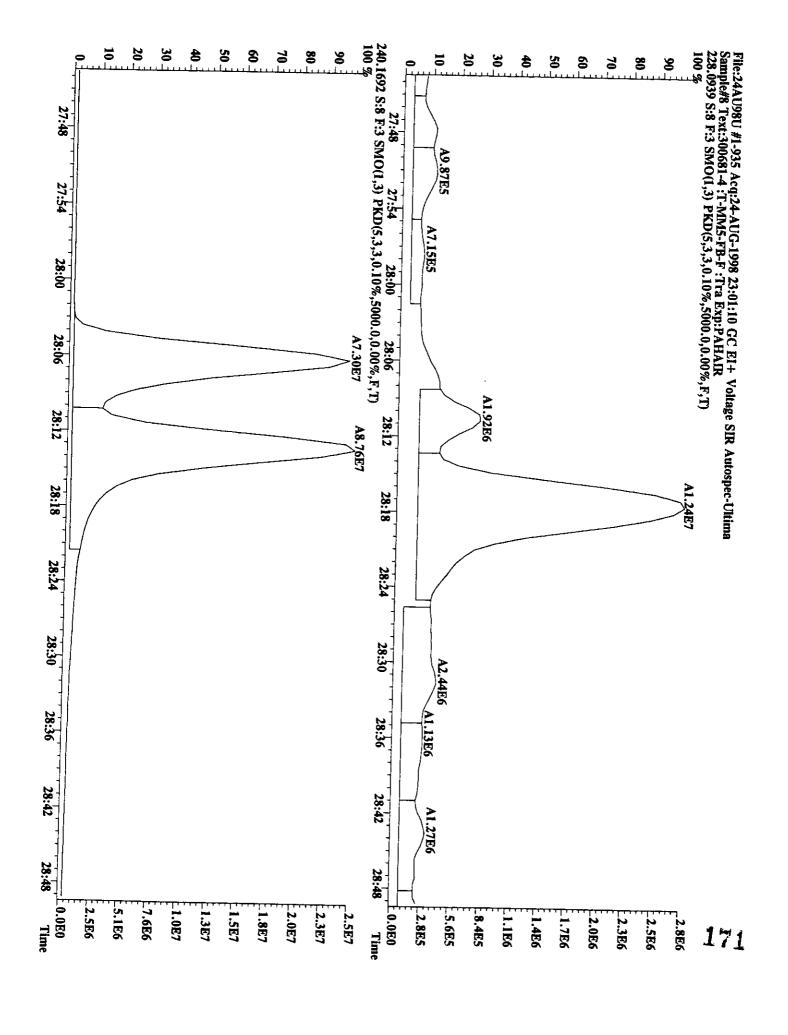


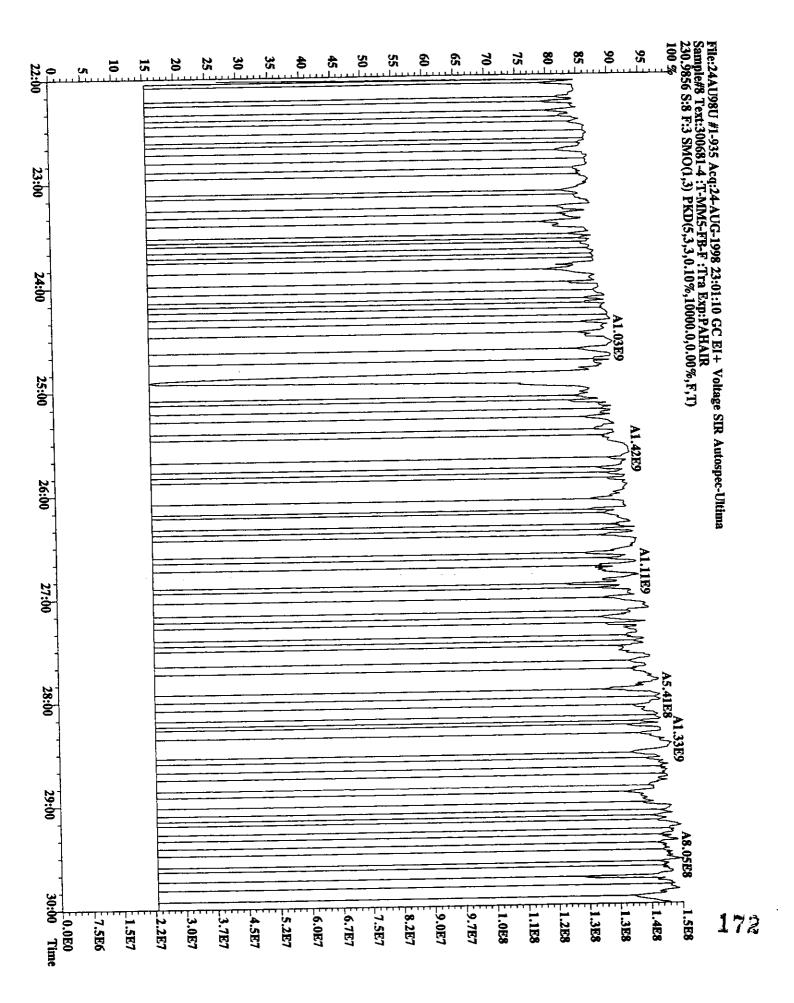


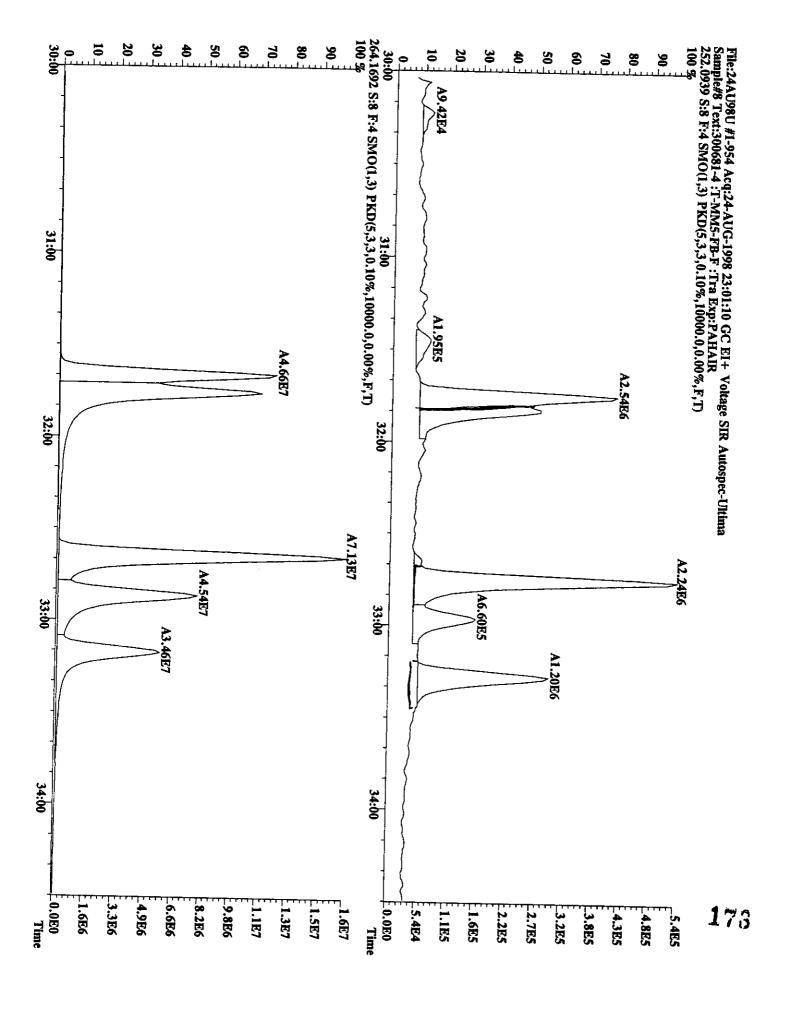


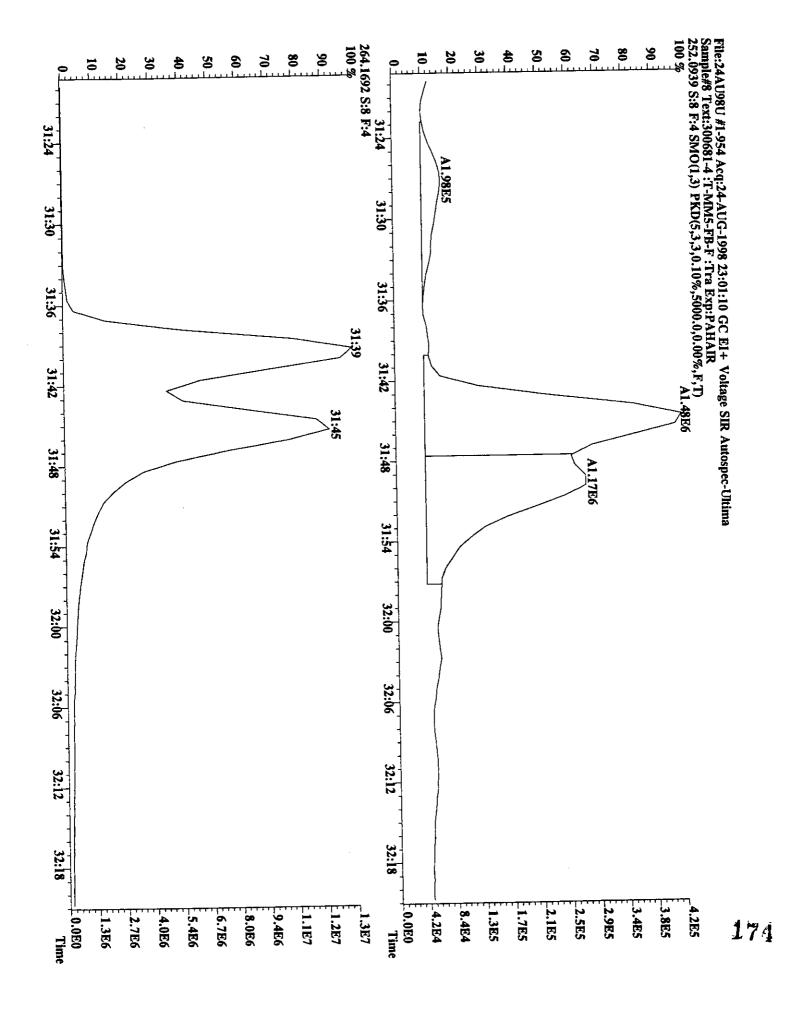


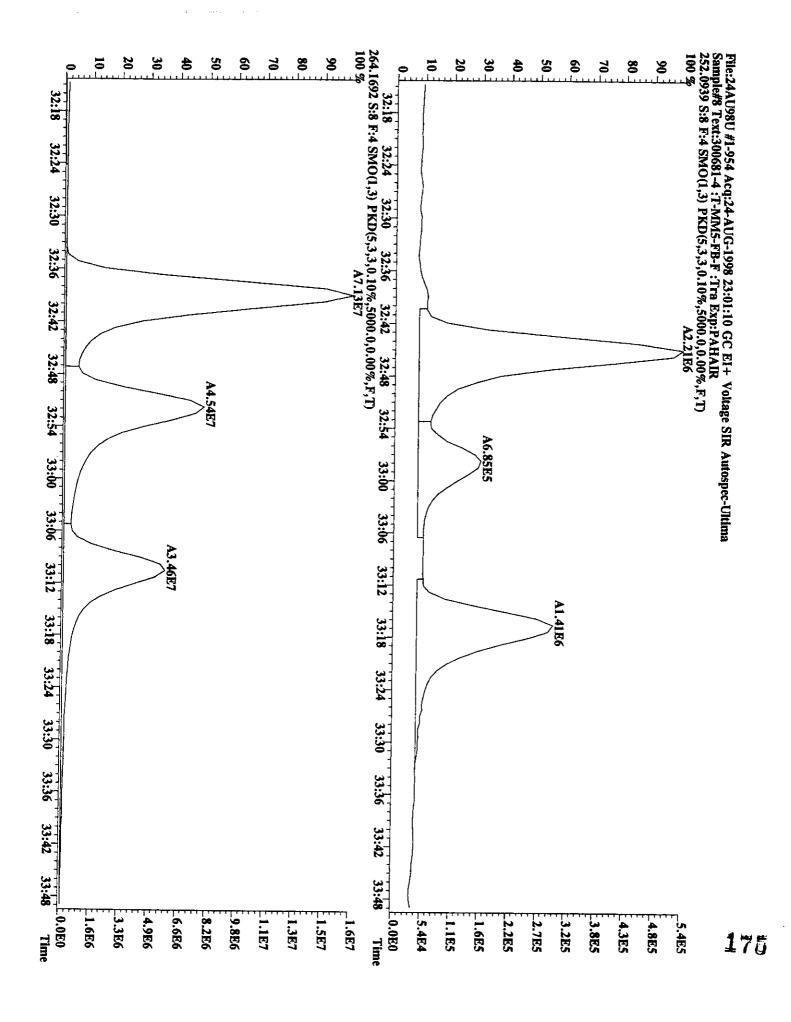


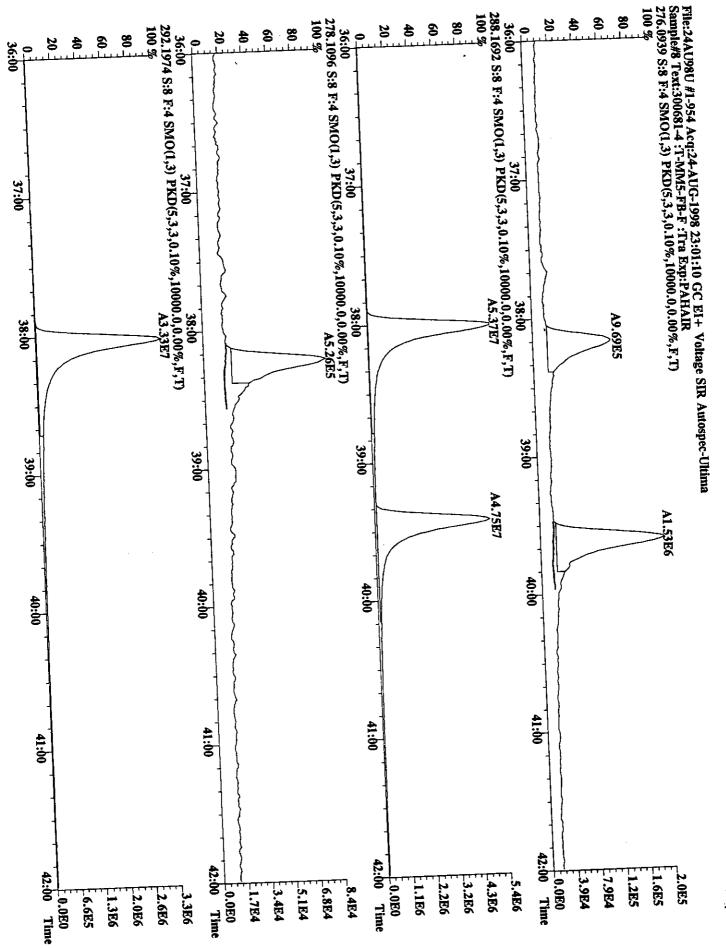


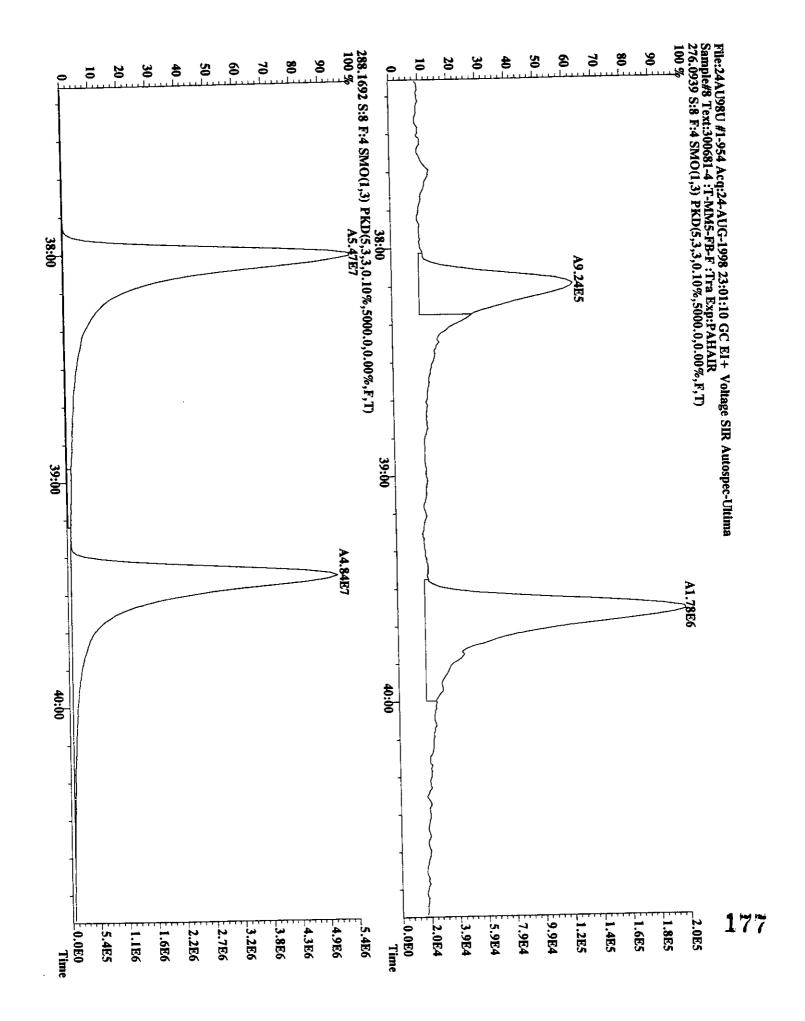


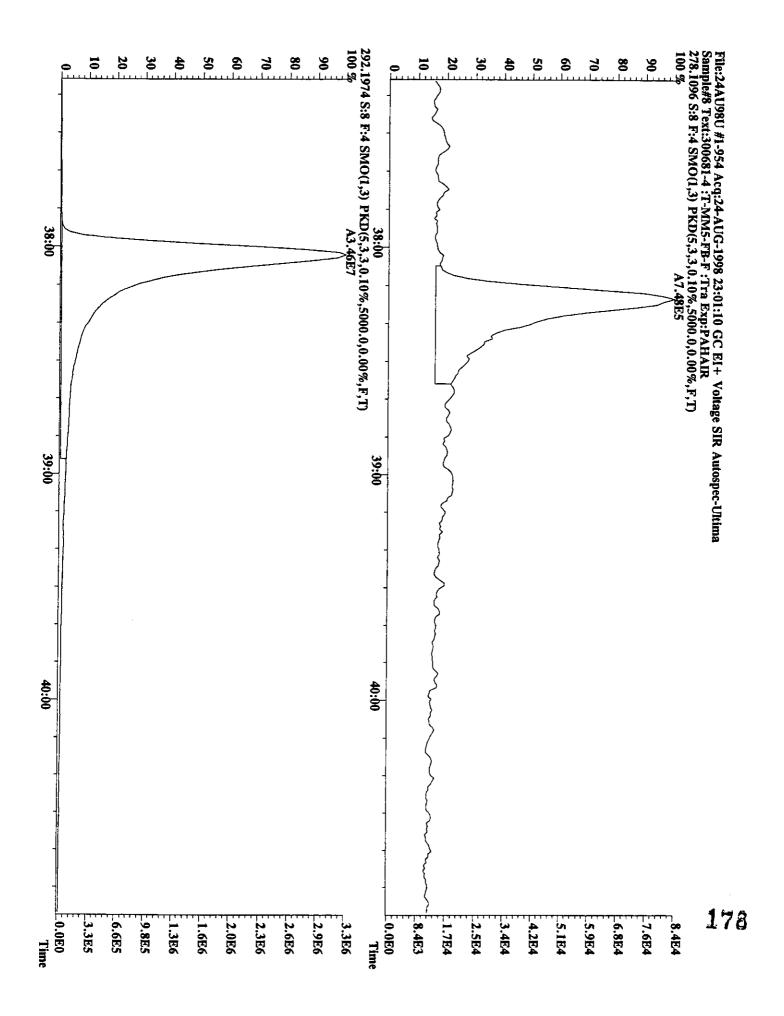


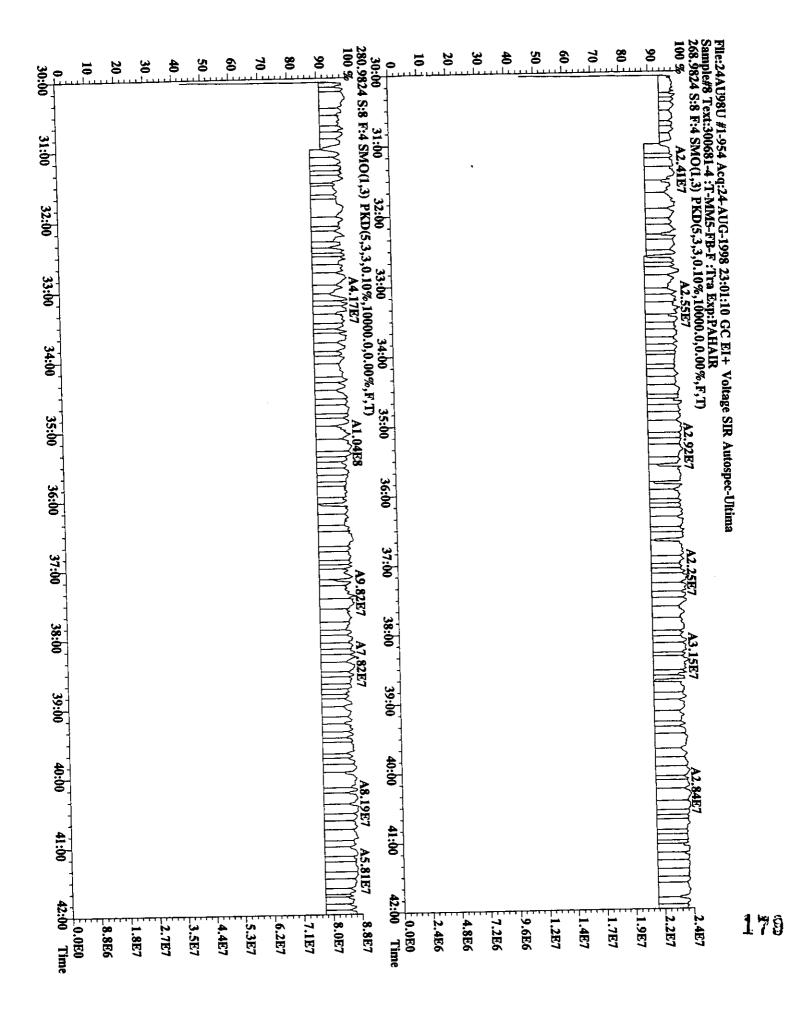













```
02-SEP-1998 07:16:49 PM
                             Results: 24AU98U091.RES
                                                                : PAHX.TRG
                                                Date analyzed: 24-AUG-98
GC Column : DB-5
            24AU98U
                           300681-5 :T-MM5-4-F
                                                               : PAHX081998U.RRF
Data file :
                                                :Trai Ex
                                                           Cal
                                                 R. T.
                                                           RRF
                                                                       ng/
                                                                             Rec/
                              Total
                                        Isotope
Weight
             : 0.333
                                                 mm:ss
                                                                     SAMPLE
                                                                              MDL
                                        Ratio
          Name
                             Response
                                                                       50.00
                                                       9 Y
                                                               1.00
                               99343800 1.00 Y
                                                 11:
 d10-2-Methylnaphthalene
                                                  8: 57
                               55920200 1.00 Y
                                                         Y
                                                               1.25
                                                                       22.59
                                                                                 45 ~
           d8-Naphthalene
                                                               1.05 2842.50
                             1115000000 1.00 Y
                                                  9:
                                                       1
                                                         Y
              Naphthalene
                                                                                B
                             1454668000 1.00 Y
                                                 11: 15 Y
                                                               0.77 5067.60
     2-Methylnaphthalene
                                                                                B
                                                                1.55
                               68118600 1.00 Y
                                                 14: 13
                                                        Y
                                                                       22.12
                                                                                 44 m
       d8-Acenaphthylene
                               64000000 1.00 Y
                                                 14: 16
                                                               0.86
                                                                      163.40
          Acenaphthylene
                               37745000 1.00 Y
        d10-Acenaphthene
                                                 14: 46
                                                                0.88
                                                                       21.65
                                                                                 43
                                                               0.93 1068.01 6B
                              249634000 1.00 Y
                                                 14: 53
             Acenaphthene
                                                               1.00
                               73659200 1.00 Y
                                                 19: 47
                                                         v
                                                                       50.00
           d10-Anthracene
                                                     29 Y
                               26158200 1.00 Y
                                                 16:
                                                                1.13
                                                                       15.72
             d10-Fluorene
                                                                                 31 m
                                                                1.05 3247.36 🚄
                 Fluorene
                              594000000 1.00 Y
                                                 16: 34 Y
                                                               2.63
        d10-Phenanthrene
                               71184000 1.00 Y
                                                 19: 38 Y
                                                                       18.38
                                                                                 37 m
                                                               0.84 8077.06 €
                                                                               B
             Phenanthrene
                             3224660000 1.00 Y
                                                 19: 42
                                                         Y
                              167600000 1.00 Y
                                                 19: 50 Y
                                                               0.83
                                                                      426.41
               Anthracene
                                                 32: 39 Y
                                                                       50.00
      d12-Benzo(e)pyrene
                              156000600 1.00 Y
                                                               1.00
                                                               0.80
                                                 23: 33 Y
                                                                       24.90
                                                                                 50
        d10-Fluoranthene
                               62400000 1.00 Y
                                                 23: 35 Y
                                                               1.04
                                                                      610.55
             Fluoranthene
                              264000000 1.00 Y
                                                               0.81
                                                                       24.62
                                                                                 49 m
               d10-Pyrene
                               62200000 1.00 Y
                                                 24: 16
                                                 24: 18 Y
                                                                1.11 1233.80
                              566000000 1.00 Y
                   Pyrene
                                                 28:
                                                       6
                                                        Y
                                                               0.65
                                                                       36.80
                                                                                 74
                               74666000 1.00 Y
  d12-Benzo(a)anthracene
                               15780000 1.00 Y
                                                 28: 16 Y
                                                               1.06
                                                                       30.07
      Benzo(a) anthracene
                                                 28: 13 Y
                                                               0.85
                                                                       32.28
                                                                                 65
             d12-Chrysene
                               85421400 1.00 Y
                                                 28: 16
                                                               0.97
                                                                      618.92
                              342000000 1.00 Y
                 Chrysene
                                                 32: 39
                                                               1.00
                                                                       50.00
                              156000600 1.00 Y
                                                         Y
      d12-Benzo(e)pyrene
                                                 31: 40 Y
                                                                       26.79
                                                               0.63
                                                                                 54
                               52330400 1.00 Y
d12-Benzo(b) fluoranthene
                                                                       36.12
                               13460000 1.00 Y
                                                 31: 45 Y
                                                               1.07
    Benzo(b) fluoranthene
                                                                       23.38
                                                 31: 45
                                                               0.90
                                                                                 47 m
                               65366400 1.00 Y
                                                        Y
d12-Benzo(k) fluoranthene
                                4860000 1.00 Y
                                                 31: 45 Y
                                                               1.16
                                                                        9.66=DL
    Benzo(k) fluoranthene
                                                               0.75
                                                                       22.33
                                                                                 45
      d12-Benzo(a)pyrene
                               52342800 1.00 Y
                                                 32: 51 Y
                                                                                    m
                                                 32: 45 Y
                                                               1.46
                                                                       26.21
                               13380000 1.00 Y
           Benzo(e)pyrene
                                                 32: 57 Y
                                                               1.02
                                                                        3.88=DL
                                1384000 1.00 Y
          Benzo(a)pyrene
                                                               0.61
                                                 33:
                                                                       20.73
                                                                                 41
                               39740800 1.00 Y
                                                     10
             d12-Perylene
                                                 33: 16 Y
                                                               1.62
                                                                        6.72=DL
                                2880000 1.00 Y
                 Perylene
                               50000000 1.00 Y
                                                 37:
                                                               0.71
                                                                       22.68
                                                                                 45 m
d12-Indeno(123-cd)pyrene
                                1340000 1.00 Y
                                                 38:
                                                       4
                                                         Y
                                                               0.61
                                                                        6.58=DL
    Indeno(123-cd)pyrene
                                                                       21.22
                               29212000 1.00 Y
                                                       3
                                                               0.44
                                                                                 42 m
d14-Dibenz (ah) anthracene
                                                 38:
                                                         Y
                                                                        2.61=PL
                                                                1.11
                                 566000 1.00 Y
                                                 38: 13
    Dibenz (ah) anthracene
                                                               0.63
                                                                                 47 m
                                                 39:
                                                                       23.29
                               45800000 1.00 Y
                                                     20 Y
  d12-Benzo(ghi)perylene
                                4660000 1.00 Y
                                                               0.99
                                                                       15.42
                                                 39: 29 Y
      Benzo(ghi)perylene
                               55920200 1.00 Y
                                                  8: 57 Y
                                                               1.00
                                                                       50.00
           d8-Naphthalene
```

13C-Naphthalene

* No Peak

0.00 N

9:

0.98

0.00

MAT 9-7 48

0

2

02-SEP-1998 07:16:49 PM Dioxin Furan Unknown RESULTS

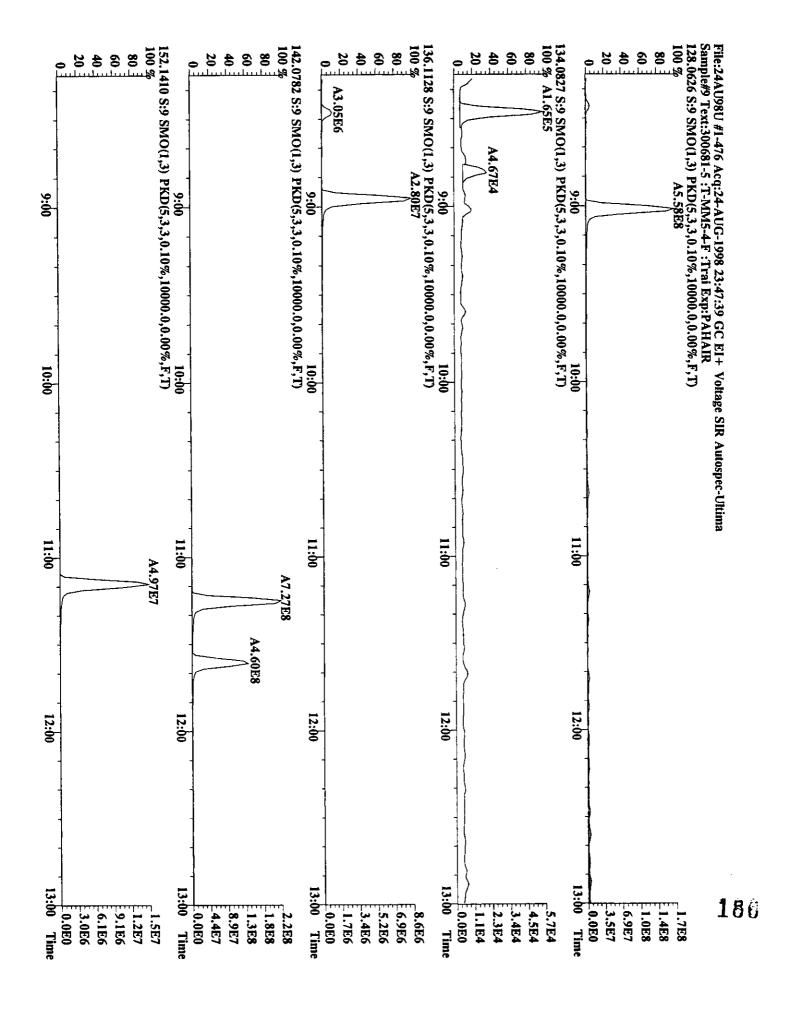
d10-Fluorene 26158200 1.00 Y 16: 29 Y 1.00 50.00 13C-Fluorene 41184800 1.00 Y 16: 34 Y 0.76 103.86 208 m

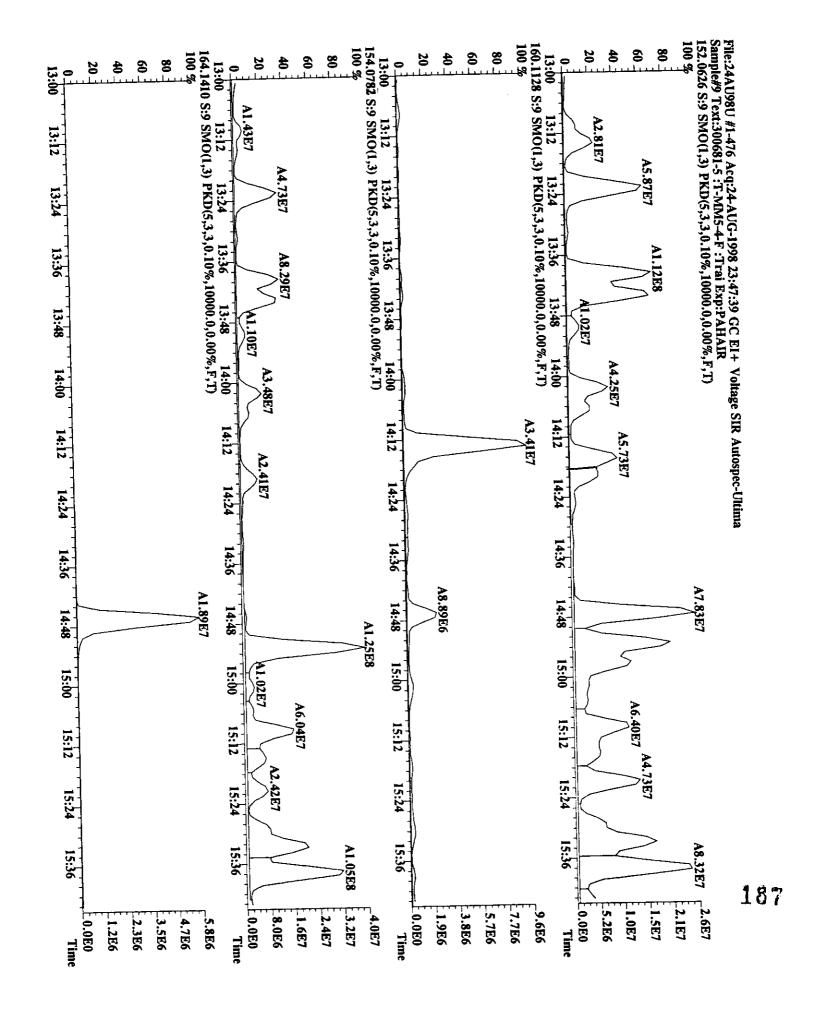
24AU98U091.RES : PAHX.TRG
Date analyzed : 24-AUG-98
MM5-4-F :Trai Ex Cal : PAHX081998U.RRF 0.333

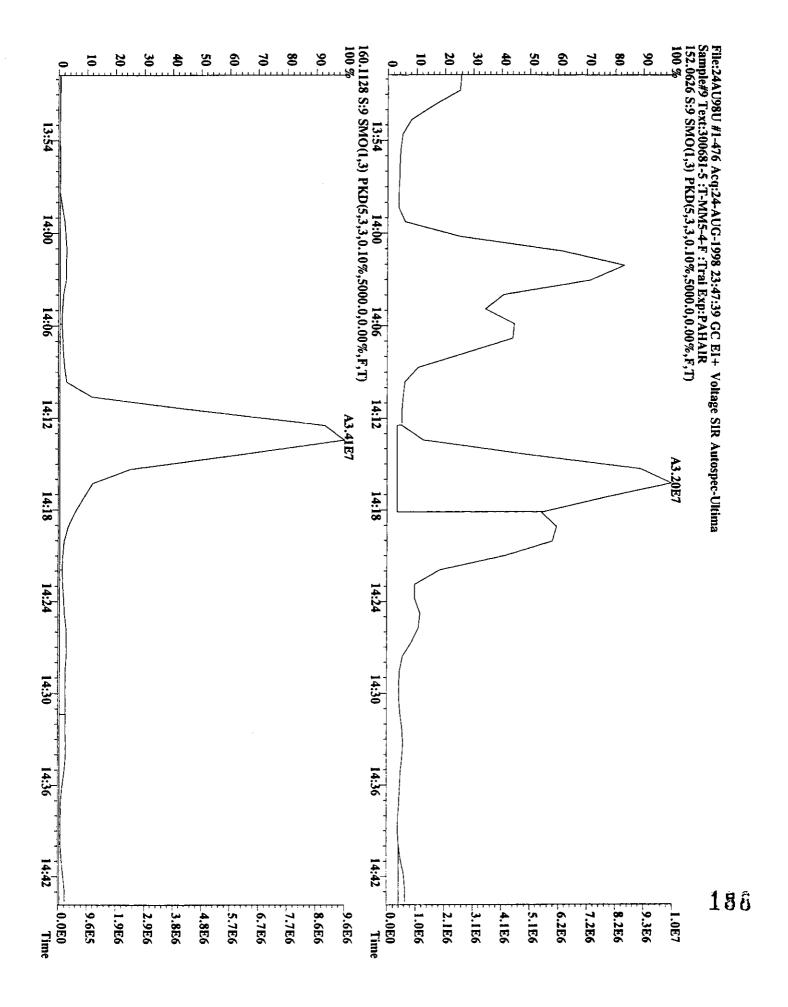
MM5-4-F Isotope Ratio	:Trai Ex R. T. mm:ss	Cal : PAI RRF	HX081998U. ng/ R SAMPLE			
1.00 Y 1.00 Y 1.00 Y 1.00 Y	11: 9 Y 8: 57 Y 9: 1 Y 11: 15 Y	1.25 1.05	50.00 22.59 2842.50 5067.60	45	49671900 27960100 557500000 727334000	49671900 27960100 557500000 727334000
1.00 Y 1.00 Y	14: 13 Y 14: 16 Y		22.12 163.40	44	34059300 32000000	34059300 32000000
1.00 Y 1.00 Y	14: 46 Y 14: 53 Y		21.65 1068.01	43	18872500 124817000	18872500 124817000
1.00 Y 1.00 Y 1.00 Y	19: 47 Y 16: 29 Y 16: 34 Y	1.13	50.00 15.72 3247.36	31	36829600 13079100 297000000	36829600 13079100 297000000
1.00 Y 1.00 Y 1.00 Y	19: 38 Y 19: 42 Y 19: 50 Y	0.84	18.38 8077.06 426.41	37	35592000 1612330000 83800000	35592000 1612330000 83800000
1.00 Y 1.00 Y 1.00 Y	32: 39 Y 23: 33 Y 23: 35 Y	0.80	24.90	50	78000300 31200000 132000000	78000300 31200000 132000000
1.00 Y 1.00 Y	24: 16 Y 24: 18 Y		24.62 1233.80	49	31100000 283000000	31100000 283000000
1.00 Y 1.00 Y	28: 6 Y 28: 16 Y		36.80 30.07	74	37333000 7890000	37333000 7890000
1.00 Y 1.00 Y	28: 13 Y 28: 16 Y		32.28 618.92	65	42710700 171000000	42710700 171000000
1.00 Y 1.00 Y 1.00 Y	32: 39 Y 31: 40 Y 31: 45 Y	0.63	50.00 26.79 36.12	54	78000300 26165200 6730000	78000300 26165200 6730000
1.00 Y 1.00 Y	31: 45 Y 31: 45 Y		23.38 9.66=D	47 L	32683200 2430000	32683200 2430000
1.00 Y 1.00 Y 1.00 Y	32: 51 Y 32: 45 Y 32: 57 Y	1.46	22.33 26.21 3.88=D	45)L	26171400 6690000 692000	26171400 6690000 692000
1.00 Y 1.00 Y	33: 10 Y 33: 16 Y		20.73 6.72=D	41)L	19870400 1440000	19870400 1440000
1.00 Y 1.00 Y	37: 57 Y 38: 4 Y			45 L	25000000 670000	25000000 670000
1.00 Y 1.00 Y	38: 3 Y 38: 13 Y			42)L	14606000 283000	14606000 283000
1.00 Y 1.00 Y	39: 20 Y 39: 29 Y		23.29 15.42	47	22900000 2330000	22900000 2330000
1.00 Y 0.00 N	8: 57 Y 9: 1 N		50.00 0.00	0	27960100 0	27960100 0

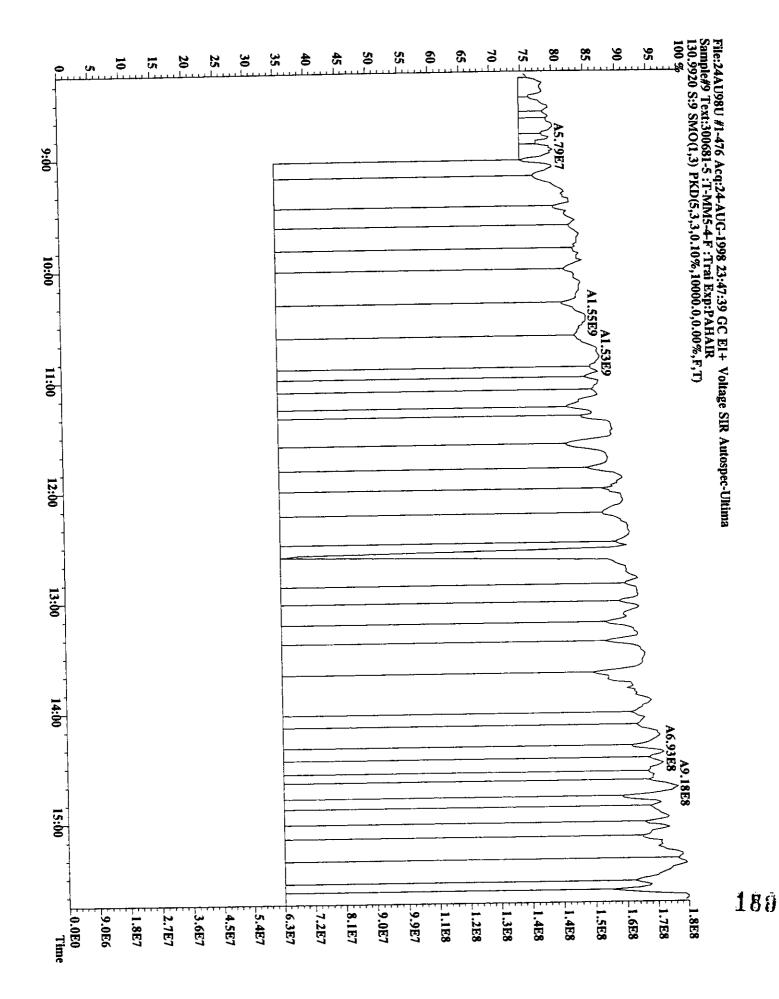
02-SEP-1998 07:16:46 PM Dioxin Furan Unknown RESULTS

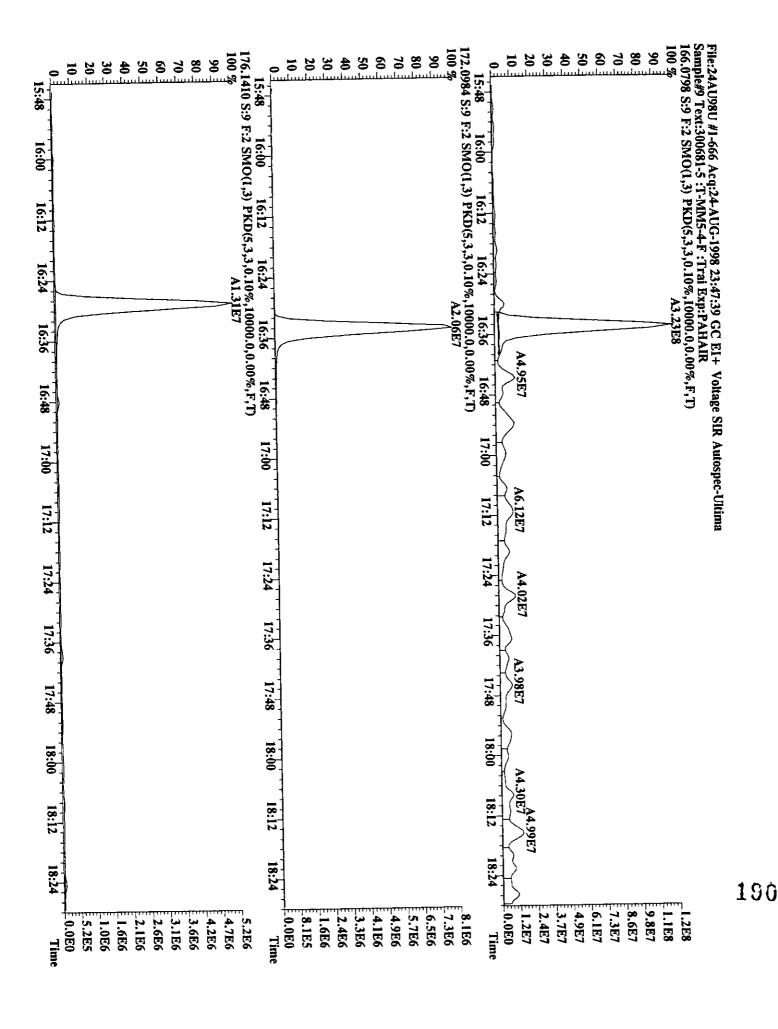
1.00 Y 16: 29 Y 1.00 50.00 13079100 13079100 1.00 Y 16: 34 Y 0.76 103.86 208 20592400 20592400

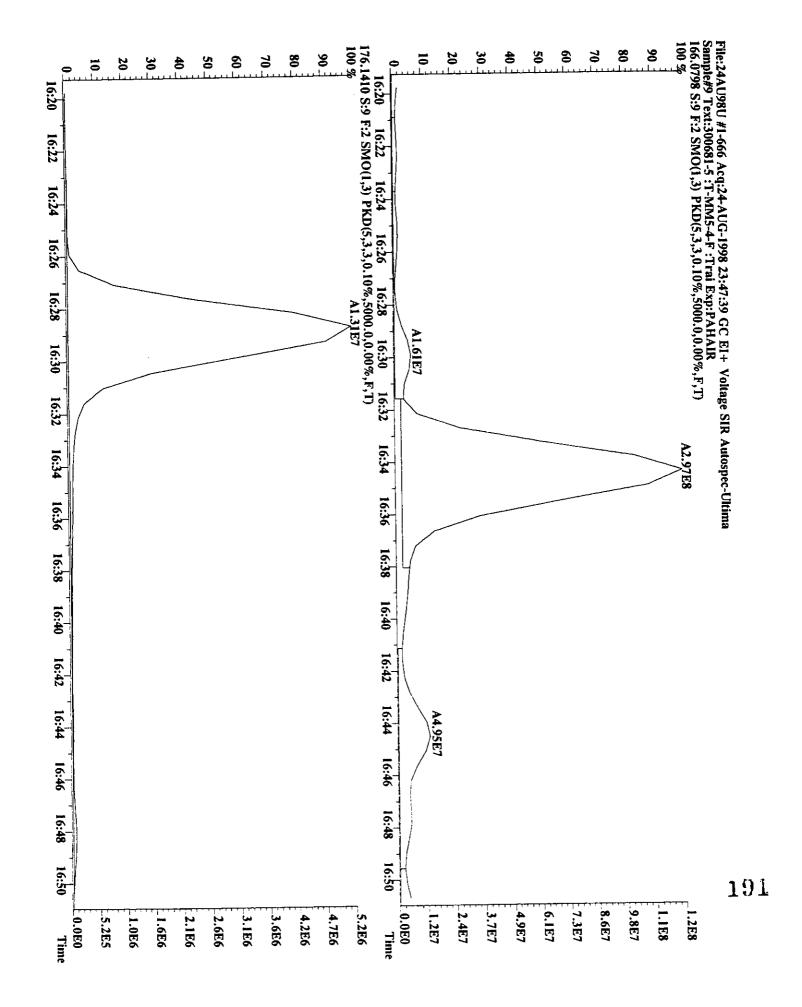

Mass Spec : ULTIMA GC Column : DB-5 Data file : 24AU98U Weight : 0.333	300681-5 :T-MM5-4-F Total Isotope	ng/ Rec/		
Name	Response Ratio	mm:ss	SAMPLE MDL	
d10-2-Methylnaphthalene	99343800 1.00 Y	11: 9 Y	1.00 50.00	
d8-Naphthalene	55920200 1.00 Y	8: 57 Y	1.25 22.59 45	
Naphthalene	1115000000 1.00 Y	9: 1 Y	1.05 2842.50 0.000	
2-Methylnaphthalene	1454668000 1.00 Y	11: 15 Y	0.77 5067.60 0.000	
d8-Acenaphthylene	68118600 1.00 Y	14: 13 Y	1.55 22.12 44	
Acenaphthylene	114581800 1.00 Y	14: 16 Y	0.86 292.54 0.000	
d10-Acenaphthene	37745000 1.00 Y	14: 46 Y	0.88 21.65 43	
Acenaphthene	249634000 1.00 Y	14: 53 Y	0.93 1068.01 0.000	
d10-Anthracene	73659200 1.00 Y	19: 47 Y	1.00 50.00	
d10-Fluorene	26158200 1.00 Y	16: 29 Y	1.13 15.72 31	
Fluorene	646362000 1.00 Y	16: 34 Y	1.05 3533.62 0.000	
d10-Phenanthrene	71184000 1.00 Y	19: 38 Y	2.63 18.38 37	
Phenanthrene	3224660000 1.00 Y	19: 42 Y	0.84 8077.06 0.000	
Anthracene	* No Peak 0.00 N	19: 50 N	0.83 0.00 0.000	
d12-Benzo(e)pyrene	156000600 1.00 Y	32: 39 Y	1.00 50.00	
d10-Fluoranthene	* No Peak 0.00 N	23: 33 N	0.80 0.00 0	
Fluoranthene	292896000 1.00 Y	23: 35 Y	1.04 *NoINoIs	
d10-Pyrene	* No Peak 0.00 N	24: 16 N	0.81 0.00 0	
Pyrene	622024000 1.00 Y	24: 18 Y	1.11 *NoINoIs	
d12-Benzo(a)anthracene	74666000 1.00 Y	28: 6 Y	0.65 36.80 74	
Benzo(a)anthracene	368396000 1.00 Y	28: 16 Y	1.06 702.03 0.000	
d12-Chrysene	85421400 1.00 Y	28: 13 Y	0.85 32.28 65	
Chrysene	368396000 1.00 Y	28: 16 Y	0.97 666.69 0.000	
d12-Benzo(e)pyrene	156000600 1.00 Y	32: 39 Y	1.00 50.00	
d12-Benzo(b)fluoranthene	52330400 1.00 Y	31: 40 Y	0.63 26.79 54	
Benzo(b)fluoranthene	18821300 1.00 Y	31: 45 Y	1.07 50.51 0.000	
d12-Benzo(k) fluoranthene		31: 45 Y	0.90 23.38 47	
Benzo(k) fluoranthene		31: 45 Y	1.16 37.41 0.000	
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	15255920 1.00 Y	32: 51 Y 32: 45 Y 32: 57 Y	0.75 22.33 45 1.46 29.89 0.000 1.02 6.80 0.000	
d12-Perylene		33: 10 Y	0.61 20.73 41	
Perylene		33: 16 Y	1.62 9.47 0.000	
d12-Indeno(123-cd)pyrene		37: 57 N	0.71 0.00 0	
Indeno(123-cd)pyrene		38: 4 N	0.61 *NoINoIs	
d14-Dibenz (ah) anthracene		38: 3 Y	0.44 21.22 42	
Dibenz (ah) anthracene		38: 13 Y	1.11 1.76 0.000	
d12-Benzo(ghi)perylene		39: 20 N	0.63 0.00, 0	
Benzo(ghi)perylene		39: 29 N	0.99 *NoLNOIS	
d8-Naphthalene		8: 57 Y	1.00 50.00	
13C-Naphthalene		9: 1 N	0.98 0.00 0	

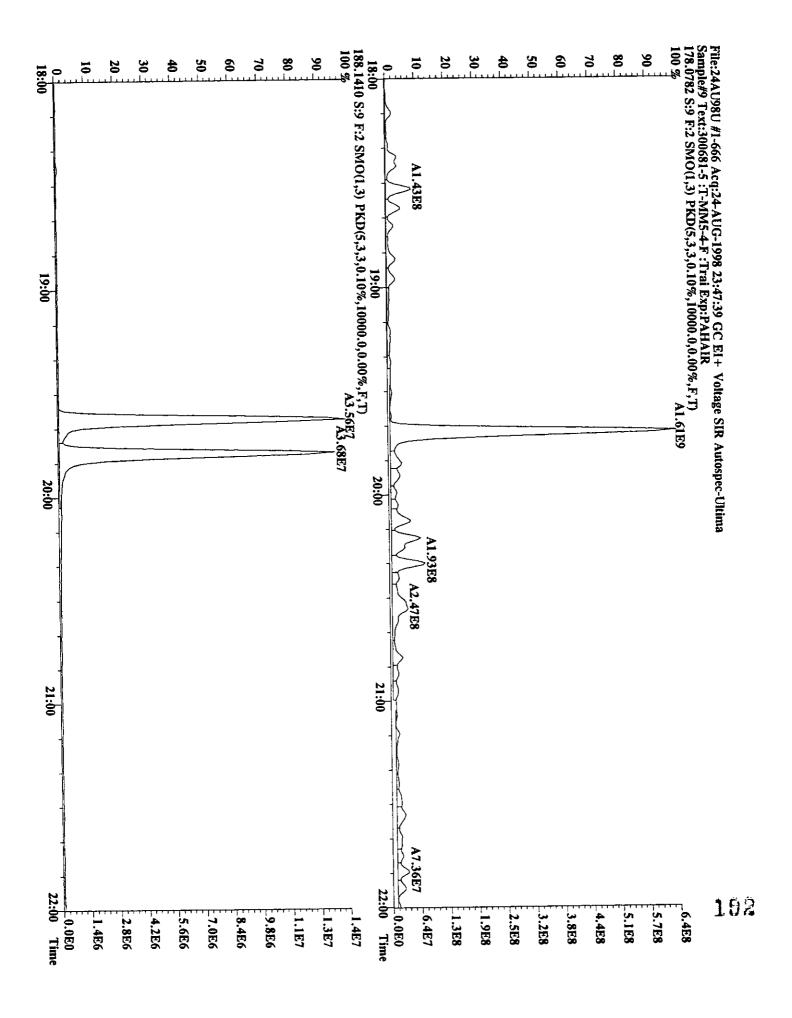

2

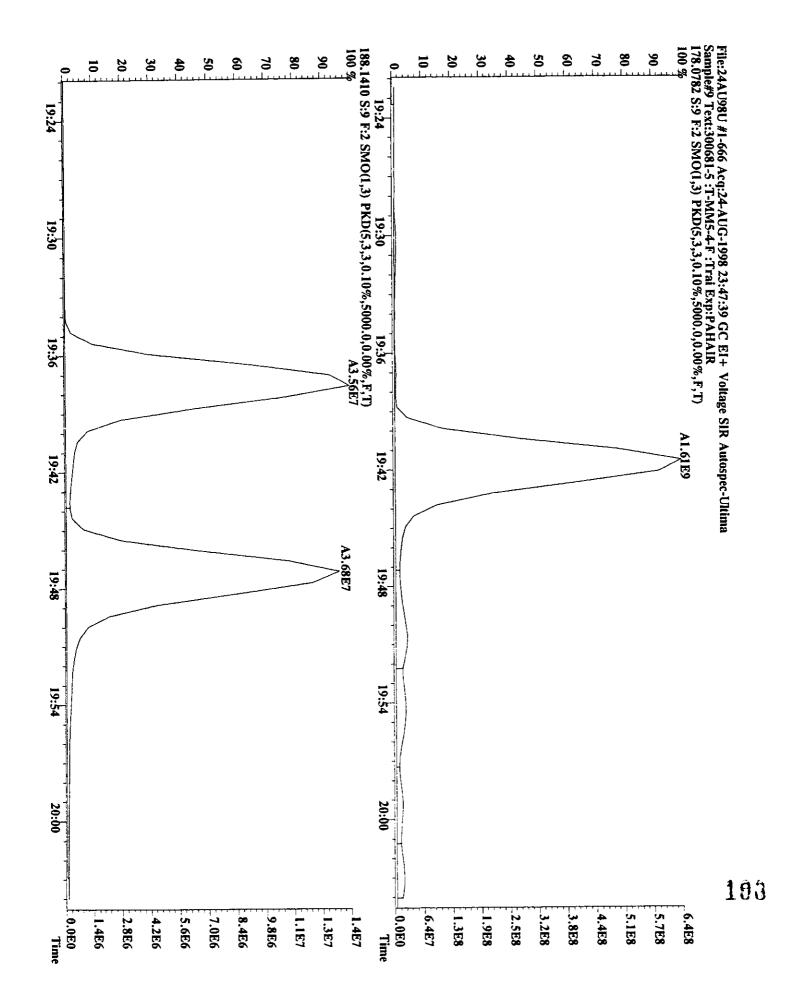

PAH Unknown RESULTS

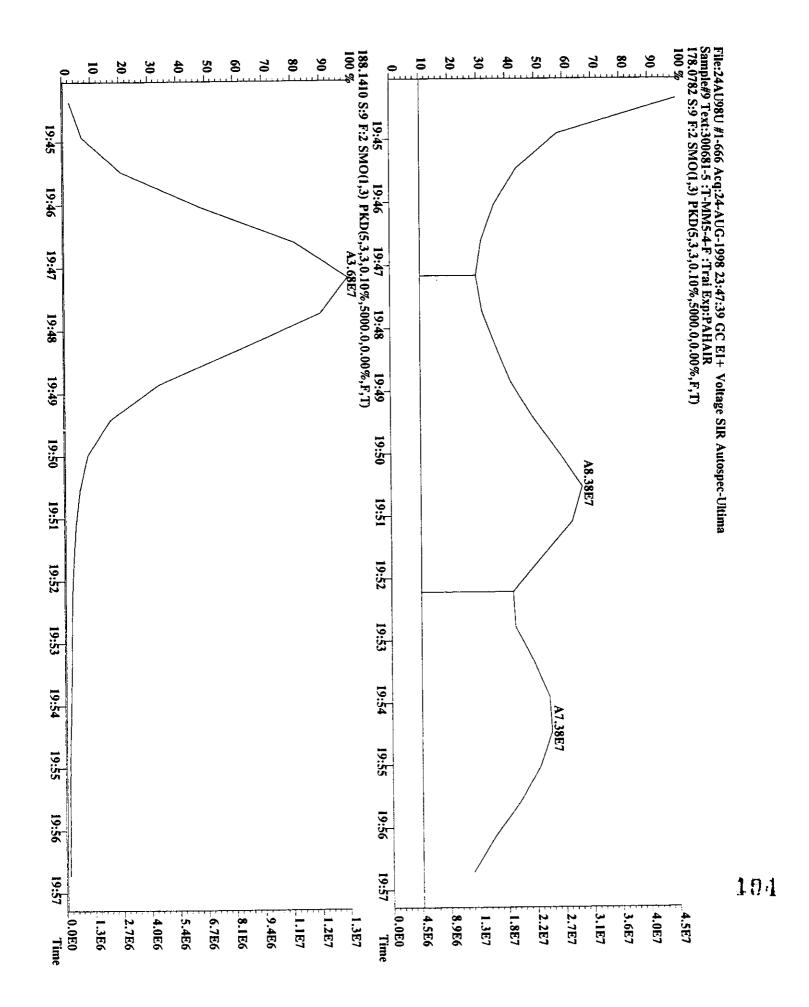

25-AUG-1998 09:29:47 AM

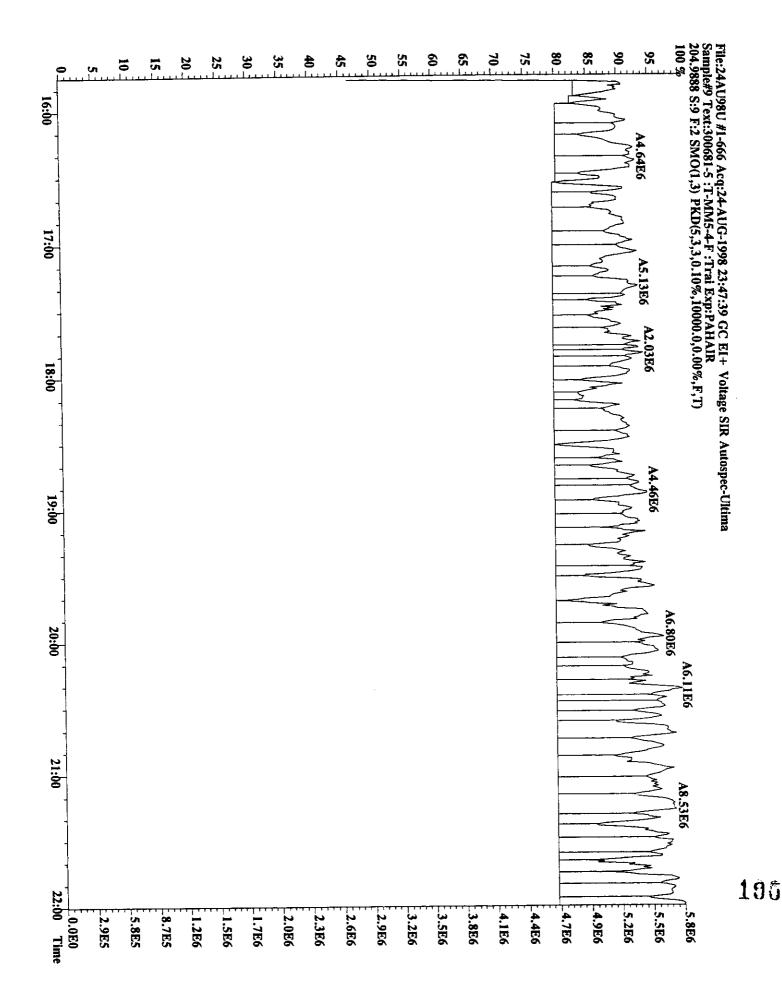

d10-Fluorene 26158200 1.00 Y 16: 29 Y 1.00 50.00 13C-Fluorene 41184800 1.00 Y 16: 34 Y 0.76 103.86 208

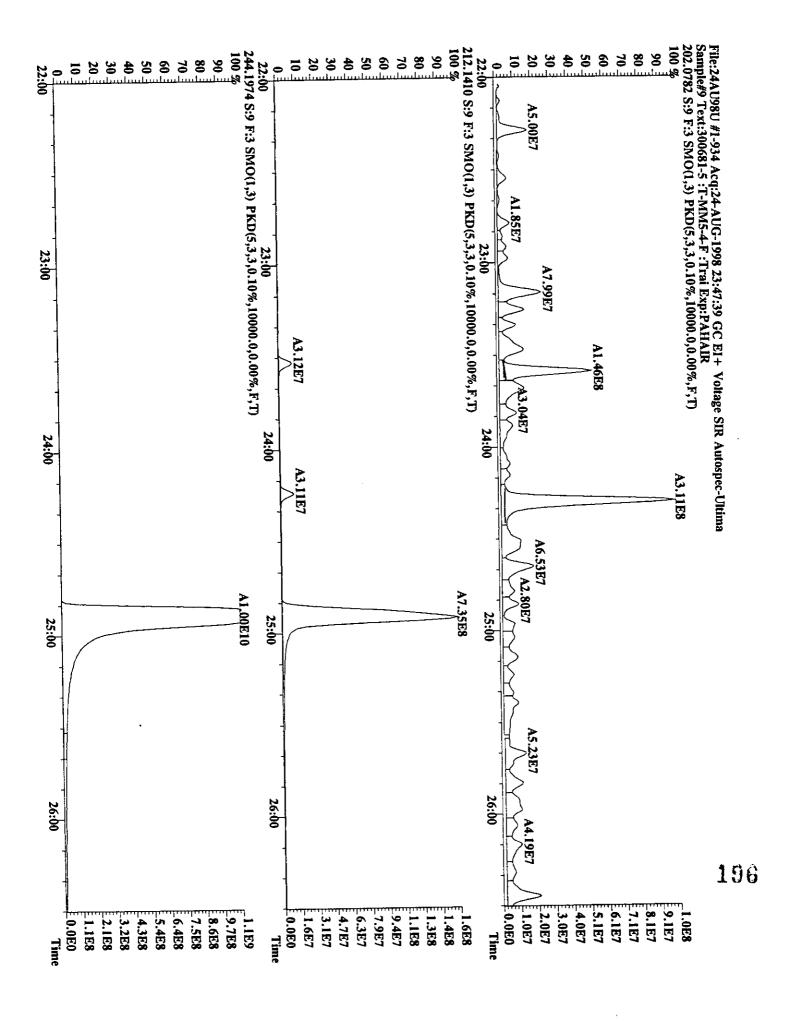


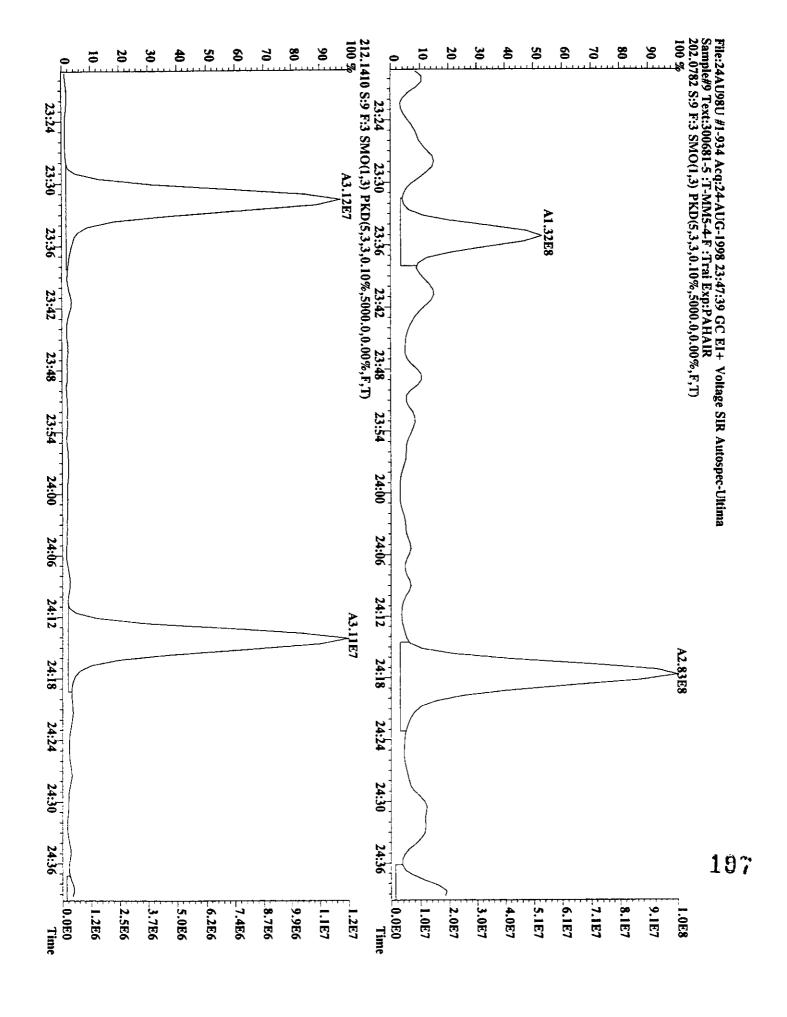


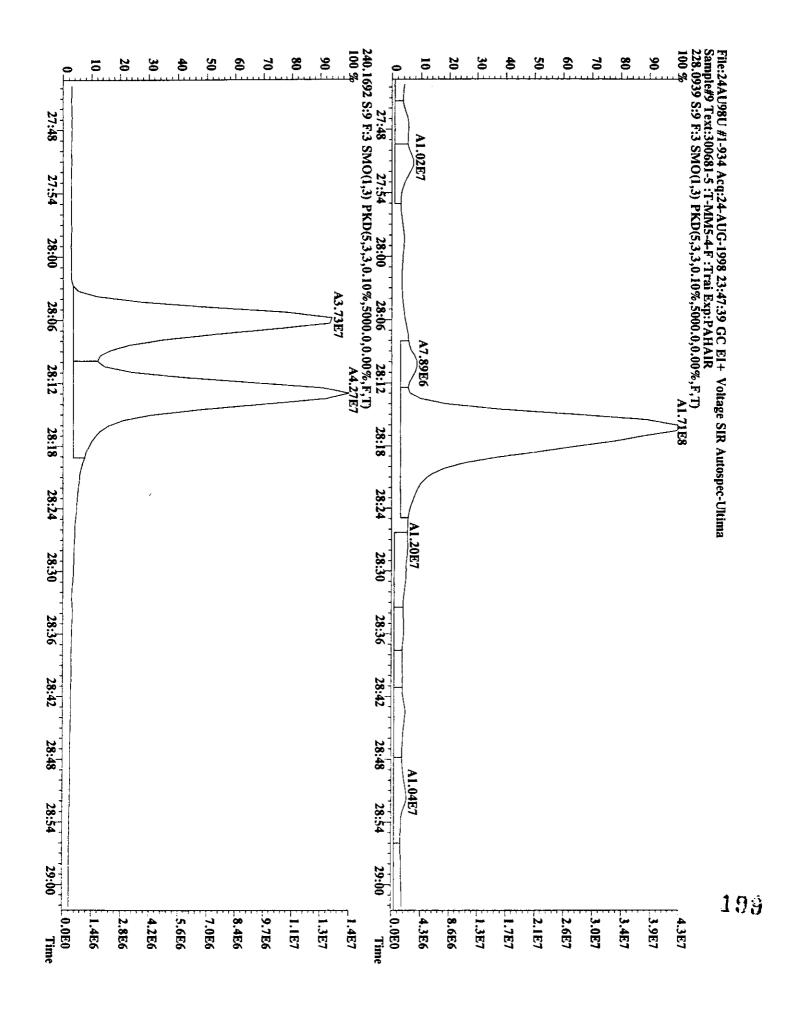


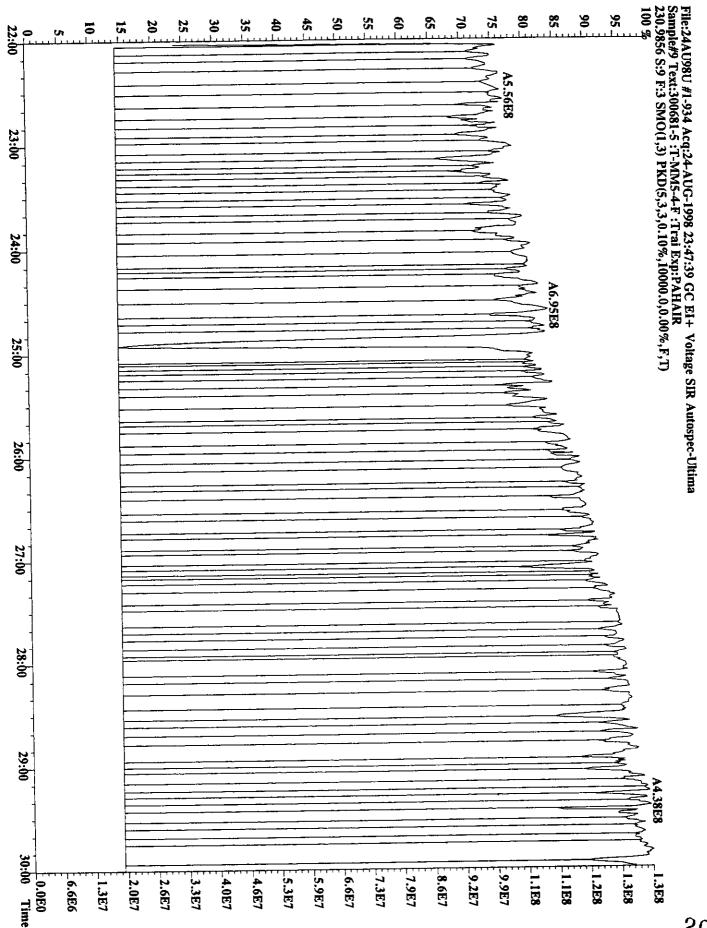


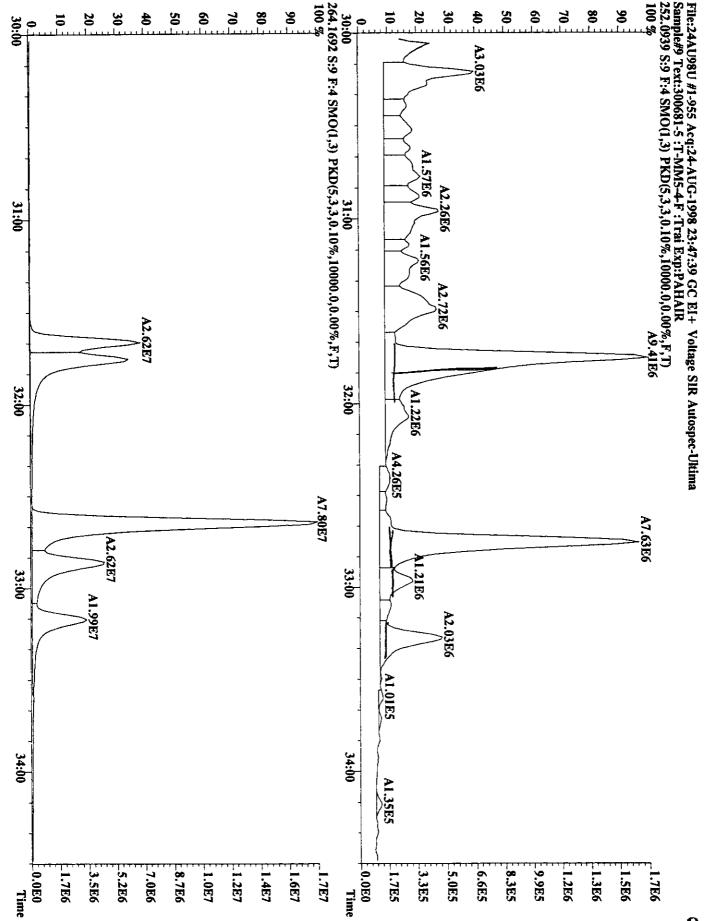


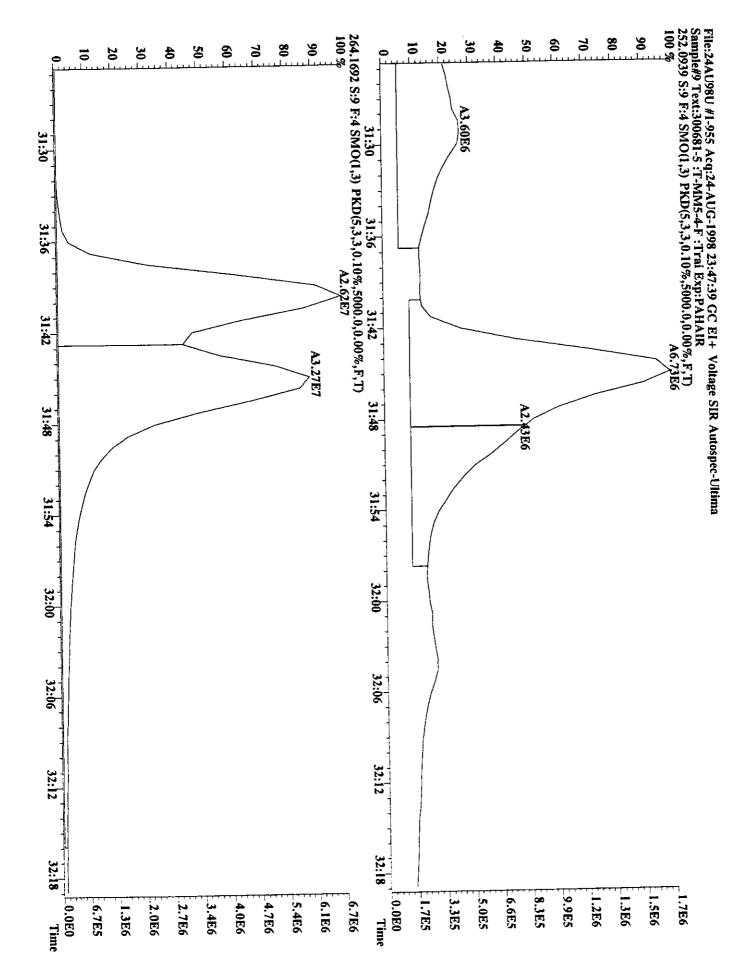


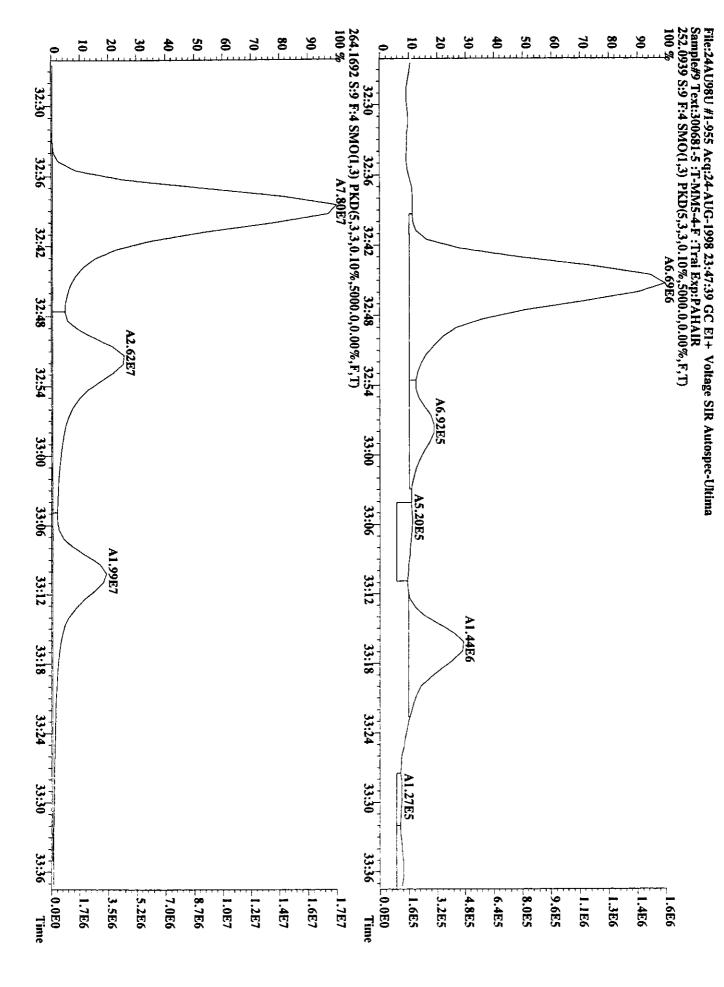


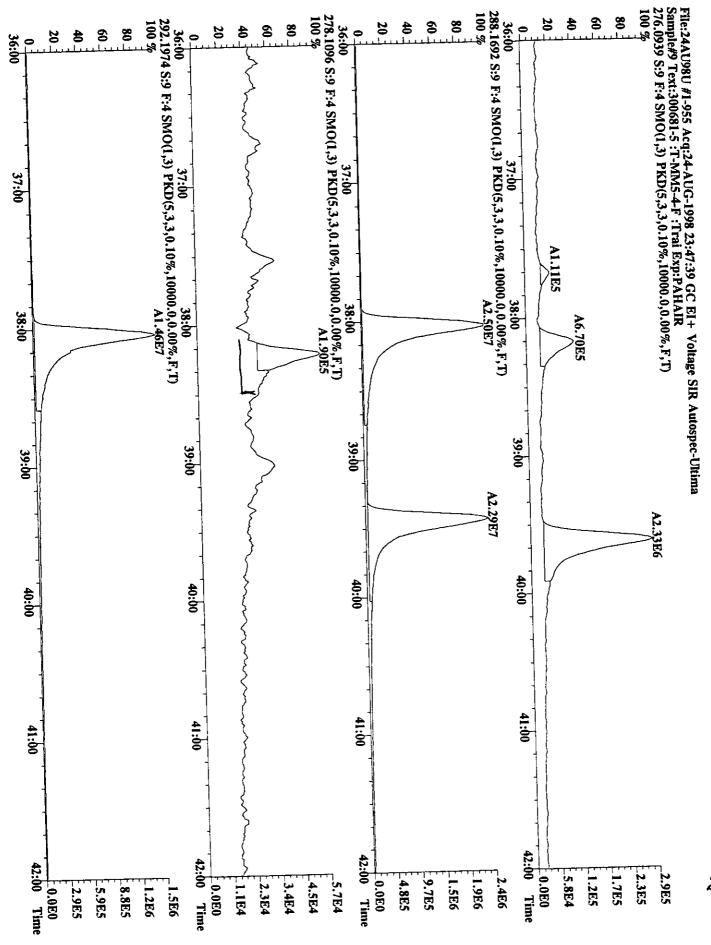


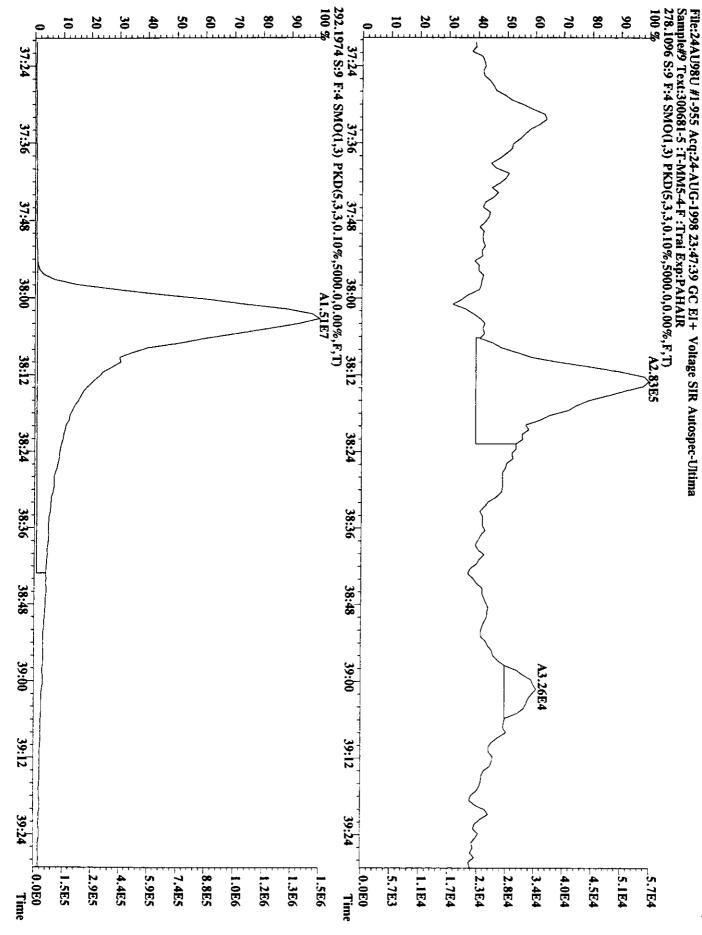


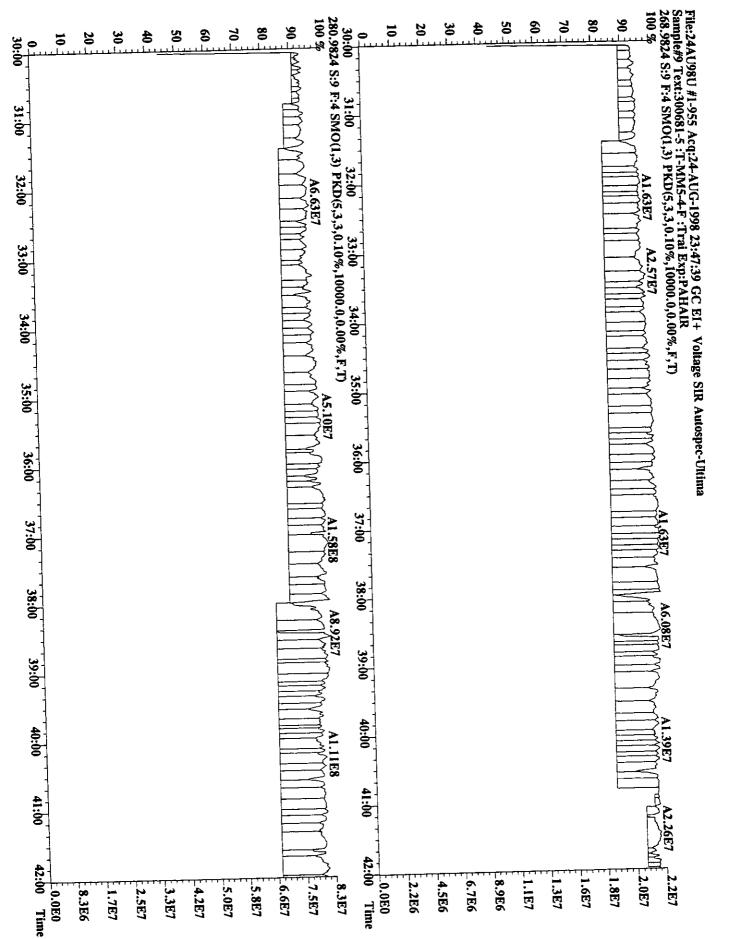












3

						_
GC Column : DB-5 Data file : 24AU98U Weight : 0.333 Name	Results : 300681-6 :T- Total Response		Date analyzed :Trai Ex Cal R. T. RRF	: 24 : PA	HX.TRG -AUG-98 HX081998 ng/ SAMPLE	U.RRF Rec/ MDL
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	87413600 26897800 4466820000 6528200000	1.00 Y	8: 58 Y 9: 2 Y	1.00 1.25 1.05 0.77		25 ~ EBB
d8-Acenaphthylene Acenaphthylene	77362800 264000000		14: 13 Y 14: 16 Y	1.55 0.86		57
d10-Acenaphthene Acenaphthene	30784800 945242000		14: 47 Y 14: 53 Y	0.88 0.93	20.07 4958.36	40 m
d10-Anthracene d10-Fluorene Fluorene	59406600 32678000 2240000000	1.00 Y	19: 47 Y 16: 29 Y 16: 35 Y	1.00 1.13 1.05	50.00 24.35 9802.67	49 ~
d10-Phenanthrene Phenanthrene Anthracene	94854200 6888660000 570000000	1.00 Y	19: 37 Y 19: 42 Y 19: 50 Y	2.63 0.84 0.83	30.37 1.3e+04 1088.32	61 E (BAT) B
d12-Benzo(e)pyrene d10-Fluoranthene Fluoranthene	119666800 92488200 598000000	1.00 Y	32: 38 Y 23: 32 Y 23: 35 Y	1.00 0.80 1.04		96 EB
d10-Pyrene Pyrene	77570800 1562000000		24: 14 Y 24: 17 Y	0.81	40.03 2730.25	C 80
d12-Benzo (a) anthracene Benzo (a) anthracene	94022600 204000000		28: 5 Y 28: 10 Y	0.65 1.06	60.42 308.72	121
d12-Chrysene Chrysene	104285400 1310000000		28: 13 Y 28: 16 Y	0.85 0.97	51.37 1941.89	€ ¹⁰³
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	119666800 72696800 67200000	1.00 Y	32: 38 Y 31: 39 Y 31: 44 Y	1.00 0.63 1.07	50.00 48.52 129.82	97
d12-Benzo(k)fluoranthene Benzo(k)fluoranthene	94960600 25000000		31: 44 Y 31: 50 Y	0.90 1.16	44.28 34.21	89
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	65459600 78800000 15600000	1.00 Y	32: 45 Y	0.75 1.46 1.02	36.41 123.43 34.95	73
d12-Perylene Perylene	49583200 149800000			0.61 1.62	33.71 280.34	67
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene	80130600 8/2/48 5080000 8/2/48 3560000			0.71 0.61	47.38 15.57 10.91 =	ara 95/98
d14-Dibenz (ah) anthracene Dibenz (ah) anthracene	54138400 3040000			0.44 1.11	51.28 7.58=	103
d12-Benzo(ghi)perylene Benzo(ghi)perylene	69200000 15040000			0.63 0.99	45.87 32.94	⁹² 207
d8-Naphthalene 13C-Naphthalene	26897800 * No Peak	1.00 Y 0.00 N		1.00 0.98	50.00 0.00	0

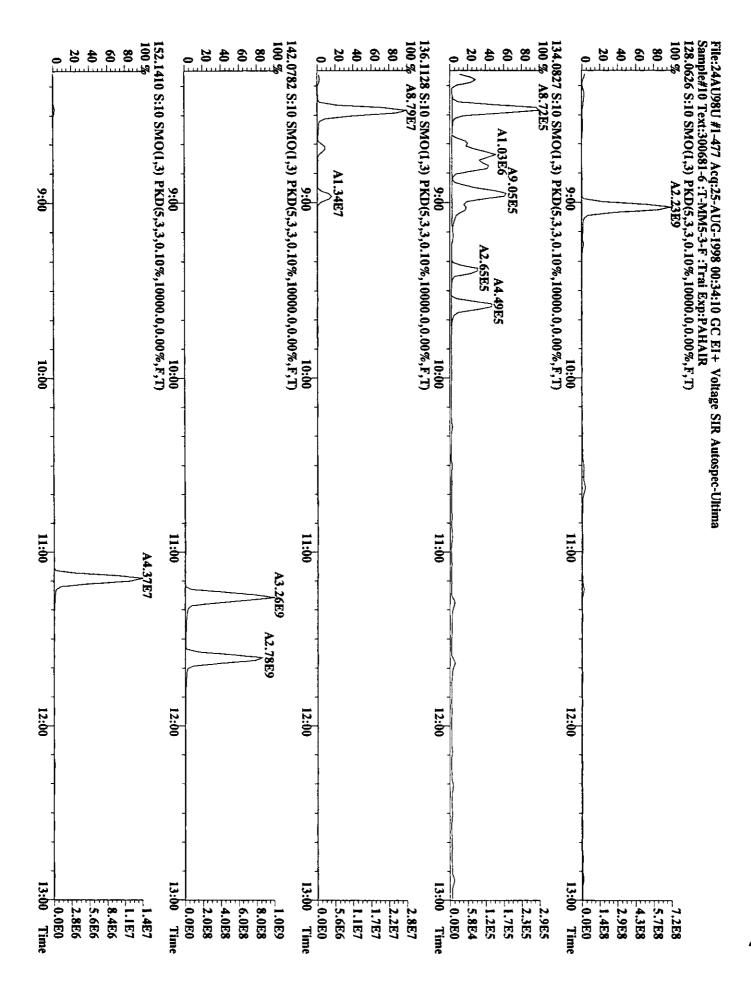
02-SEP-1998 07:25:03 PM Dioxin Furan Unknown RESULTS

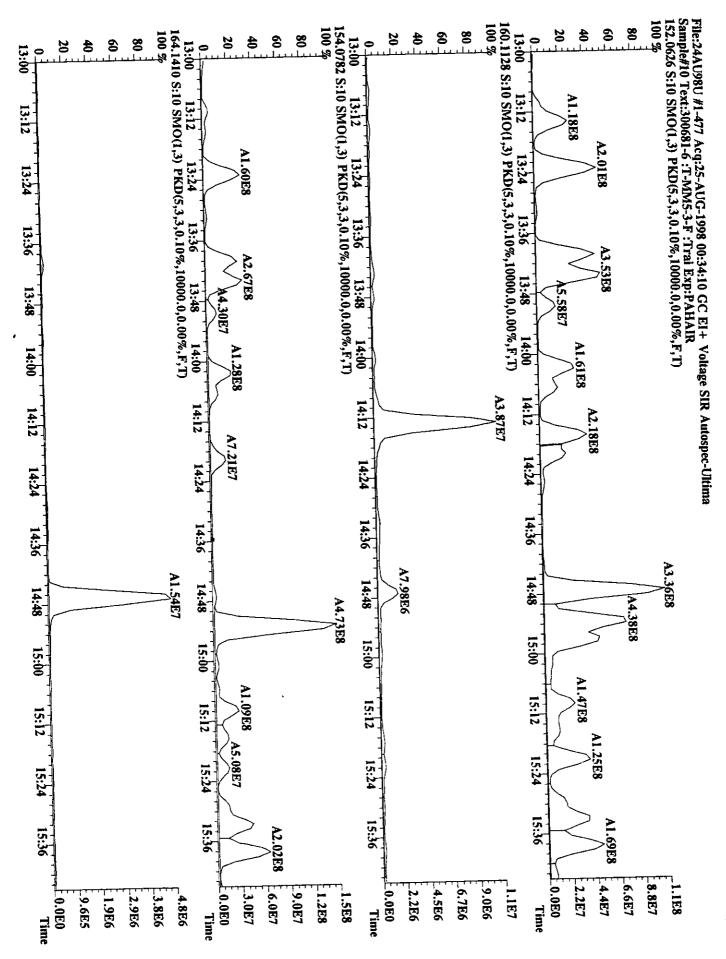
d10-Fluorene 32678000 1.00 Y 16: 29 Y 1.00 50.00 13C-Fluorene 20996200 1.00 Y 16: 35 Y 0.76 42.38 85

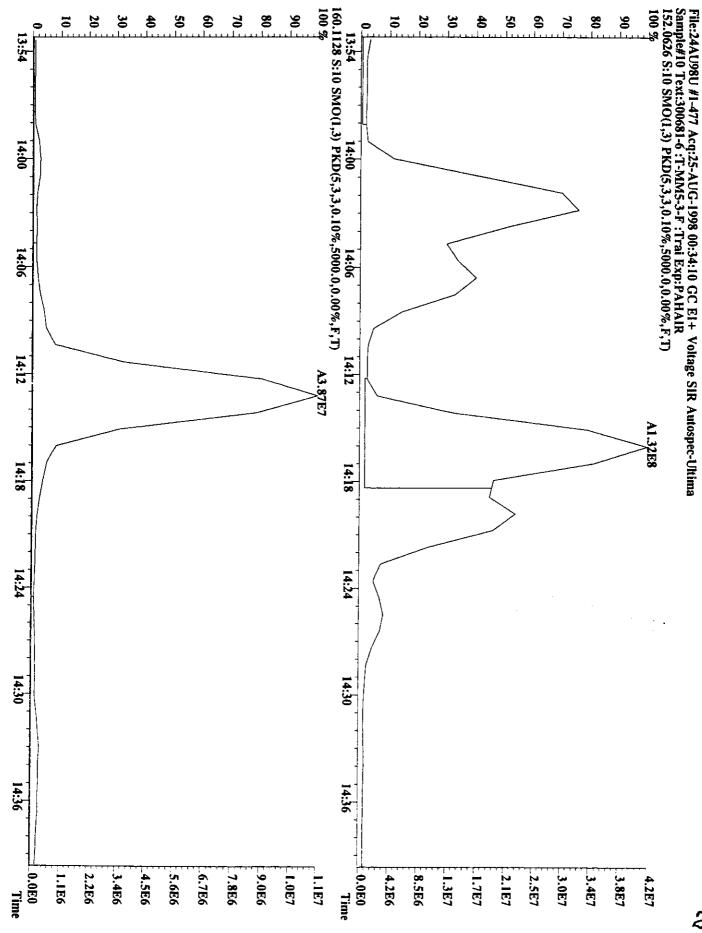
: PAHX.TRG 24AU98U101.RES Date analyzed: 24-AUG-98 MM5-3-F: Trai Ex Cal: PAHX081998U.RRF 0.333 RRF ng/ Rec/ R. T. Isotope SAMPLE MDL Ratio mm:ss 43706800 43706800 1.00 50.00 1.00 Y 11: 9 Y 8: 58 Y 1.25 13448900 13448900 12.35 1.00 Y 2233410000 2233410000 1.05 2.4e + 049: 2 Y 1.00 Y 11: 16 Y 1.00 Y 0.774.7e+043264100000 3264100000 38681400 38681400 14: 13 Y 1.55 28.55 57 1.00 Y 1.00 Y 14: 16 Y 0.86 132000000 132000000 593.47 15392400 14: 47 Y 0.88 20.07 40 15392400 1.00 Y 472621000 1.00 Y 14: 53 Y 0.93 4958.36 472621000 29703300 29703300 1.00 Y 19: 47 Y 1.00 50.00 24.35 16339000 16339000 1.00 Y 16: 29 Y 1.13 49 1120000000 1120000000 1.05 9802.67 1.00 Y 16: 35 Y 47427100 47427100 19: 37 Y 2.63 30.37 61 1.00 Y 3444330000 3444330000 1.00 Y 19: 42 Y $0.84\ 1.3e+04$ 285000000 285000000 19: 50 Y 0.83 1088.32 1.00 Y 1.00 Y 32: 38 Y 1.00 50.00 59833400 59833400 0.80 46244100 46244100 1.00 Y 23: 32 Y 48.11 96 299000000 299000000 23: 35 Y 1.04 933.07 1.00 Y 1.00 Y 40.03 80 38785400 38785400 24: 14 Y 0.81 1.00 Y 24: 17 Y 1.11 2730.25 781000000 781000000 1.00 Y 28: 5 Y 0.65 60.42 121 47011300 47011300 1.00 Y 28: 10 Y 1.06 308,72 102000000 102000000 0.85 1.00 Y 28: 13 Y 51.37 103 52142700 52142700 655000000 655000000 1.00 Y 28: 16 Y 0.97 1941.89 59833400 59833400 1.00 Y 32: 38 Y 1.00 50.00 0.63 48.52 1.00 Y 31: 39 Y 97 36348400 36348400 31: 44 Y 1.07 129.82 33600000 33600000 1.00 Y 47480300 1.00 Y 31: 44 Y 0.90 44.28 89 47480300 1.00 Y 31: 50 Y 1.16 34.21 12500000 12500000 32729800 32729800 1.00 Y 32: 51 Y 0.75 36.41 73 1.00 Y 1.46 123.43 39400000 39400000 32: 45 Y 1.00 Y 32: 57 Y 34.95 7800000 7800000 1.02 1.00 Y 24791600 9 Y 0.61 33.71 67 24791600 33: 1.00 Y 33: 15 Y 280.34 74900000 74900000 1.62 1.00 Y 0 Y 0.71 47.38 95 40065300 40065300 38: 1.00 Y 38: 2 Y 0.61 15.57 2540000 2540000 0.44 1.00 Y 51.28 27069200 27069200 38: 1 Y 103 1.00 Y 38: 10 Y 1520000 1520000 1.11 7.58=DL 39: 19 Y 0.63 34600000 34600000 1.00 Y 45.87 92 1.00 Y 39: 28 Y 0.99 7520000 7520000 32.94 1.00 Y 8: 58 Y 1.00 50.00 13448900 13448900 0.00 N 9: 2 N 0.98 0.00 0 0 0

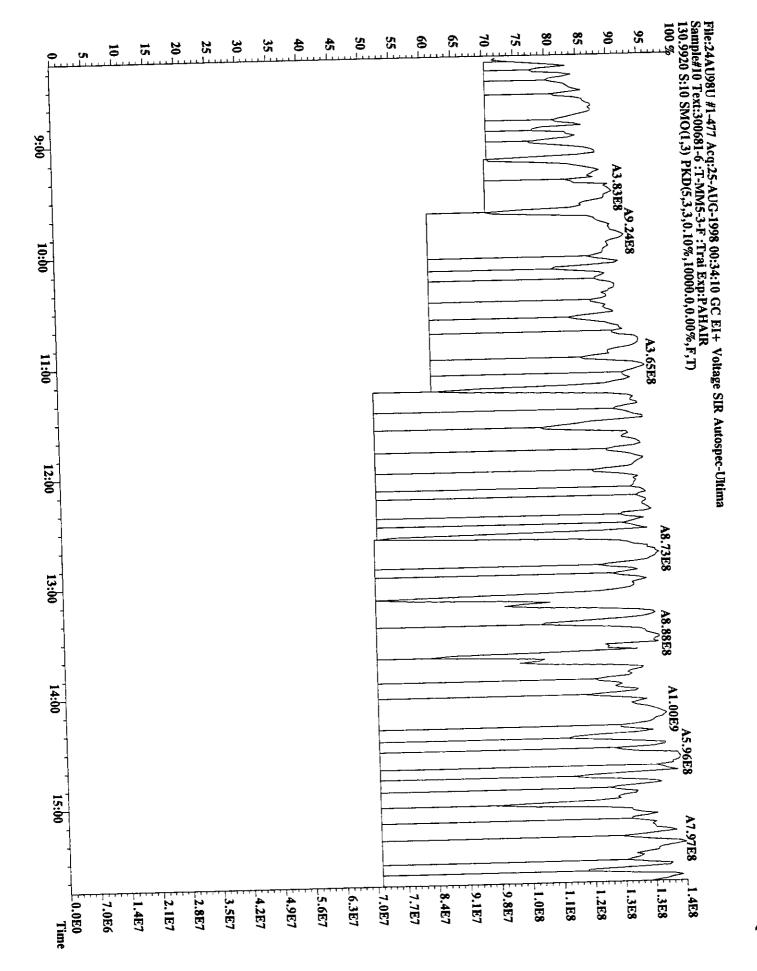
02-SEP-1998 07:25:01 PM Dioxin Furan Unknown RESULTS

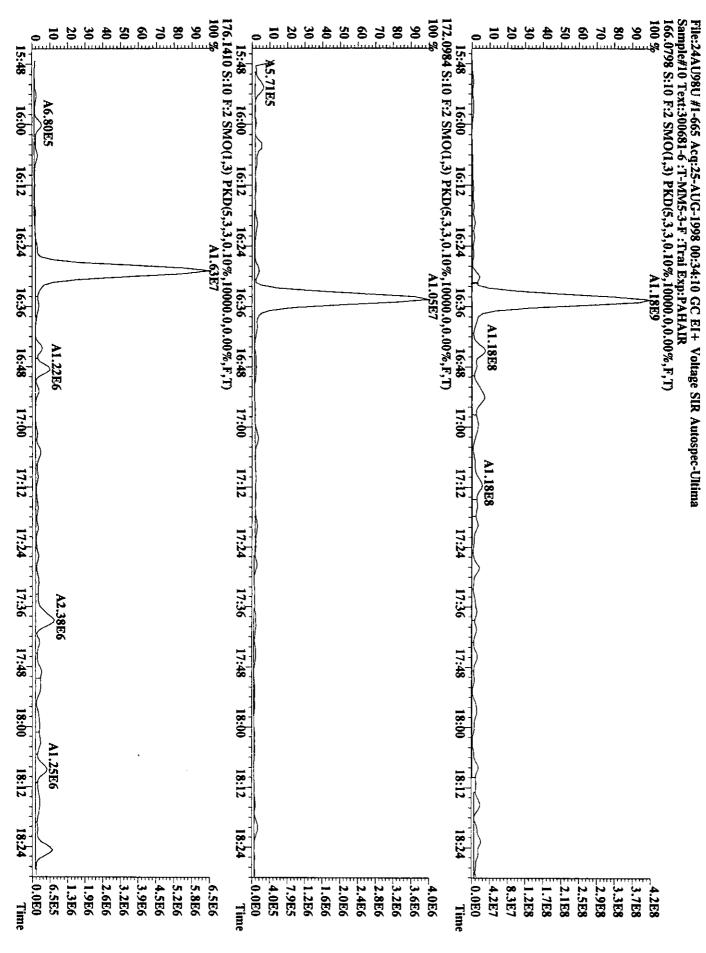
1.00 Y 16: 29 Y 1.00 50.00 16339000 16339000 1.00 Y 16: 35 Y 0.76 42.38 85 10498100 10498100

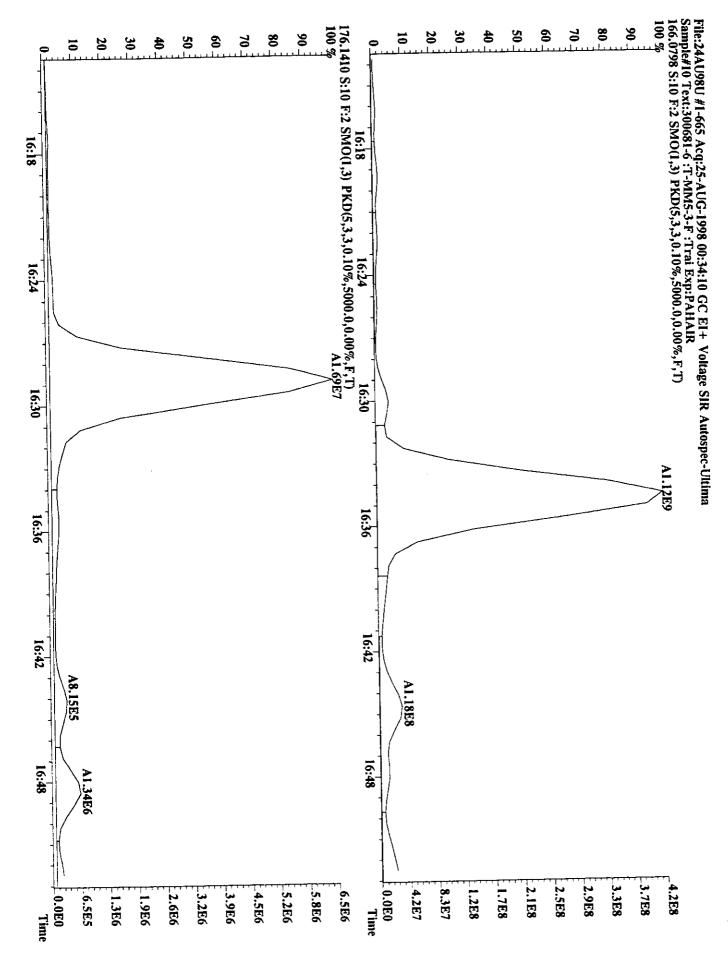

Results: 24AU98U101.RES : PAHX TRG Mass Spec : ULTIMA Date analyzed: 24-AUG-98 GC Column : DB-5 300681-6 :T-MM5-3-F :Trai Ex Cal : PAHX081998U.RRF Data file: 24AU98U : 0.333 RRF ng/ Total Isotope R. T. Rec/ Weight Response Ratio mm:ss SAMPLE MDL Name 9 50.00 87413600 1.00 Y 11: Y 1.00 d10-2-Methylnaphthalene d8-Naphthalene 26897800 1.00 Y 8: 58 Y 1.25 12.35 25 9: 4466820000 1.00 Y 2 Y 1.05 2.4e+04 0.000 Naphthalene 6528200000 1.00 Y 16 Y 0.77 4.7e+04 0.000 2-Methylnaphthalene 11: d8-Acenaphthylene 77362800 1.00 Y 14: 13 Y 1.55 28.55 57 436756000 1.00 Y 14: 16 Y 0.86 Acenaphthylene 981.83 0.000 0.88 20.07 14: 47 Y 30784800 1.00 Y 40 d10-Acenaphthene 945242000 1.00 Y 14: 53 Y 0.93 4958.36 0.000 Acenaphthene 19: 47 Y d10-Anthracene 59406600 1.00 Y 1.00 50.00 16: 29 Y 32678000 1.00 Y 1.13 24.35 49 d10-Fluorene 2352100000 1.00 Y 16: 35 Y 1.05 1.0e+04 0.000 Fluorene d10-Phenanthrene 94854200 1.00 Y 19: 37 Y 2.63 30.37 61 6888660000 1.00 Y 19: 42 Y Phenanthrene 0.84 1.3e+04 0.000 19: 50 N * No Peak 0.00 N 0.83 Anthracene 0.00 0.000 50.00 119666800 1.00 Y 32: 38 Y 1.00 d12-Benzo(e)pyrene 92488200 1.00 Y 23: 32 Y 48.11 96 d10-Fluoranthene 0.80 23: 35 Fluoranthene 697630000 1.00 Y 1.04 1088.52 0.000 77570800 1.00 Y d10-Pyrene 24: 14 Y 0.81 40.03 80 1734654000 1.00 Y 24: 17 Pyrene 1.11 3032.03 0.000 94022600 1.00 Y 28: 5 Y 0.65 d12-Benzo(a) anthracene 60.42 121 404070000 1.00 Y 28: 10 Y 1.06 Benzo(a) anthracene 611.49 0.000 104285400 1.00 Y 28: 13 Y 0.85 51.37 d12-Chrysene 103 28: 16 Y 0.97 2236.30 0.000 Chrysene 1508610000 1.00 Y d12-Benzo(e)pyrene 119666800 1.00 Y 32: 38 Y 1.00 50.00 d12-Benzo(b) fluoranthene 72696800 1.00 Y 31: 39 Y 0.63 48,52 97 Benzo(b) fluoranthene 124186600 1.00 Y 31: 44 Y 1.07 239.92 0.000 d12-Benzo(k) fluoranthene 94960600 1.00 Y 31: 44 Y 0.90 89 44.28 124186600 1.00 Y Benzo(k) fluoranthene 31: 44 Y 1.16 169.93 0.000 d12-Benzo(a)pyrene 65459600 1.00 Y 32: 51 Y 0.75 36.41 73 Benzo(e)pyrene 104472800 1.00 Y 32: 45 Y 1.46 163.65 0.000 36812400 1.00 Y 32: 57 Benzo(a)pyrene 1.02 82.48 0.000 d12-Perylene 49583200 1.00 Y 33: 9 Y 0.61 33.71 67 188974400 1.00 Y 33: 15 Y Perylene 1.62 353.65 0.000 0 Y 80130600 1.00 Y 38: 0.71 95 d12-Indeno(123-cd)pyrene 47.38 38: 2 N Indeno(123-cd)pyrene * No Peak 0.00 N 0.61 0.00 0.000 d14-Dibenz (ah) anthracene 38: 54138400 1.00 Y 1 Y 0.44 51.28 103 Dibenz (ah) anthracene 5245900 1.00 Y 38: 10 Y 1.11 13.08 0.000 d12-Benzo(ghi)perylene * No Peak 0.00 N 39: 19 N 0.63 0.00 0 * No Peak *NoINoIs Benzo (ghi) perylene 0.00 N 39: 28 N 0.99 211 26897800 1.00 Y 8: 58 Y d8-Naphthalene 1.00 50.00 2 N 0.00 N 9: 13C-Naphthalene * No Peak 0.98 0.00 0

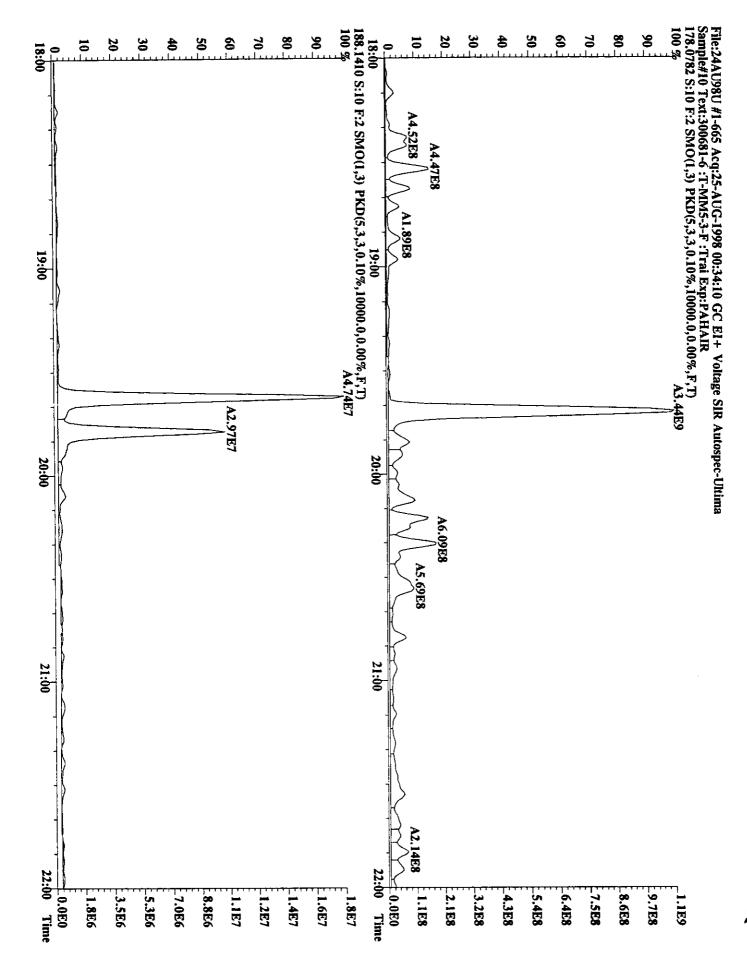

2

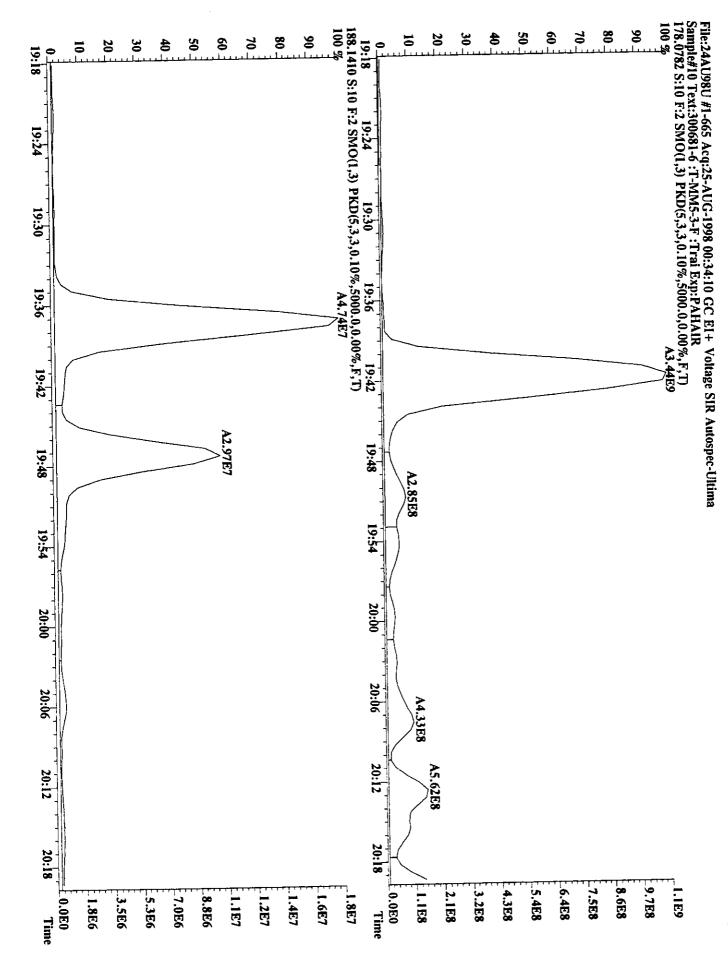

25-AUG-1998 09:31:13 AM

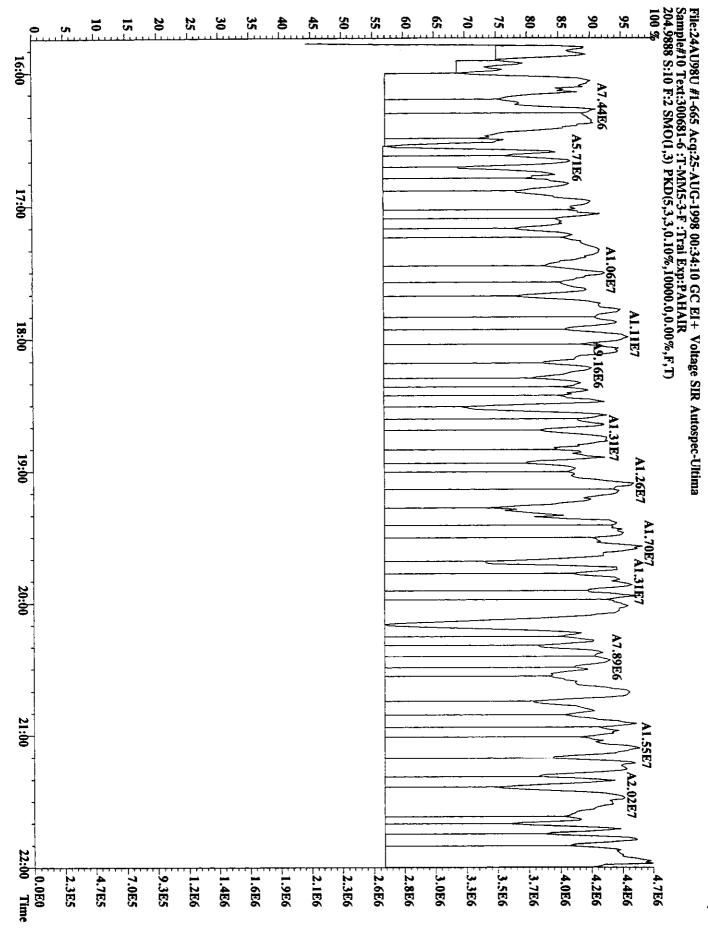

PAH Unknown RESULTS

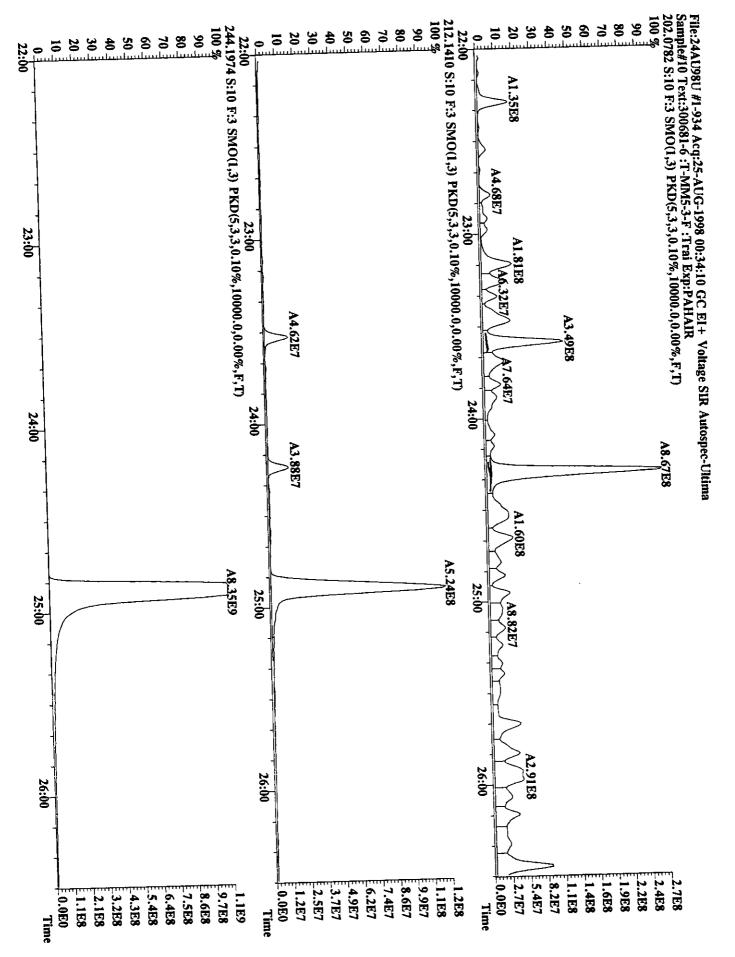

d10-Fluorene 32678000 1.00 Y 16: 29 Y 1.00 50.00 13C-Fluorene 20996200 1.00 Y 16: 35 Y 0.76 42.38 85

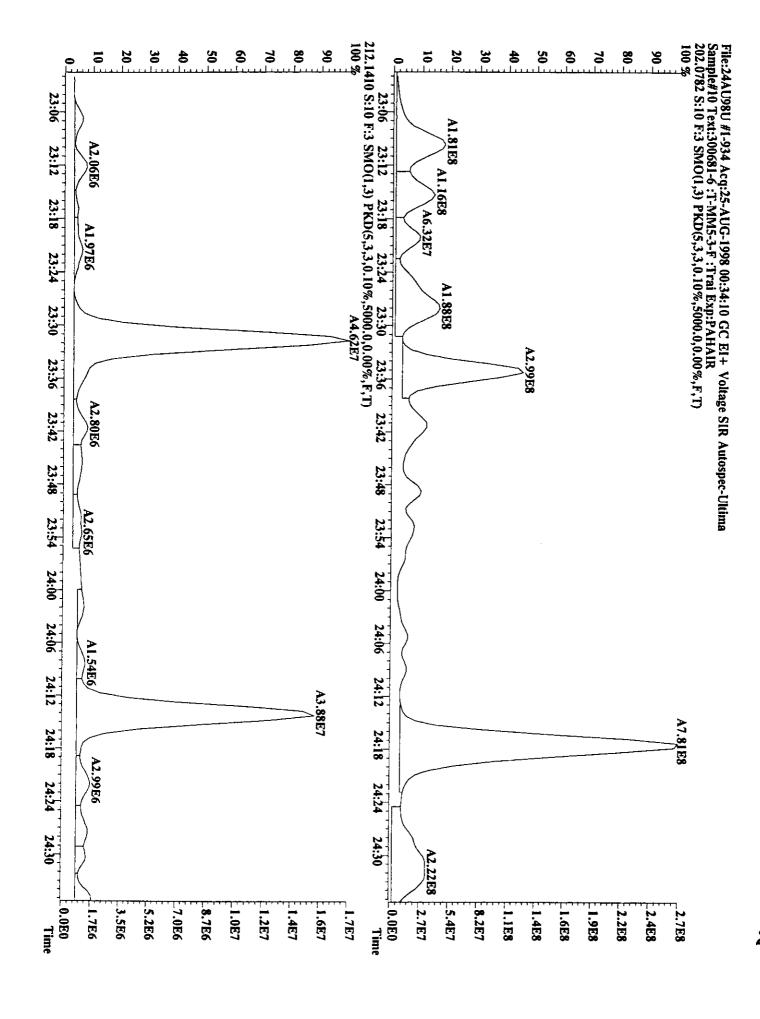


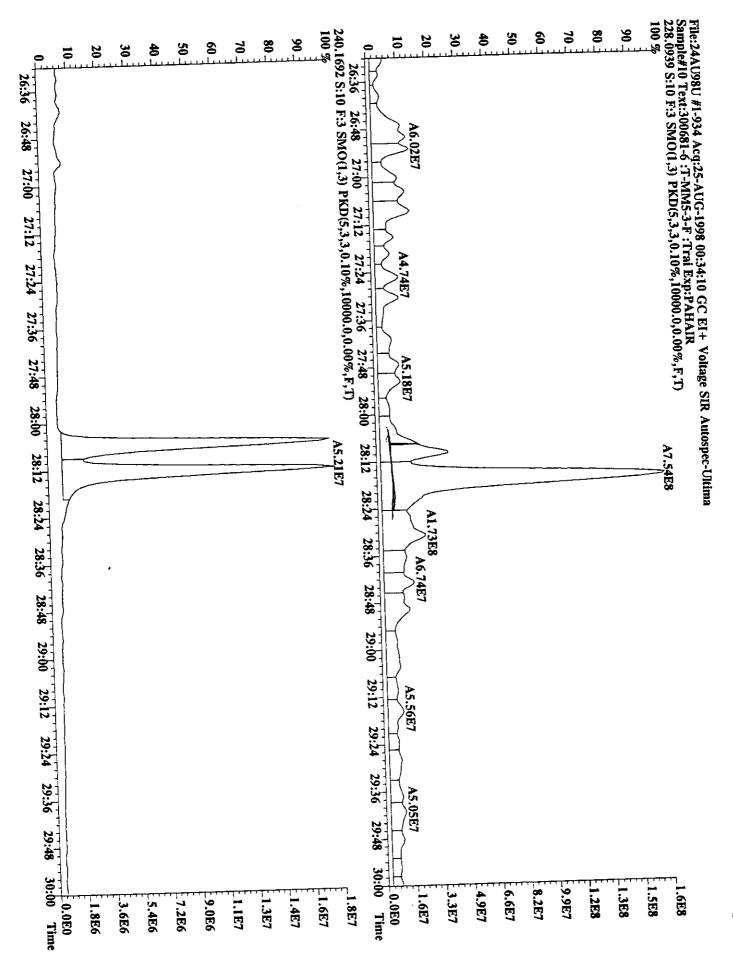


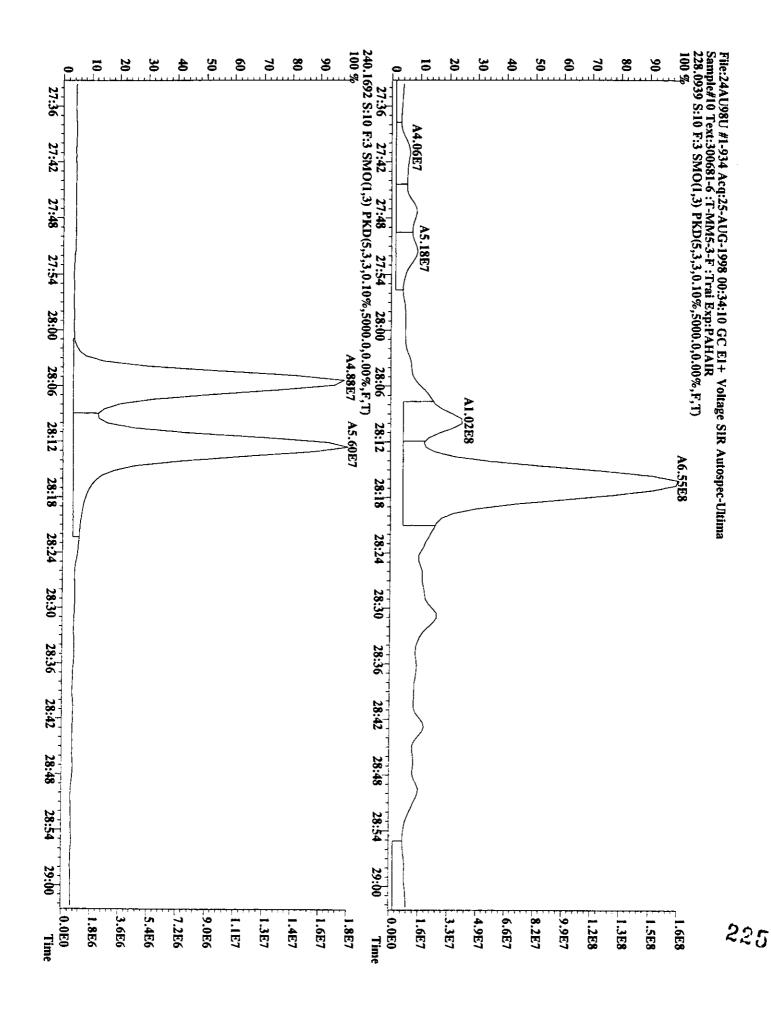


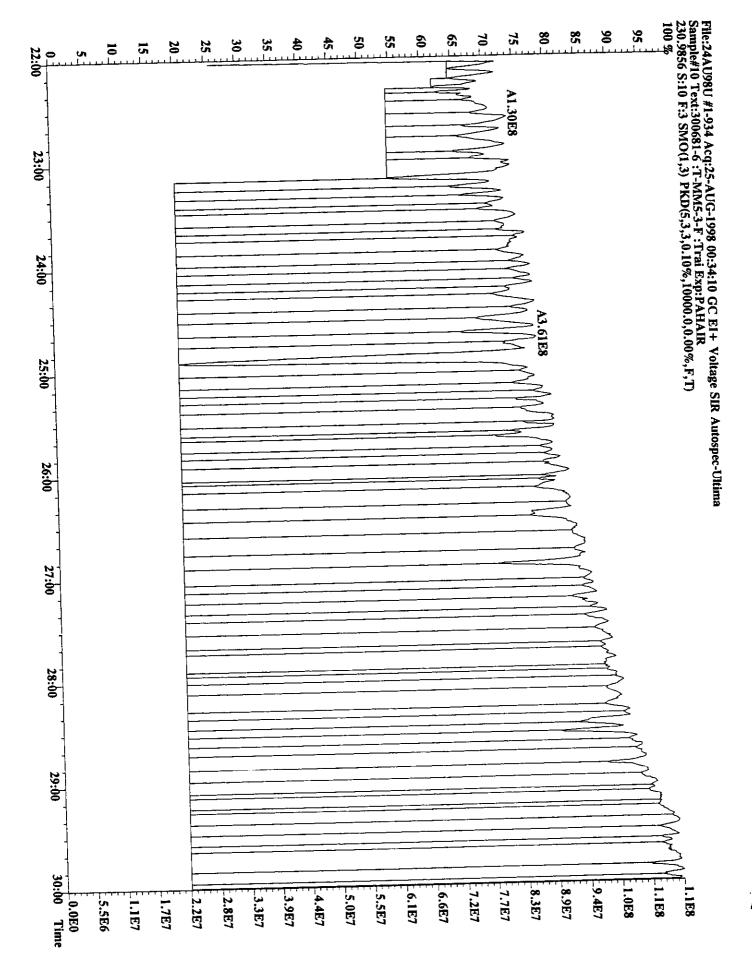


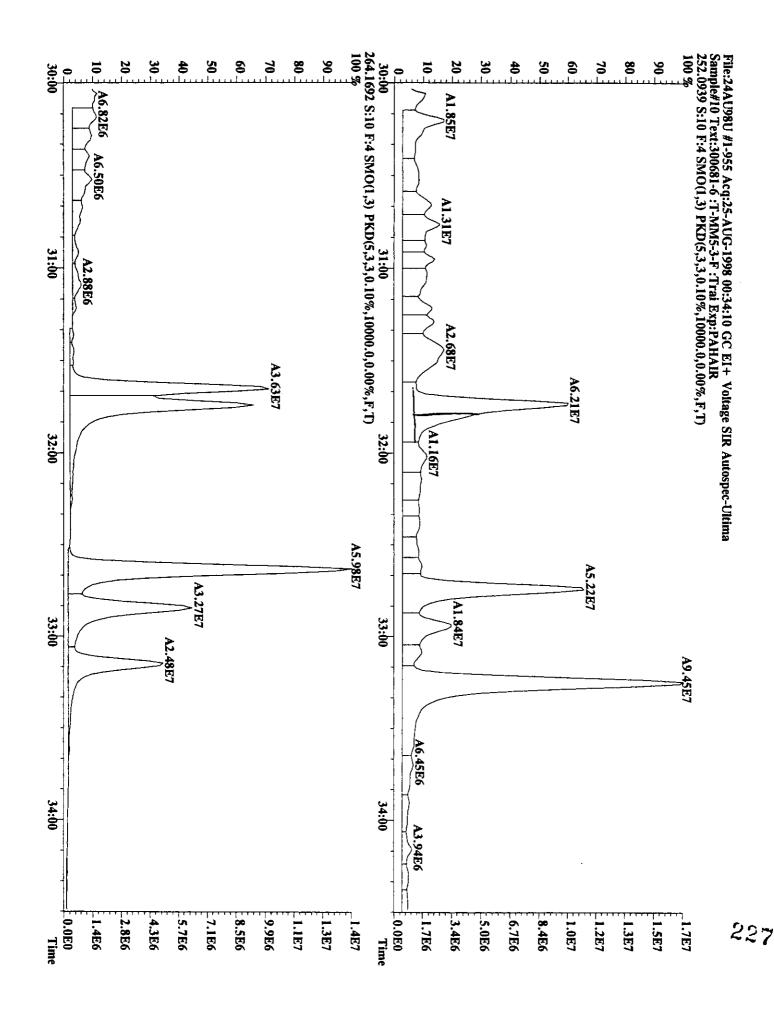


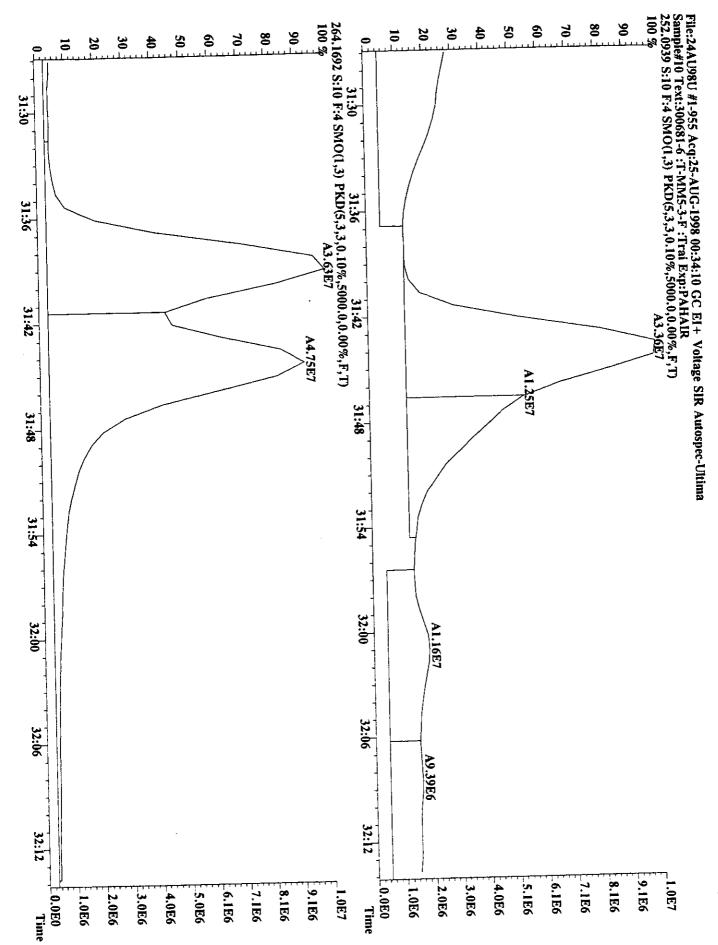


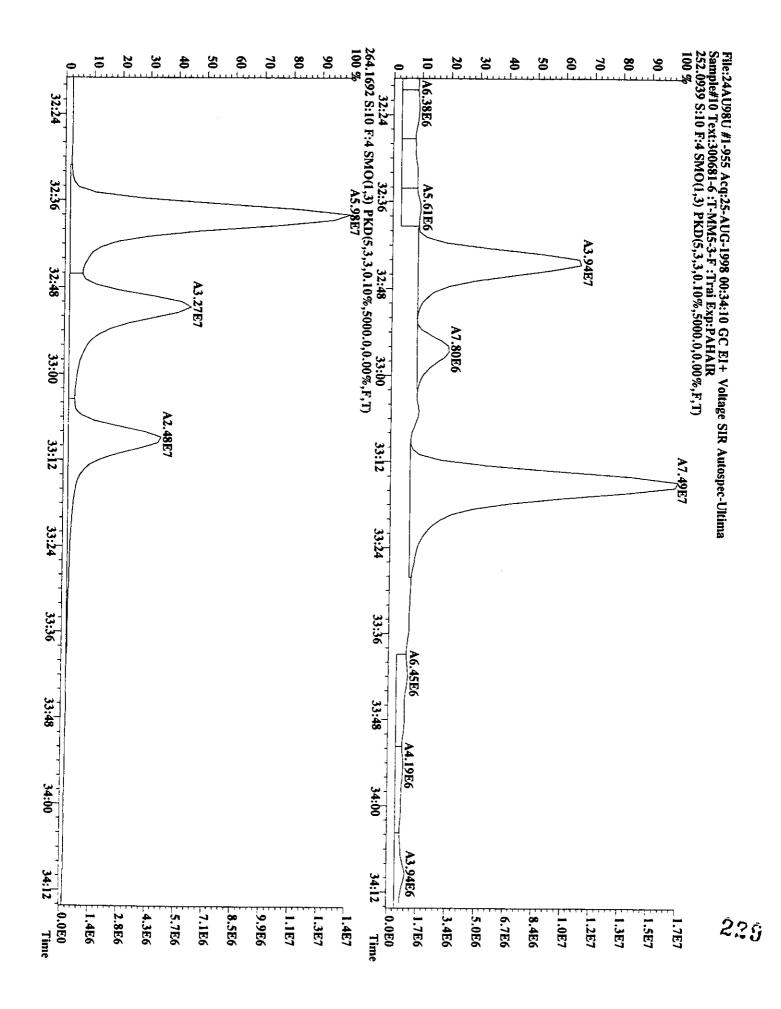


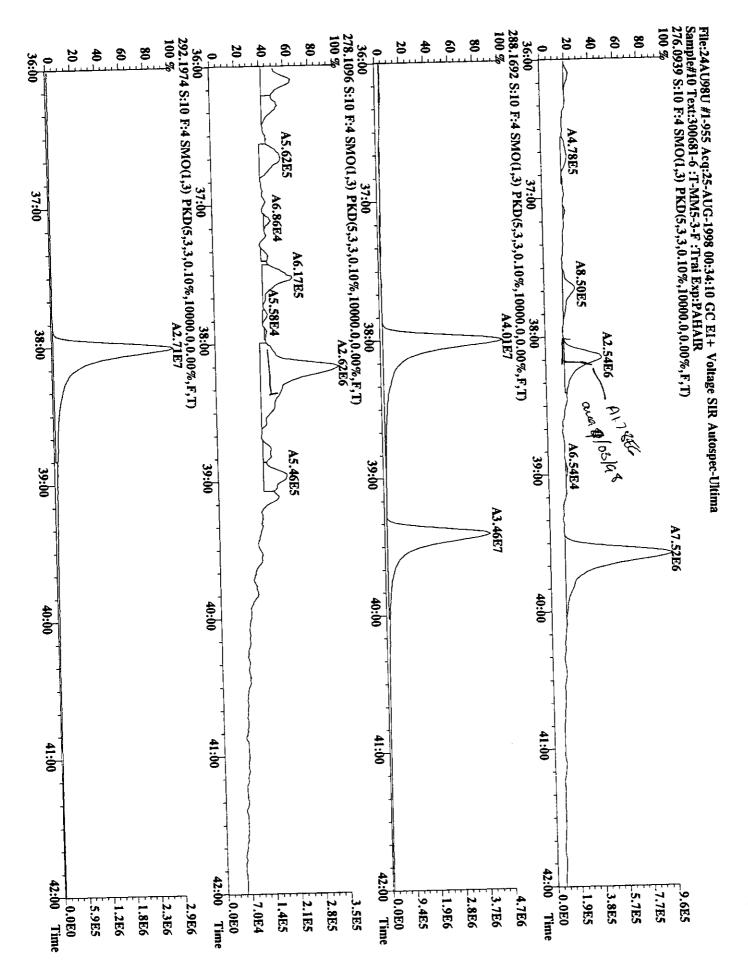


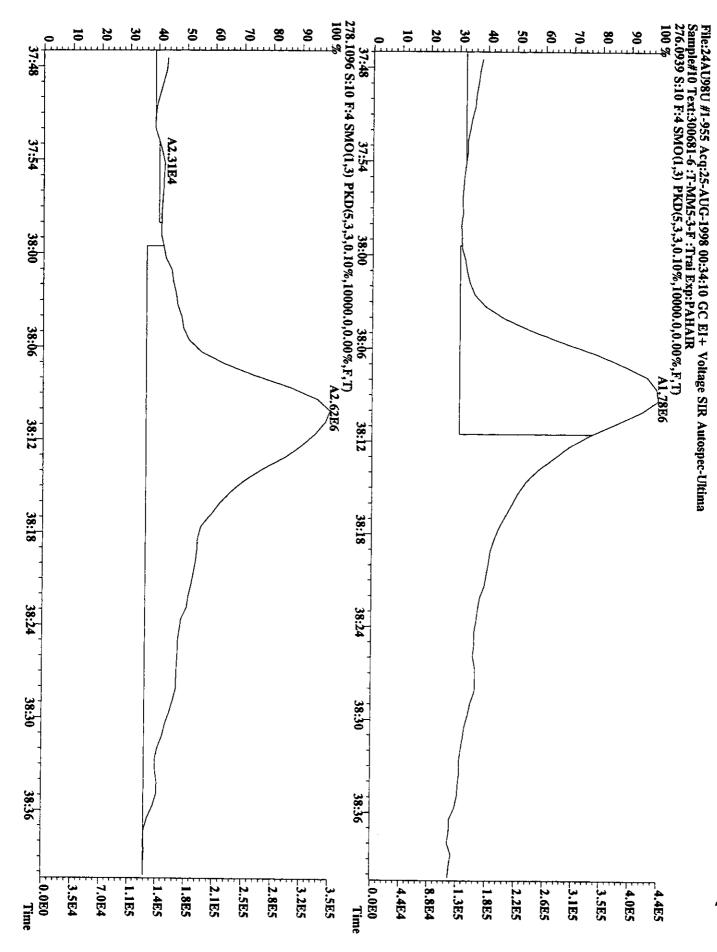


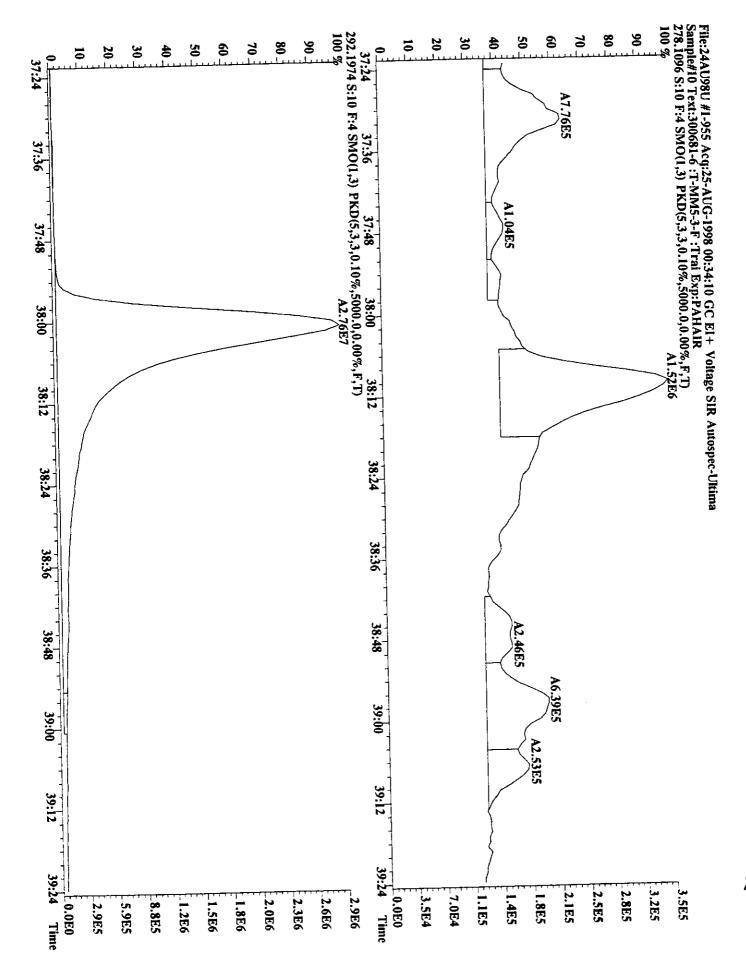


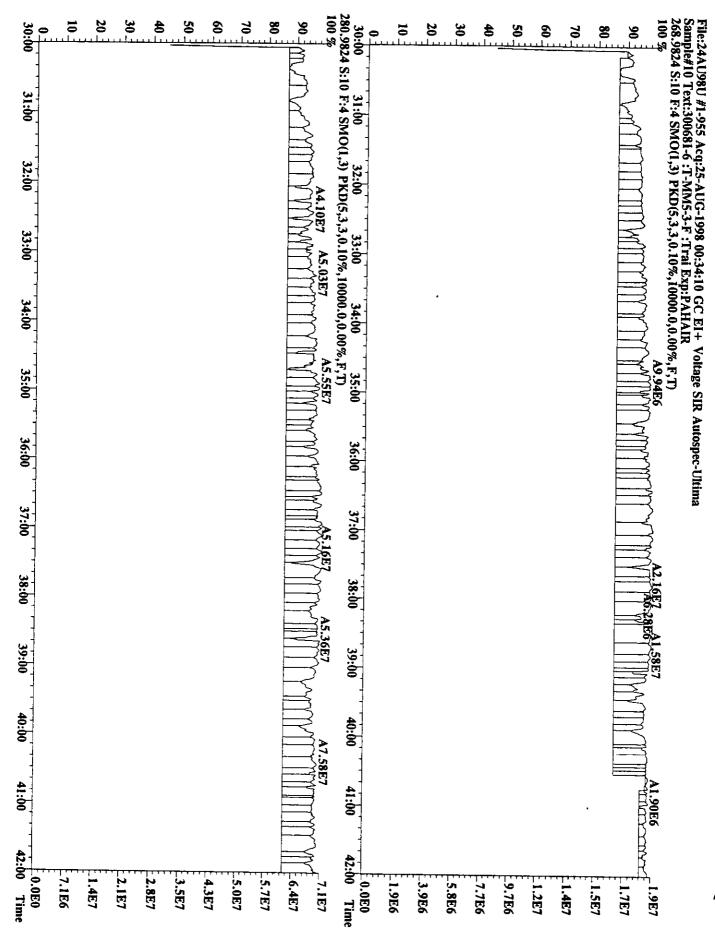












MAT 9-2-98

02-SEP-1998 07:30:51 PM Dioxin Furan Unknown RESULTS

	na wy mng	
GC Column : DB-5 Data file : 24AU98U Weight : 0.333 Name	Results: 24AU98U121.RES : PAHX.TRG Date analyzed: 24-AUG-98 300681-8:T-MM5-FB-F:Tra Ex Cal: PAHX081998U.RRF Total Isotope R. T. RRF ng/ Rec/ Response Ratio mm:ss SAMPLE MDL	
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	127604400 1.00 Y 11: 8 Y 1.00 50.00 96473200 1.00 Y 8: 57 Y 1.25 30.35 61 276950000 1.00 Y 9: 1 Y 1.05 409.25 B 243898000 1.00 Y 11: 15 Y 0.77 492.50 B	
d8-Acenaphthylene Acenaphthylene	152959000 1.00 Y 14: 13 Y 1.55 38.67 77 9800000 1.00 Y 14: 15 Y 0.86 11.14=DL	
d10-Acenaphthene Acenaphthene	89953800 1.00 Y 14: 47 Y 0.88 40.17 80 83223400 1.00 Y 14: 53 Y 0.93 149.40 B	
d10-Anthracene d10-Fluorene Fluorene	106331600 1.00 Y 19: 47 Y 1.00 50.00 74490000 1.00 Y 16: 28 Y 1.13 31.01 62 220950000 1.00 Y 16: 35 Y 1.05 424.18 B	
d10-Phenanthrene Phenanthrene Anthracene	1968318000 1.00 Y 19: 42 Y 0.84 1624.04 D	
d12-Benzo(e)pyrene d10-Fluoranthene Fluoranthene	183424000 1.00 Y 23: 3± Y 0.00 30:09 113	
d10-Pyrene Pyrene		
d12-Benzo(a)anthracene Benzo(a)anthracene	197985600 1.00 Y 28: 5 Y 0.65 75.59 151 M 73800000 1.00 Y 28: 10 Y 1.06 53.04	
d12-Chrysene Chrysene		
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	133893000 1.00 Y 31: 39 F 0.63 33.10 100	
d12-Benzo(k) fluoranthene Benzo(k) fluoranthene	182007200 1.00 Y 31: 44 Y 0.90 50.43 101 6280000 1.00 Y 31: 51 Y 1.16 4.48=DL	
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	33600000 1.00 Y 32: 45 Y 1.46 24.32 7 83=DL	-
d12-Perylene Perylene		
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene	4120000 1.00 Y 38: 2 Y 0.01 0.01 0.0	
d14-Dibenz(ah)anthracene Dibenz(ah)anthracene	110062000 1.00 Y 38: 1 Y 0.44 61.94 12 2 3 1930082 1.00 Y 38: 12 Y 1.11 2.37=DL	14
d12-Benzo(ghi)perylene Benzo(ghi)perylene	145600000 1.00 Y 39: 19 Y 0.63 57.34 115 20000000 1.00 Y 39: 28 Y 0.99 20.82	
d8-Naphthalene 13C-Naphthalene	96473200 1.00 Y 8: 57 Y 1.00 50.00 e * No Peak 0.00 N 9: 1 N 0.98 0.00 0	
	A* =	

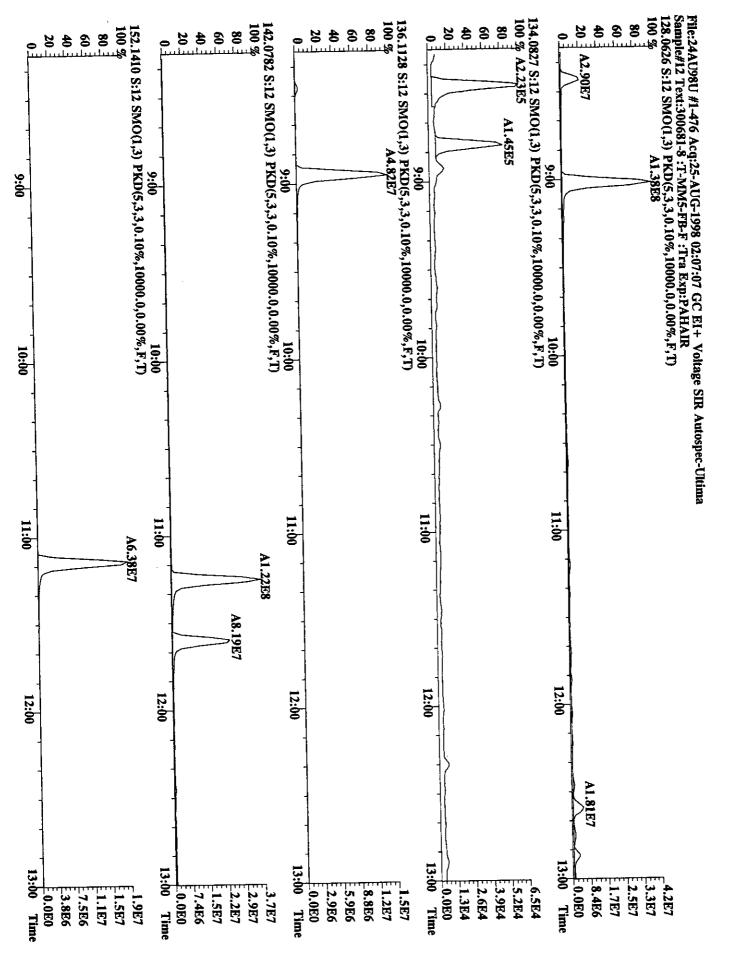
d10-Fluorene 74490000 1.00 Y 16: 28 Y 1.00 50.00 13C-Fluorene 52979000 1.00 Y 16: 34 Y 0.76 46.91 94

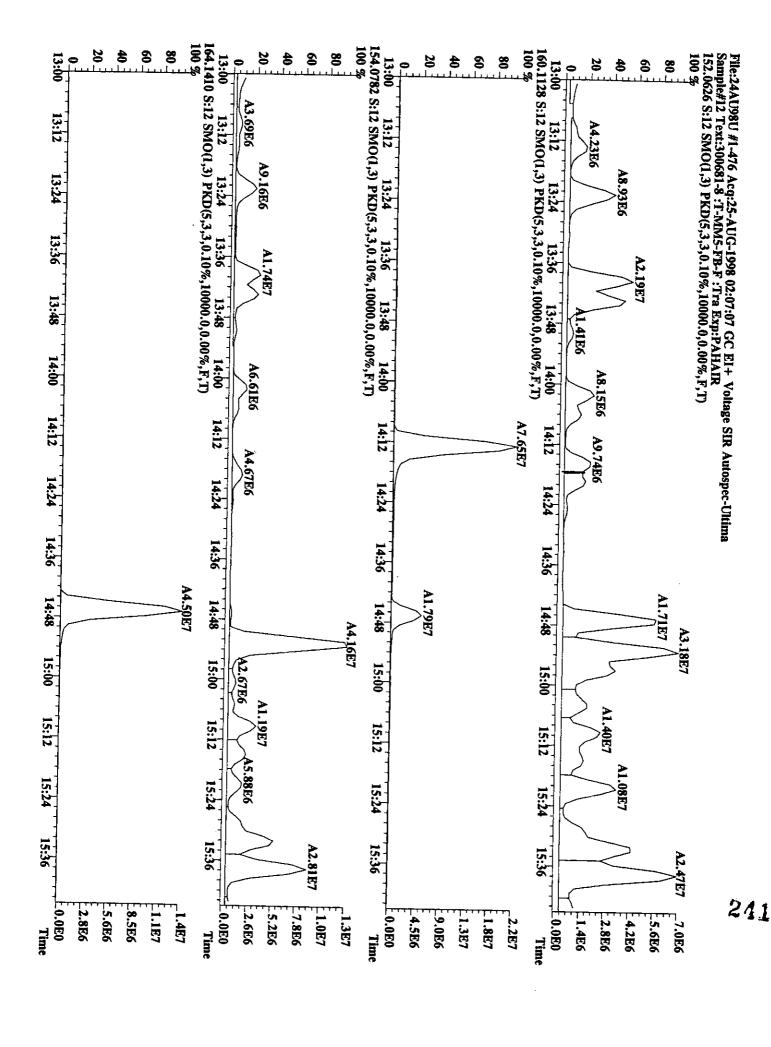
24AU98U121.RES Date analyzed MM5-FB-F:Tra Ex Cal Isotope R. T. RRF Ratio mm:ss	: PAHX081998U.RRF	0.333
1.00 Y 11: 8 Y	1.00 50.00	63802200 63802200
1.00 Y 8: 57 Y	1.25 30.35 61	48236600 48236600
1.00 Y 9: 1 Y	1.05 409.25	138475000 138475000
1.00 Y 11: 15 Y	0.77 492.50	121949000 121949000
1.00 Y 14: 13 Y	1.55 38.67 77	76479500 76479500
1.00 Y 14: 15 Y	0.86 11.14=DL	4900000 4900000
1.00 Y 14: 47 Y	0.88 40.17 80	44976900 44976900
1.00 Y 14: 53 Y	0.93 149.40	41611700 41611700
1.00 Y 19: 47 Y	1.00 50.00	53165800 53165800
1.00 Y 16: 28 Y	1.13 31.01 62	37245000 37245000
1.00 Y 16: 35 Y	1.05 424.18	110475000 110475000
1.00 Y 19: 37 Y	2.63 38.65 77	108049000 108049000
1.00 Y 19: 42 Y	0.84 1624.04	984159000 984159000
1.00 Y 19: 50 Y	0.83 100.40	59900000 59900000
1.00 Y 32: 38 Y	1.00 50.00	100703000 100703000
1.00 Y 23: 31 Y	0.80 56.69 113	91712000 91712000
1.00 Y 23: 35 Y	1.04 133.43	84800000 84800000
1.00 Y 24: 14 Y	0.81 55.28 111	90147300 90147300
1.00 Y 24: 17 Y	1.11 348.94	232000000 232000000
1.00 Y 28: 5 Y	0.65 75.59 151	98992800 98992800
1.00 Y 28: 10 Y	1.06 53.04	36900000 36900000
1.00 Y 28: 13 Y	0.85 62.47 125	106726000 106726000
1.00 Y 28: 16 Y	0.97 298.38	206000000 206000000
1.00 Y 32: 38 Y	1.00 50.00	100703000 100703000
1.00 Y 31: 39 Y	0.63 53.10 106	66946500 66946500
1.00 Y 31: 44 Y	1.07 25.59	12200000 12200000
1.00 Y 31: 44 Y	0.90 50.43 101	91003600 91003600
1.00 Y 31: 51 Y	1.16 4.48=DL	3140000 3140000
1.00 Y 32: 51 Y	0.75 46.44 93	70255700 70255700
1.00 Y 32: 45 Y	1.46 24.52	16800000 16800000
1.00 Y 32: 57 Y	1.02 7.83=DL	3750000 3750000
1.00 Y 33: 9 Y	0.61 44.87 90	55541500 55541500
1.00 Y 33: 16 Y	1.62 69.67	41700000 41700000
1.00 Y 38: 0 Y	0.71 58.87 118	83780900 83780900
1.00 Y 38: 2 Y	0.61 6.04=DL	2060000 2060000
1.00 Y 38: 1 Y	0.44 61.94 124	55031000 55031000
1.00 Y 38: 12 Y	1.11 2.37=DL	965041 965041
1.00 Y 39: 19 Y	0.63 57.34 115	72800000 72800000
1.00 Y 39: 28 Y	0.99 20.82	10000000 10000000
1.00 Y 8: 57 Y	1.00 50.00	48236600 48236600
0.00 N 9: 1 N	0.98 0.00 0	0 0

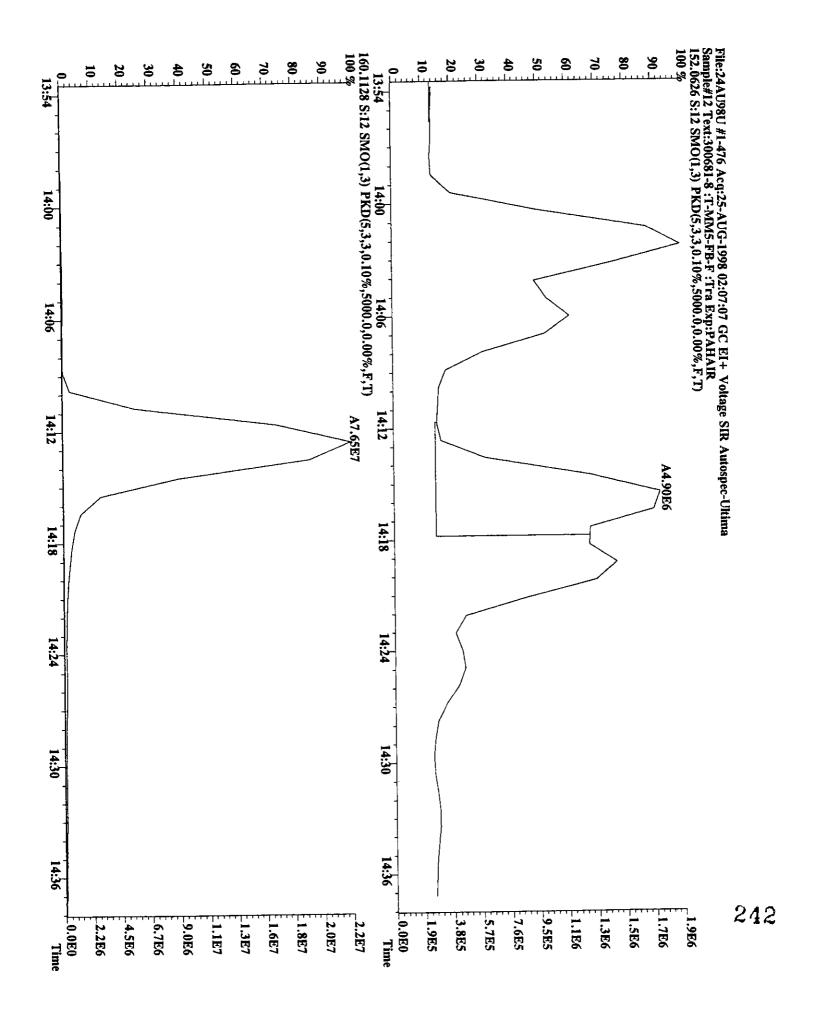
1.00 Y 16: 28 Y 1.00 50.00 37245000 37245000 1.00 Y 16: 34 Y 0.76 46.91 94 26489500 26489500

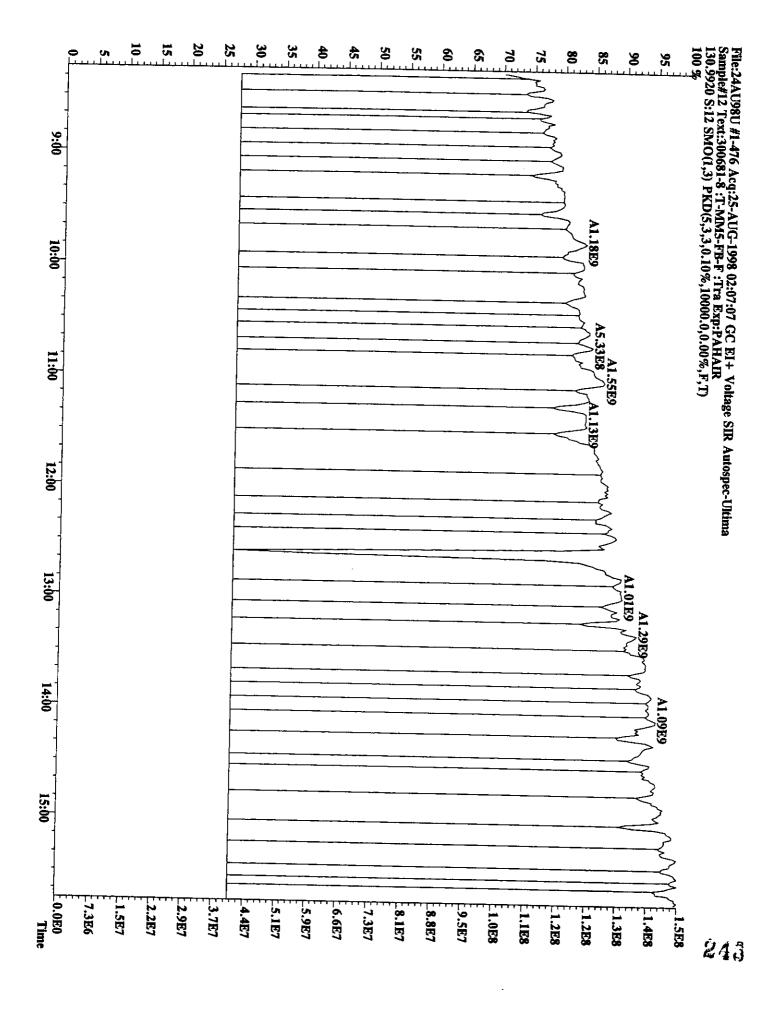
25-AUG-1998 09:34:36 AM	PAH UIRHOWH RESULTS	
Mass Spec : ULTIMA GC Column : DB-5 Data file : 24AU98U Weight : 0.333 Name	Results: 24AU98U121.RES : PAHX.TRG Date analyzed: 24-AUG-98 300681-8:T-MM5-FB-F:Tra Ex Cal: PAHX081998U.RRF Total Isotope R. T. RRF ng/ Rec/ Response Ratio mm:ss SAMPLE MDL	
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	127604400 1.00 Y 11: 8 Y 1.00 50.00 96473200 1.00 Y 8: 57 Y 1.25 30.35 61 276950000 1.00 Y 9: 1 Y 1.05 409.25 0.000 243898000 1.00 Y 11: 15 Y 0.77 492.50 0.000	
d8-Acenaphthylene Acenaphthylene	152959000 1.00 Y 14: 13 Y 1.55 38.67 77 19471860 1.00 Y 14: 15 Y 0.86 22.14 0.000	
d10-Acenaphthene Acenaphthene	89953800 1.00 Y 14: 47 Y 0.88 40.17 80 83223400 1.00 Y 14: 53 Y 0.93 149.40 0.000	
d10-Anthracene d10-Fluorene Fluorene		
d10-Phenanthrene Phenanthrene Anthracene	1968318000 1.00 Y 19: 42 Y 0.84 1624.04 0.000	
d12-Benzo(e)pyrene d10-Fluoranthene Fluoranthene	183424000 1.00 Y 23: 31 Y 0.80 153.05 113	
d10-Pyrene Pyrene		
d12-Benzo(a)anthracene Benzo(a)anthracene		
d12-Chrysene Chrysene		
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	133893000 1.00 Y 31: 39 Y 0.63 53.10 106	
d12-Benzo(k) fluoranthene Benzo(k) fluoranthene	182007200 1.00 Y 31: 44 Y 0.90 50.43 101 45782600 1.00 Y 31: 44 Y 1.16 32.69 0.000	
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	44698200 1.00 Y 32: 45 Y 1.46 32.62 0.000	
d12-Perylene Perylene		
d12-Indeno (123-cd) pyrene Indeno (123-cd) pyrene	* No Peak 0.00 N 38: 2 N 0.61 0.00 0.000	
d14-Dibenz (ah) anthracene Dibenz (ah) anthracene	1930082 1.00 Y 38: 12 Y 1.11 2.37 0. accept	3
d12-Benzo(ghi)perylene Benzo(ghi)perylene	* No Peak 0.00 N 39: 28 N 0.99 "NoINOIS	
d8-Naphthalene 13C-Naphthalene		

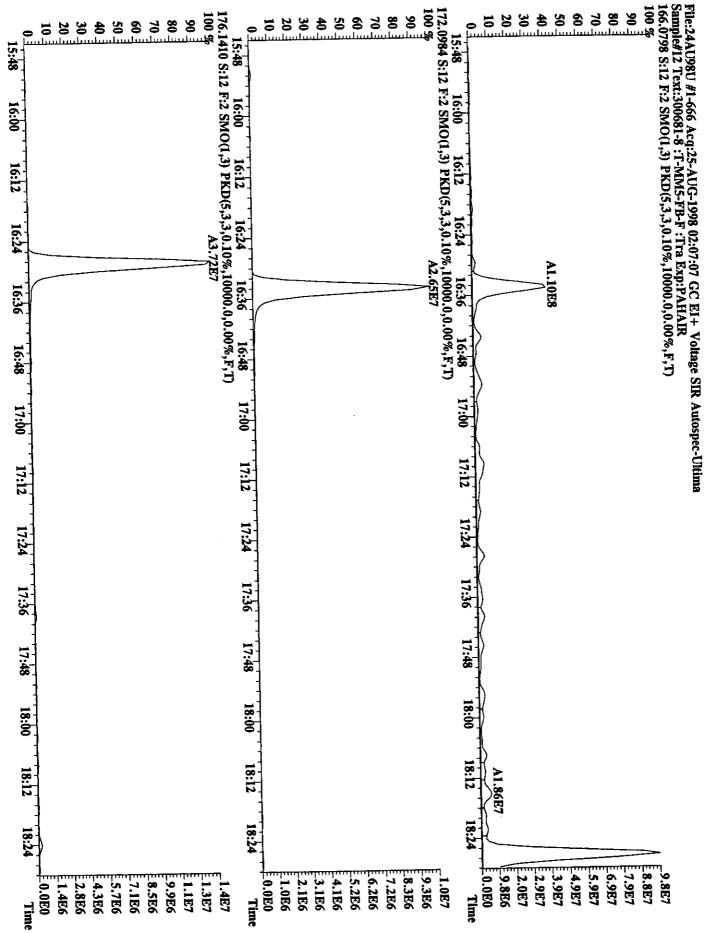
94

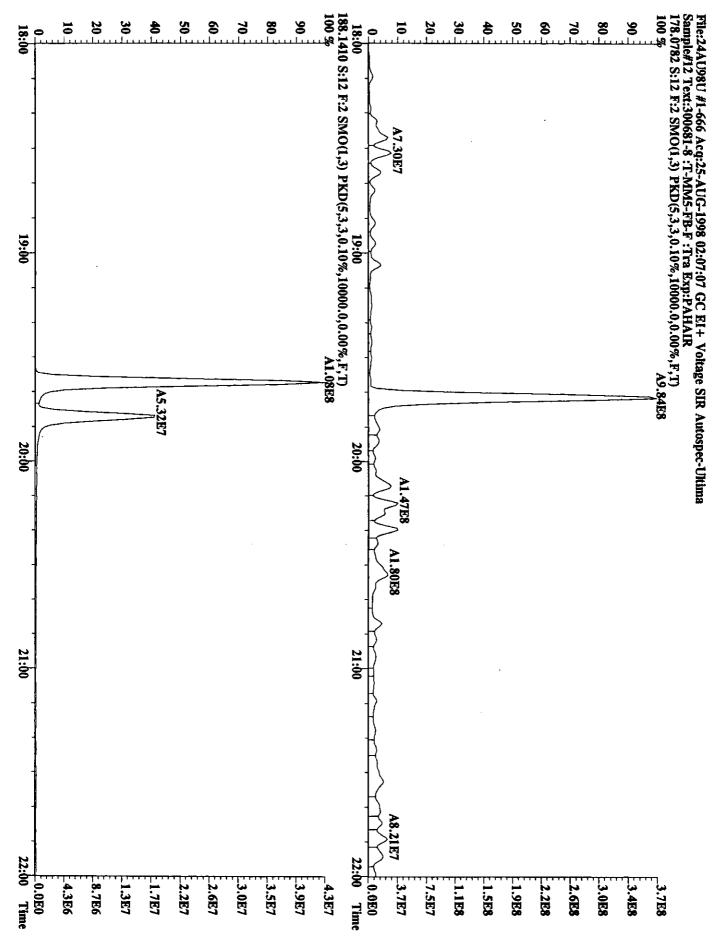

2

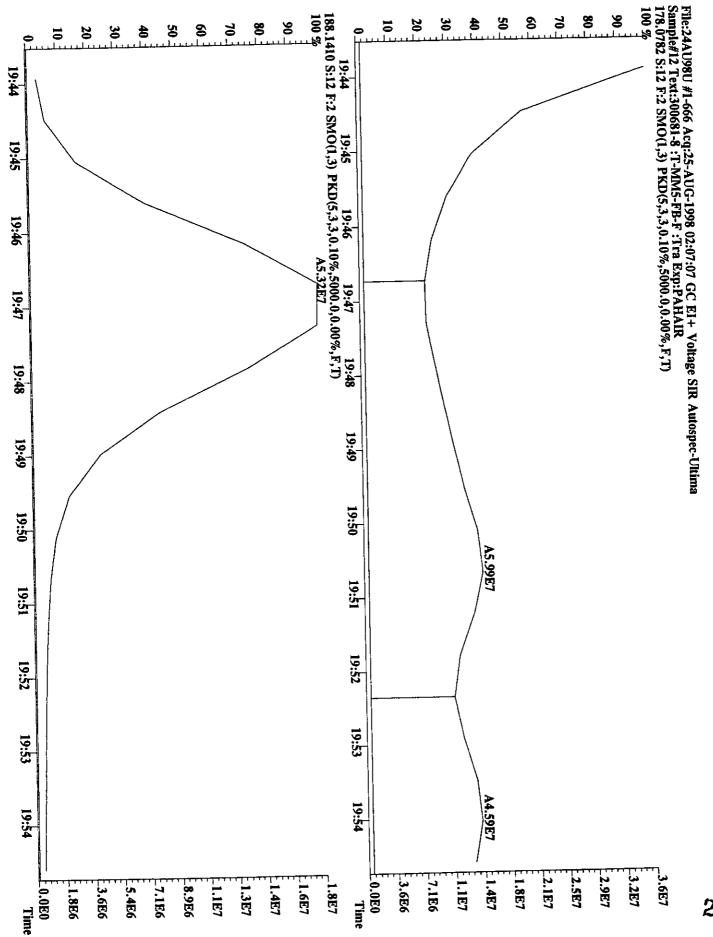

d10-Fluorene 13C-Fluorene

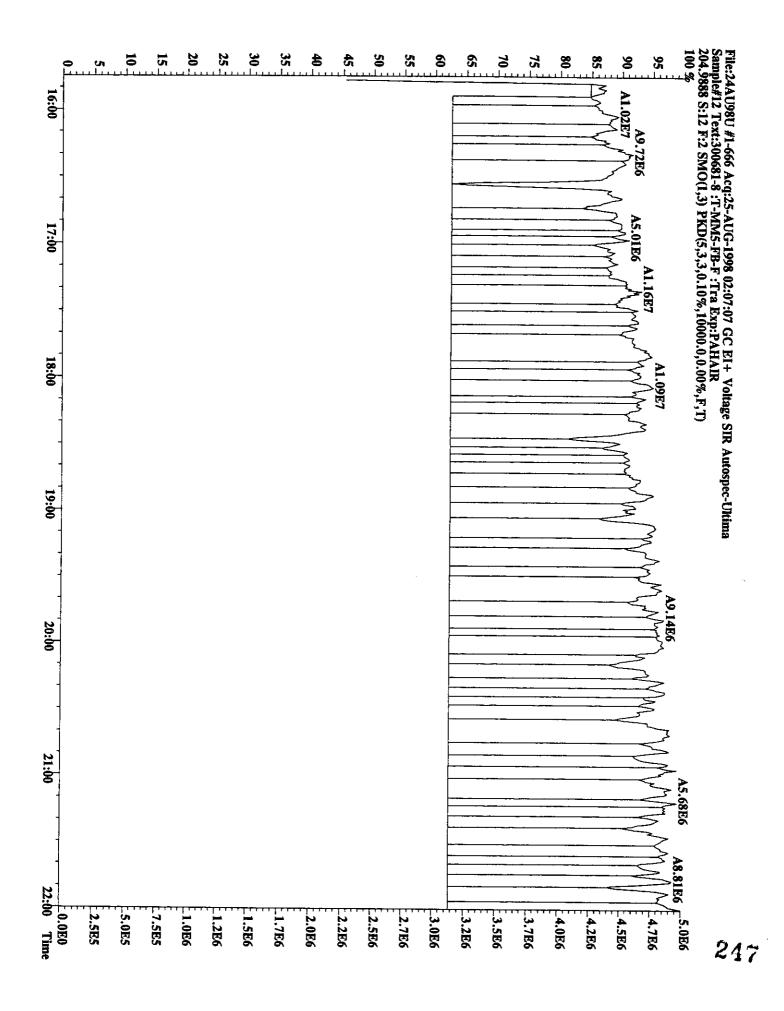

74490000 1.00 Y 16: 28 Y 52979000 1.00 Y 16: 34 Y

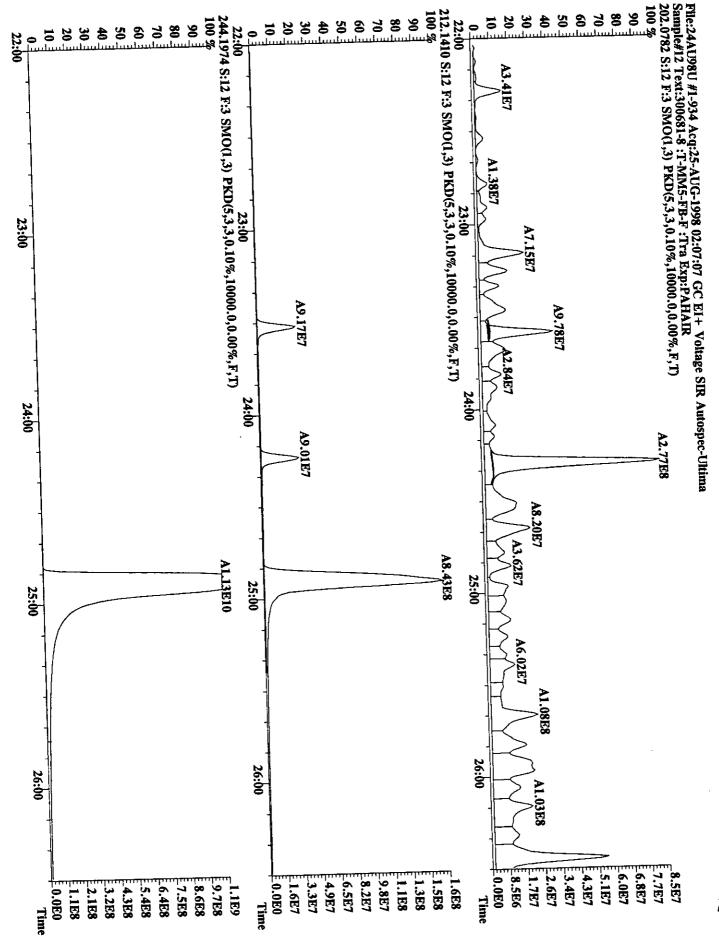

1.00 50.00 0.76 46.91

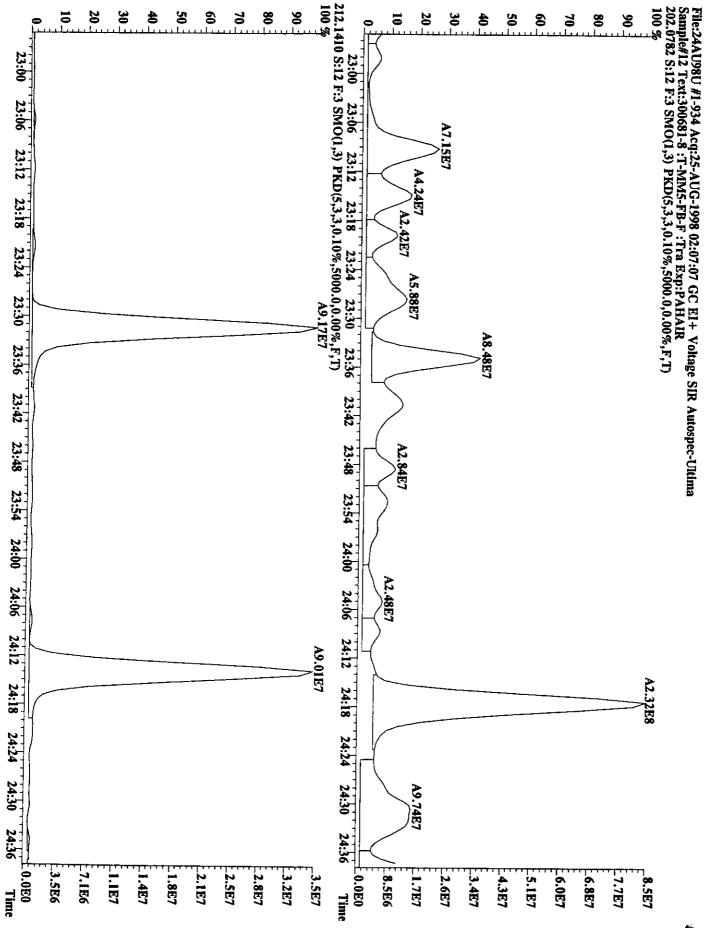

239

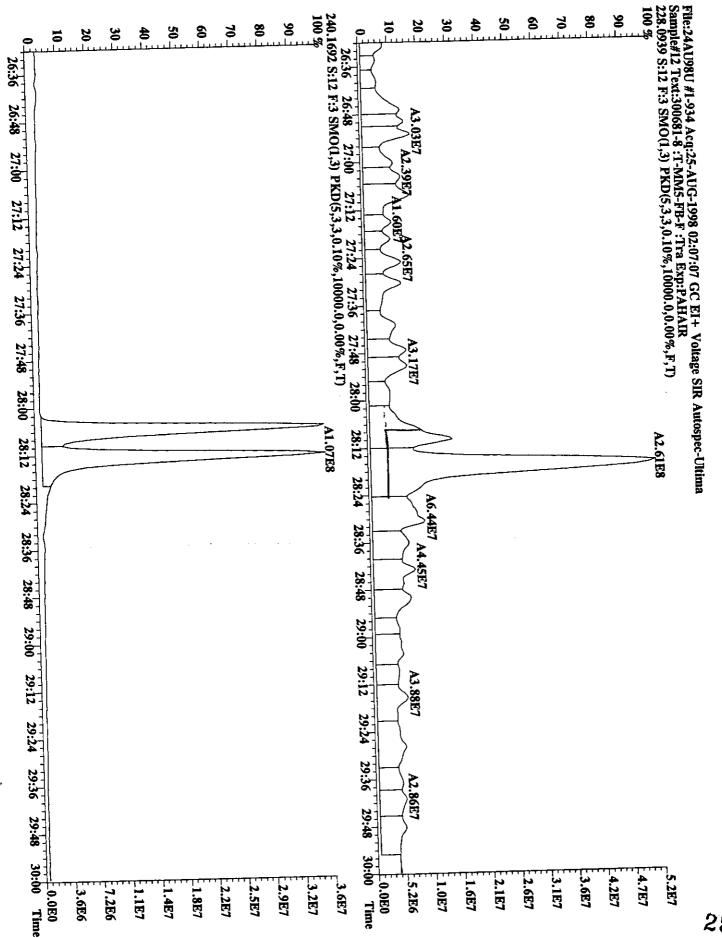


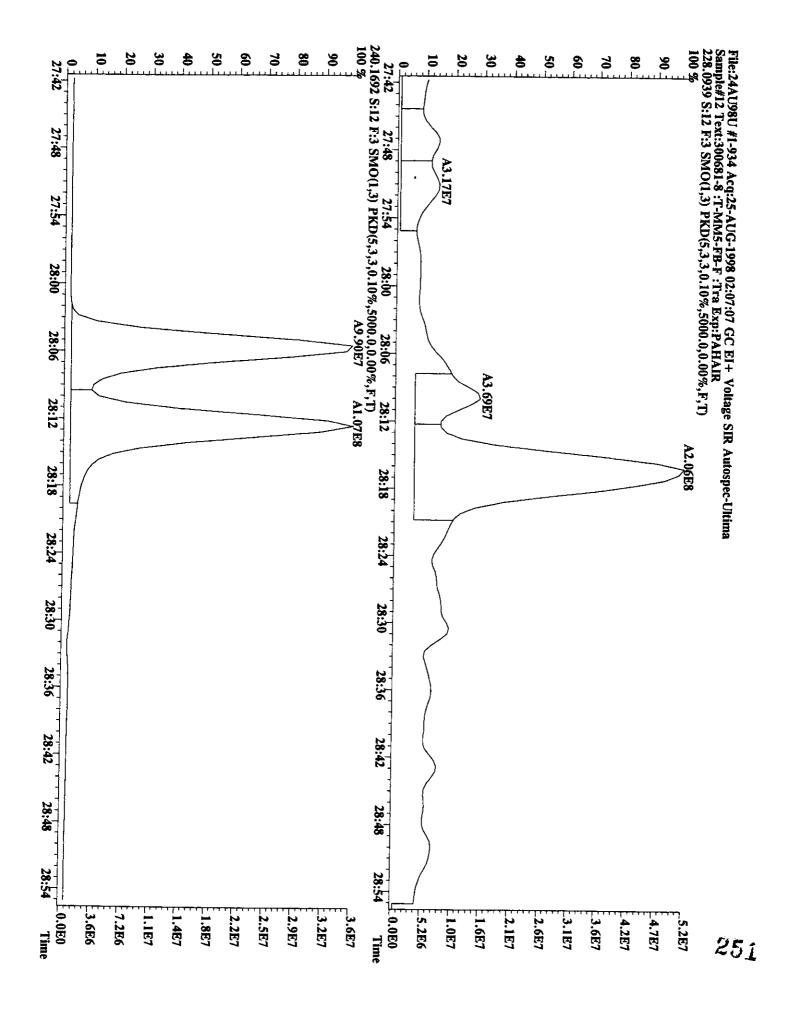


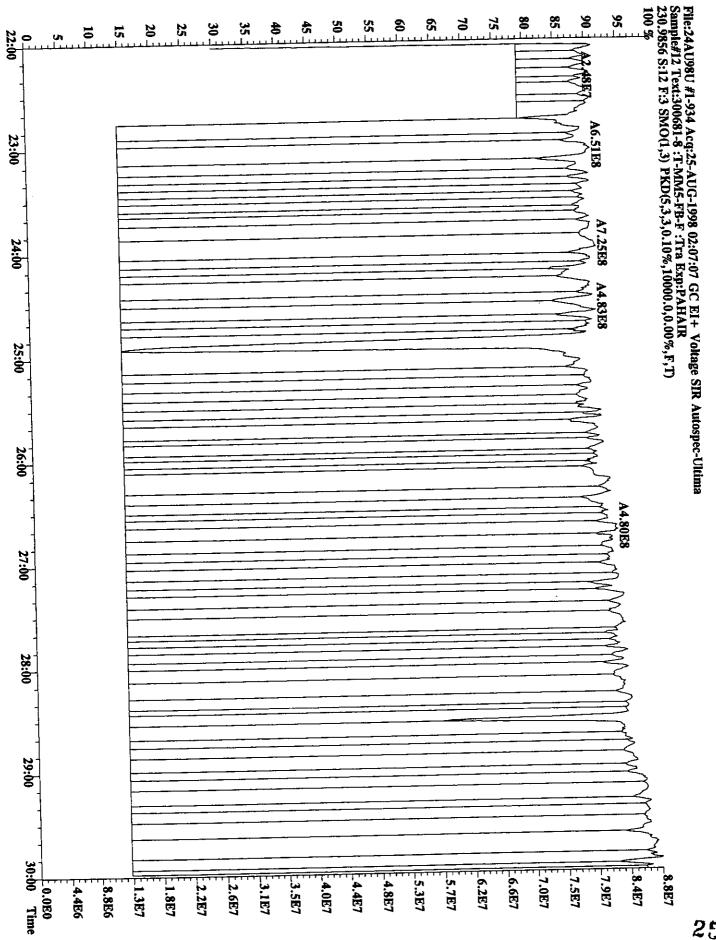


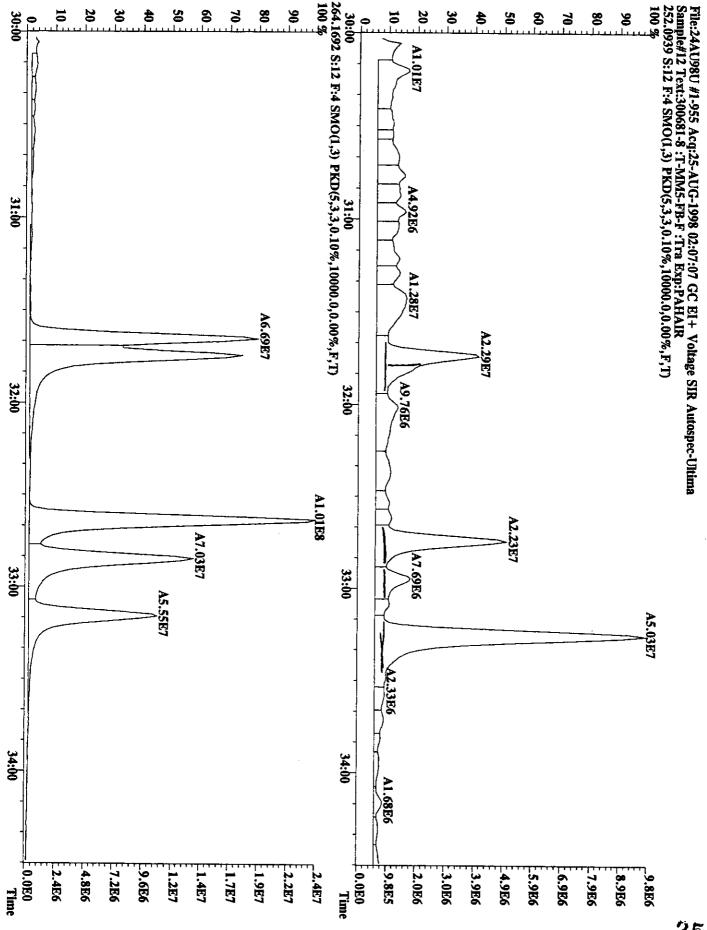


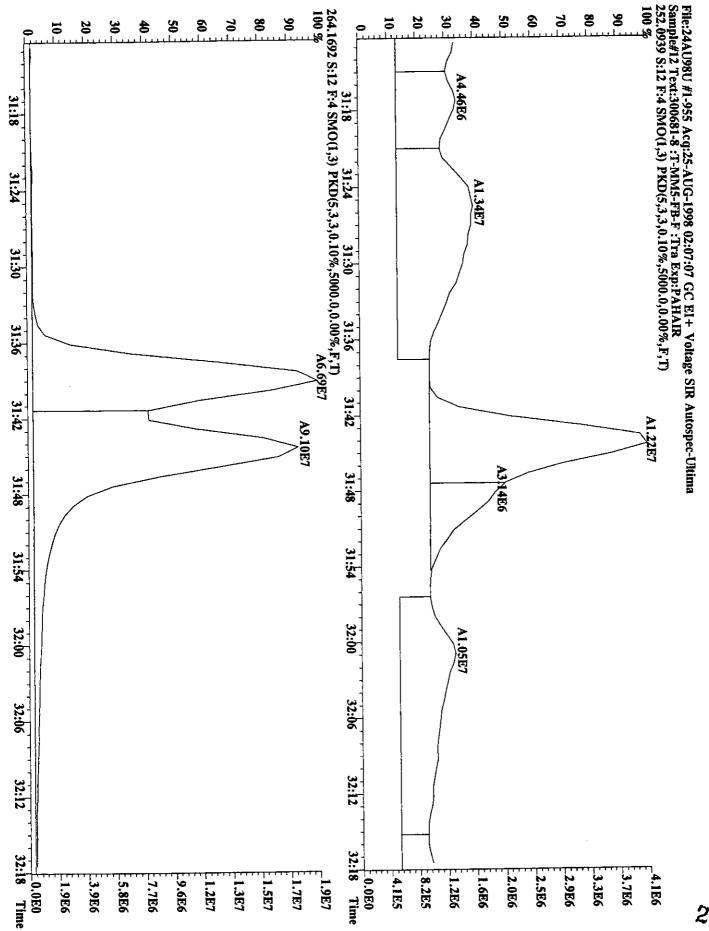


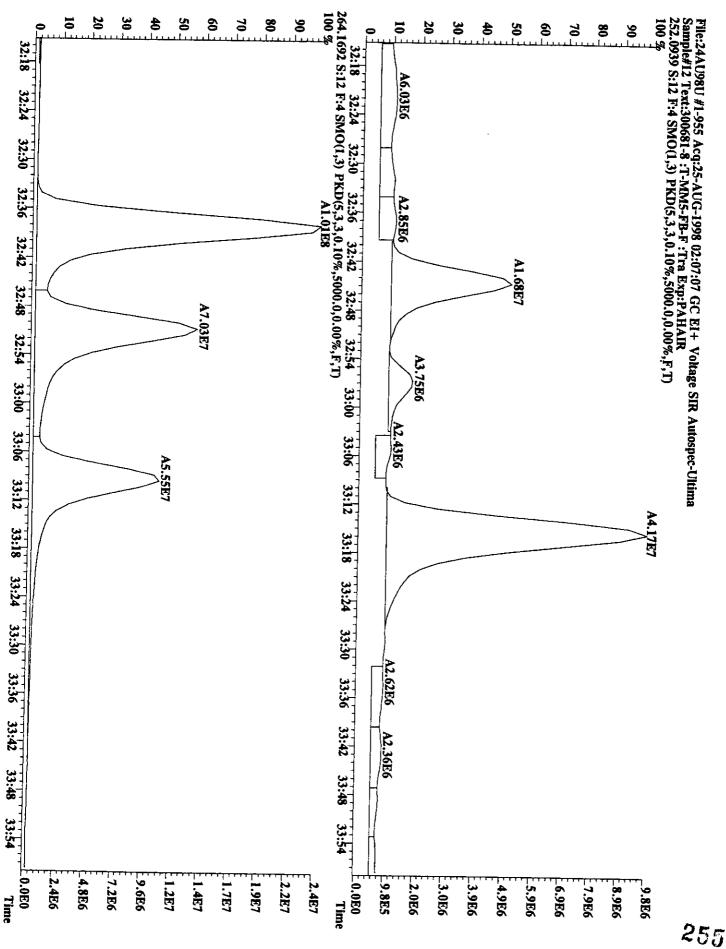


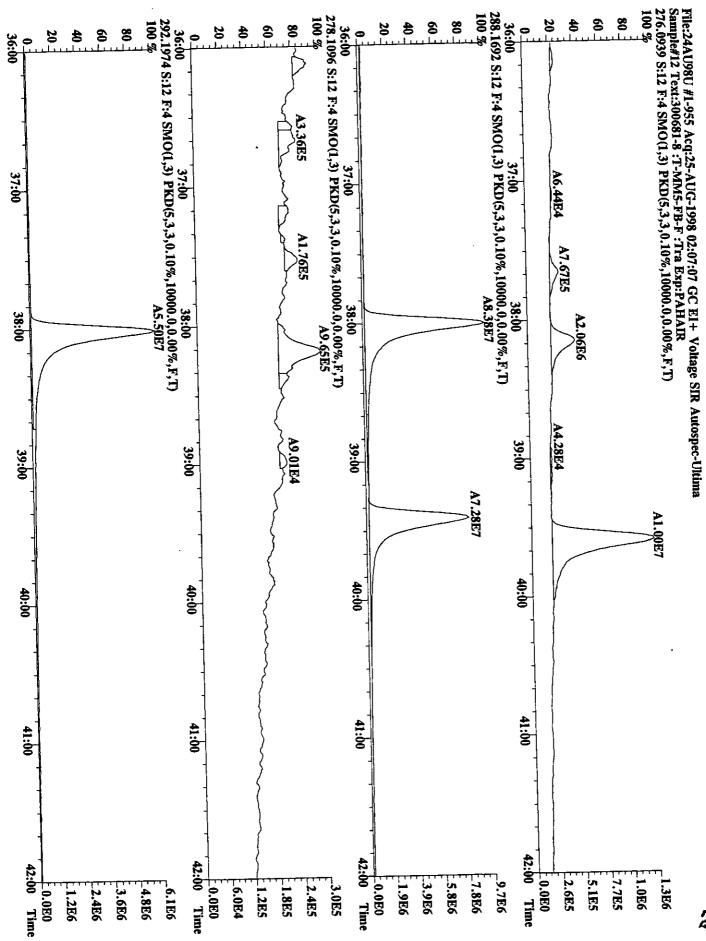


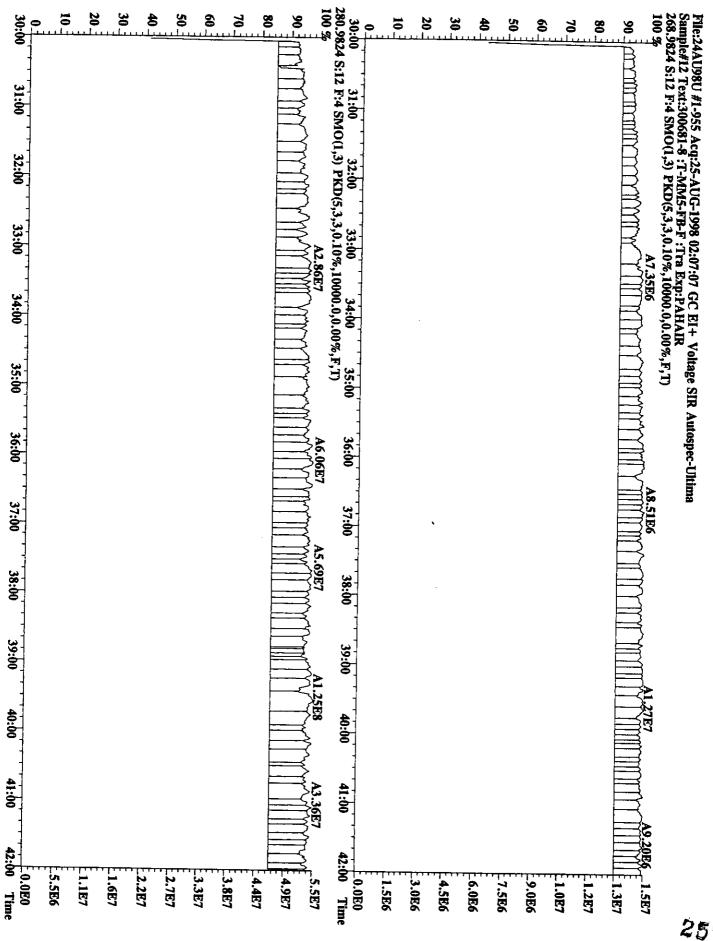












mAT 9-2-98

d10-Fluorene 56298800 1.00 Y 16: 29 Y 1.00 50.00 13C-Fluorene 48381200 1.00 Y 16: 35 Y 0.76 56.69 113

02-SEP-1998 07:36:09 PM Dioxin Furan Unknown RESULTS

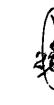
	: PAHX.TRG	
24AU98U131.RES Date analyzed MM5-RB-F:Tra Ex Cal Isotope R. T. RRF Ratio mm:ss	: PAHX.1RG : 24-AUG-98 : PAHX081998U.RRF ng/ Rec/ SAMPLE MDL	0.333
1.00 Y 11: 9 Y	1.00 50.00	56522500 56522500
1.00 Y 8: 57 Y	1.25 29.33 59	41305900 41305900
1.00 Y 9: 1 Y	1.05 269.45	78071900 78071900
1.00 Y 11: 16 Y	0.77 142.36	30184500 30184500
1.00 Y 14: 14 Y	1.55 35.28 71	61814100 61814100
1.00 Y 14: 16 Y	0.86 6.10=DL	2166740 2166740
1.00 Y 14: 47 Y	0.88 37.17 74	36864200 36864200
1.00 Y 14: 53 Y	0.93 37.72	8611430 8611430
1.00 Y 19: 47 Y	1.00 50.00	39754200 39754200
1.00 Y 16: 29 Y	1.13 31.35 63	28149400 28149400
1.00 Y 16: 35 Y	1.05 43.28	8518820 8518820
1.00 Y 19: 38 Y	2.63 37.63 75	78647400 78647400
1.00 Y 19: 42 Y	0.84 110.93	48931400 48931400
1.00 Y 19: 50 N	0.83 7.88=DL	3420000 3420000
1.00 Y 32: 39 Y	1.00 50.00	101782000 101782000
1.00 Y 23: 32 Y	0.80 42.78 86	69957900 69957900
1.00 Y 23: 36 Y	1.04 26.00	12605900 12605900
1.00 Y 24: 14 Y	0.81 43.93 88	72401600 72401600
1.00 Y 24: 18 Y	1.11 17.59	9390300 9390300
1.00 Y 28: 6 Y	0.65 69.50 139	91999200 91999200
1.00 Y 28: 11 Y	1.06 1.06=DL	682136 682136
1.00 Y 28: 13 Y	0.85 63.57 127	109757000 109757000
1.00 Y 28: 18 Y	0.97 4.65=DL	3299730 3299730
1.00 Y 32: 39 Y	1.00 50.00	101782000 101782000
1.00 Y 31: 40 Y	0.63 52.58 105	67003500 67003500
1.00 Y 31: 45 Y	1.07 1.66=DL	793000 793000
1.00 Y 31: 45 Y	0.90 51.03 102	93079300 93079300
1.00 Y 31: 45 Y	1.16 0.58=DL	419000 419000
1.00 Y 32: 51 Y	0.75 46.57 93	71211000 71211000
1.00 Y 32: 45 Y	1.46 1.22=DL	850000 850000
1.00 Y 32: 57 Y	1.02 0.85=DL	415000 415000
1.00 Y 33: 10 Y	0.61 45.02 90	56313200 56313200
1.00 Y 33: 16 Y	1.62 1.08=DL	658000 658000
1.00 Y 38: 1 Y	0.71 60.26 121	86673600 86673600
1.00 Y 38: 4 Y	0.61 0.57=DL	200000 200000
1.00 Y 38: 2 Y	0.44 59.94 120	53824400 53824400
0.00 N 38: 10 N	1.11 EDL=0.31	0 0
1.00 Y 39: 20 Y	0.63 59.54 119	76400000 76400000
1.00 Y 39: 29 Y	0.99 1.30=DL	654000 654000
1.00 Y 8: 57 Y	1.00 50.00	41305900 41305900
0.00 N 9: 1 N	0.98 0.00 0	0 0

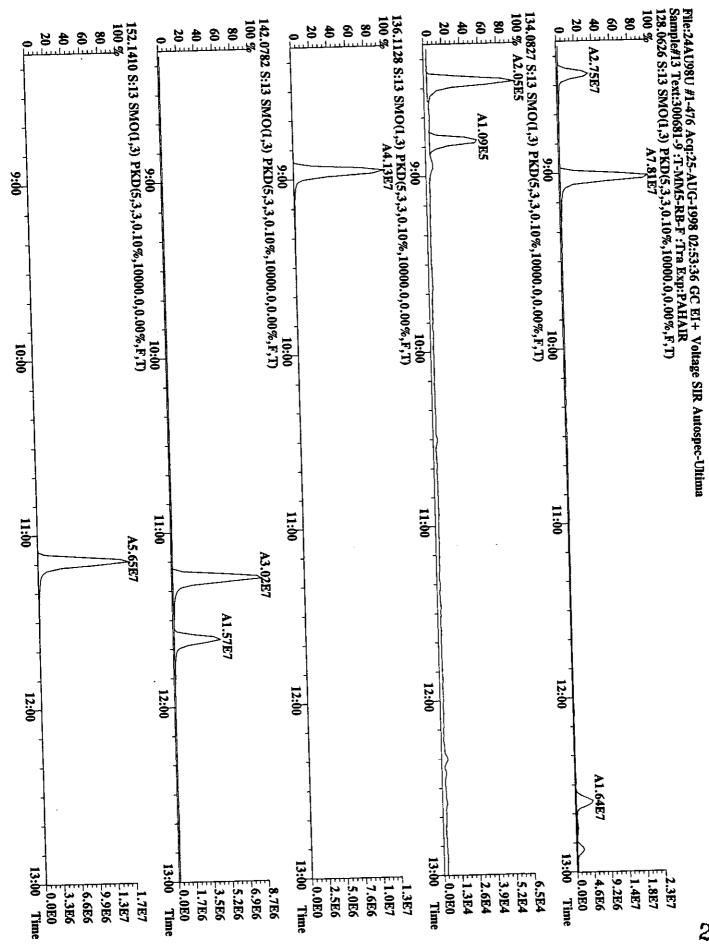
1.00 Y 16: 29 Y 1.00 50.00 28149400 28149400 1.00 Y 16: 35 Y 0.76 56.69 113 24190600 24190600

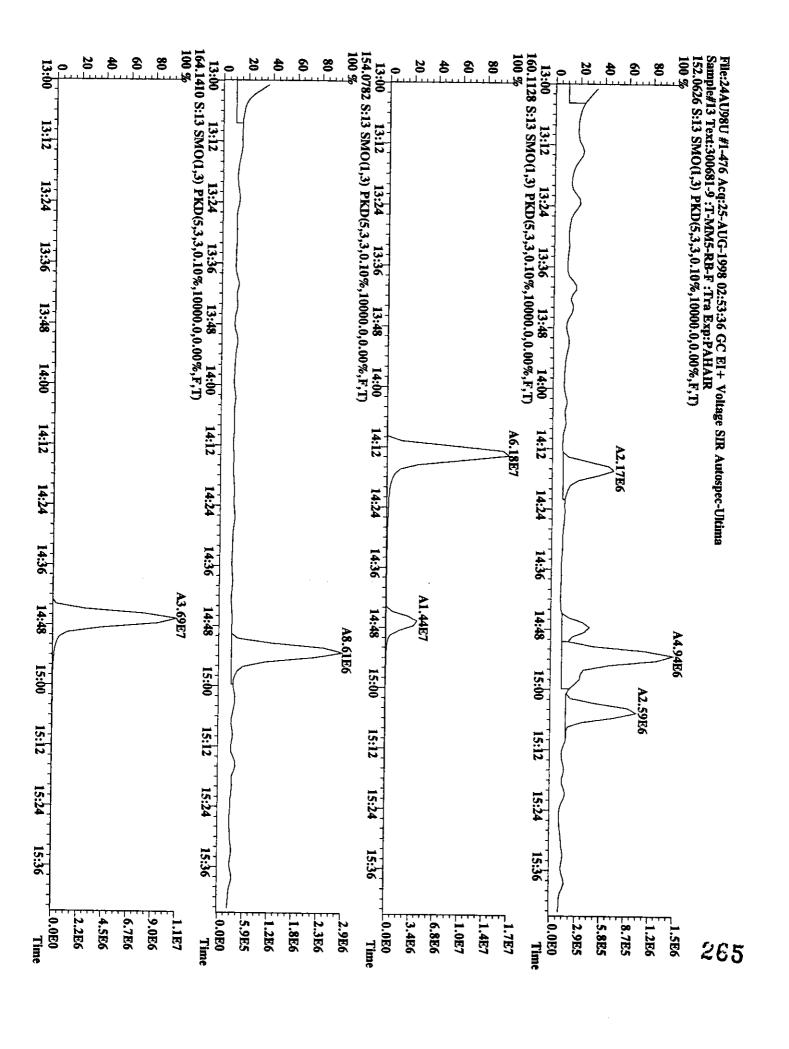
25-AUG-1998 09:35:45 AM	PAN GIRIOWII RESSEES	
Mass Spec : ULTIMA GC Column : DB-5 Data file : 24AU98U Weight : 0.333 Name	Results: 24AU98U131.RES : PAHX.TRG Date analyzed: 24-AUG-98 300681-9:T-MM5-RB-F:Tra Ex Cal: PAHX081998U.RRF Total Isotope R. T. RRF ng/ Rec/ Response Ratio mm:ss SAMPLE MDL	
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	113045000 1.00 Y 11: 9 Y 1.00 50.00 82611800 1.00 Y 8: 57 Y 1.25 29.33 59 156143800 1.00 Y 9: 1 Y 1.05 269.45 0.000 60369000 1.00 Y 11: 16 Y 0.77 142.36 0.000	
d8-Acenaphthylene Acenaphthylene	123628200 1.00 Y 14: 14 Y 1.55 35.28 71 4333480 1.00 Y 14: 16 Y 0.86 6.10 0.000	
d10-Acenaphthene Acenaphthene	73728400 1.00 Y 14: 47 Y 0.88 37.17 74 17222860 1.00 Y 14: 53 Y 0.93 37.72 0.000	
d10-Anthracene d10-Fluorene Fluorene	79508400 1.00 Y 19: 47 Y 1.00 50.00 56298800 1.00 Y 16: 29 Y 1.13 31.35 63 17037640 1.00 Y 16: 35 Y 1.05 43.28 0.000	
d10-Phenanthrene Phenanthrene Anthracene	157294800 1.00 Y 19: 38 Y 2.63 37.63 75 97862800 1.00 Y 19: 42 Y 0.84 110.93 0.000 * No Peak 0.00 N 19: 50 N 0.83 0.00 0.000	
d12-Benzo(e)pyrene d10-Fluoranthene Fluoranthene	203564000 1.00 Y 32: 39 Y 1.00 50.00 139915800 1.00 Y 23: 32 Y 0.80 42.78 86 25211800 1.00 Y 23: 36 Y 1.04 26.00 0.000	
d10-Pyrene Pyrene		
d12-Benzo(a)anthracene Benzo(a)anthracene	183998400 1.00 Y 28: 6 Y 0.65 69.50 139 1364272 1.00 Y 28: 11 Y 1.06 1.06 0.000	
d12-Chrysene Chrysene		
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	134007000 1.00 1 31: 45 1 1.07 2 49 0.000	
d12-Benzo(k)fluoranthene Benzo(k)fluoranthene	23/2980 1.00 1 51. 45 1	
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	1475188 1.00 Y 32: 45 1 1.02 0.81 0.000	
d12-Perylene Perylene	112626400 1.00 Y 33: 10 Y 0.61 45.02 90 1310596 1.00 Y 33: 16 Y 1.62 1.08 0.000	
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene	e 173347200 1.00 Y 38: 1 Y 0.71 60.26 121 e * No Peak 0.00 N 38: 4 N 0.61 0.00 0.000	
d14-Dibenz (ah) anthracen Dibenz (ah) anthracen	e 107648800 1.00 Y 38: 2 Y 0.44 59.94 120 e * No Peak 0.00 N 38: 10 N 1.11 0.00 0.000).
d12-Benzo(ghi)perylend Benzo(ghi)perylend	e * No Peak 0.00 N 39: 20 N 0.63 0.00 0 60)
d8-Naphthalen 13C-Naphthalen	e 82611800 1.00 Y 8: 57 Y 1.00 50.00	3

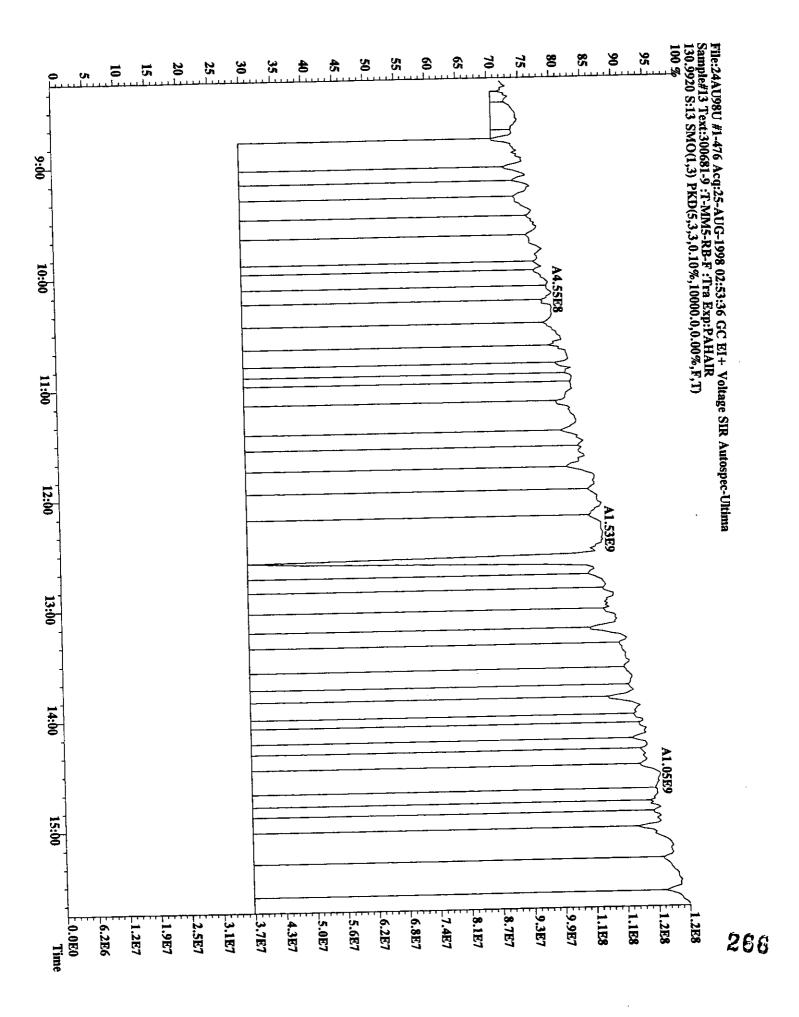
25-AUG-1998 09:35:45 AM

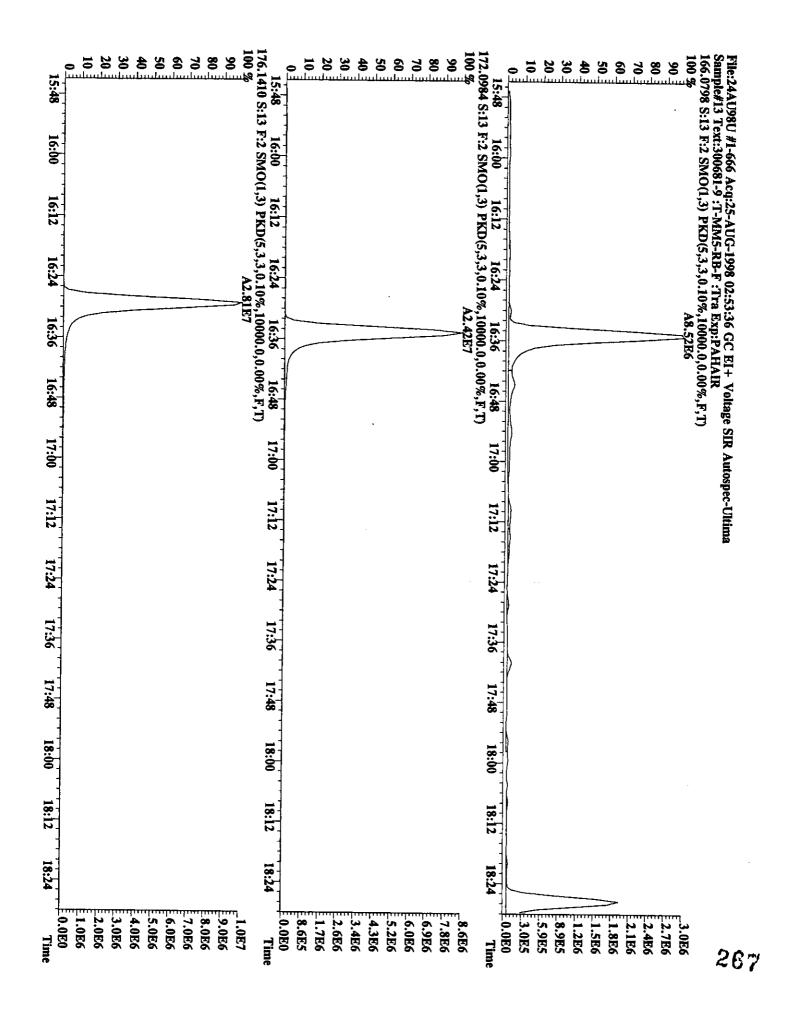
PAH Unknown RESULTS

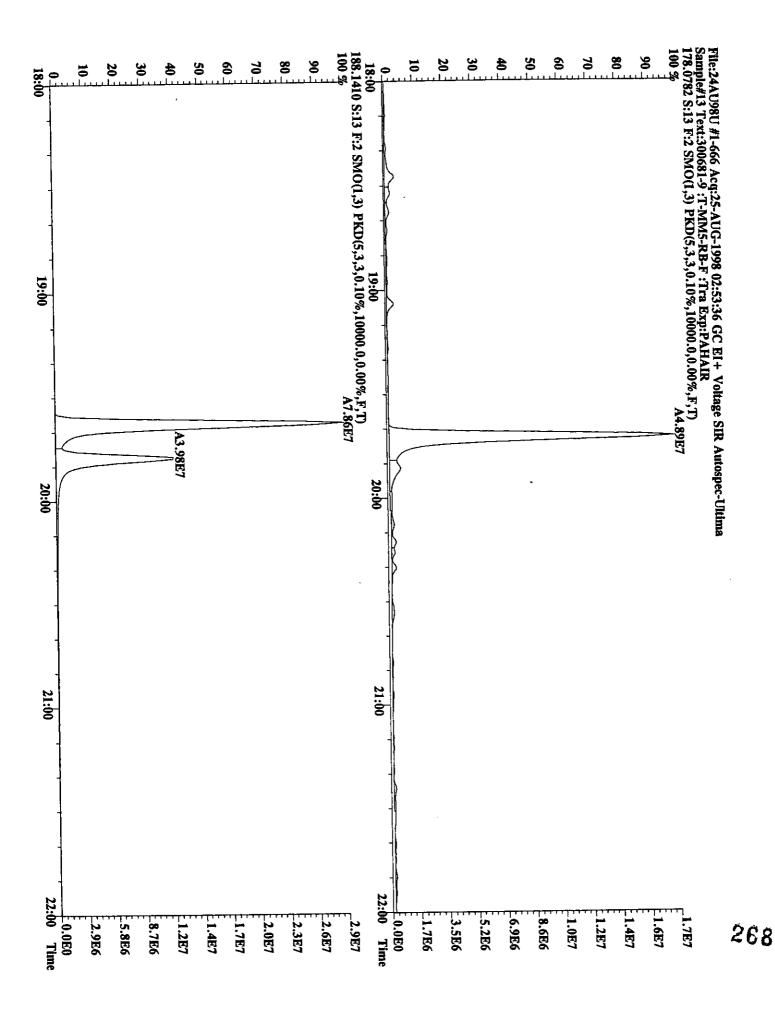

2

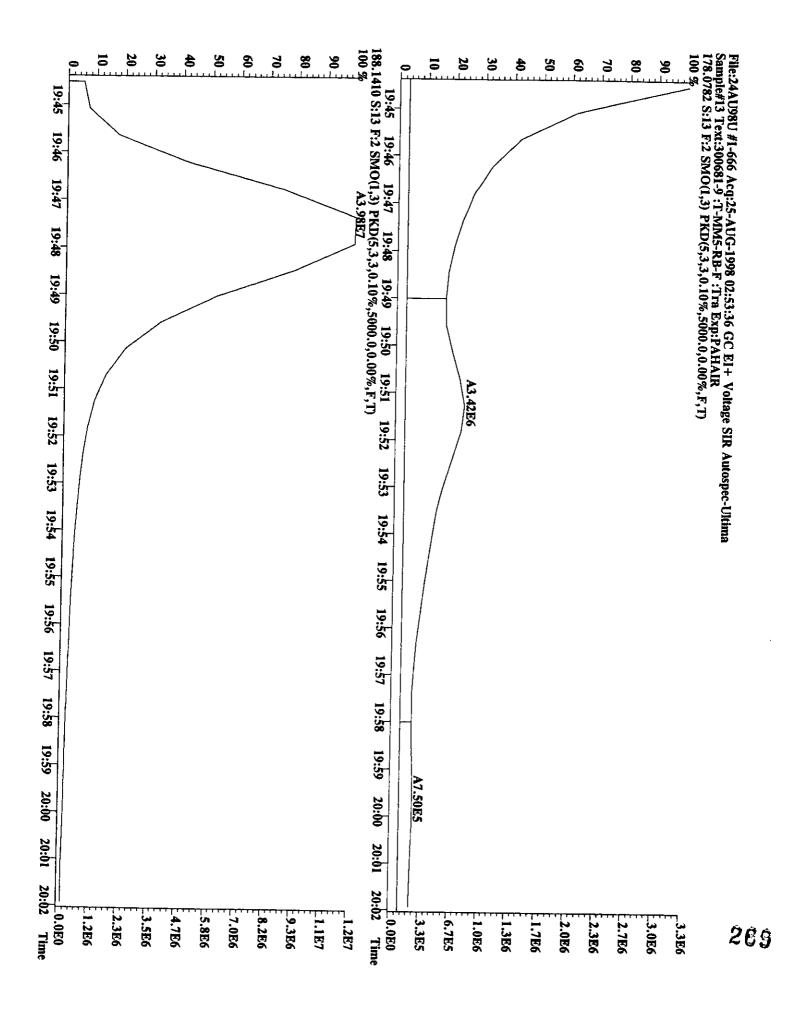

d10-Fluorene 13C-Fluorene 56298800 1.00 Y 16: 29 Y 48381200 1.00 Y 16: 35 Y

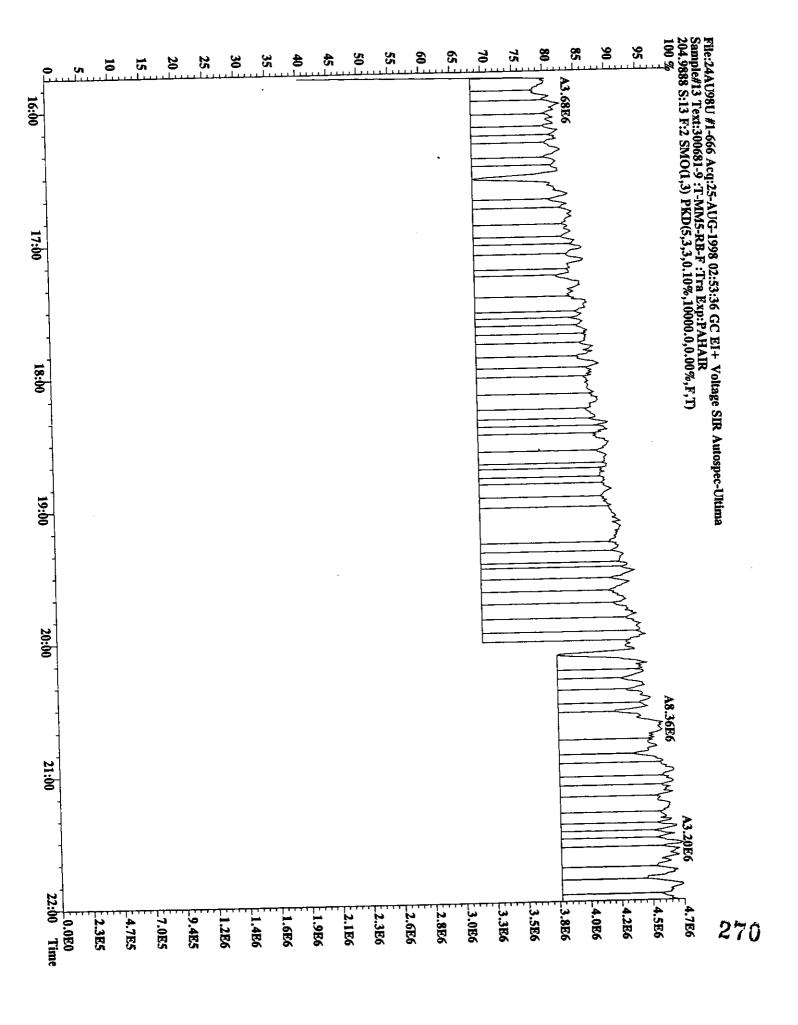

1.00 5 0.76 5

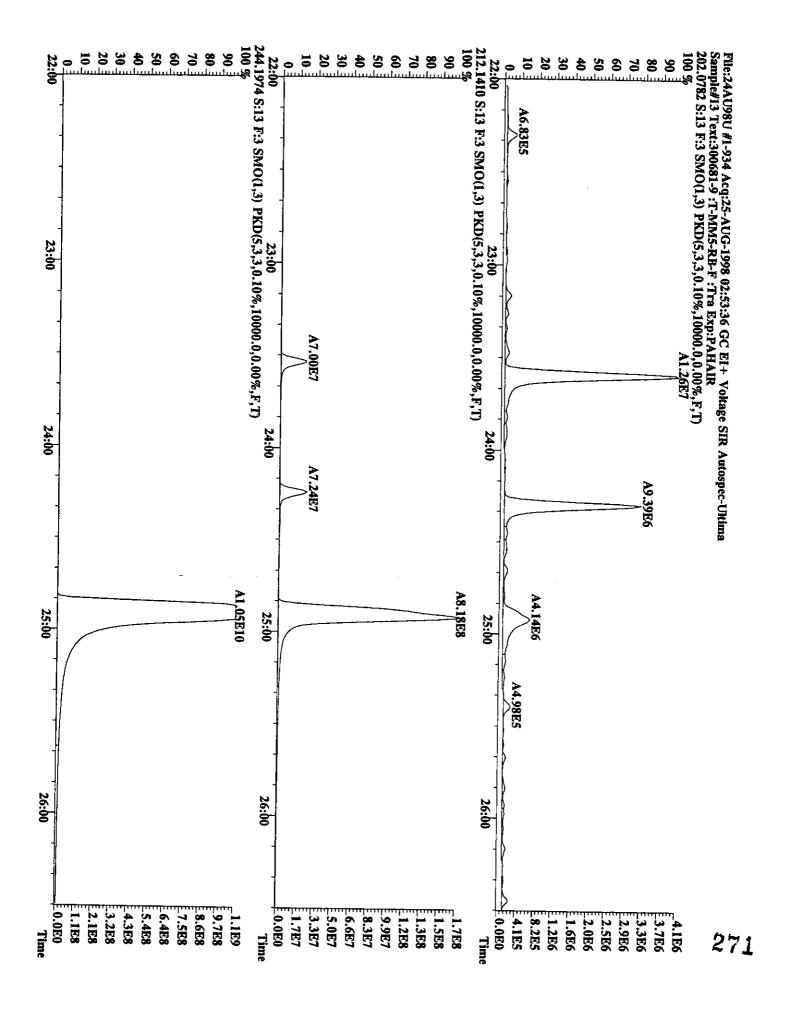

50.00 56.69

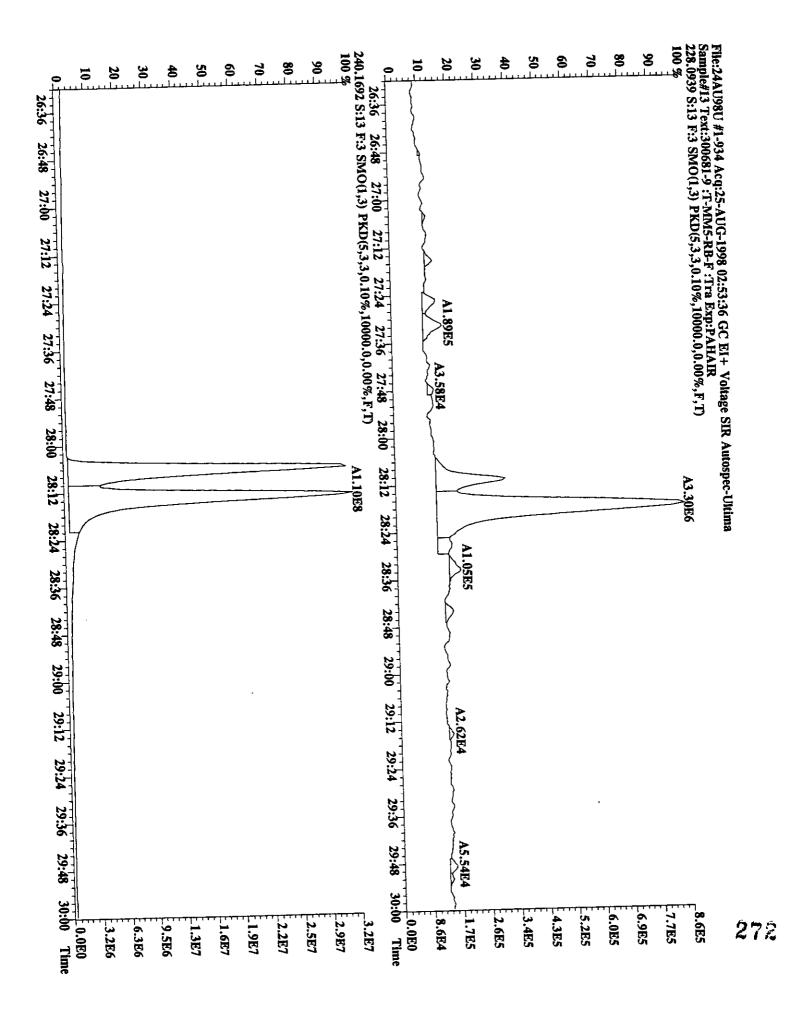

113

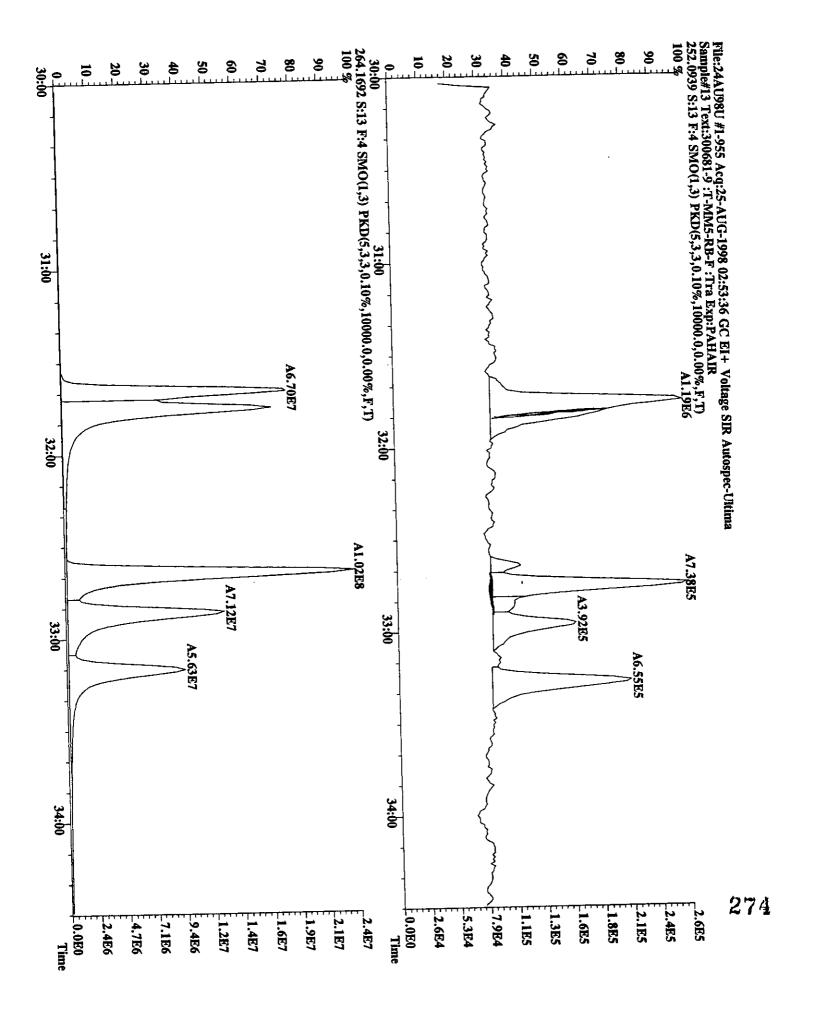


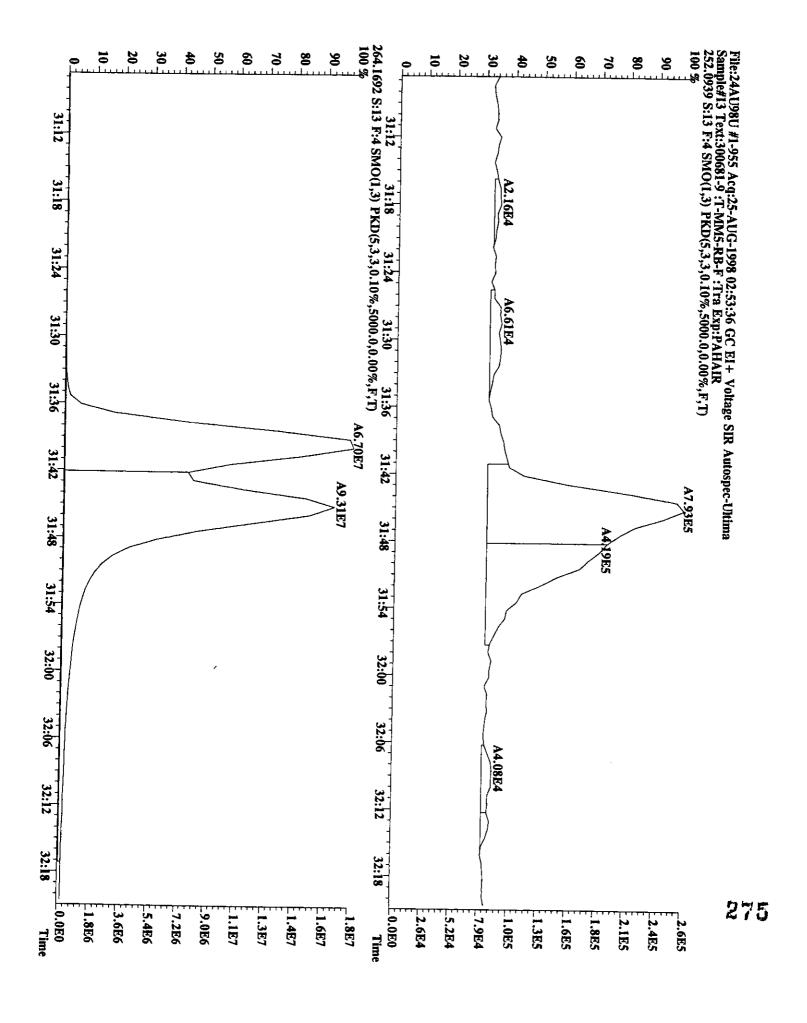


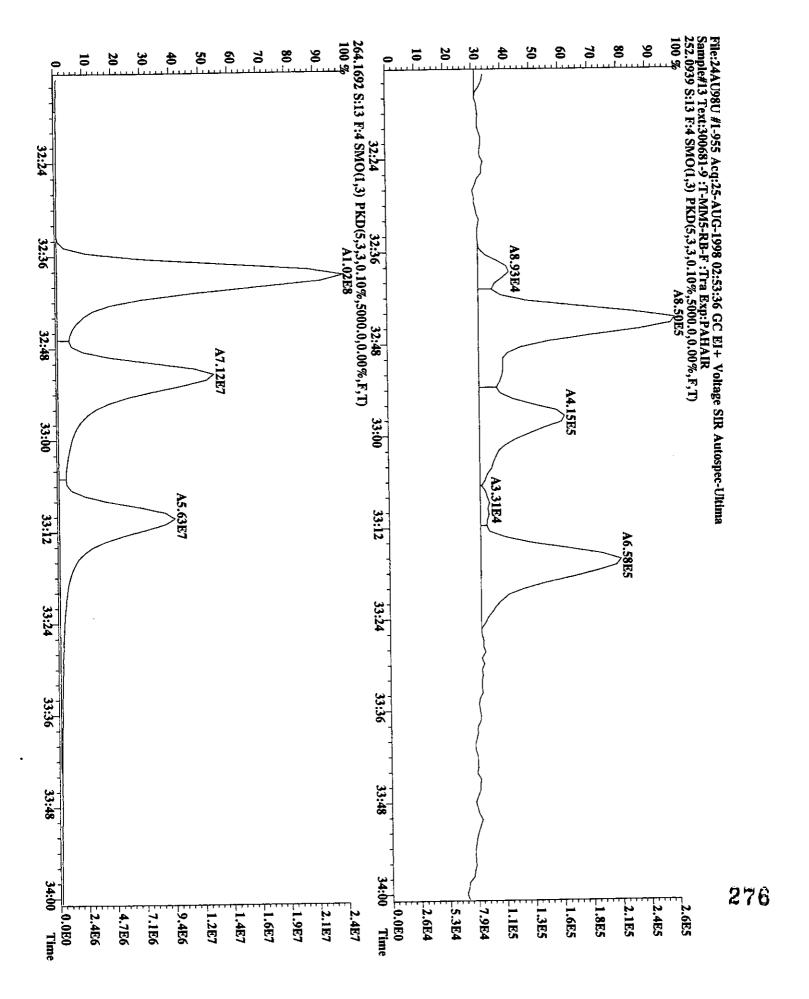


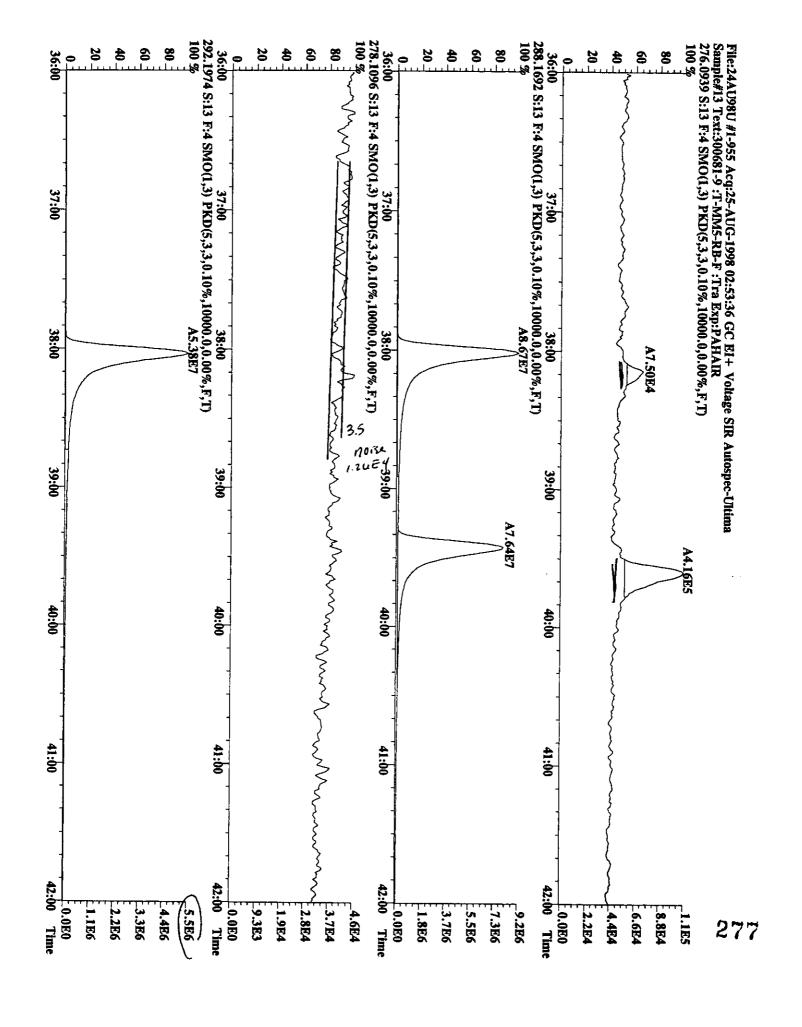


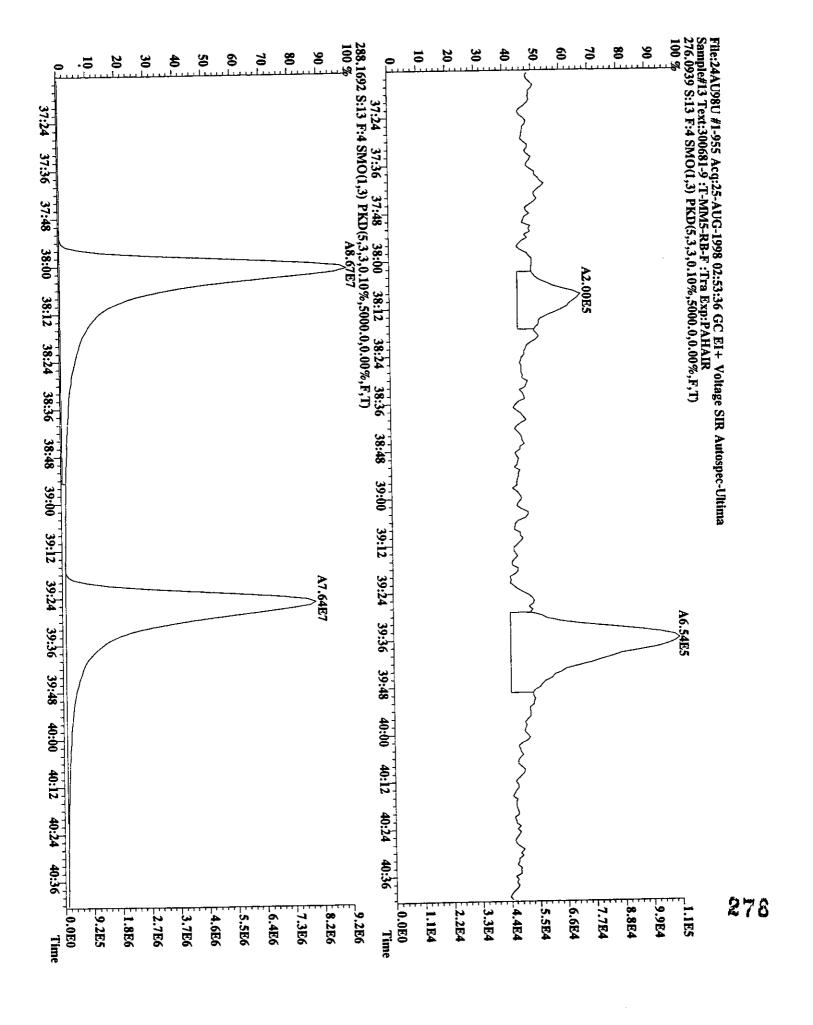


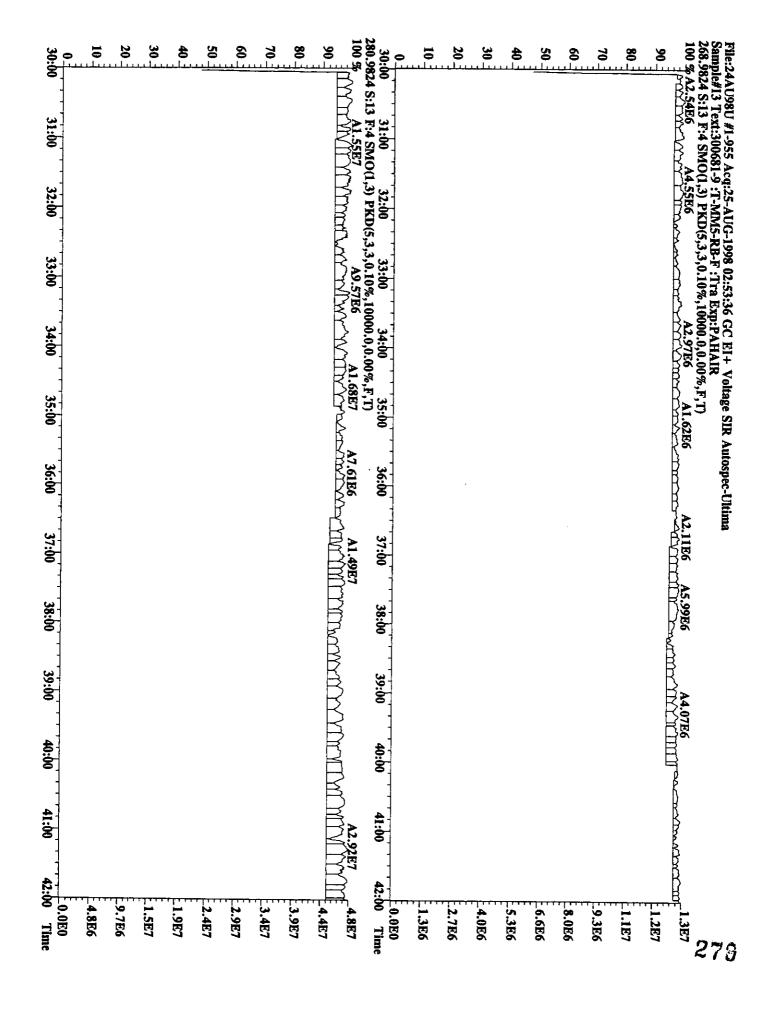


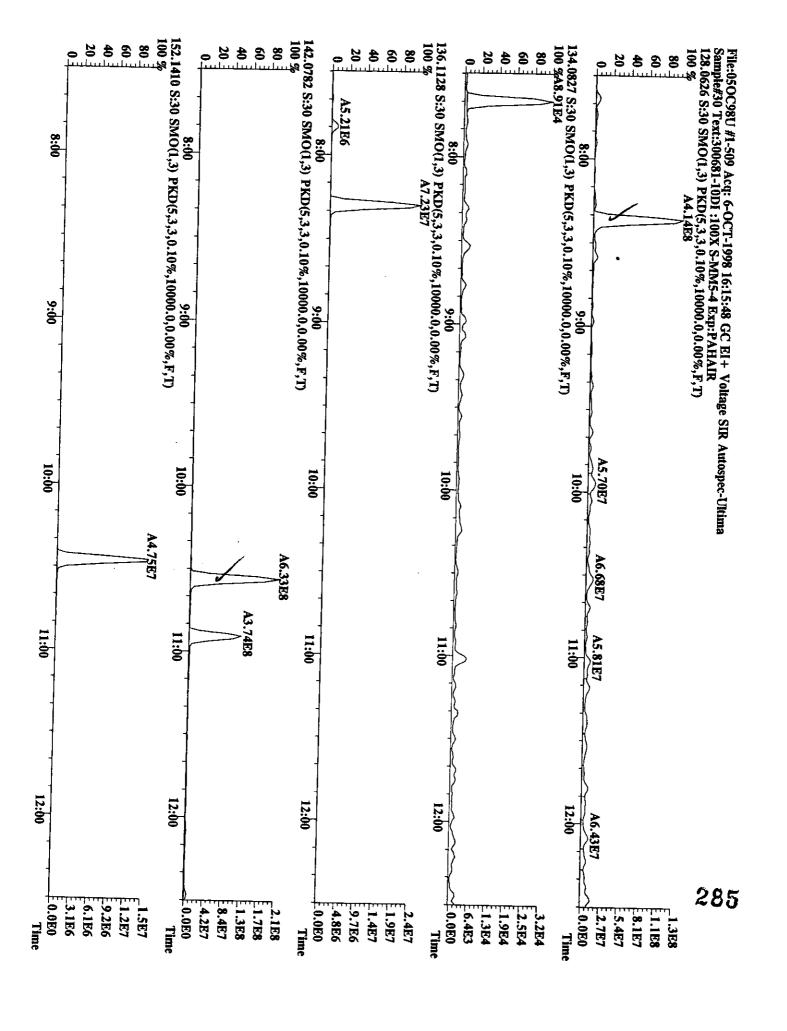


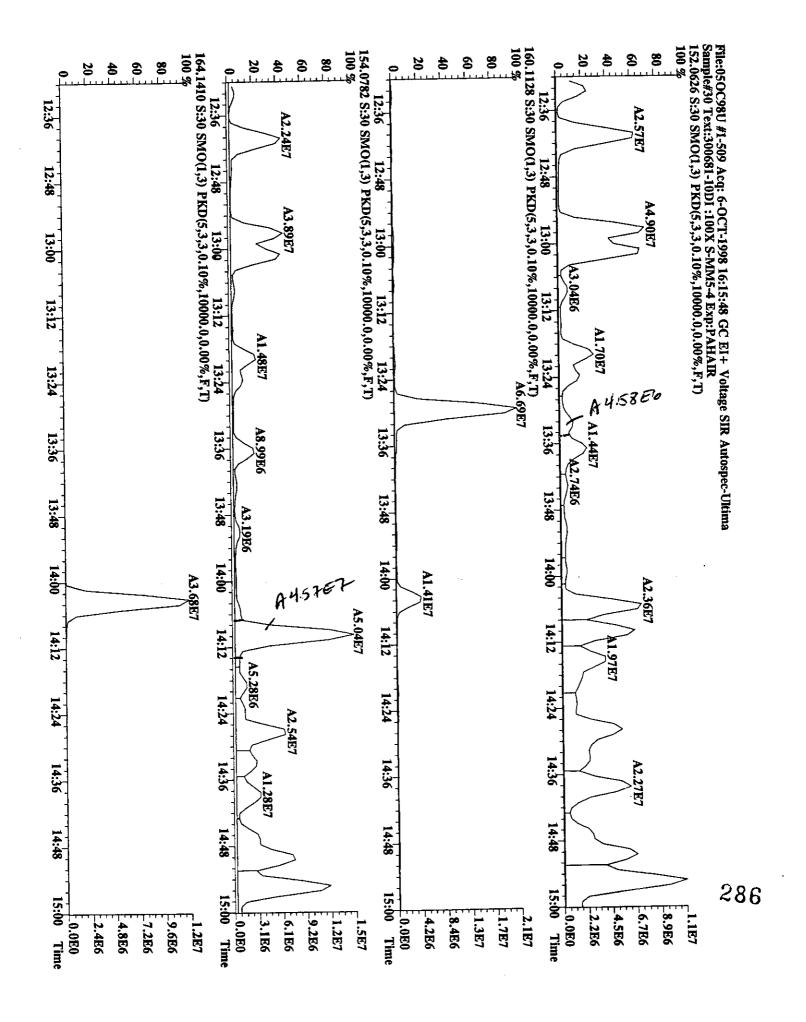


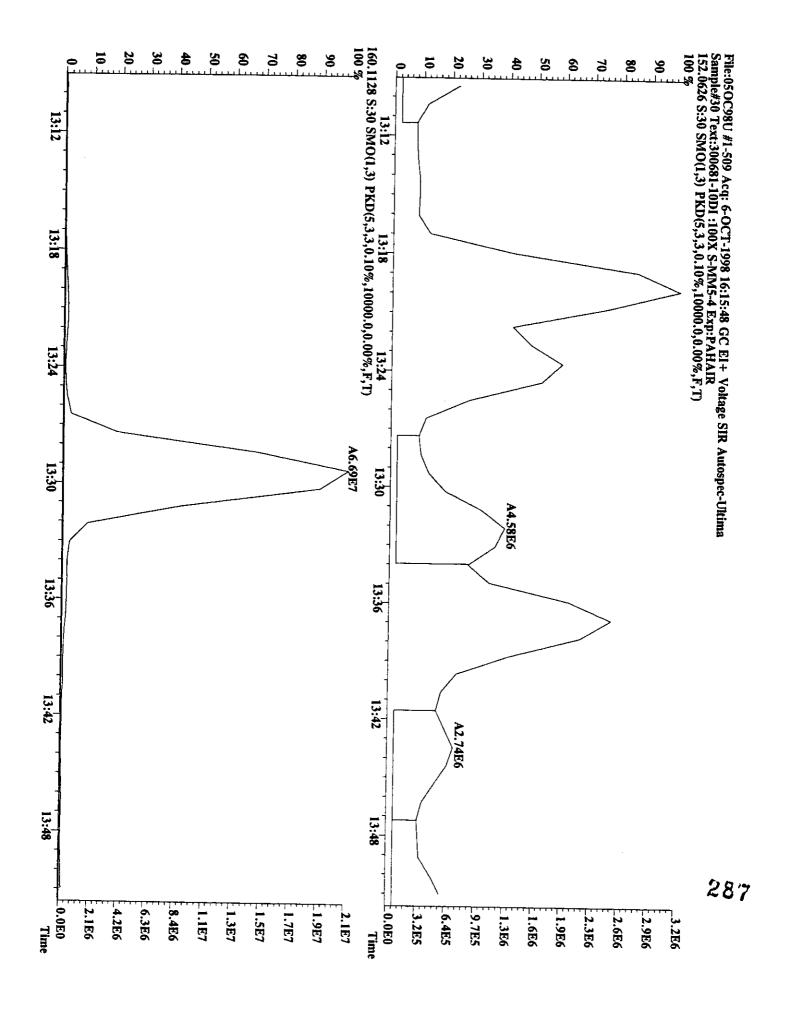


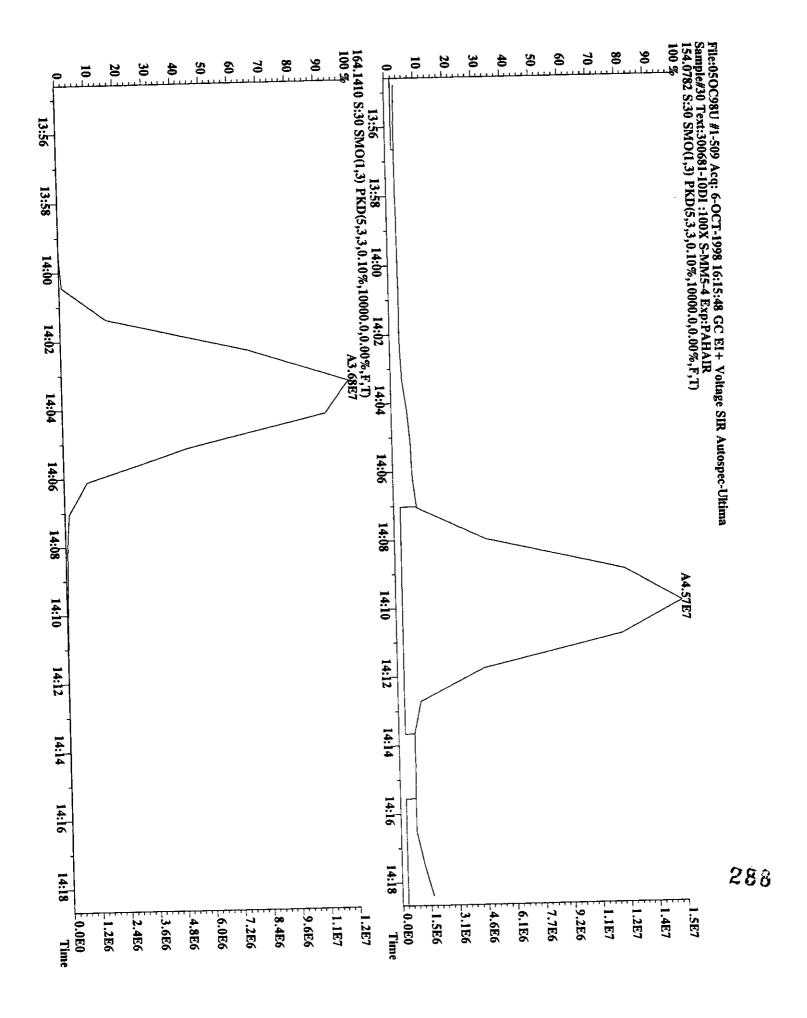


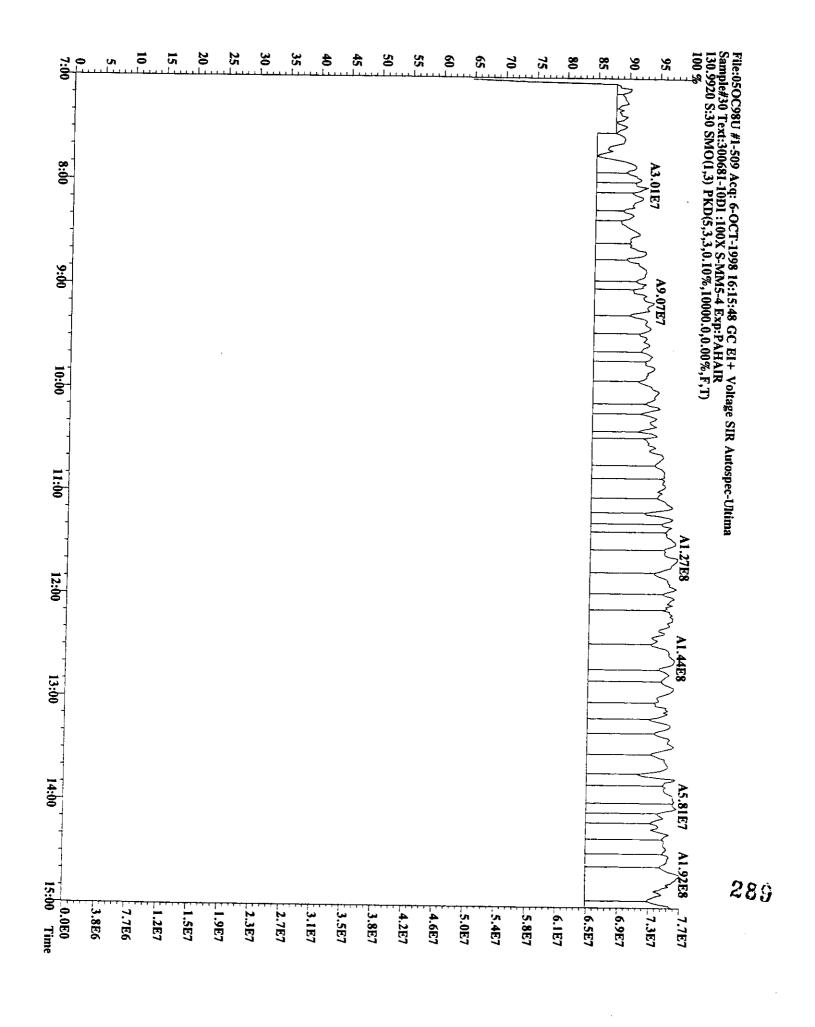


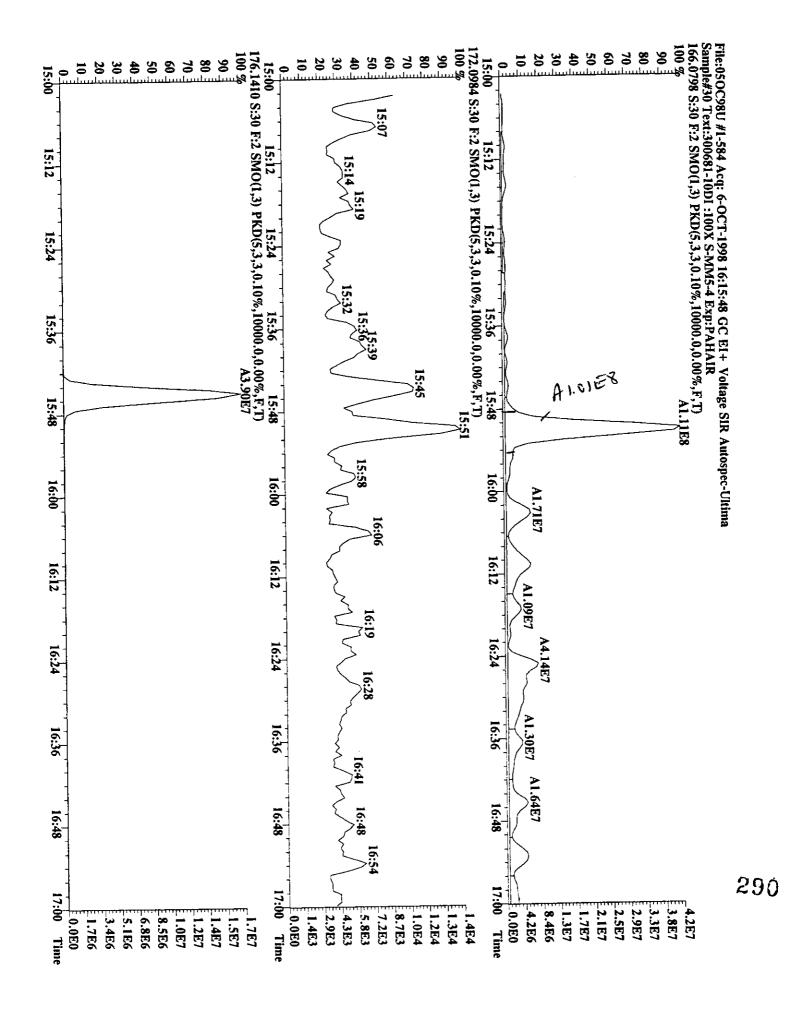

050C98U3 :1000X S Isotope Ratio	01.RES Date analyzed -MM5-4 Ex Cal R. T. RRF mm:ss	: 05	HAIR.TRG -OCT-98 HAIR1001: ug/ SAMPLE	98U.RRF Rec/ MDL	0.00033	
1.00 Y 1.00 Y 1.00 Y 1.00 Y	10: 27 Y 8: 18 Y 8: 21 Y 10: 34 Y	1.00 1.78 1.20 0.66	0.05 0.04 722.94 2019.54	85	47517200 72313100 414166000 633088000	47517200 72313100 414166000 633088000
1.00 Y 1.00 Y	13: 29 Y 13: 31 Y	1.16 1.02	0.06 10.12	121 <rl=15< td=""><td>66949900 4580000</td><td>66949900 4580000</td></rl=15<>	66949900 4580000	66949900 4580000
1.00 Y 1.00 Y	14: 3 Y 14: 10 Y	0.68 1.14	0.06 165.22	113	36776300 45700000	36776300 45700000
1.00 Y 1.00 Y 1.00 Y	19: 2 Y 15: 45 Y 15: 51 Y	1.00 1.36 1.15	0.05 0.05 342.40	92	31002300 39004800 101000000	31002300 39004800 101000000
1.00 Y 1.00 Y 1.00 Y	18: 57 Y	2.74 0.95 0.97	0.05 636.02 56.13	98	83289900 333000000 30000000	83289900 333000000 30000000
1.00 Y 1.00 Y 1.00 Y	22: 46 Y	1.00 1.49 1.23	0.05 0.02 66.89	49	127762000 92676400 50400000	127762000 92676400 50400000
1.00 Y 1.00 Y	23: 28 Y 23: 31 Y	1.58 1.26	0.02 172.89	47	95491300 137000000	95491300 137000000
1.00 Y 1.00 Y		0.81 1.28	0.03 25.67	52	53477100 11600000	53477100 11600000
1.00 Y 1.00 Y		1.17 1.16	0.02 96.78	44	65435300 48500000	65435300 48500000
1.00 Y 1.00 Y 1.00 Y	30: 46 Y	1.00 0.48 1.30	0.05 0.07 8.99<	134 RL=15	73491000 47322300 3650000	73491000 47322300 3650000
1.00 Y 1.00 Y		0.99 1.20		98 RL=15	71229200 1540000	71229200 1540000
1.00 Y 1.00 Y 1.00 Y	31: 46 Y	0.74 1.62 1.11	0.05 9.15< 3.29<	RL=15	52999000 5190000 1280000	52999000 5190000 1280000
1.00 Y 1.00 Y		0.65 1.74	0.05 14.51<	94 RL=15	44539200 7440000	44539200 7440000
		0.37 0.60	0.04 0.00<		23377100 0	23377100 0
1.00 Y 0.00 N		0.20 1.28	0.04 0.00<	80 RL=15	11885500 0	11885500 0
1.00 Y 0.00 N		0.41 L.11	0.04 0.00<	78 RL≃15	23496300 0	23496300 0

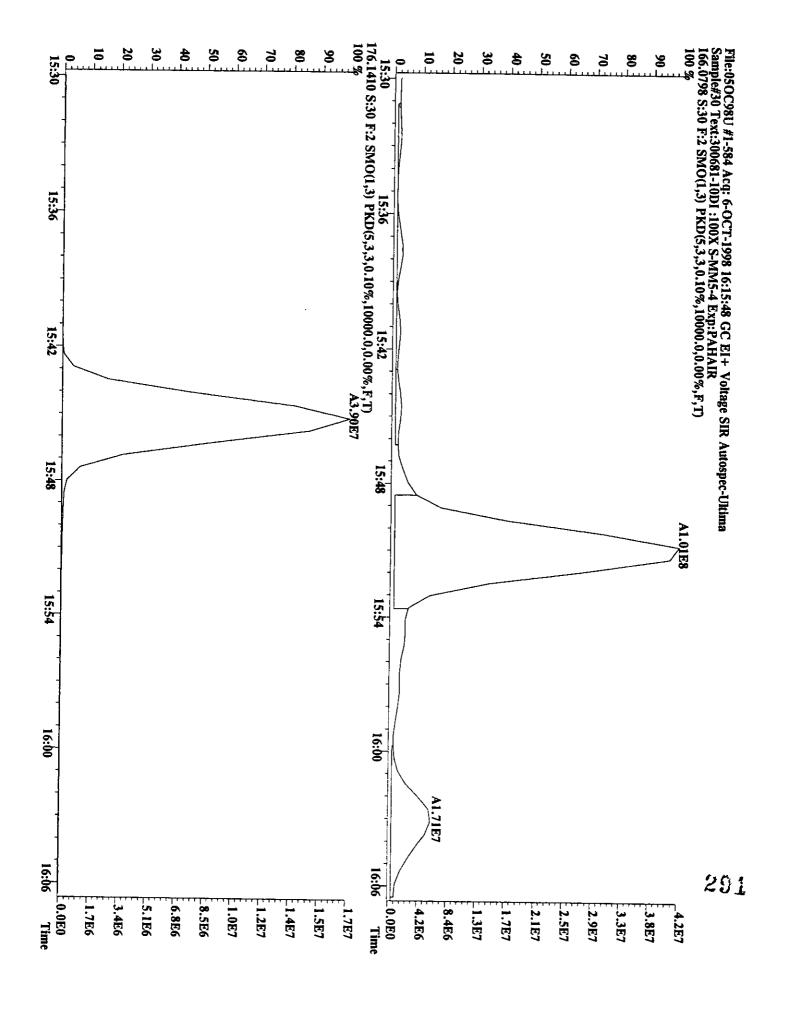

	Results : 0	50C98U3)1.RES Date analyzed	: PAHAIR.	
GC Column : DB-5 Data file : 050C98U Weight : 0.000\$33 Name		1000X S sotope atio	-MM5-4 Ex Cal R. T. RRF mm:ss	: PAHAIR1	00198U.RRF
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	95034400 144626200 828332000 1266176000	1.00 Y 1.00 Y	10: 27 Y 8: 18 Y 8: 21 Y 10: 34 Y	1.78 0	.05 .04 85 .14 .90
d8-Acenaphthylene Acenaphthylene	133899800 9160000	1.00 Y 1.00 Y	13: 29 Y 13: 31 Y	1.16 0 1.02 6	.06 121 5.68 <u>-RL-100</u> = 0
d10-Acenaphthene Acenaphthene	73552600 91400000	1.00 Y 1.00 Y	14: 3 Y 14: 10 Y		0.06 113 0.04
d10-Anthracene d10-Fluorene Fluorene	62004600 78009600 202000000	1.00 Y	19: 2 Y 15: 45 Y 15: 51 Y	1.36	0.05 0.05 92 5.98
d10-Phenanthrene Phenanthrene Anthracene	166579800 666000000 60000000	1.00 Y	18: 52 Y 18: 57 Y 19: 5 Y	0.95 419).05 98).78 7.05< <u>PL-100</u>
d14-Terphenyl d10-Fluoranthene Fluoranthene	255524000 185352800 100800000	1.00 Y	24: 10 Y 22: 46 Y 22: 49 Y	1.49 (0.05 0.02 49 m 4.15 < RL = 100
d10-Pyrene Pyrene	190982600 274000000	1.00 Y 1.00 Y	23: 28 Y 23: 31 Y		0.02 47 ~ 4.11
d12-Benzo(a)anthracene Benzo(a)anthracene	106954200 23200000	1.00 Y 1.00 Y	27: 20 Y 27: 24 Y	0.81 1.28 1	0.03 52 6.94< RL=100
d12-Chrysene Chrysene	130870600 97000000		27: 27 Y 27: 31 Y	1.17 1.16 6	0.02 44 m 3.87< RL=100
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	146982000 94644600 7300000	1.00 Y	31: 40 Y 30: 46 Y 30: 50 Y	0.48	0.05 0.07 134 5.94< <u>PL-100</u>
d12-Benzo(k)fluoranthene Benzo(k)fluoranthene	142458400 3080000	1.00 Y 1.00 Y	30: 51 Y 30: 50 Y	0.99 1.20	0.05 98 1.80 -RL=10 0 =0
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	10380000	1.00 Y	31: 51 Y 31: 46 Y 31: 56 Y	1.62	0.05 98 6.04< RL=10 0=Q 2.17< RL=100 = Q
d12-Perylene · Perylene	89078400 14880000		32: 8 Y 32: 14 Y	0.65 1.74	0.05 94 9.58< PL-100=0
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene		1.00 Y 0.00 N		0.37 0.60	0.04 85 0.00 -RL-100
d14-Dibenz(ah)anthracene Dibenz(ah)anthracene	23771000 * * No Peak	1.00 Y 0.00 N	36: 40 Y 36: 45 N	0.20 1.28	0.04 0.00 283 00
d12-Benzo(ghi)perylene Benzo(ghi)perylene	46992600 * * No Peak	1.00 Y 0.00 N		0.41 1.11	0.04 78 0.00< RL=1 00 <\O=0L

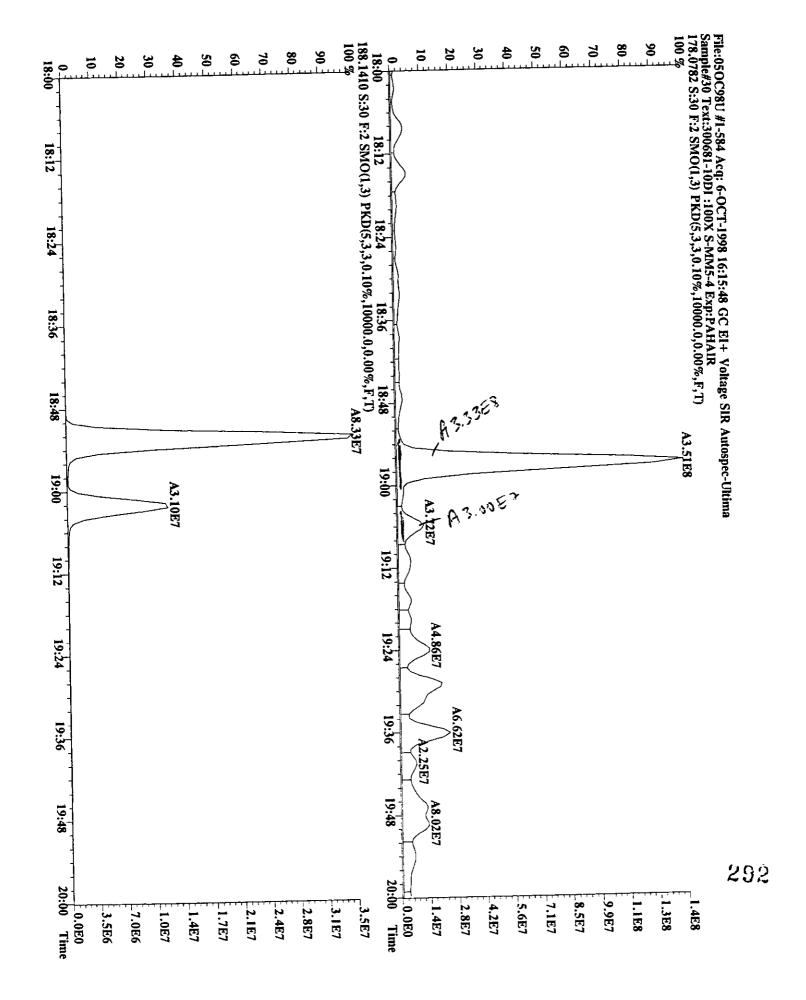

050C98U3 :1000X S Isotope Ratio	Date analyzed -MM5-4 Ex Cal	l : 05-0 L : PAHZ	AIR.TRG DCT-98 AIR100198U.RRF ng/ Rec/ SAMPLE MDL	0.0005	
1.00 Y	10: 27 Y	1.00	0.05	47517200	47517200
1.00 Y	8: 18 Y	1.78	0.04 85	72313100	72313100
1.00 Y	8: 21 Y	1.20	477.14	414166000	414166000
1.00 Y	10: 34 Y	0.66 1	L332.90	633088000	633088000
1.00 Y	13: 29 Y	1.16	0.06 121	66949900	66949900
1.00 Y	13: 31 Y	1.02	6.68 <rl=100< td=""><td>4580000</td><td>4580000</td></rl=100<>	4580000	4580000
1.00 Y	14: 3 Y	0.68	0.06 113	36776300	36776300
1.00 Y	14: 10 Y	1.14	109.04	45700000	45700000
1.00 Y	19: 2 Y	1.00	0.05	31002300	31002300
1.00 Y	15: 45 Y	1.36	0.05	39004800	39004800
1.00 Y	15: 51 Y	1.15	225.98	101000000	101000000
1.00 Y	18: 52 Y	2.74	0.05 98	83289900	83289900
1.00 Y	18: 57 Y	0.95	419.78	333000000	333000000
1.00 Y	19: 5 Y	0.97	37.05 <rl=100< td=""><td>30000000</td><td>30000000</td></rl=100<>	30000000	30000000
1.00 Y	24: 10 Y	1.00	0.05		127762000
1.00 Y	22: 46 Y	1.49	0.02 49		92676400
1.00 Y	22: 49 Y	1.23	44.15 <rl=100< td=""><td></td><td>50400000</td></rl=100<>		50400000
1.00 Y	23: 28 Y	1.58	0.02 47	95491300	95491300
1.00 Y	23: 31 Y	1.26	114.11	137000000	137000000
1.00 Y	27: 20 Y	0.81	0.03 52	53477100	53477100
1.00 Y	27: 24 Y	1.28	16.94 <rl=100< td=""><td>11600000</td><td>11600000</td></rl=100<>	11600000	11600000
1.00 Y	27: 27 Y	1.17	0.02 44	65435300	65435300
1.00 Y	27: 31 Y	1.16	63.87 <rl=100< td=""><td>48500000</td><td>48500000</td></rl=100<>	48500000	48500000
1.00 Y	31: 40 Y	1.00	0.05	73491000	73491000
	30: 46 Y	0.48	0.07 134	47322300	47322300
	30: 50 Y	1.30	5.94 <rl=100< td=""><td>3650000</td><td>3650000</td></rl=100<>	3650000	3650000
	30: 51 Y	0.99	0.05 98	71229200	71229200
	30: 50 Y	1.20	1.80 <rl=100< td=""><td>1540000</td><td>1540000</td></rl=100<>	1540000	1540000
1.00 Y	31: 51 Y	0.74	0.05 98	52999000	52999000
	31: 46 Y	1.62	6.04 <rl=100< td=""><td>5190000</td><td>5190000</td></rl=100<>	5190000	5190000
	31: 56 Y	1.11	2.17 <rl=100< td=""><td>1280000</td><td>1280000</td></rl=100<>	1280000	1280000
	32: 8 Y	0.65	0.05 94	44539200	44539200
	32: 14 Y	1.74	9.58 <rl=100< td=""><td>7440000</td><td>7440000</td></rl=100<>	7440000	7440000
	36: 34 Y	0.37	0.04 85	23377100	·23377100
	36: 37 N	0.60	0.00 <rl=100< td=""><td>0</td><td>0</td></rl=100<>	0	0
	36: 40 Y	0.20	0.04 80	11885500	11885500
	36: 45 N	1.28	0.00 <rl=100< td=""><td>0</td><td>0</td></rl=100<>	0	0
	37: 50 Y	0.41	0.04 78	23496300	23496300
	37: 54 N	1.11	0.00 <rl=100< td=""><td>0</td><td>0</td></rl=100<>	0	0

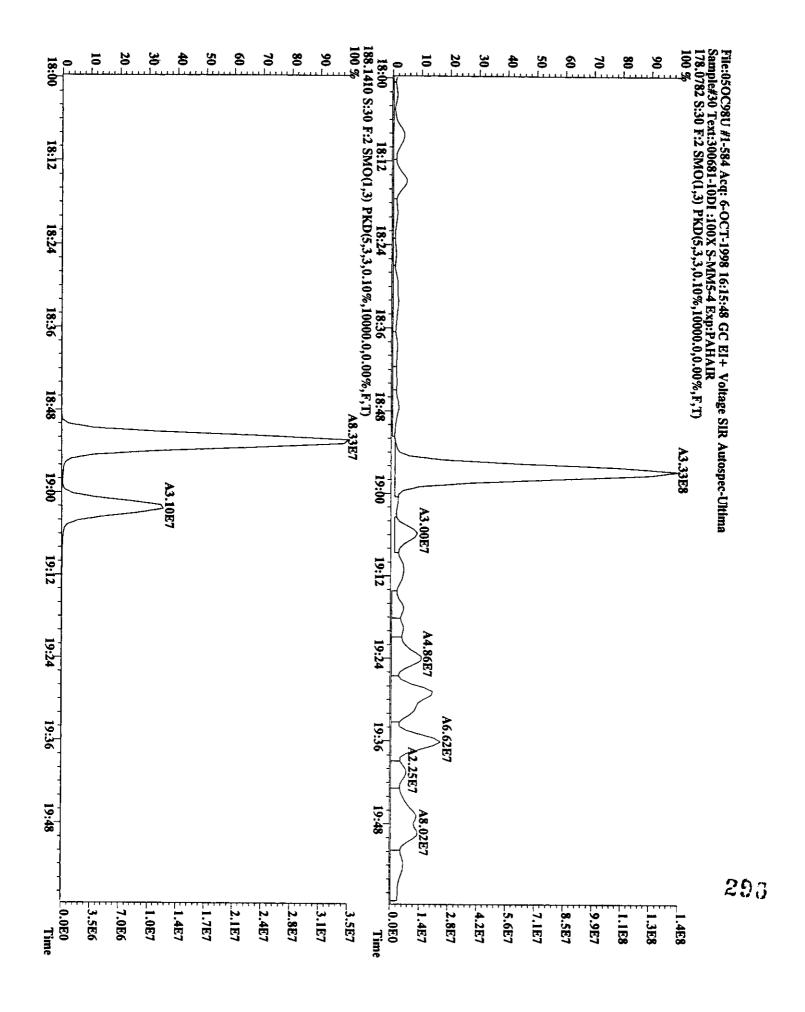

07-OCT-1998 05:17:23 PM Dioxin Furan Unknown RESULTS

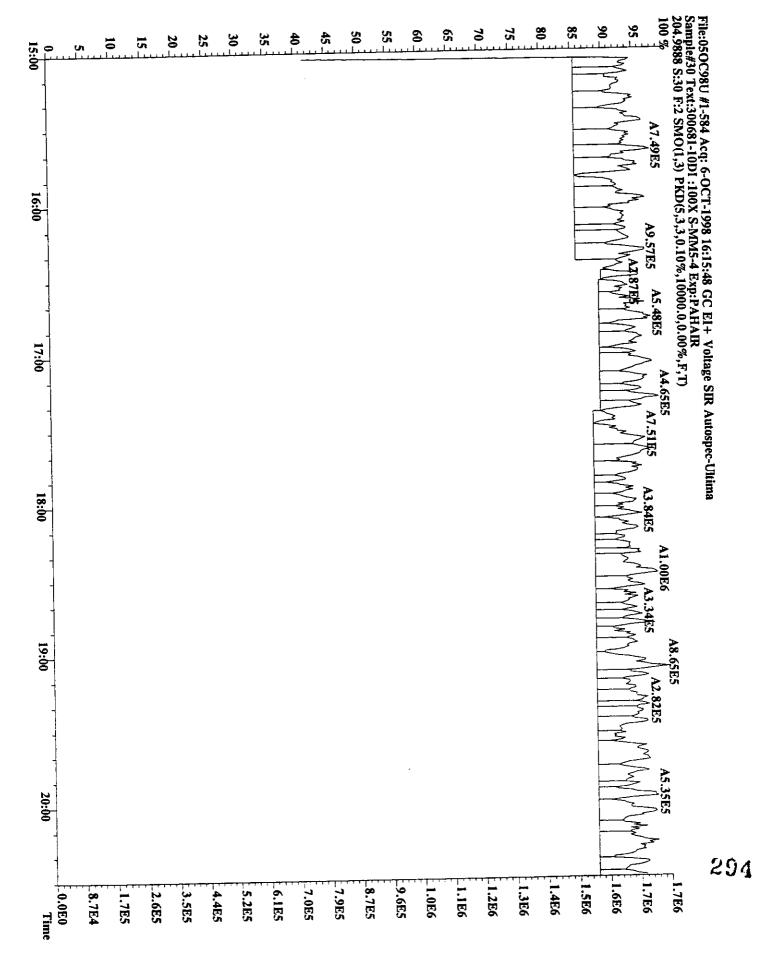

07-OCT-1998 05:17:23 PM	Dioxin Furan dikhowi khoonis
Mass Spec : ULTIMA GC Column : DB-5 Data file : 050C98U 3 Weight : 0.5 Name	Results: 050C98U301.RES : PAHAIR.TRG Date analyzed: 05-OCT-98 00681-10DI:100X S-MM5-4 Ex Cal: PAHAIR100198U.RR Total Isotope R. T. RRF ng/ Rec/ Response Ratio mm:ss SAMPLE MDL
d10-2-Methylnaphthalene	95034400 1.00 Y 10: 27 Y 1.00 50.00
d8-Naphthalene	144626200 1.00 Y 8: 18 Y 1.78 42.67 85
Naphthalene	828332000 1.00 Y 8: 21 Y 1.20 477.14 0.000
2-Methylnaphthalene	1266176000 1.00 Y 10: 34 Y 0.66 1332.90 0.000
d8-Acenaphthylene	133899800 1.00 Y 13: 29 Y 1.16 60.54 121
Acenaphthylene	* No Peak 0.00 N 13: 31 Y 1.02 0.00 0.000
d10-Acenaphthene	73552600 1.00 Y 14: 3 Y 0.68 56.74 113
Acenaphthene	100862800 1.00 Y 14: 10 Y 1.14 120.33 0.000
d10-Anthracene	62004600 1.00 Y 19: 2 Y 1.00 50.00
d10-Fluorene	78009600 1.00 Y 15: 45 Y 1.36 46.18 92
Fluorene	222580000 1.00 Y 15: 51 Y 1.15 249.01 0.000
d10-Phenanthrene	166579800 1.00 Y 18: 52 Y 2.74 49.06 98
Phenanthrene	701316000 1.00 Y 18: 57 Y 0.95 442.04 0.000
Anthracene	* No Peak 0.00 N 19: 5 N 0.97 0.00 0.000
d14-Terphenyl	255524000 1.00 Y 24: 10 Y 1.00 50.00
d10-Fluoranthene	185352800 1.00 Y 22: 46 Y 1.49 24.32 49
Fluoranthene	122494000 1.00 Y 22: 49 Y 1.23 53.65 0.000
d10-Pyrene Pyrene	190982600 1.00 Y 23: 28 Y 1.58 23.72 47 372234000 1.00 Y 23: 31 Y 1.26 155.02 0.000
d12-Benzo (a) anthracene	106954200 1.00 Y 27: 20 Y 0.81 25.77 52
Benzo (a) anthracene	36411400 1.00 Y 27: 24 Y 1.28 26.59 0.000
d12-Chrysene	130870600 1.00 Y 27: 27 Y 1.17 21.94 44
Chrysene	106381400 1.00 Y 27: 31 Y 1.16 70.05 0.000
d12-Benzo(e)pyrene	146982000 1.00 Y 31: 40 Y 1.00 50.00
d12-Benzo(b)fluoranthene	94644600 1.00 Y 30: 46 Y 0.48 66.93 134
Benzo(b)fluoranthene	13066720 1.00 Y 30: 50 Y 1.30 10.63 0.000
d12-Benzo(k)fluoranthene	142458400 1.00 Y 30: 51 Y 0.99 49.14 98
Benzo(k)fluoranthene	13066720 1.00 Y 30: 50 Y 1.20 7.63 0.000
d12-Benzo(a) pyrene	105998000 1.00 Y 31: 51 Y 0.74 48.80 98
Benzo(e) pyrene	13246580 1.00 Y 31: 46 Y 1.62 7.71 0.000
Benzo(a) pyrene	3693180 1.00 Y 31: 56 Y 1.11 3.14 0.000
d12-Perylene	89078400 1.00 Y 32: 8 Y 0.65 46.88 94
Perylene	17416420 1.00 Y 32: 14 Y 1.74 11.21 0.000
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene	
d14-Dibenz (ah) anthracene Dibenz (ah) anthracene	* No Peak 0.00 N 30. 43 N
d12-Benzo(ghi)perylene	46992600 1.00 Y 37: 50 Y 0.41 39.06 78
Benzo(ghi)perylene	* No Peak 0.00 N 37: 54 N 1.11 0.00 0.000

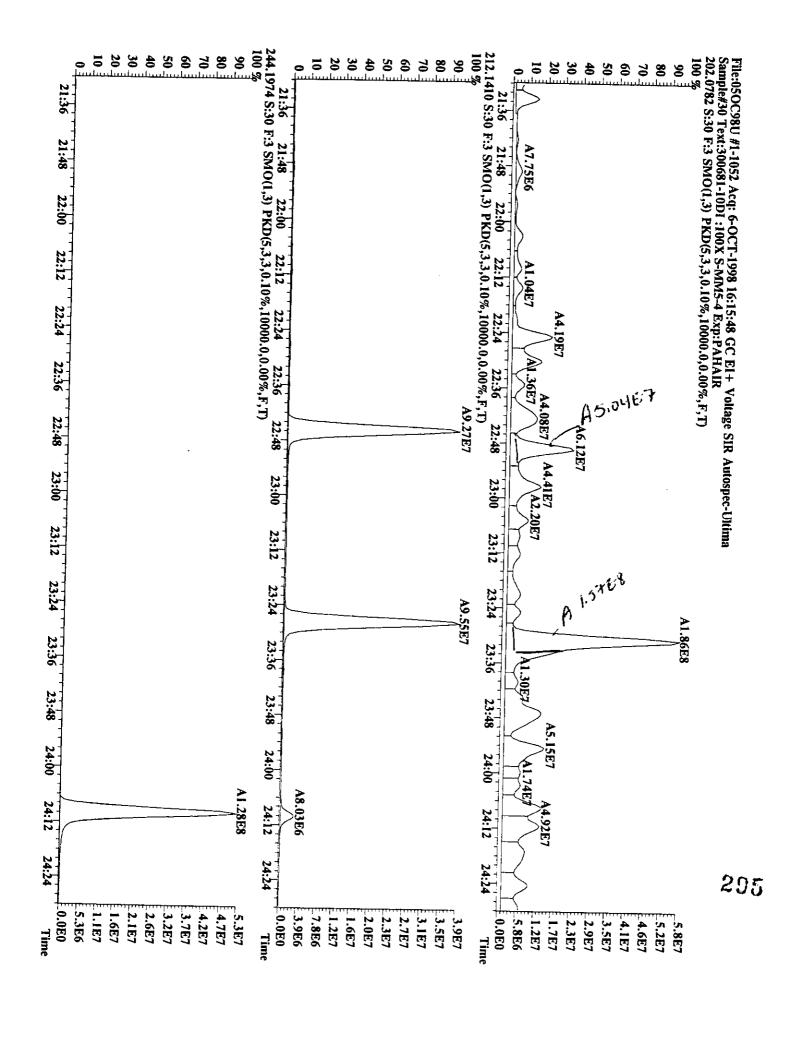


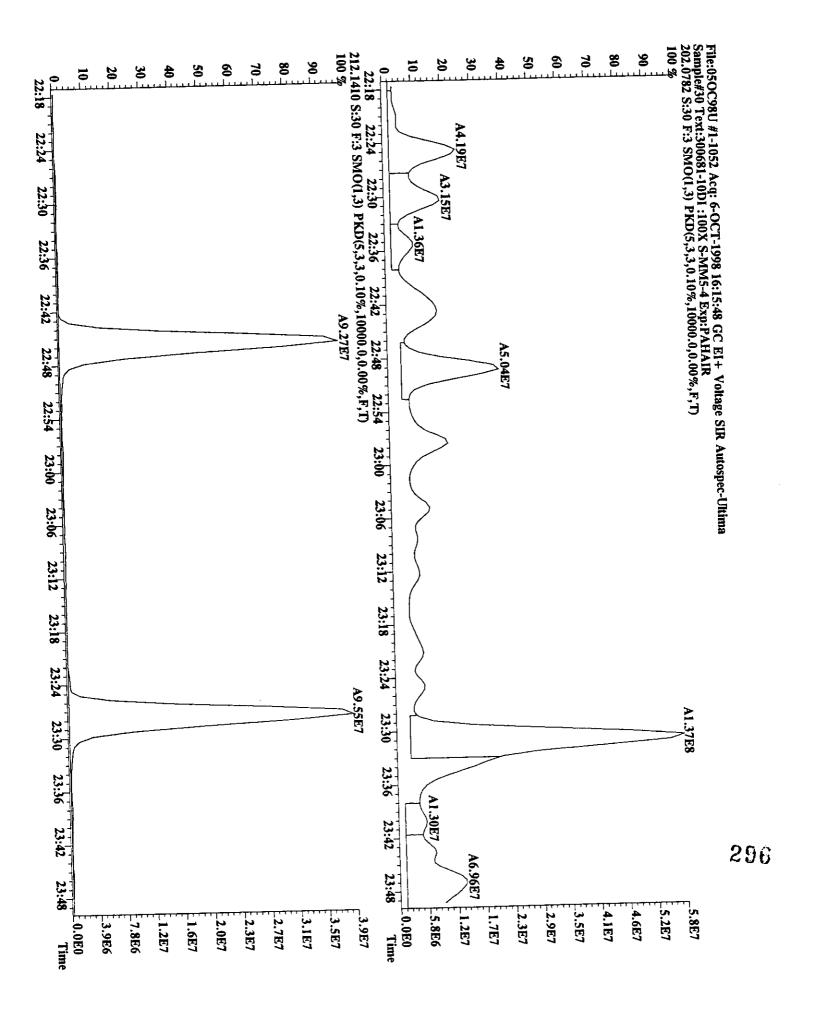


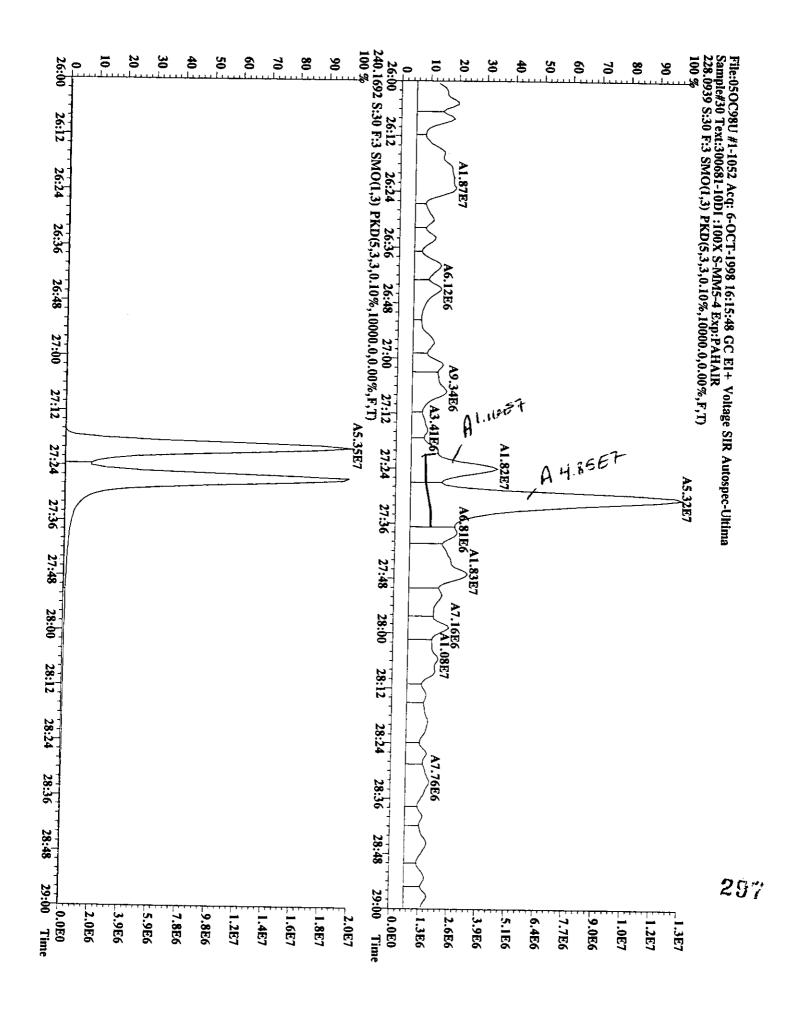


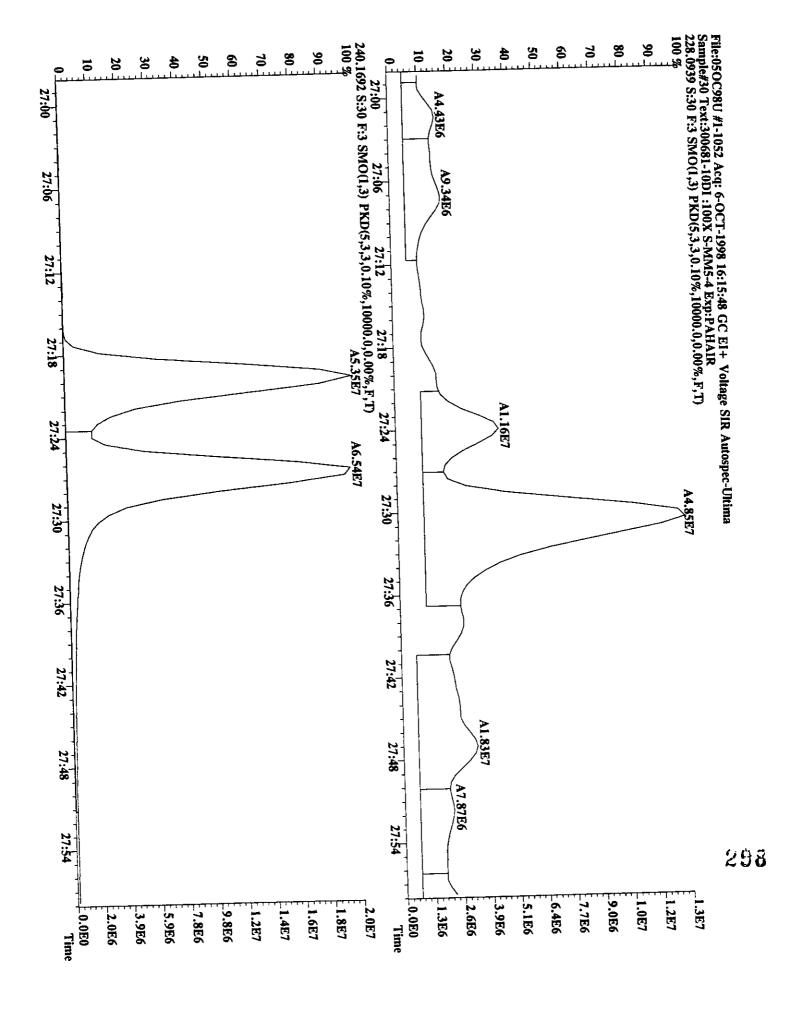


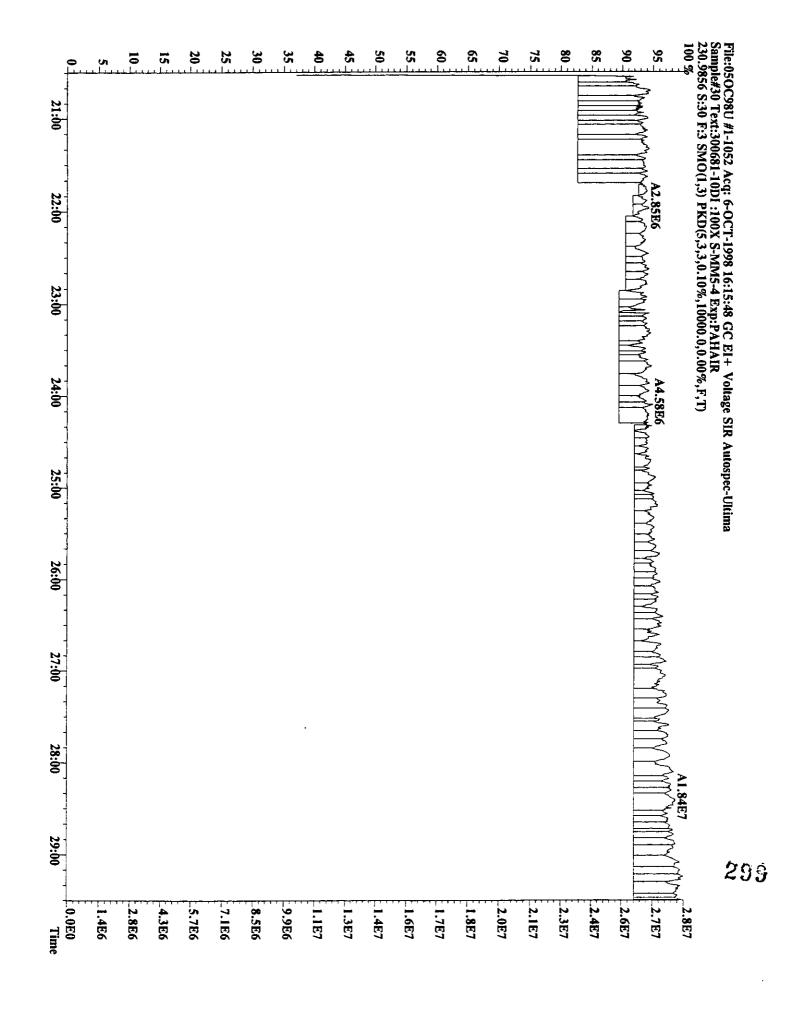


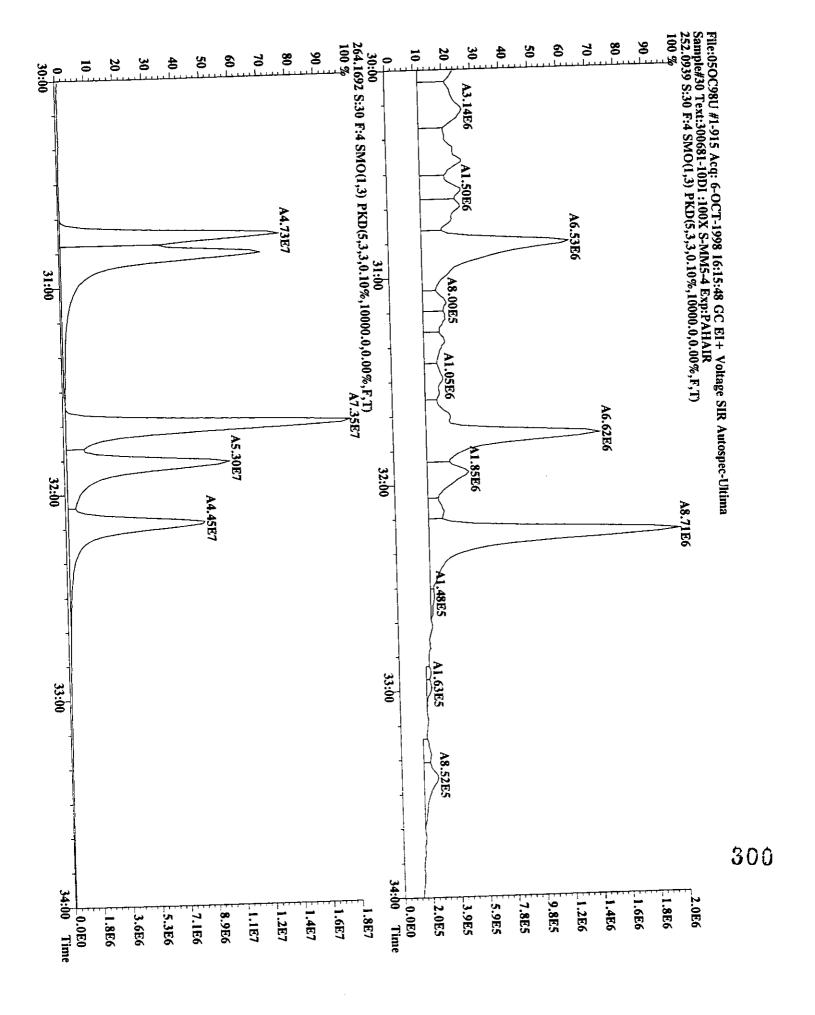


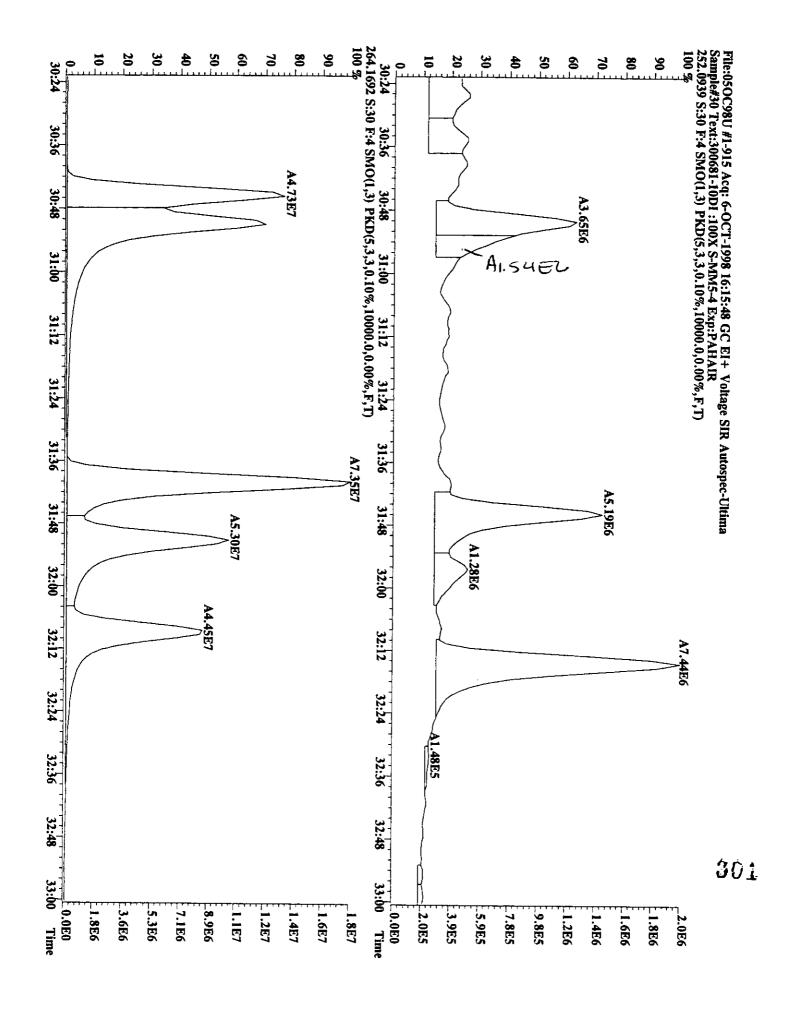


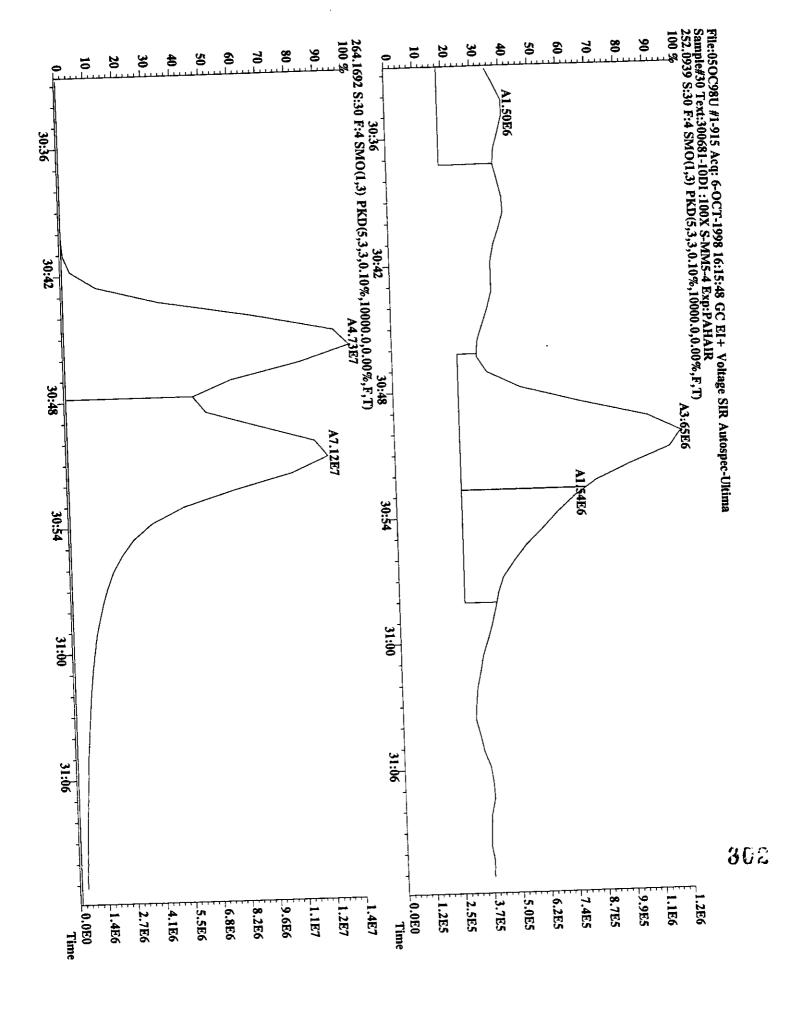


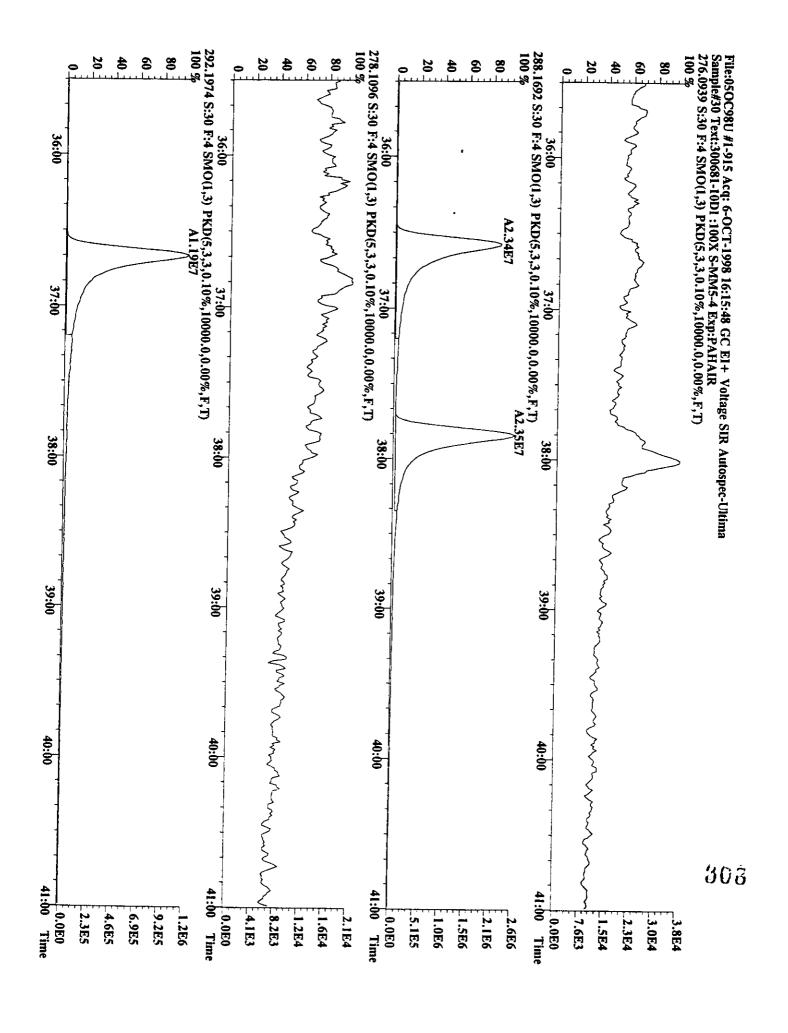


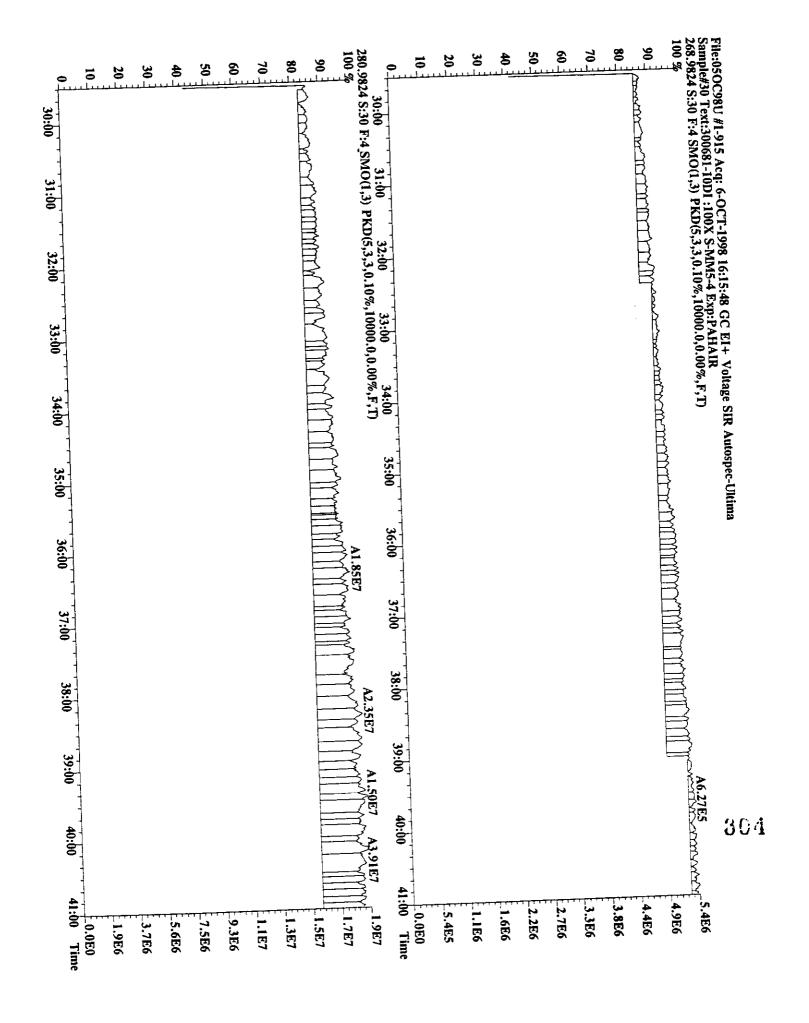






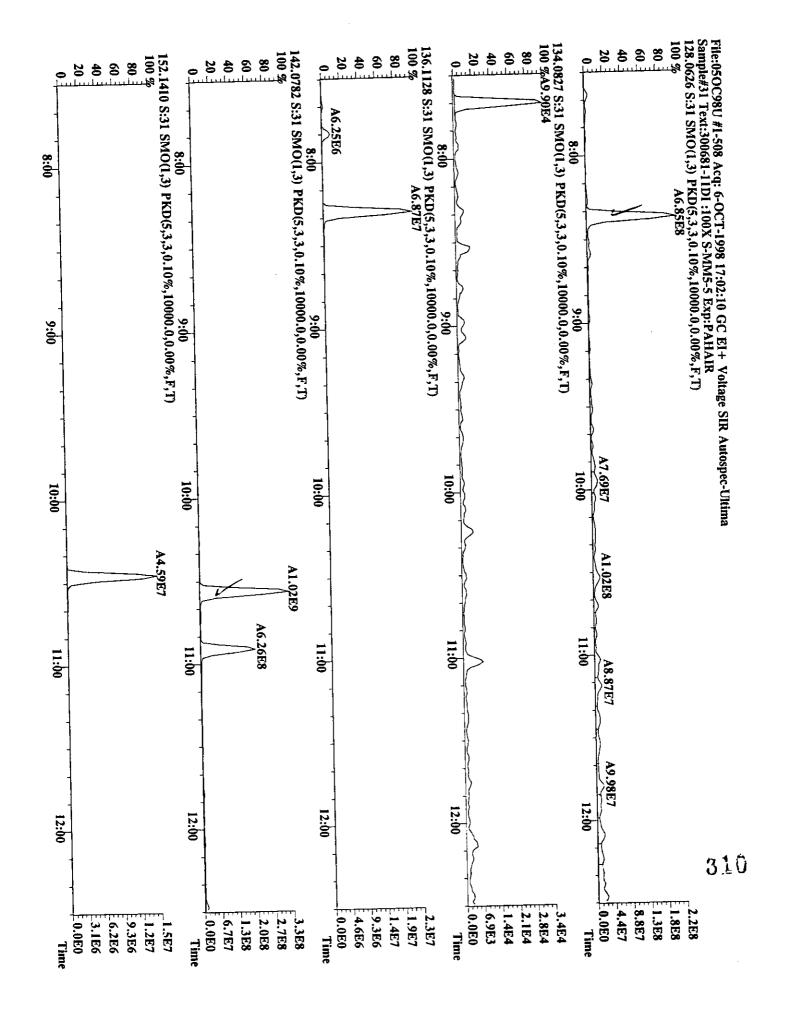


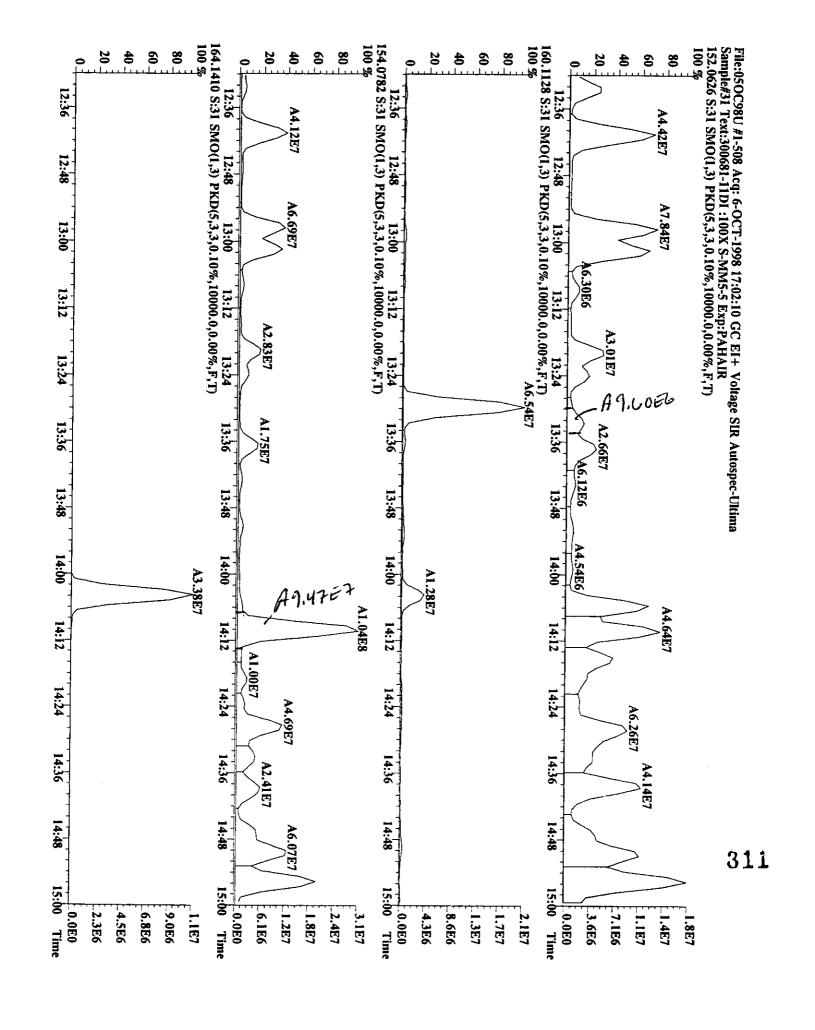


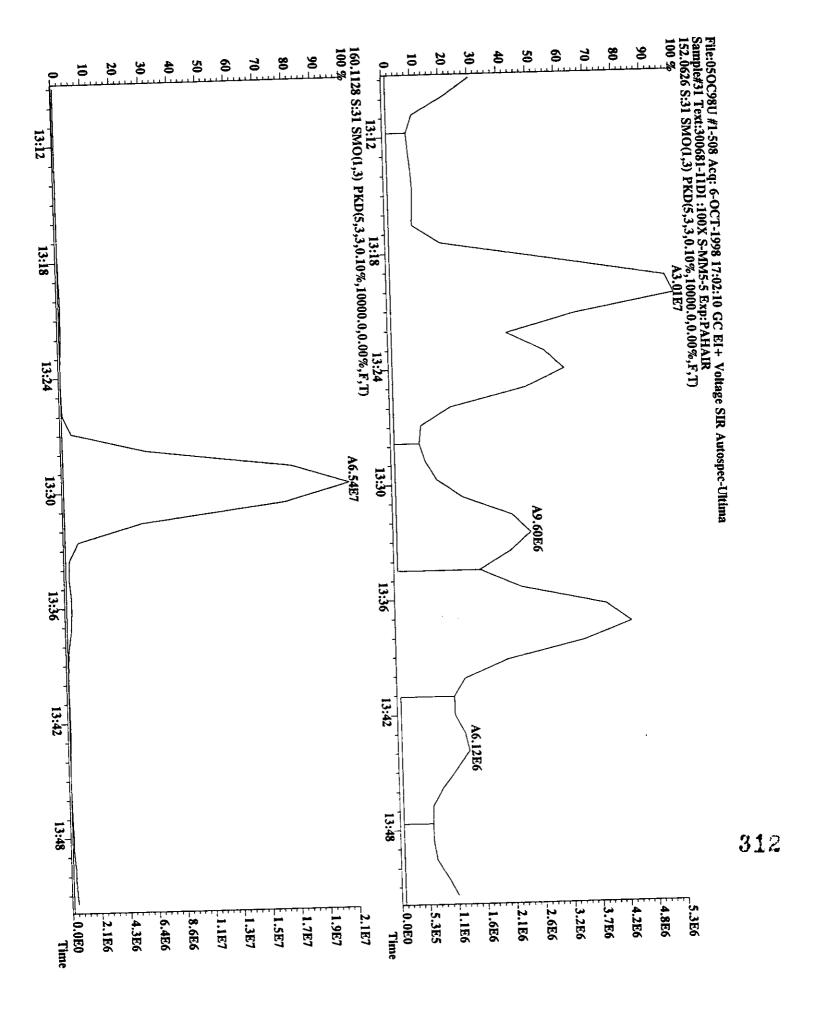


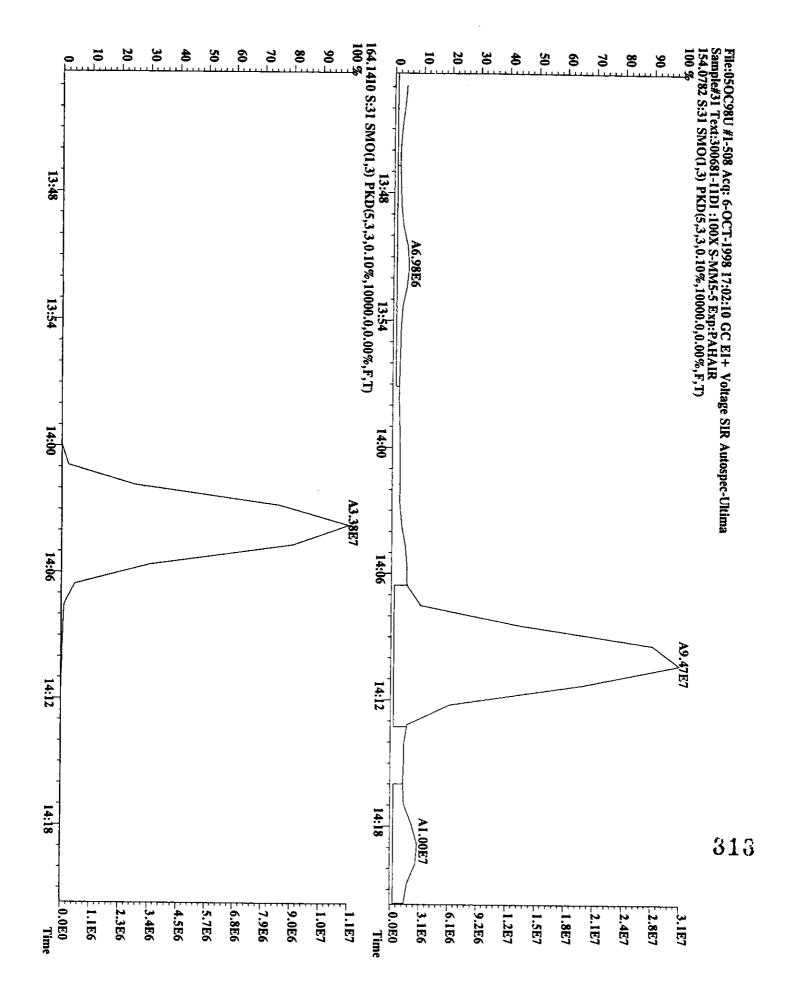
	050C98U 0.00033	300681- Tota	al		0X ctor	s- pe	Date MM5-5	ana 5 Ex 7.	alyzed Cal RRF	:	05		8 019	98U.RR Rec/ MDL	
d8-	lnaphthalene -Naphthalene Naphthalene lnaphthalene	1374 13698	366200 156400 332000	1.	00 00	Y Y	8:	18 22	Y Y	1				84	<u> </u>
	enaphthylene enaphthylene		339800 200000								.16 .02	0. 21.	06 70	122	
	Acenaphthene Acenaphthene		75400 100000				14: 14:		Y Y		.68 .14		05 64	108	
	0-Anthracene d10-Fluorene Fluorene	784	326000 120200 000000	1.	00	Y	19: 15: 15:	45		1	.00 .36 .15	0.	05 04 75	88	
	Phenanthrene Phenanthrene Anthracene	12400	187400 00000 100000	1.	00	Y	18: 18: 19:	57	Y	0	. 74 . 95 . 97	0. 1184. 93.		93	
d10 -1	14-Terphenyl Fluoranthene Fluoranthene	1888	396000 368000 00000	1.	00	Y	24: 22: 22:	46	Y	1	.00 .49 .23	0.	05 03 85	50	
	d10-Pyrene Pyrene		30200 00000				23: 23:				.58 .26	0. 286.	02	48	~~
	a) anthracene a) anthracene		184000 100000				27: 27:				.81 .28	0. 43.	03	51	
C	112-Chrysene Chrysene		79800 300000				27: 27:				.17 .16	0. 161.	02 97	42	~
d12-Benzo(b)	nzo(e)pyrene fluoranthene fluoranthene	869	089800 927800 120000	1.	00	Y	31: 30: 30:	46	Y	0	.00 .48 .30	0.	05 06 98	125 <rl=15< td=""><td></td></rl=15<>	
d12-Benzo(k) Benzo(k)	fluoranthene fluoranthene		196800 180000								. 99 . 20		05 50	96 RL≃15>	
Ber	nzo(a)pyrene nzo(e)pyrene nzo(a)pyrene	164	709800 120000 730780	1.	00	Y		46	Y	1.	.74 .62 .11	15.		95 RL=15	
C	112-Perylene Perylene		42800 57400				32: 32:	9 15	Y Y		. 65 . 74	0. 28.	05 01	94	
d12-Indeno(12 Indeno(12	23-cd) pyrene 23-cd) pyrene	439 * No E	06200 eak		00 00		36: 36:				. 37 . 60		04 00	30°52 <rl=15< td=""><td></td></rl=15<>	
d14-Dibenz(ah Dibenz(ah	n) anthracene n) anthracene	221 * No F	.66000 Peak		00 00		36: 36:				. 20 . 28		04 00	76 RL=15	
	ghi)perylene ghi)perylene	431 * No P	.66400 eak		00 00		37: 37:				. 41 . 11		04 00	73 <rl=15< td=""><td></td></rl=15<>	

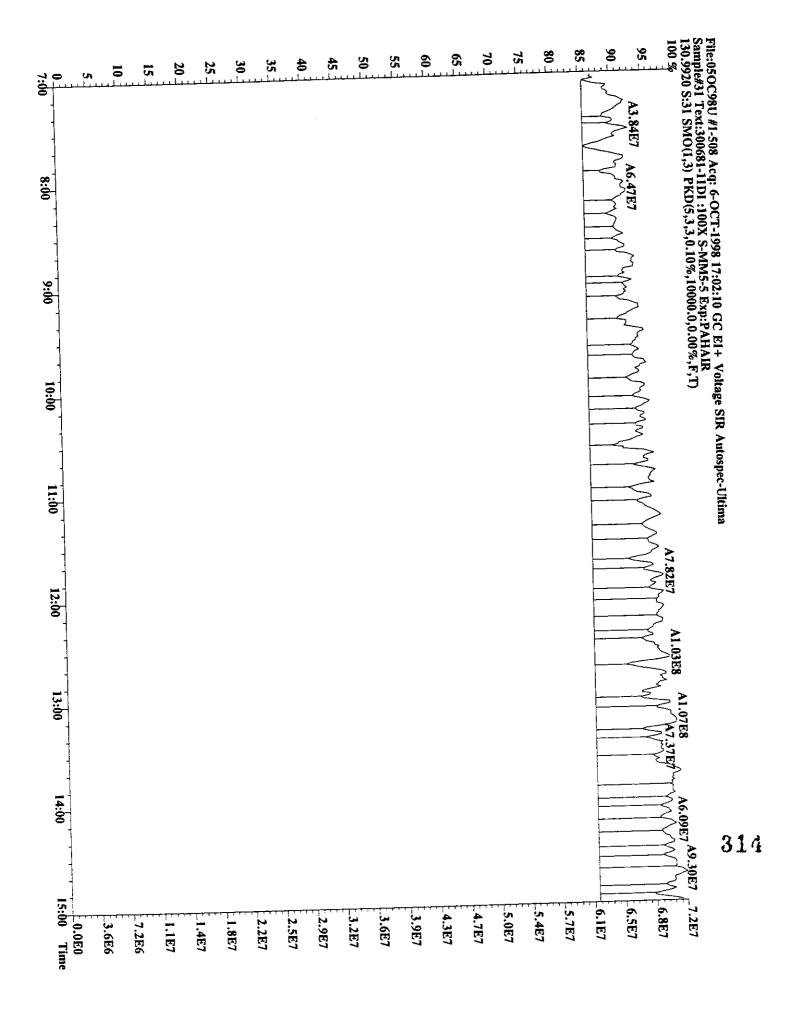
Dioxin Furan Unknown RESULTS

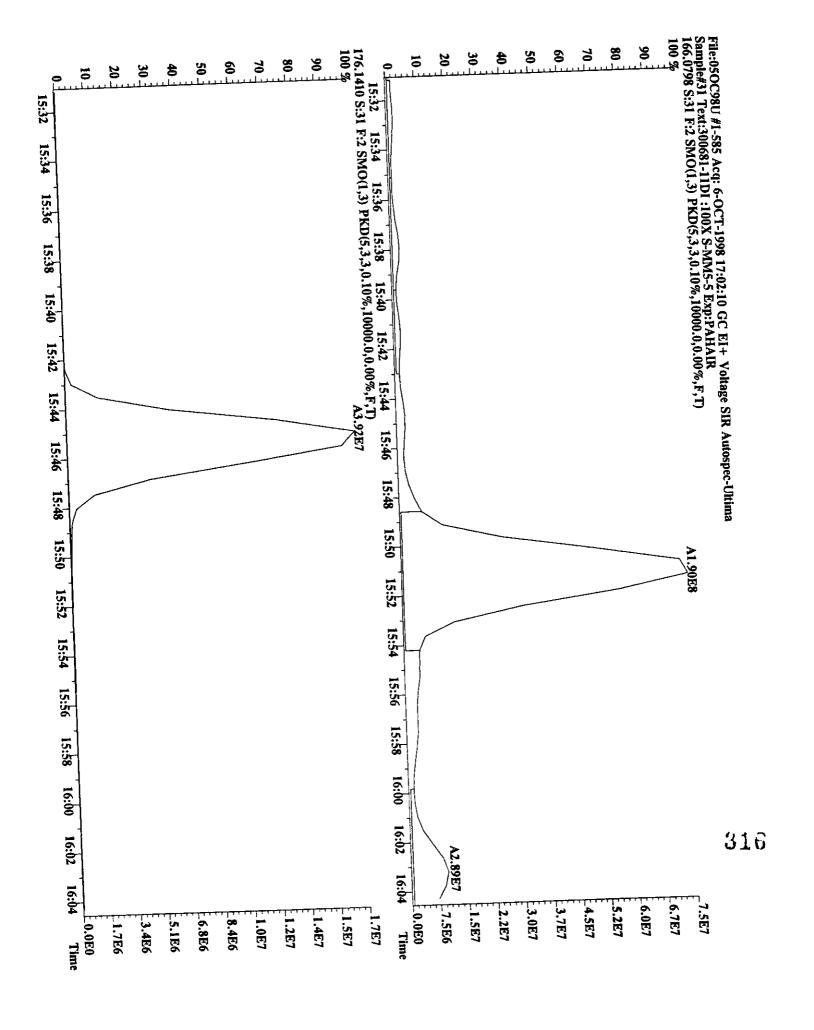

15-OCT-1998 10:33:02 AM : PAHAIR.TRG 050C98U311.RES Date analyzed: 05-OCT-98 0.00033 :100X S-MM5-5 Ex Cal : PAHAIR100198U.RRF ug/ Rec/ RRF Isotope R. T. MDLSAMPLE mm:ss Ratio 45933100 45933100 0.05 1.00 10: 27 Y 68728200 1.00 Y 68728200 84 1.78 0.04 8: 18 Y 1.00 Y 684916000 684916000 1.20 1257.90 8: 22 Y 1.00 Y 1016950000 1016950000 0.66 3413.27 10: 34 Y 1.00 Y 65419900 65419900 122 0.06 13: 30 Y 1.16 1.00 Y 9600000 9600000 21.70 1.02 13: 31 Y 1.00 Y 33787700 33787700 0.05 108 0.68 4 Y 1.00 Y 14: 94700000 94700000 372.64 14: 10 Y 1.14 1.00 Y 32663000 32663000 0.05 1.00 2 Y 1.00 Y 19: 39210100 39210100 88 0.04 1.36 15: 45 Y 1.00 Y 190000000 190000000 640.75 1.15 15: 51 Y 1.00 Y 83243700 83243700 93 0.05 2.74 18: 53 Y 1.00 Y 620000000 620000000 1184.85 0.95 18: 57 Y 1.00 Y 50200000 50200000 93.97 0.97 5 Y 1.00 Y 19: 126198000 126198000 0.05 1.00 1.00 Y 24: 10 Y 94434000 94434000 50 0.03 1.49 22: 46 Y 1.00 Y 80500000 80500000 104.85 1.23 22: 49 Y 1.00 Y 95965100 95965100 48 1.58 0.02 23: 28 Y 1.00 Y 228000000 228000000 1.26 286.31 23: 31 Y 1.00 Y 52592000 52592000 0.03 51 0.81 27: 20 Y 1.00 Y 19200000 19200000 43.20 1.28 27: 24 Y 1.00 Y 61989900 61989900 42 0.02 27: 27 Y 1.17 1.00 Y 76900000 76900000 161.97 1.16 27: 31 Y 1.00 Y 72044900 72044900 0.05 1.00 31: 41 Y 1.00 Y 43463900 43463900 125 30: 46 Y 0.06 0.48 1.00 Y 5210000 5210000 13.98<RL=15 1.30 30: 50 Y 1.00 Y 68248400 68248400 96 0.05 0.99 30: 51 Y 1.00 Y 2440000 2440000 4.50<RL=15 1.20 30: 56 N 1.00 Y 50354900 50354900 95 0.05 0.74 1.00 Y 31: 51 Y 8210000 8210000 15.23 1.62 31: 46 Y 1.00 Y 2365390 2365390 6.40<RL=15 1.11 31: 56 Y 1.00 Y 43821400 43821400 94 0.65 0.05 9 Y 32: 1.00 Y 14128700 306 14128700 1.74 28.01 32: 15 Y 1.00 Y 21953100 21953100 82 0.04 0.37 36: 35 Y 1.00 Y 0 0.00<RL=15 36: 38 N 0.60 0.00 N 11083000 11083000 76 0.04 0.20 36: 40 Y 1.00 Y ٥ 0 0.00<RL=15 1.28 36: 46 N 0.00 N 21583200 21583200 73 0.04 0.41 37: 51 Y 0 1.00 Y 0 0.00<RL=15 37: 56 N 1.11 0.00 N

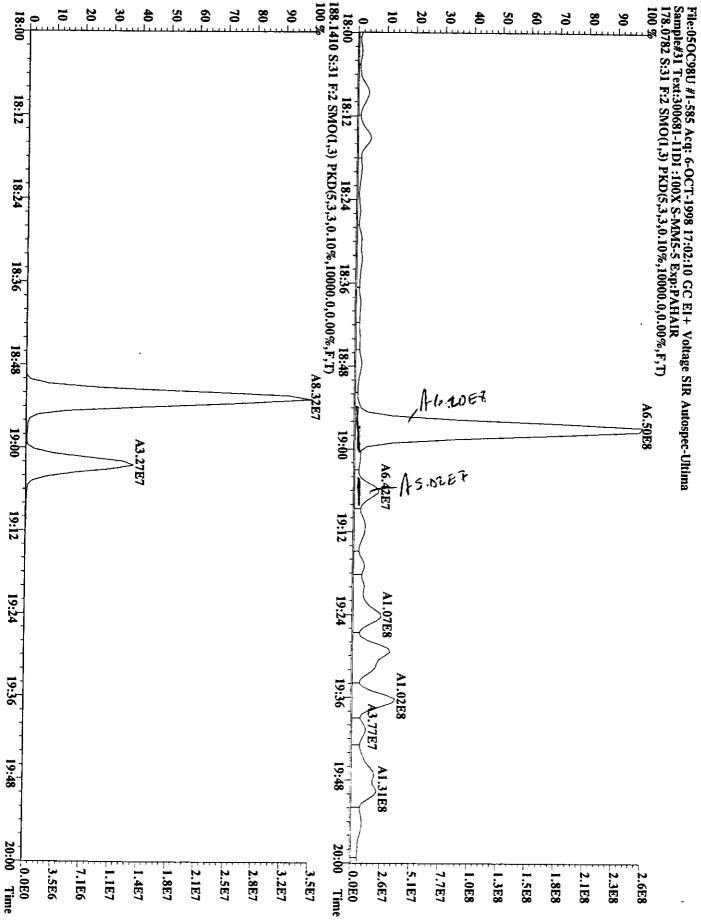

13-OCT-1998 12:01:40 PM Dioxin Furan Unknown RESULTS Results: 050C98U311.RES : PAHAIR.TRG GC Column : DB-5 Date analyzed: 05-OCT-98 Data file: 050C98U 300681-11DI :100X S-MM5-5 Ex Cal: PAHAIR100198U.RRF Weight 2,5 Total Isotope AMPLE SAMPLE R. T. RRF Rec/ ,009 Name Response Ratio mm:ss MDL d10-2-Methylnaphthalene 91866200 1.00 Y 10: 27 Y 1.00 .050.00 d8-Naphthalene 137456400 1.00 Y 8: 18 Y 1.78 -C41.95 84 Naphthalene 1369832000 1.00 Y 8: 22 830.21 Y 1.20 2-Methylnaphthalene 2033900000 1.00 Y 10: 34 Y 0.66 2252.76 d8-Acenaphthylene 130839800 1.00 Y 13: 30 Y 1.16 61.19، 122 Acenaphthylene 19200000 1.00 Y 13: 31 Y 1.02 14.32<RL=100 d10-Acenaphthene 67575400 1.00 Y 14: 4 Y .C53.92 0.68 108 189400000 1.00 Y Acenaphthene 14: 10 Y 1.14 245.95 d10-Anthracene 65326000 1.00 Y 19: 2 Y 1.00 .050.00 d10-Fluorene 78420200 1.00 Y 15: 45 Y 1.36 ·C44.06 88 Fluorene 380000000 1.00 Y 15: 51 Y 1.15 422.89 d10-Phenanthrene 166487400 1.00 Y 18: 53 2.74 Y -046.5493 1240000000 1.00 Y Phenanthrene 18: 57 Y 782.00 0.95 Anthracene 100400000 1.00 Y 19: 5 Y 0.97 62.02<RL=100 d14-Terphenyl 252396000 1.00 Y 24: 10 Y 1.00 .050.00 d10-Fluoranthene 188868000 1.00 Y 22: 46 Y 1.49 25.09 50 Fluoranthene 161000000 1.00 Y 22: 49 Y 1.23 69.20<RL=100 d10-Pyrene 191930200 1.00 Y C24.14 23: 28 Y 1.58 48 m Pyrene 456000000 1.00 Y 23: 31 Y 1.26 188.96 d12-Benzo(a) anthracene 105184000 1.00 Y 27: 20 Y 0.81 C25.65 51 Benzo(a) anthracene 38400000 1.00 Y 27: 24 Y 1.28 28.51<RL=100 d12-Chrysene 123979800 1.00 Y 27: 27 Y .021.04 1.17 42 m Chrysene 153800000 1.00 Y 27: 31 Y 1.16 106.90 d12-Benzo(e)pyrene 144089800 1.00 Y 31: 41 Y .C50.00 1.00 d12-Benzo(b) fluoranthene 86927800 1.00 Y 30: 46 Y 0.48 62.71 125 Benzo(b) fluoranthene 10420000 1.00 Y 30: 50 Y 1.30 9.23<RI=100=0 d12-Benzo(k) fluoranthene 136496800 1.00 Y 30: 51 Y 0.99 .048.03 96 Benzo(k) fluoranthene 4880000 1.00 Y 30: 56 N 1.20 2.97<RL=100=0 d12-Benzo(a)pyrene 100709800 1.00 Y 31: 51 Y 0.74 .047.30 95 Benzo(e)pyrene 16420000 1.00 Y 31: 46 Y 1.62 10.05<RL=100 Benzo(a)pyrene 4730780 1.00 Y 31: 56 Y 1.11 4.23<PL-100=0 d12-Perylene 87642800 1.00 Y 32: 9 Y 0.65 .C47.05 3 6 7 94 18.49 Perylene 28257400 1.00 Y 32: 15 Y 1.74 d12-Indeno(123-cd)pyrene 43906200 1.00 Y 36: 35 Y 0.37 £40.92 82 Indeno (123-cd) pyrene No Peak 0.00 N 38 N 36: 0.60 0.00<RL=100くない d14-Dibenz (ah) anthracene 22166000 1.00 Y 36: 40 Y 0.20 . Ĉ37.82 76 Dibenz (ah) anthracene No Peak 0.00 N 36: 46 N 1.28 0.00<R1-100CIC d12-Benzo(ghi)perylene 43166400 1.00 Y 37: 51 Y 0.41 .036.60 73 Benzo (ghi) perylene * No Peak 0.00 N37: 56 N 1.11 0.00<RL-100/C

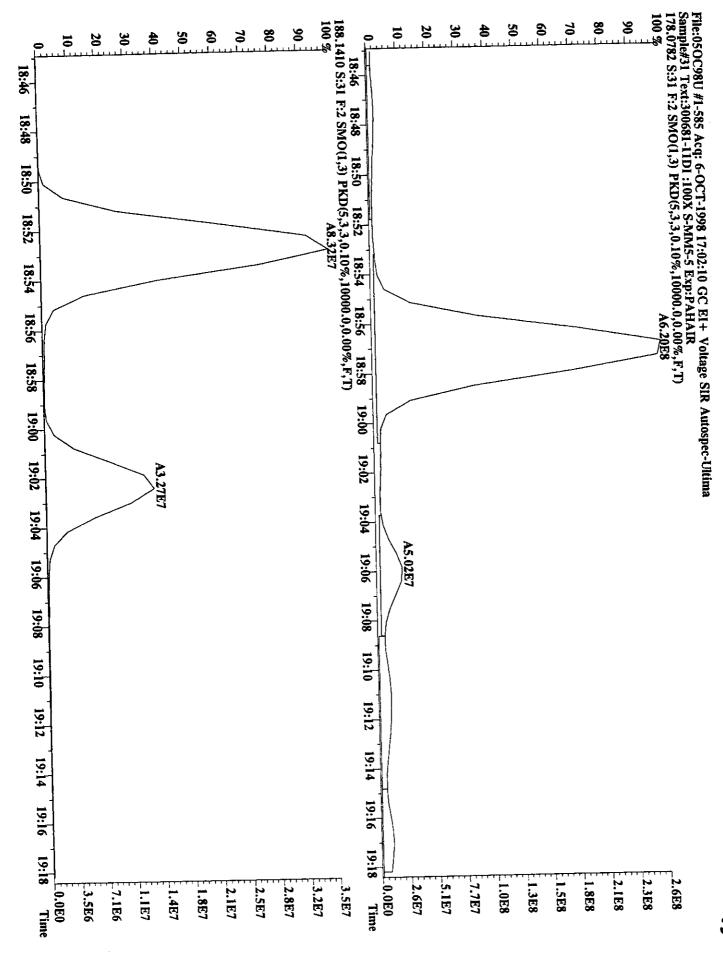

13-OCT-1998 12:01:35 PM Dioxin Furan Unknown RESULTS

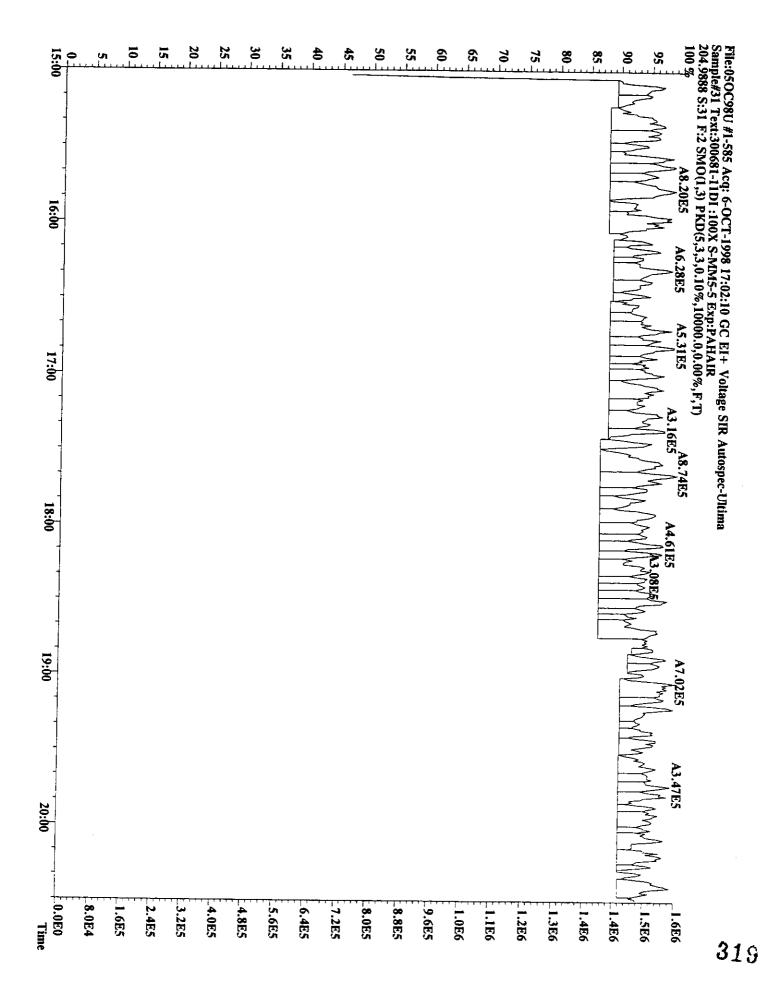

13-OCT-1998	12:01:35 E	M Dio	xin Furan Un	Known KESULIS		
:100X S-MM5 Isotope R.		: PAHAI	R.TRG T-98 R100198U.RRF ng/ Rec/ MPLE MDL			
1.00 Y 1.00 Y	0: 27 Y 8: 18 Y 8: 22 Y 0: 34 Y	1.00 1.78 1.20 0.66 22	50.00 41.95 84 330.21 252.76	45933100 68728200 684916000 1016950000	684916000 L016950000	
1.00 Y 1 1.00 Y 1	3: 30 Y 3: 31 Y	1.16 1.02	61.19 122 14.32 <rl=100< td=""><td></td><td>65419900 9600000</td><td></td></rl=100<>		65419900 9600000	
1.00 Y 1 1.00 Y 1	4: 4 Y 4: 10 Y	0.68 1.14	53.92 108 245.95	33787700 94700000	33787700 94700000	
1.00 Y 1	9: 2 Y 5: 45 Y 5: 51 Y	1.36	50.00 44.06 8 422.89	32663000 8 39210100 190000000	32663000 39210100 190000000	
1.00 Y 1	.8: 53 Y .8: 57 Y .9: 5 Y	2.74 0.95 0.97	46.54 9 782.00 62.02 <rl=10< td=""><td>620000000</td><td>83243700 620000000 50200000</td><td></td></rl=10<>	620000000	83243700 620000000 50200000	
1.00 Y 2	24: 10 Y 22: 46 Y 22: 49 Y	1.00 1.49 1.23	50.00 25.09 5 69.20 <rl=10< td=""><td>126198000 0 94434000 0 80500000</td><td>126198000 94434000 80500000</td><td></td></rl=10<>	126198000 0 94434000 0 80500000	126198000 94434000 80500000	
1.00 Y 2	23: 28 Y 23: 31 Y	1.58 1.26	24.14 4 188.96	.8 95965100 228000000	95965100 228000000	
1.00 Y 1.00 Y	27: 20 Y 27: 24 Y	0.81 1.28	25.65 5 28.51 <rl=10< td=""><td>52592000 00 19200000</td><td>52592000 19200000</td><td></td></rl=10<>	52592000 00 19200000	52592000 19200000	
1.00 Y 1.00 Y	27: 27 Y 27: 31 Y	1.17 1.16	21.04 106.90	12 61989900 76900000	61989900 76900000	
1.00 Y	31: 41 Y 30: 46 Y 30: 50 Y	1.00 0.48 1.30	50.00 62.71 12 9.23 <rl=10< td=""><td>72044900 43463900 5210000</td><td>5210000</td><td></td></rl=10<>	72044900 43463900 5210000	5210000	
1.00 Y 1.00 Y	30: 51 Y 30: 56 N	0.99 1.20	48.03 5 2.97 <rl=10< td=""><td>68248400 00 2440000</td><td>2440000</td><td></td></rl=10<>	68248400 00 2440000	2440000	
1.00 Y	31: 51 Y 31: 46 Y 31: 56 Y	0.74 1.62 1.11	47.30 10.05 <rl=1 4.23<rl=1< td=""><td>00 8210000</td><td>8210000 2365390</td><td></td></rl=1<></rl=1 	00 8210000	8210000 2365390	
1.00 Y 1.00 Y	32: 9 Y 32: 15 Y	0.65 1.74	47.05 18.49 <rl=1< td=""><td>94 43821400 00 14128700</td><td>14128700</td><td>308</td></rl=1<>	94 43821400 00 14128700	14128700	308
1.00 Y 0.00 N	36: 35 Y 36: 38 N	0.37 0.60	40.92 0.00 <rl=1< td=""><td>82 21953100 00 0</td><td>0</td><td></td></rl=1<>	82 21953100 00 0	0	
1.00 Y 0.00 N	36: 40 Y 36: 46 N	0.20 1.28	37.82 0.00 <rl=1< td=""><td>76 11083000 00 0</td><td>0</td><td></td></rl=1<>	76 11083000 00 0	0	
1.00 Y 0.00 N	37: 51 Y 37: 56 N	0.41 1.11	36.60 0.00 <rl=1< td=""><td>73 21583200 .00</td><td></td><td></td></rl=1<>	73 21583200 .00		

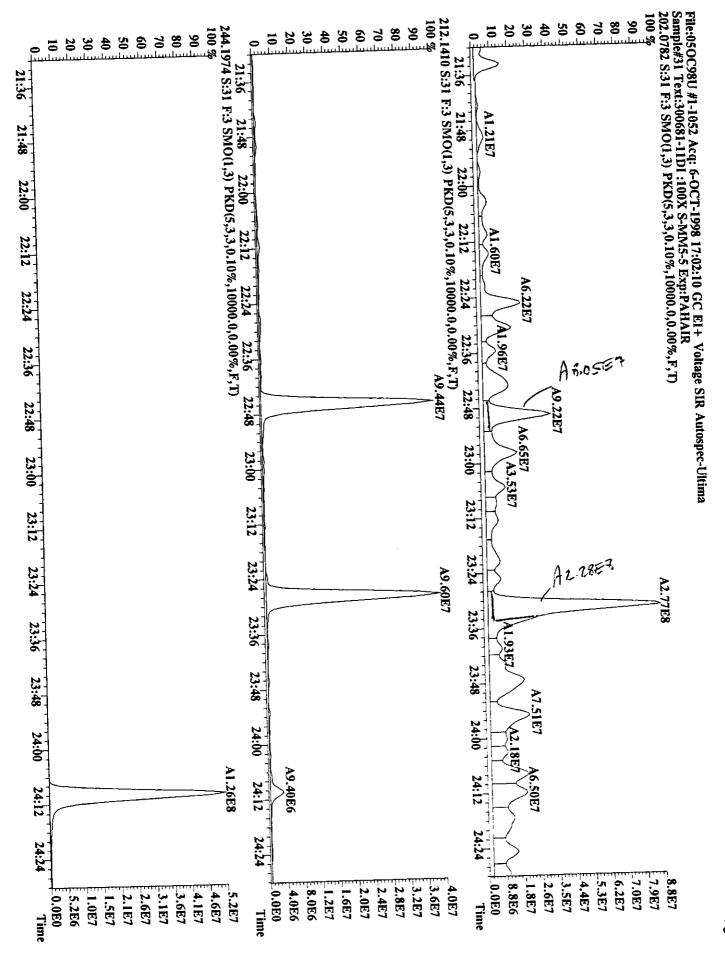

Mass Spec : ULTIMA Results: 050C98U311.RES : PAHAIR.TRG GC Column : DB-5 Date analyzed: 05-OCT-98 Data file : 050C98U 300681-11DI :100X S-MM5-5 Ex Cal : PAHAIR100198U.RR Weight : 0.5 R. T. Total Isotope RRF ng/ Rec/ Name Response Ratio mm:ss SAMPLE MDL d10-2-Methylnaphthalene 91866200 1.00 Y 10: 27 Y 1.00 50.00 d8-Naphthalene 137456400 1.00 Y 8: 18 Y 1.78 41.95 84 Naphthalene 1369832000 1.00 Y 8: 22 Y 1.20 830.21 0.000 2033900000 1.00 Y 2-Methylnaphthalene 10: 34 Y 0.66 2252.76 0.000 d8-Acenaphthylene 130839800 1.00 Y 13: 30 Y 1.16 61.19 122 * No Peak Acenaphthylene 13: 31 Y 0.00 N1.02 0.00 0.000 d10-Acenaphthene 67575400 1.00 Y 4 Y 14: 0.68 53.92 108 Acenaphthene 207610000 1.00 Y 14: 10 Y 1.14 269.59 0.000 d10-Anthracene 65326000 1.00 Y 2 Y 19: 1.00 50.00 d10-Fluorene 78420200 1.00 Y 15: 45 Y 1.36 44.06 88 Fluorene 415472000 1.00 Y 15: 51 Y 1.15 462.37 0.000 d10-Phenanthrene 166487400 1.00 Y 18: 53 Y 2.74 46.54 93 1300970000 1.00 Y Phenanthrene 18: 57 Y 0.95 820.45 0.000 Anthracene * No Peak 0.00 N 19: 5 N 0.97 0.00 0.000 d14-Terphenyl 252396000 1.00 Y 1.00 24: 10 Y 50.00 d10-Fluoranthene 188868000 1.00 Y 22: 46 Y 1.49 25.09 50 Fluoranthene 184300800 1.00 Y 1.23 22: 49 Y 79.22 0.000 191930200 1.00 Y d10-Pyrene 23: 28 Y 1.58 24.14 48 553388000 1.00 Y Pyrene 23: 31 Y 1.26 229.32 0.000 d12-Benzo(a) anthracene 105184000 1.00 Y 27: 20 Y 0.81 25.65 51 53193800 1.00 Y Benzo(a) anthracene 27: 24 Y 1.28 39.50 0.000 d12-Chrysene 123979800 1.00 Y 27: 27 Y 1.17 21.04 42 Chrysene 162916600 1.00 Y 27: 31 Y 1.16 113.24 0.000 d12-Benzo(e)pyrene 144089800 1.00 Y 50.00 31: 41 Y 1.00 d12-Benzo(b) fluoranthene 86927800 1.00 Y 30: 46 Y 0.48 62.71 125 Benzo (b) fluoranthene 15492440 1.00 Y 30: 50 Y 1.30 13.72 0.000 d12-Benzo(k) fluoranthene 136496800 1.00 Y 30: 51 Y 0.99 48.03 96 Benzo(k) fluoranthene * No Peak 0.00 N 30: 56 N 1.20 0.00 0.000 d12-Benzo(a)pyrene 100709800 1.00 Y 31: 51 Y 0.74 47.30 95 Benzo(e)pyrene 17986300 1.00 Y 31: 46 Y 1.62 11.01 0.000 Benzo(a) pyrene 4730780 1.00 Y 31: 56 Y 1.11 4.23 0.000 d12-Perylene 87642800 1.00 Y 32: 9 Y 47.05 0.65 94 28257400 1.00 Y Perylene 32: 15 Y 1.74 18.49 0.000 40.9309 82 d12-Indeno(123-cd)pyrene 43906200 1.00 Y 36: 35 Y 0.37 Indeno(123-cd)pyrene * No Peak 0.00 N 36: 38 N 0.60 0.00 0.000 d14-Dibenz (ah) anthracene 22166000 1.00 Y 36: 40 Y 0.20 37.82 76 Dibenz (ah) anthracene * No Peak 0.00 N 36: 46 N 1.28 0.00 0.000 d12-Benzo(ghi)perylene 43166400 1.00 Y 37: 51 Y 0.41 36.60 73 Benzo(ghi)perylene * No Peak 0.00 N 37: 56 N 1.11 0.00 0.000

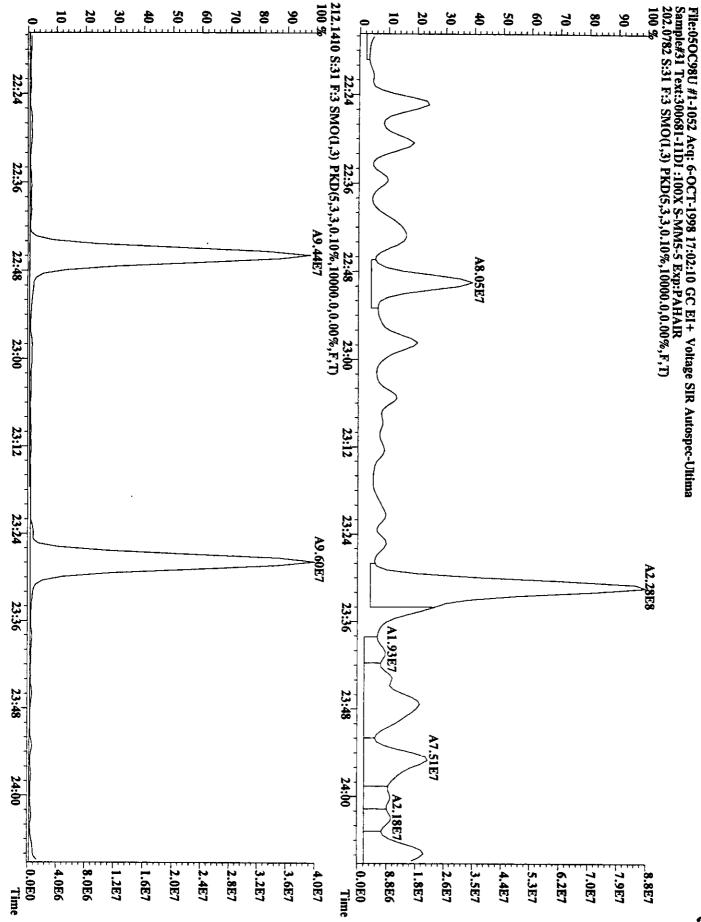


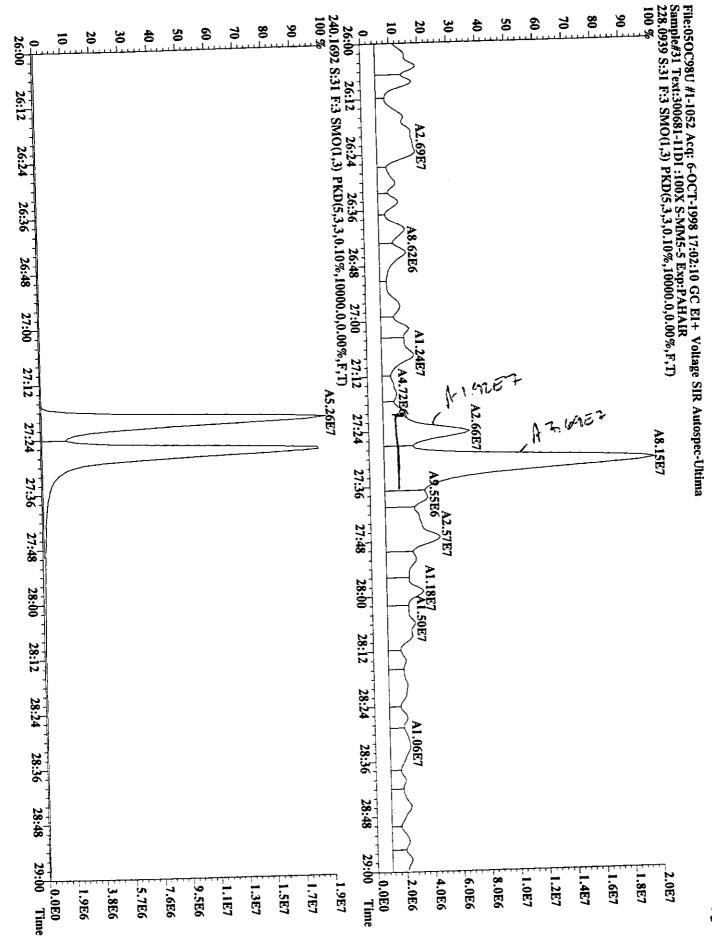


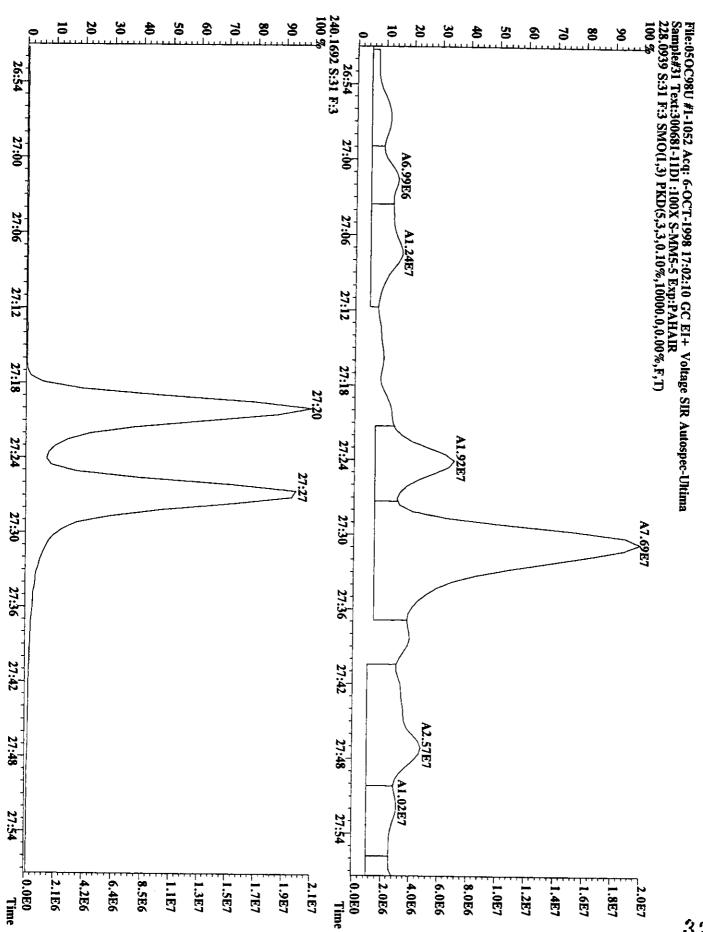


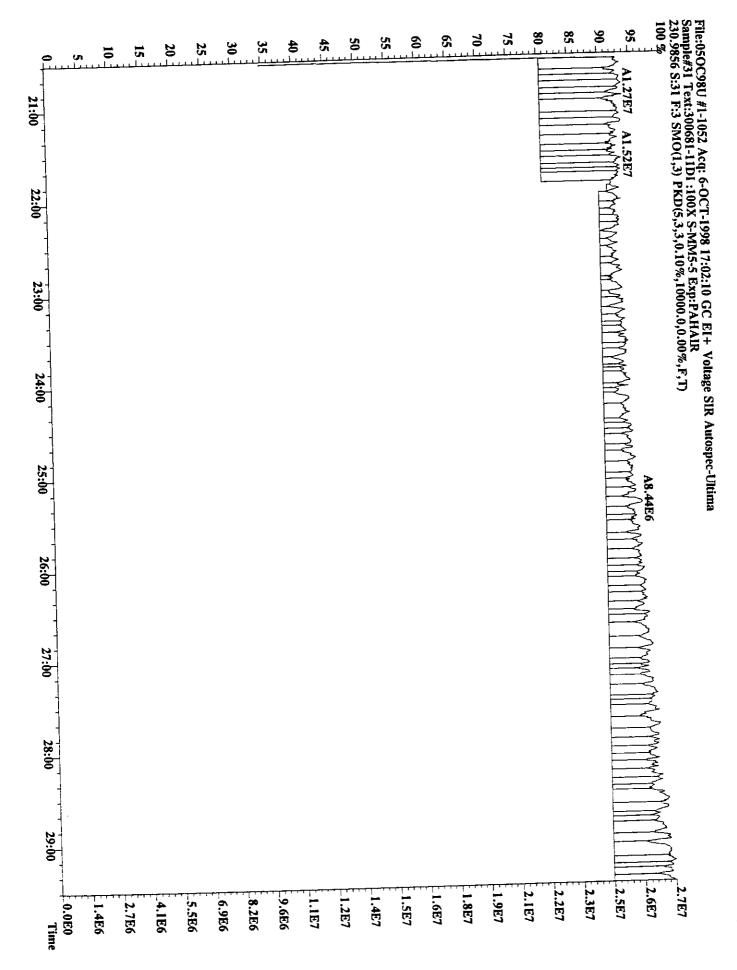


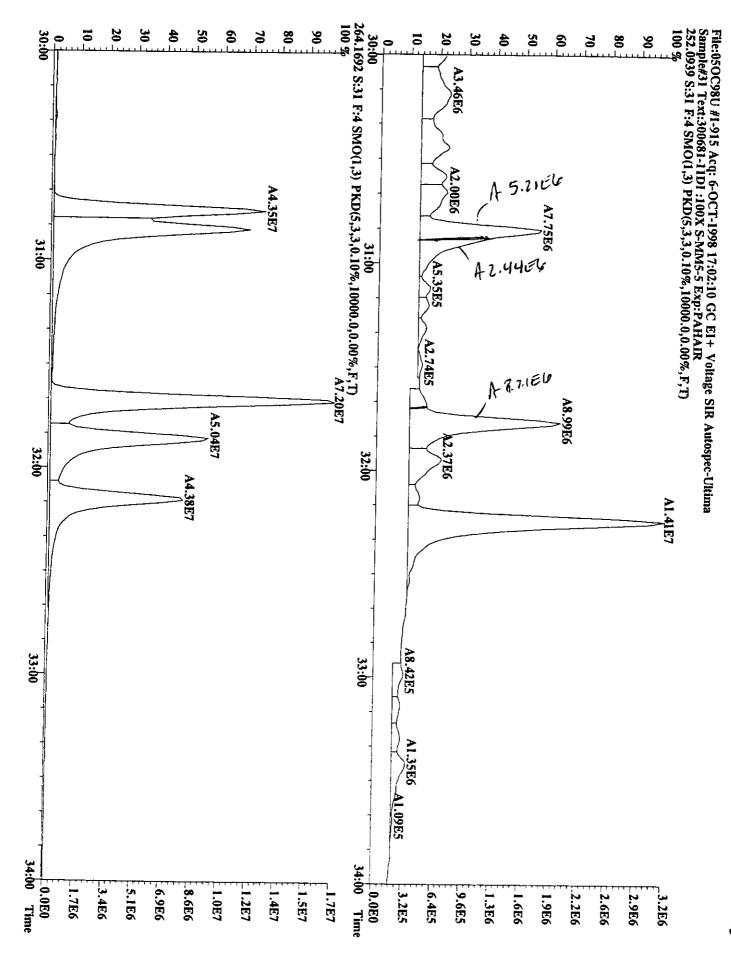


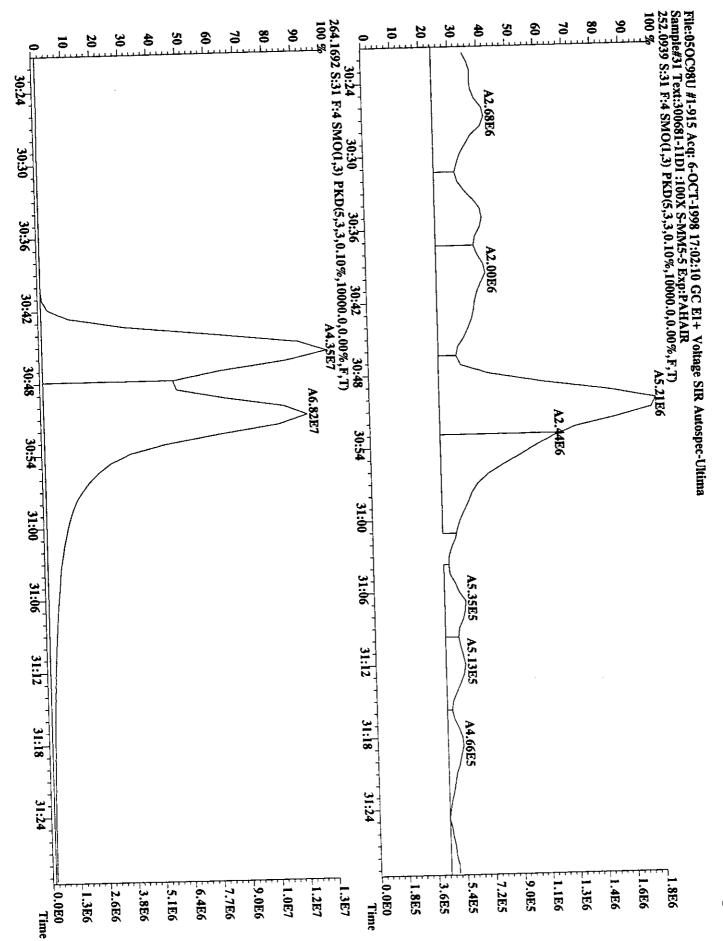


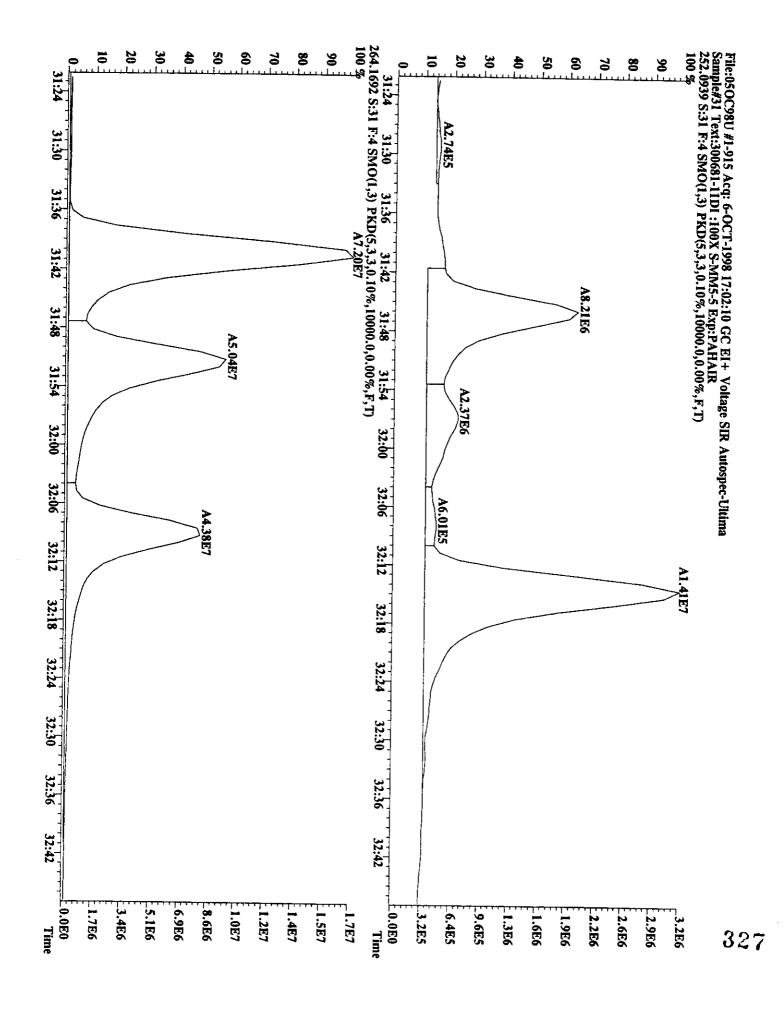


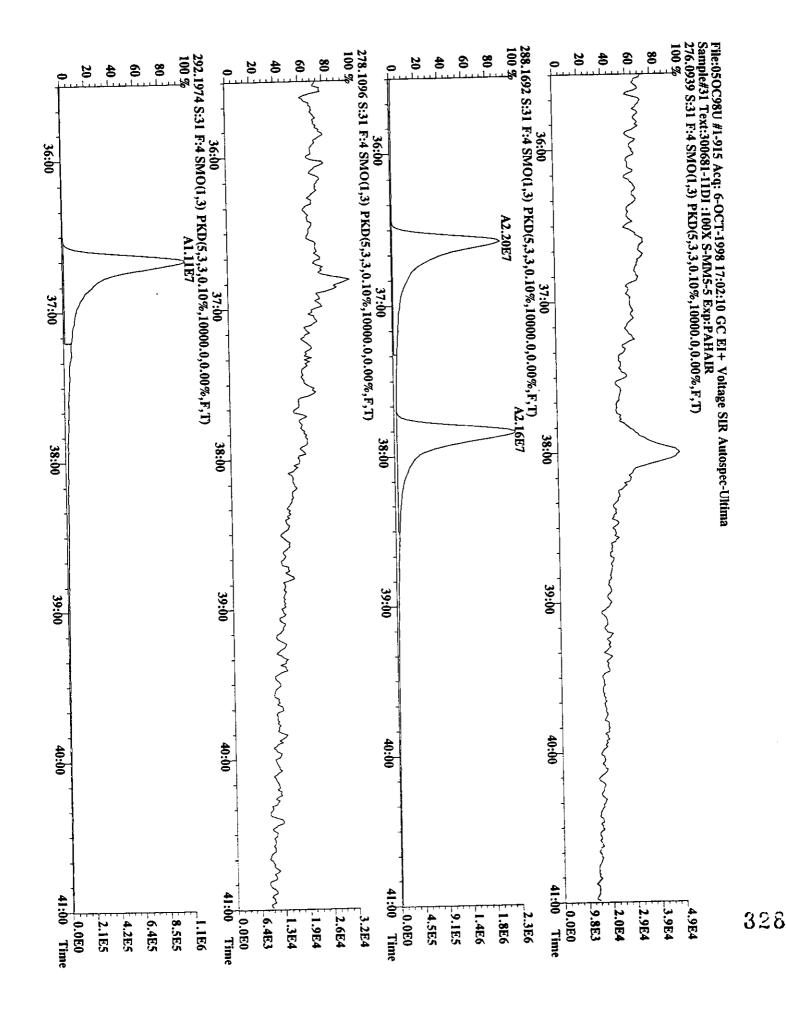


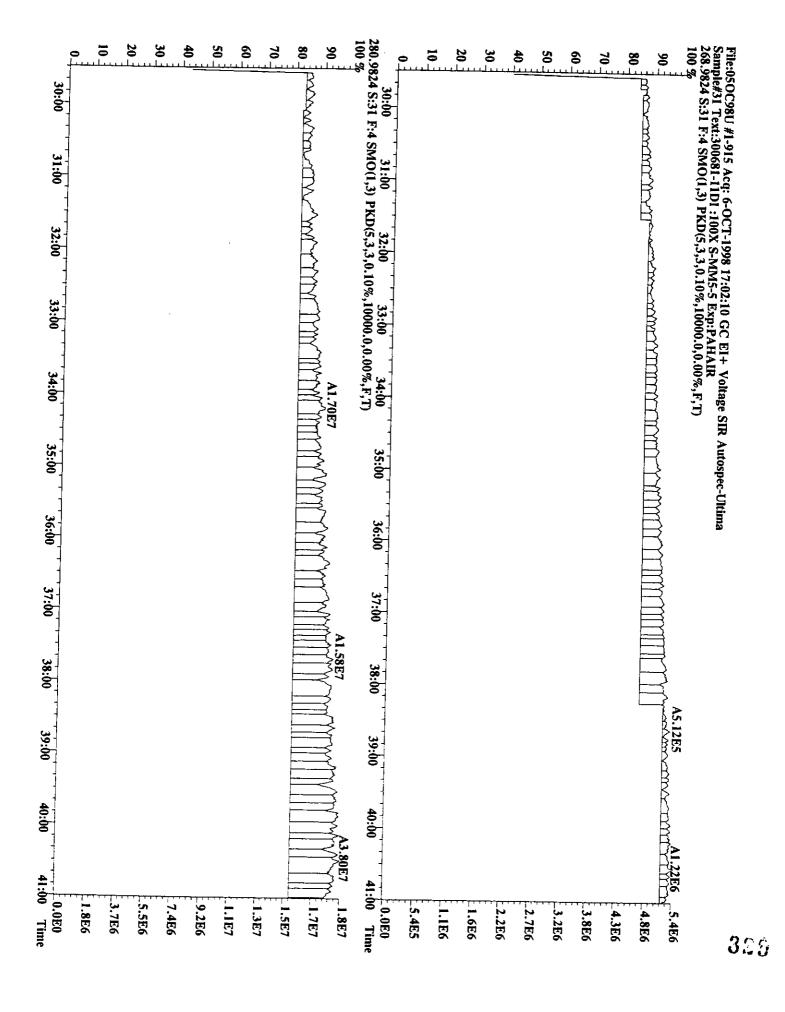












Laboratory Control Sample

LABORATORY CONTROL SAMPLE REPORT

Advanced Technology Group - High Resolution Project: 300681

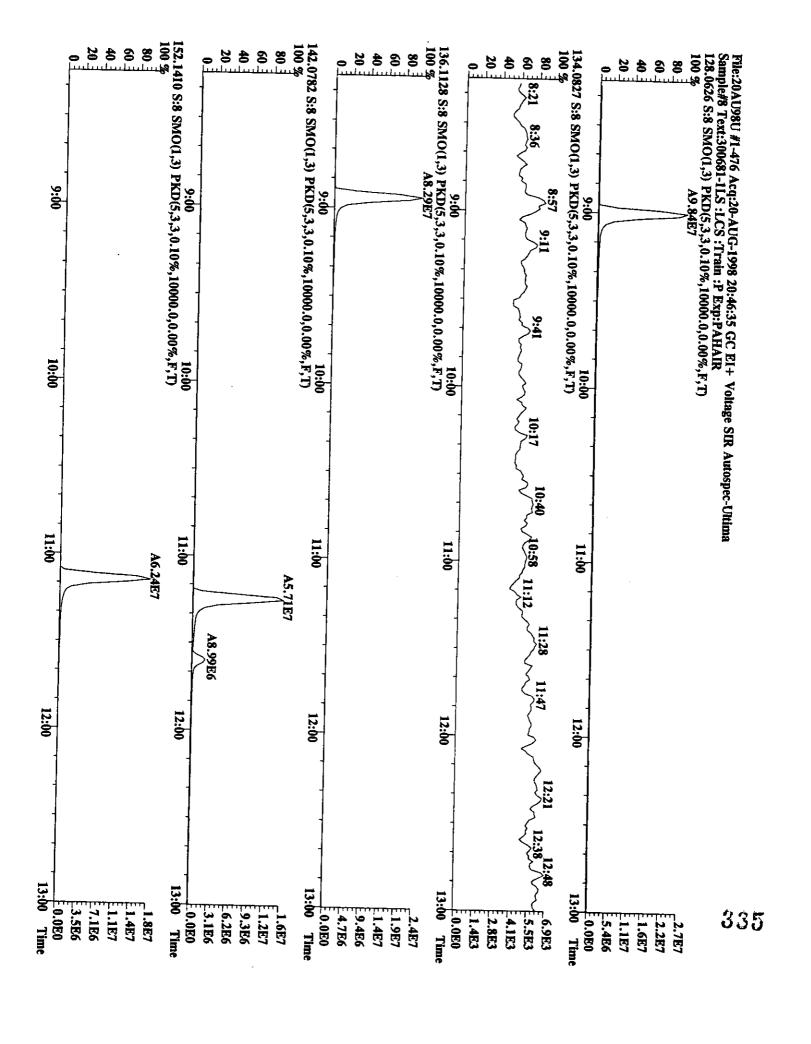
Category: PAH-HR-AIR PAH by HRGC/HRMS
Test: PAH-HR-AIR
Matrix: AIR
QC Lot: 18 AUG 98-A
Concentration Units: ng/sample QC Run: 20 AUG 98-A

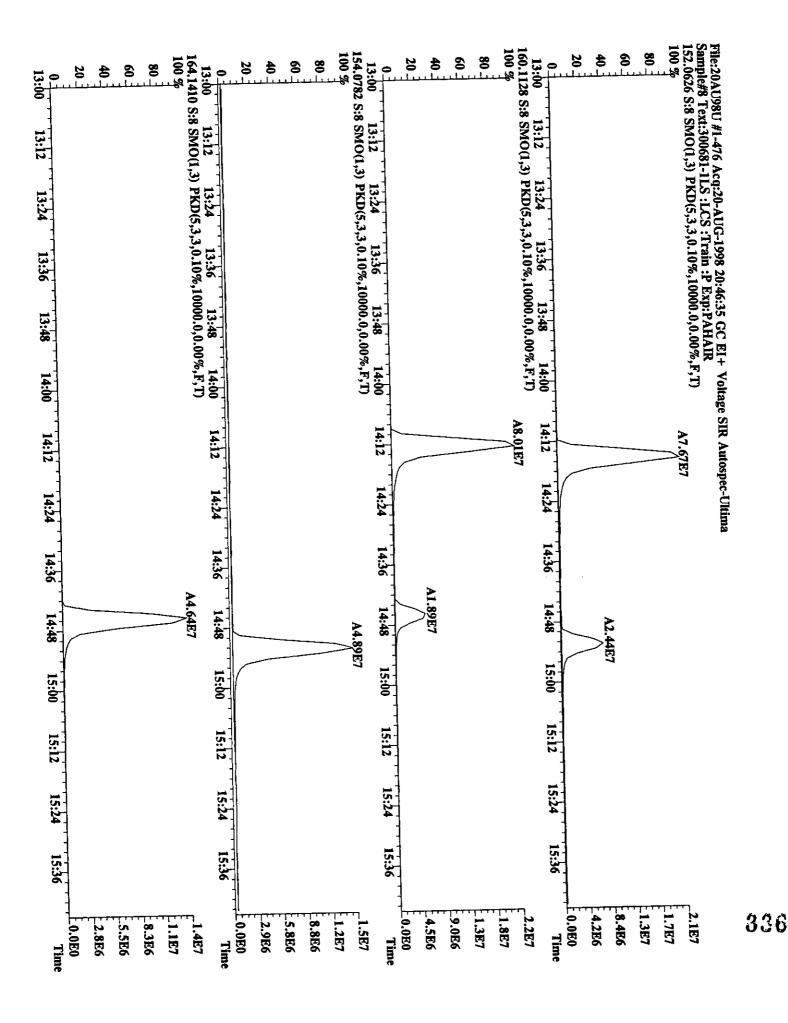
Analyte	Concent Spiked	ration Measured	Accuracy(LCS Lim	
Naphthalene 2-Methylnaphthalene	200 200	170	85 50-	
Acenaphthylene	200	130 170	67 50-	
Acenaphthene	200	170	83 50- 85 50-	
Fluorene	200	210	107 50-	
Phenanthrene	200	160	79 50-	
Anthracene	200	160	79 50-	
Fluoranthene	200	150	77 50-	
Pyrene	200	160	79 50-	
Benzo(a)anthracene	200	150	77 50-	
Chrysène	200	160	82 50-	
Benzo(b)fluoranthene	200	140	70 50-	
Benzo(k)fluoranthene	200	140	72 50-	
Benzo(e)pyrene	200	160	82 50-	
Benzo(a)pyrene	200	140	72 50-	
Perylene	200	120	58 50-1	150
Indeno(1,2,3-cd)pyrene	200	140	69 50-1	
Dibenz(a,h)anthracene	200	160	81 50-1	
Benzo(g,h,i)perylene	200	150	77 50-1	150
Naphthalene-d8	100	107	107 50-1	
Acenaphthylene-d8	100	83	83 50-1	
Acenaphthene-d10	100	85	85 50-1	
Fluorene-d10	100	86	86 50-1	
Phenanthrene-d10	100	85	85 50-1	
Fluoranthene-d10	100	106	106 50-1	
Pyrene-d10 Renzo(a)anthracena d12	100	110	110 50-1	
Benzo(a)anthracene-d12 Chrysene-d12	100	97 106	97 50-1	
Benzo(b)fluoranthene-d12	100 100	106	106 50-1	
Benzo(k)fluoranthene-dl2	100	98 99	98 50-1	
Benzo(a)pyrene-d12	100	88	99 50-1 88 50-1	
Perylene-d12	100	92	88 50-1 92 50-1	
Indeno(123-cd)pyrene-d12	100	96	96 50-1	
Dibenz(a,h)anthracene-d14	100	89	89 50-1	
Benzo(g,h,i)perylene-dl2	100	105	105 50-1	
· · · -			100 00 1	

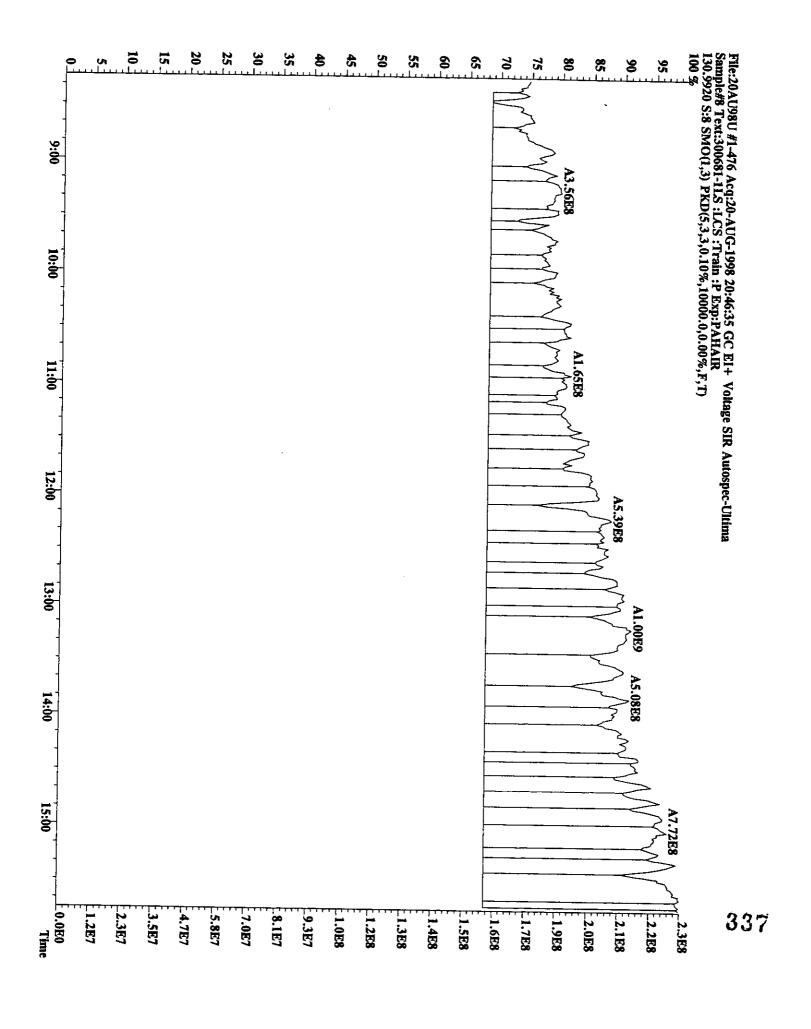
: PAHAIR.TRG Results : 20AU98U081.RES Date analyzed : 20-AUG-98 Cal : PAHAIR081998U.RR GC Column : DB-5 300681-1LS :LCS :Train :P Ex 20AU98U ng/ Rec/ Data file : R. T. RRF Isotope Total : 0.333 SAMP MDL mm:ss Weight Ratio Response Name 50.00 1.00 9 Y 11: 124826200 1.00 Y d10-2-Methylnaphthalene 107 53.33 1.25 8: 56 Y 165852400 1.00 Y d8-Naphthalene 169.14 1.05 9: 0 Y 196776400 1.00 Y Naphthalene 0.77 134.04 15 Y 11: 114115800 1.00 Y 2-Methylnaphthalene 83 1.55 41.39 14: 13 Y 160170400 1.00 Y d8-Acenaphthylene 166.65 0.86 14: 16 Y 153484800 1.00 Y Acenaphthylene 85 42.34 0.88 14: 46 92737800 1.00 Y d10-Acenaphthene 170.32 0.93 14: 52 97812800 1.00 Y Acenaphthene 50.00 1.00 19: 47 Y 81470000 1.00 Y d10-Anthracene 86 42.76 1.13 16: 28 Y 78697000 1.00 Y d10-Fluorene 214.08 1.05 16: 34 Y 117807400 1.00 Y Fluorene 42.74 85 2.63 19: 37 Y 183094800 1.00 Y d10-Phenanthrene 158.86 0.84 163132000 1.00 Y 19: 42 Y Phenanthrene 158.82 0.83 19: 51 Y 160563400 1.00 Y Anthracene 50.00 24: 53 Y 1.00 161216800 1.00 Y d14-Terphenyl 106 53.13 23: 32 Y 1.01 172409400 1.00 Y d10-Fluoranthene 153.61 23: 35 Y 1.04 183518800 1.00 Y Fluoranthene 54.91 110 1.01 24: 14 Y 179174800 1.00 Y d10-Pyrene 157.02 1.11 17 Y 207492000 1.00 Y 24: Pyrene 97 48.41 0.82 5 Y 127227200 1.00 Y 28: d12-Benzo(a)anthracene 1.06 153.39 28: 10 Y 137158200 1.00 Y Benzo(a)anthracene 106 53.23 1.06 28: 13 Y 182689000 1.00 Y d12-Chrysene 0.97 164.65 28: 18 Y 194576400 1.00 Y Chrysene 50.00 1.00 32: 37 Y 229824000 1.00 Y 98 d12-Benzo(e)pyrene 49.11 0.63 31: 38 Y 141316600 1.00 Y d12-Benzo(b) fluoranthene 140.08 1.07 31: 44 Y 140955000 1.00 Y Benzo(b) fluoranthene 99 49.68 0.90 31: 44 Y 204608000 1.00 Y d12-Benzo(k)fluoranthene 144.07 31: 49 Y 1.16 226856000 1.00 Y Benzo(k) fluoranthene 88 44.01 0.75 32: 50 Y 151954400 1.00 Y 164.84 d12-Benzo(a)pyrene 1.46 32: 44 Y 244286000 1.00 Y Benzo(e)pyrene 143.12 1.02 56 Y 148278000 1.00 Y 32: Benzo(a)pyrene 46.01 92 0.61 33: 9 Y 129968400 1.00 Y d12-Perylene 116.45 1.62 15 163100800 1.00 Y 33: Perylene 96 48.19 0.71 37: 59 Y 156502800 1.00 Y d12-Indeno(123-cd)pyrene 0.61 137.12 Y 87400000 1.00 Y 38: Indeno (123-cd) pyrene 44.71 0.44 0 Y 90660000 1.00 Y 38: d14-Dibenz (ah) anthracene 162.49 1.11 12 Y 109157800 1.00 Y 38: Dibenz (ah) anthracene 105 52.31 0.63 39: 23 Y 151570800 1.00 Y d12-Benzo(ghi)perylene 154.27 0.99 39: 33 Y 154271200 1.00 Y Benzo(ghi)perylene 9-1-92 MAT

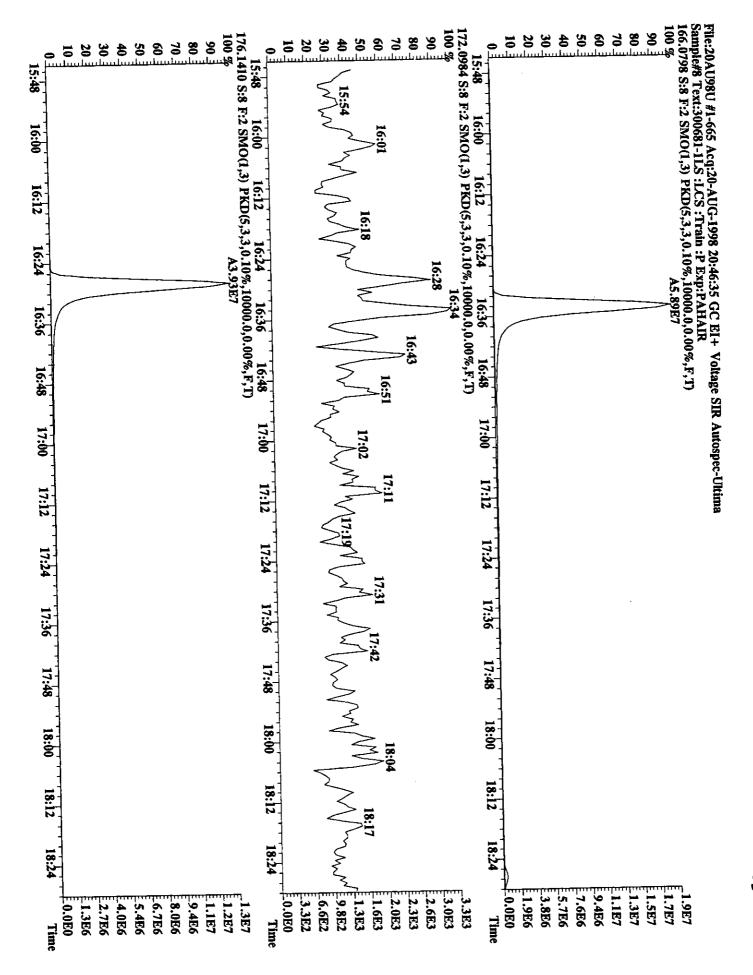
20AU98U081.RES : PAHAIR.TRG Date analyzed: 20-AUG-98 0.333 LCS :Train :P Ex Cal : PAHAIR081998U.RRF Isotope R. T. RRF ng/ Rec/ Ratio mm:ss SAMP MDL 1.00 Y 11: 9 Y 1.00 50.00 62413100 62413100 1.00 Y 8: 56 Y 1.25 53.33 107 82926200 82926200 1.00 Y 9: 0 Y 1.05 169.14 98388200 98388200 1.00 Y 11: 15 Y 0.77 134.04 57057900 57057900 1.00 Y 14: 13 Y 1.55 41.39 83 80085200 80085200 1.00 Y 14: 16 Y 0.86 166.65 76742400 76742400 1.00 Y 14: 46 Y 0.88 42.34 85 46368900 46368900 1.00 Y 14: 52 Y 0.93 170.32 48906400 48906400 1.00 Y 19: 47 Y 1.00 50.00 40735000 40735000 1.00 Y 16: 28 Y 1.13 42.76 86 39348500 39348500 1.00 Y 16: 34 Y 1.05 214.08 58903700 58903700 1.00 Y 19: 37 Y 42.74 2.63 85 91547400 91547400 1.00 Y 19: 42 Y 0.84 158.86 81566000 81566000 1.00 Y 19: 51 Y 0.83 158.82 80281700 80281700 1.00 Y 24: 53 Y 1.00 50.00 80608400 80608400 1.00 Y 23: 32 Y 1.01 53.13 106 86204700 86204700 1.00 Y 23: 35 Y 1.04 153.61 91759400 91759400 1.00 Y 24: 14 Y 1.01 54.91 110 89587400 89587400 1.00 Y 24: 17 Y 1.11 157.02 103746000 103746000 1.00 Y 28: 5 Y 0.82 48.41 97 63613600 63613600 1.00 Y 28: 10 Y 1.06 153.39 68579100 68579100 1.00 Y 28: 13 Y 1.06 53.23 106 91344500 91344500 1.00 Y 28: 18 Y 0.97 164.65 97288200 97288200 1.00 Y 32: 37 Y 1.00 50.00 114912000 114912000 31: 38 Y 1.00 Y 0.63 49.11 98 70658300 70658300 1.00 Y 31: 44 Y 1.07 140.08 70477500 70477500 1.00 Y 31: 44 Y 0.90 49.68 99 102304000 102304000 1.00 Y 31: 49 Y 1.16 144.07 113428000 113428000 1.00 Y 32: 50 Y 0.75 44.01 88 75977200 75977200 1.00 Y 32: 44 Y 1.46 164.84 122143000 122143000 1.00 Y 32: 56 Y 143.12 1.02 74139000 74139000 1.00 Y 33: 9 Y 0.61 46.01 92 64984200 64984200 1.00 Y 33: 15 Y 1.62 116.45 81550400 81550400 1.00 Y 37: 59 Y 0.71 48.19 96 78251400 78251400 1.00 Y 7 Y 38: 0.61 137.12 43700000 43700000 1.00 Y 38: 0 Y 0.44 44.71 89 45330000 45330000 1.00 Y 38: 12 Y 1.11 162.49 54578900 54578900 1.00 Y 39: 23 Y 0.63 52.31 105 75785400 75785400 1.00 Y 39: 33 Y

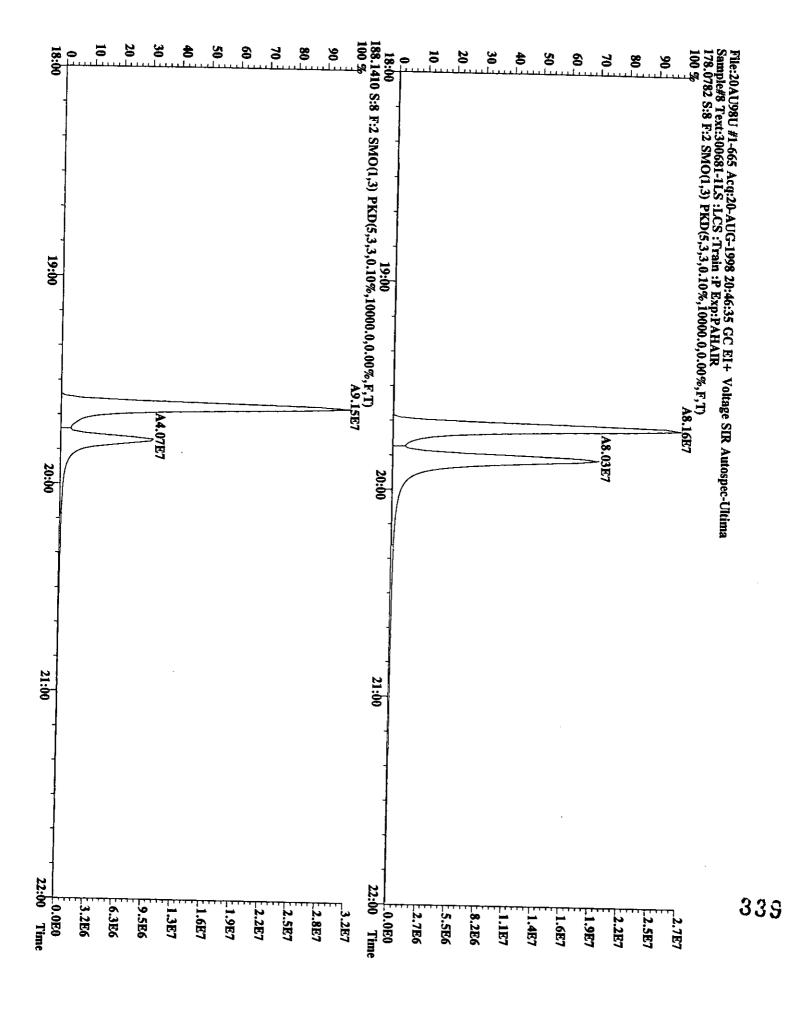
0.99

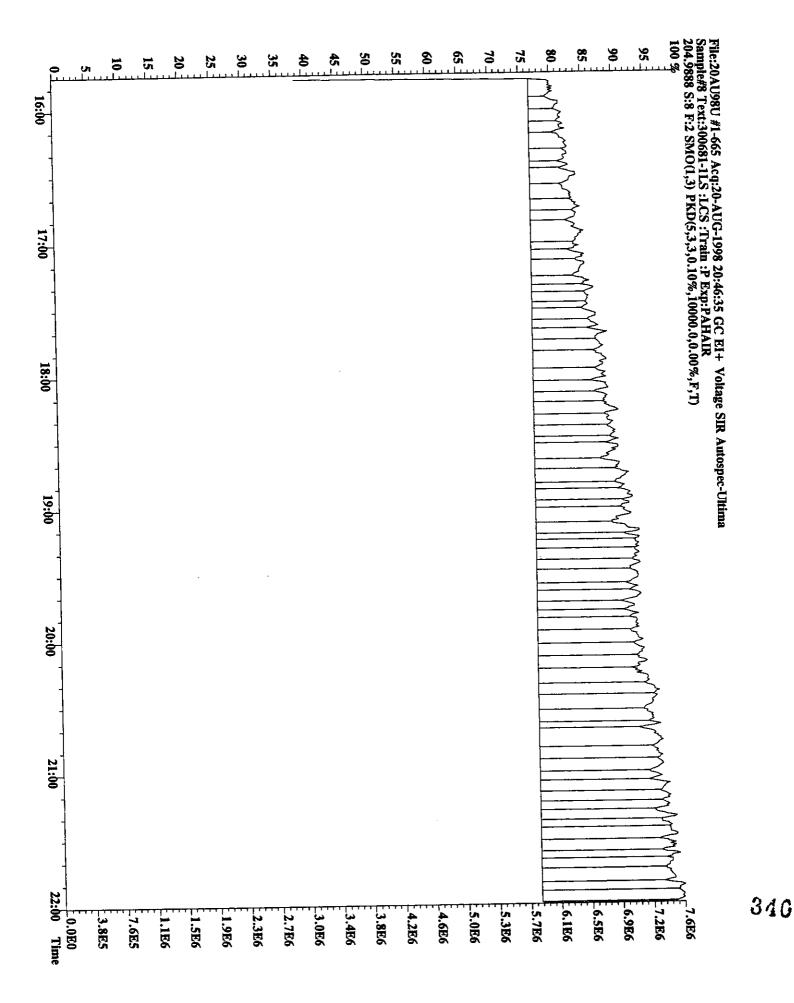

154.27

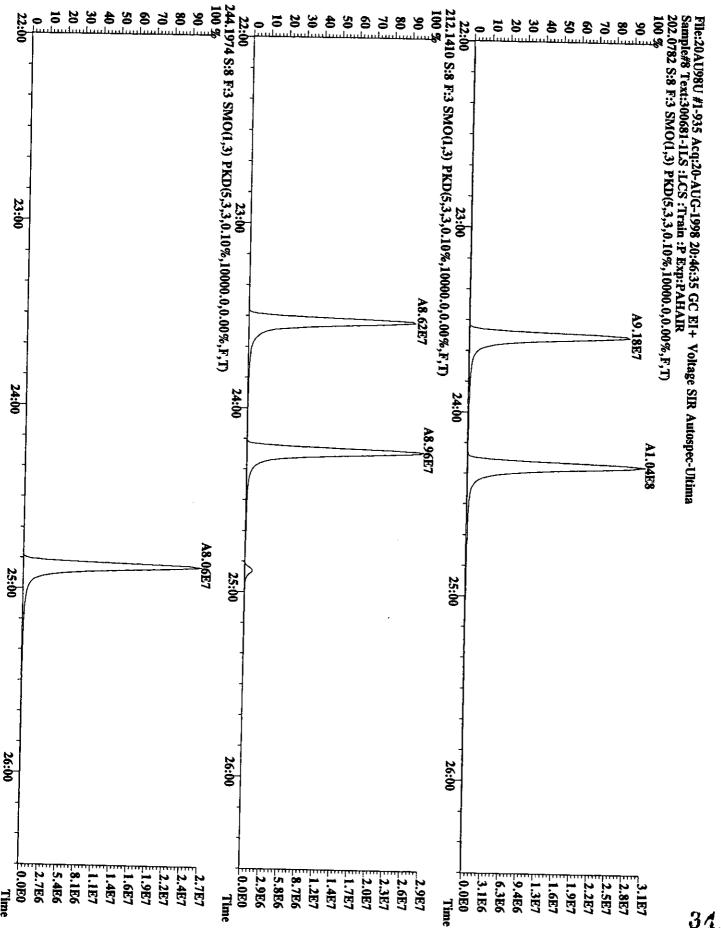

77135600


77135600

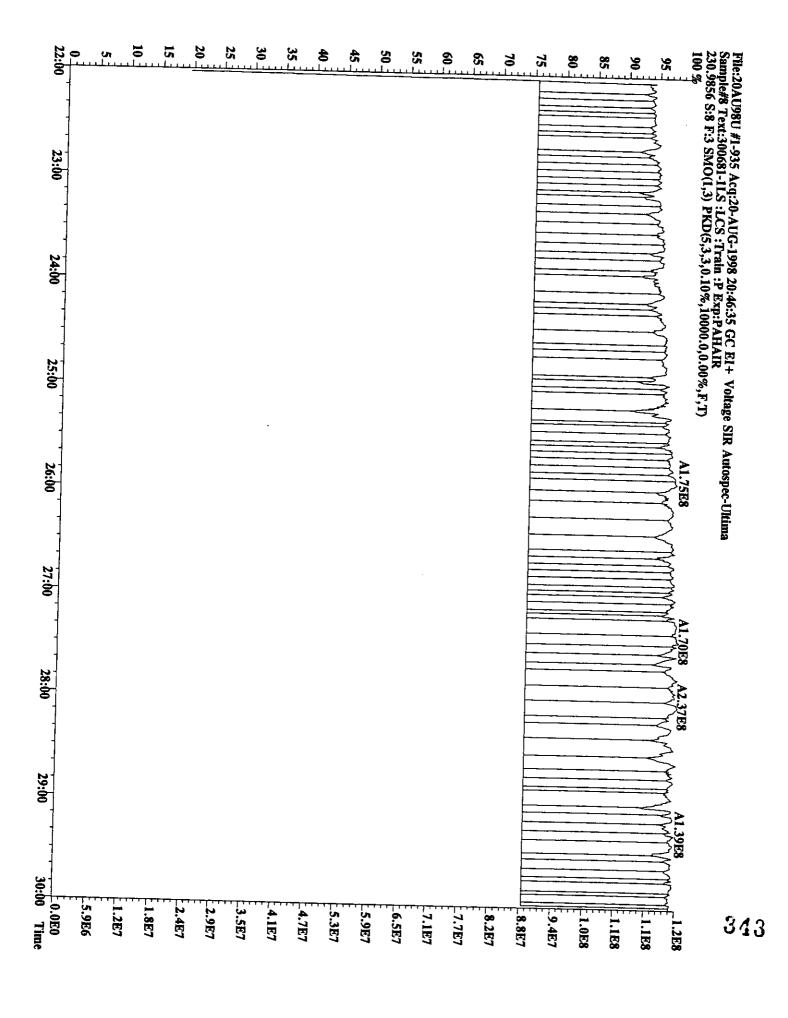

333

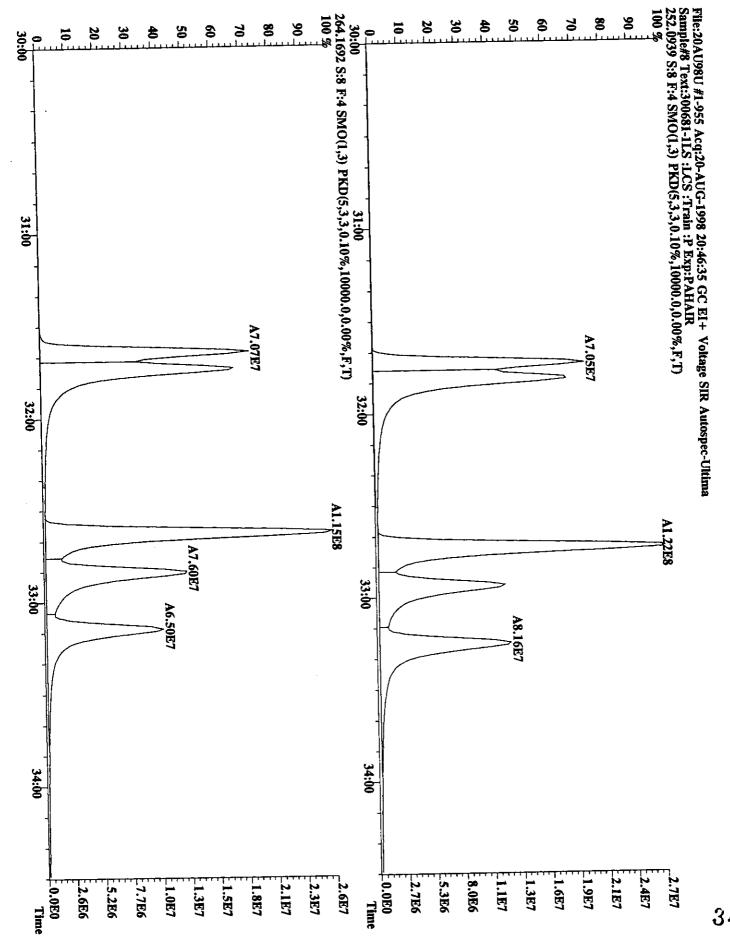

22-AUG-1998 05:40:09 FM	
Mass Spec : ULTIMA GC Column : DB-5 Data file : 20AU98U Weight : 0.333 Name	Results: 20AU98U081.RES : PAHAIR.TRG Date analyzed: 20-AUG-98 300681-1LS:LCS:Train:PEx Cal: PAHAIR081998U.RR Total Isotope R. T. RRF ng/ Rec/ Response Ratio mm:ss SAMP MDL
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	124826200 1.00 Y 11: 9 Y 1.00 50.00 165852400 1.00 Y 8: 56 Y 1.25 53.33 107 196776400 1.00 Y 9: 0 Y 1.05 169.14 0.000 114115800 1.00 Y 11: 15 Y 0.77 134.04 0.000
d8-Acenaphthylene Acenaphthylene	160170400 1.00 Y 14: 13 Y 1.55 41.39 83 153484800 1.00 Y 14: 16 Y 0.86 166.65 0.000
d10-Acenaphthene Acenaphthene	92737800 1.00 Y 14: 46 Y 0.88 42.34 85 97812800 1.00 Y 14: 52 Y 0.93 170.32 0.000
d10-Anthracene d10-Fluorene Fluorene	81470000 1.00 Y 19: 47 Y 1.00 50.00 78697000 1.00 Y 16: 28 Y 1.13 42.76 86 117807400 1.00 Y 16: 34 Y 1.05 214.08 0.000
d10-Phenanthrene Phenanthrene Anthracene	163132000 1.00 Y 19: 42 Y 0.84 138.88 0.000
d14-Terphenyl d10-Fluoranthene Fluoranthene	
d10-Pyrene Pyrene	
d12-Benzo(a)anthracene Benzo(a)anthracene	
d12-Chrysene Chrysene	
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	141316600 1.00 1 31: 36 1
d12-Benzo(k)fluoranthene Benzo(k)fluoranthene	204608000 1.00 Y 31: 44 Y 0.90 49.68 99 226856000 1.00 Y 31: 49 Y 1.16 144.07 0.000
d12-Benzo(a) pyrene Benzo(e) pyrene Benzo(a) pyrene	244286000 1.00 Y 32: 44 I 1.02 143 12 0 000
d12-Perylend Perylend	
d12-Indeno(123-cd)pyren Indeno(123-cd)pyren	e 159101000 1.00 1 38: / 1 0.01 213:02 00000
d14-Dibenz(ah)anthracen Dibenz(ah)anthracen	e 90660000 1.00 Y 38: 0 Y 0.44 44.71 89 e 109157800 1.00 Y 38: 12 Y 1.11 162.49 03004
d12-Benzo(ghi)perylen Benzo(ghi)perylen	e 151570800 1.00 Y 39: 23 Y 0.63 52.31 105

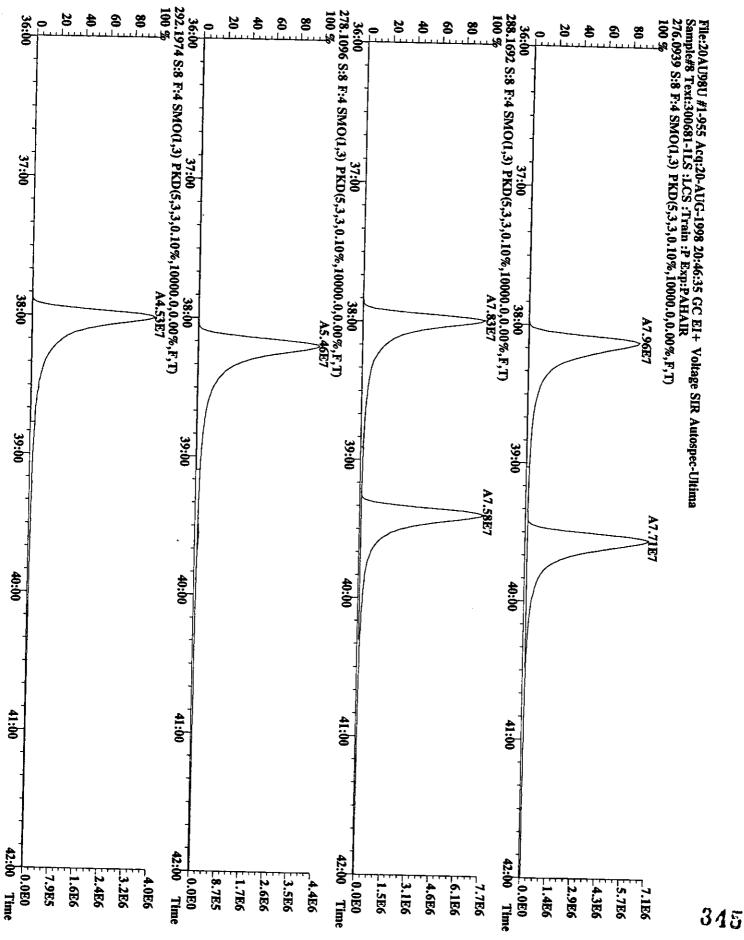


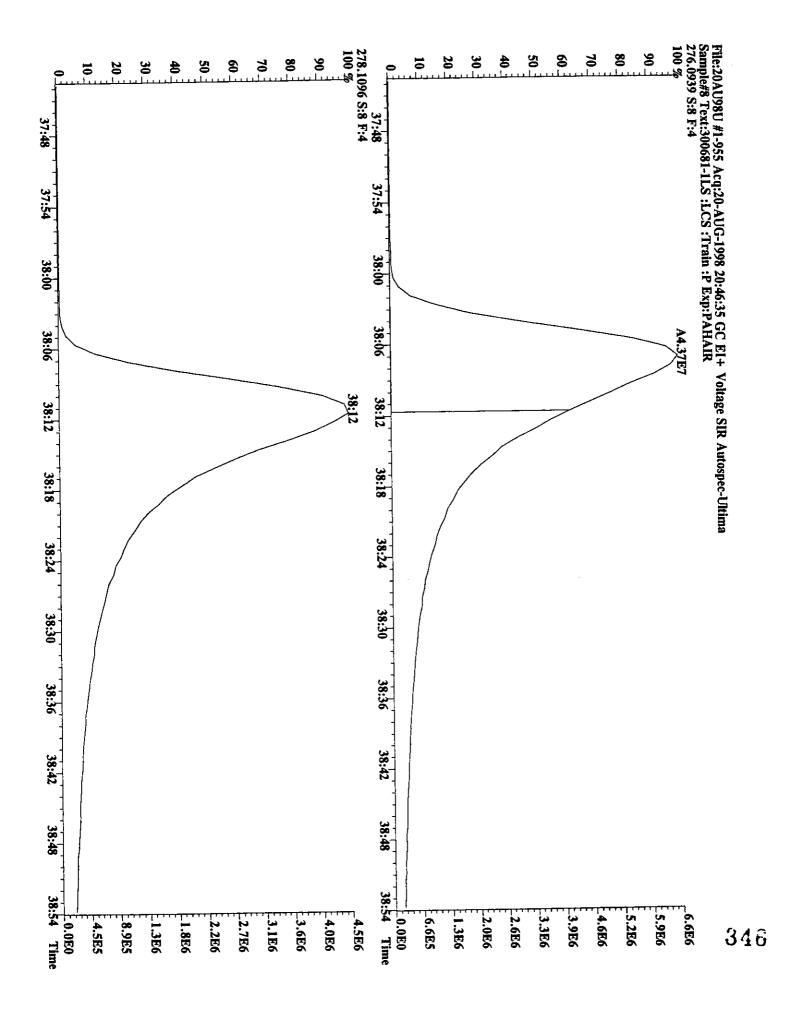


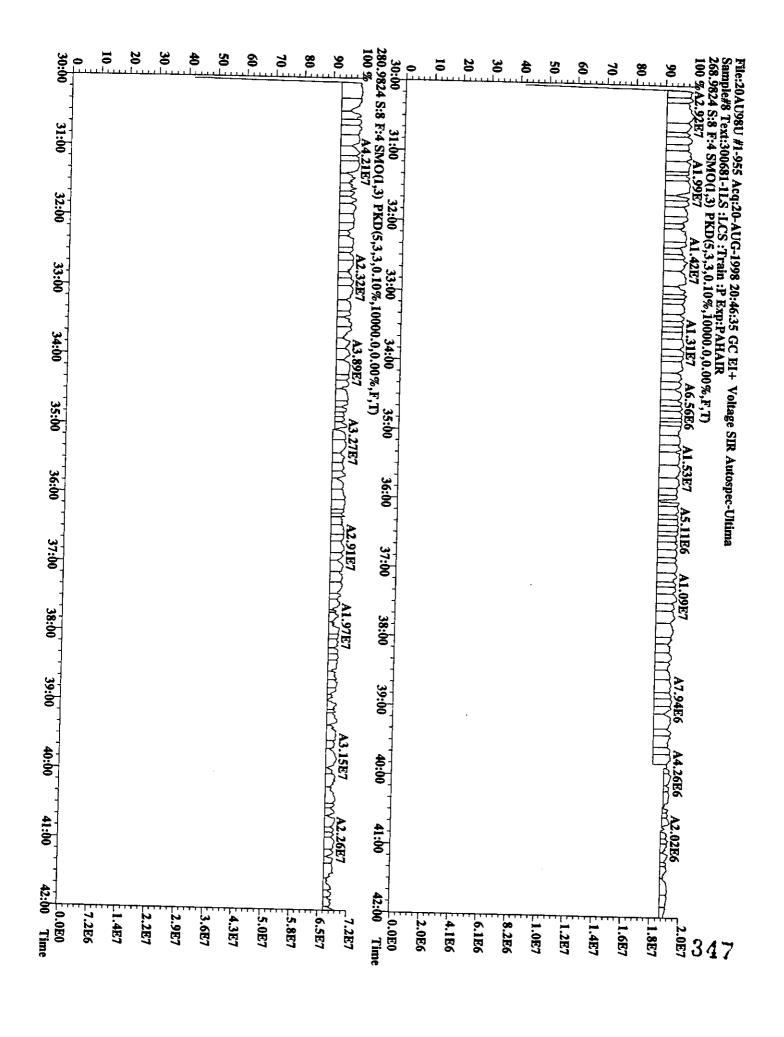












Initial Calibration

318 316

QUANTERRA INCORPORATED

West Sacramento

Initial Calibration Checklist High Recolution

	High F	Resolution								
I	PAHAIR OBI998U. RRF Method I	D PAH	•							
	Instrument ID V 17100									
•	2. A CL-71. 2/5-O4D DAEMIIIIDIEI SCHING									
1	STD ID's 265-044, -045 651-21, 255-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5									
	Analyzed By 8/20/98									
	Prepared by	Date Reviewed 8.20	.9?							
	Reviewed By Ceicueu I		REVIEWED							
_	ANALYSIS OF ICAL	INITIATED	RE-VIEW							
	ment present?	/	10(2)							
	CS1-CS5, CPSM, solvent blank present?	/02								
	G) Girecent'/		Na O//							
	CPSM Blow-up/Static resolution check present?	NAO/V	NOT							
	Ele PT's correct?									
0/ -< D	method-specified limits:									
% 2 5Ds	Signal-to-noise criteria met?		NA							
	Jectopic ratios within limits?	NA								
	It he point free of saturation?		1							
	Chromatographic windows correct?	(1) (3)	() (3)							
	259/2	(1) (3)								
	Manual reintegrations checked and hardcopies									
	included?									
	COMMENTS: 0 No PAH CPSM 15	usad.	CUANE S.							
	S I CALLUL DIAME CHAILE	1) 1								
			TE 11							
	250% valley between f	herauthrene on	and bearo (x) fluorantheme.							
		7 1 second s	auple in the							
	a sinchary of Co.		e in first							
	sequence) was not usab	<u> </u>	the sections	之)						
	aravo, CS-Z was very	05-7	It has been incor	Cardo						
	data is escable for this a	r labelled analytes: S/N ≥ 10	ated into the	٠, ، د						

Method 8290: %RSD \leq 20% for natives, \leq 30% for labelled analytes: S/N \geq Method 1613A: %CV \leq 35% (See Table 7, Method 1613A); S/N \geq Method 23: %RSD \leq values specified in Table 5, Method 23; S/N > 2.5 PAH: %RSD \leq 30% for natives and labelled compounds: S/N \geq

PCB: %RSD \leq 25% for natives. \leq 30% for labelled compounds: S/N \geq 2.5

NCASI 551: %RSD ≤ 20% for natives and labelled compounds; ≥ 5 DBD/DBF: %RSD \leq 30% for natives and labelled compounds; S/N \geq 10

QA-384 NE 2/97

PAH CALIBRATION TABLE

Mass Spec : ULTIMA GC Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier & 260V.

ITINI

File name : PAHAIRO81998U.RRF Date analyzed : 19-AUG-98

ΠAL
CALIBRATION
CURVE

œ

•	Pyrene	d10-Pyrene	Fluoranthene	d10-Fluoranthene	Anthracene	Phenanthrene	d10-Phenanthrene	Fluorene	d10-Fluorene	Acenaph thene	d10-Acenaphthene	Acenaphthylene	d8-Acenaphthylene	2-Methylnaphthalene	Naphthalene	d8-Naphthalene
RRF	RRF Amo	RRF Amor	RRF Amor		RRF RRF			RRF	Amou	RRF Amou	· · · · · ·	RR F			RRF Amou	Ame
	RRF Amount	RF	Amount	RF RF	RF	RF	RRF RRF	RRF Amount	RF RF mount	RF Recunt	RF RF	ARF Repuiret	RF RF	RF RF Rount	RF RF	imount #
1.11	1.01	1.04	1.01	0.83	0.84	2.63	1.05	1.13	0.93	0.88	0.86	1.55	0.77	1.05	1.25	Mean
0.052	0.047	0.067	0.073	0.053	0.064	0.051	0.105	0.098	0.097	0.037	0.057	0.092	0.112	0.181	0.094	s.D.
4.714	4.667	6.394	7.268	6.428	7.599	1.934	10.040	8.636	10.478	4.178	6.560	5.934	14.514	17.228	7.579	XR SD
				8.68 0.87												
				40.93 100.00												
				0.89 0.89 200.89												
212.11 1.06	1.02	10.00	20.00 20.00 20.00	149.97 100.00	700.75 0.75	269.74 2.70	100.00 1.05	200.00	100.00	92.67 0.93 200.00	100.00	158.01 1.58 200.00	100.70	200.00	1.25	100.00
527.05 1.05	50.93 0.93	100.5 100.5 100.5 100.5	50.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 2	410.83 0.82 100.00	405.42 0.81	256.17 2.56 500 00	528.30 1.06 100.00	500.00	100.08 100.08	500.00 500.00	100.00	500.00 500.00	100.00	500.00	500.00 1.23	10.00

Mass Spec : ULTIMA GC Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier a 260V. INI

File name : PAHAIROB1998U.RRF Date analyzed : 19-AUG-98 V. INITIAL CALIBRATION CURVE

ø

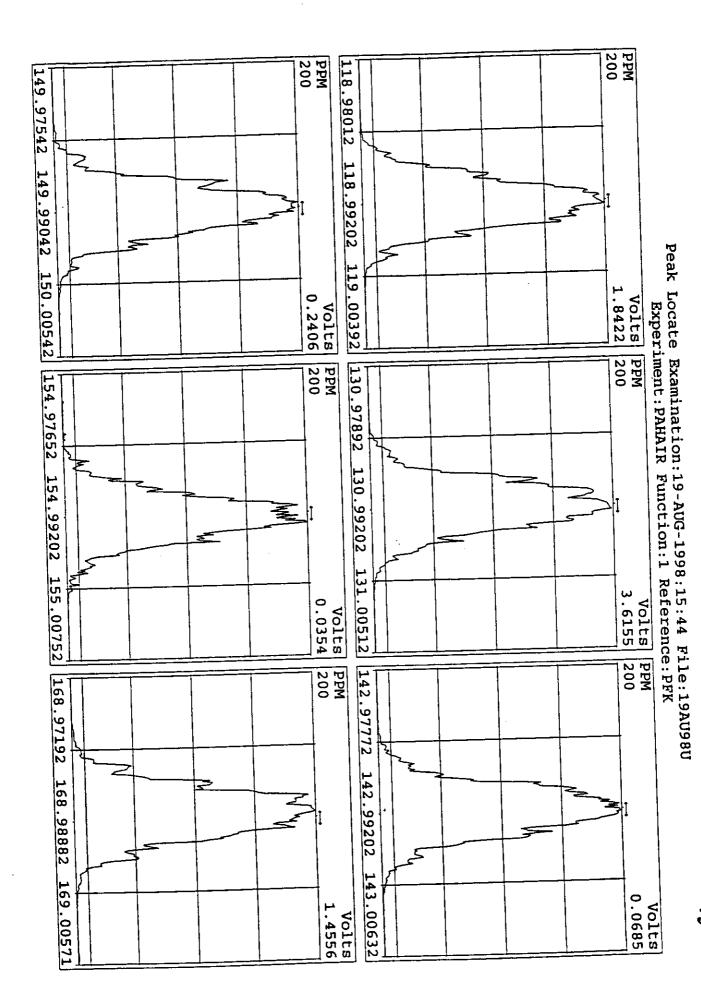
d14-Dibenz(ah)anthracene	Indeno(123-cu)byi eine	d12-Indeno(123-ca)pyrene	Perytene	d12-Perytene	Delitorally		Benzo(e)pyrene	d12-Benzo(a)pyrene	Benzo(k) i coor anche	ecanthyfl wranthene	d12-Benzo(k)fluoranthene	Benzo(b)fluoranthene		orh)fluoranthene	Chrysene	d12-Chrysene			d12-Benzo(a)anthracene	
e Amount RF RRF		RF		RRF	RF RRF	RRF Amount	RRF Amount	Amount RF	R R	Amount	Amount	Amount RF	深꾸	RRF RRF	Amount	Amount	유주	RRF RRF Amount	Amount	
0.44	0.61	0.71	1.62	0.61	1.02	1.46	0.75	·]	1.16	0.90	;	1.07	0.63	0.97	00	• R	1.06	0.82	Mean	
4 0.045	1 0.046	0.061	0.110	0.013	0.066	0.077	0.010		0.105	0.048		0.029	0.036	0.086		100	0.030	0.069	s.D.	,
10.14	7.53	8.68	6.79	2.048	6.478	5.243	1.505		9.104	5.393		2.735	5.785	8.856		0 760	2,804	8.507	XRSD	=
43.7 0.4	0.63 100.00	1 0.69	1.76	10.00	100.00	10.00 10.00	55.23 5.23	i i i i i	1.27	10.0 80.0 70.08	100.00 88.20	10.81	0.65	100.00	10.00	101.98	3 3 3 3 3 3	10.85 53.00	100.00 15.12	
43.81 0.44	100.0	5002	100 - 0	50.0	100.0	50.48	50.00 74.22	74.11	1.20	6.55 888	82.16	2.58 2.58 3.78	50.05 80.05	38.98 388	50.00 50.08	15.07 1.15	8 <u>-</u> 8	% % % %	99.00 67	,
0.4	80	100 o 9	100-1	100.6	100.00	100.5	153.41	74.28 0.74	100.00	100.90	90.18	111.29	100.63	1.04 30.00 30.30	03.60	91.74 0.92	81 80 80	10.00 10.20 10.20	78.	1
0.3	100	200.0	100.0	200.0	200	200.00 197.3	200.00	.75.0 10.70	100.00	200.00 217.66	93.02	212.98 1.06 00.00	0.63	6.55 2.88	75.51	1.08	0 0 0 0 0 0	900 0 900 78	78.	-
0.51	100.00	0.79 500.00	1.60 100.00	0.63 500.00	0.94 100.00	500.00 469.69	500.00 672.30	76.69 0.77	1001	500.00	94.50	18.5 18.5 18.5	500.00	56.40	441.04	1.56	100.00	500.00 513.26	100.00 83.24	л
																				0.

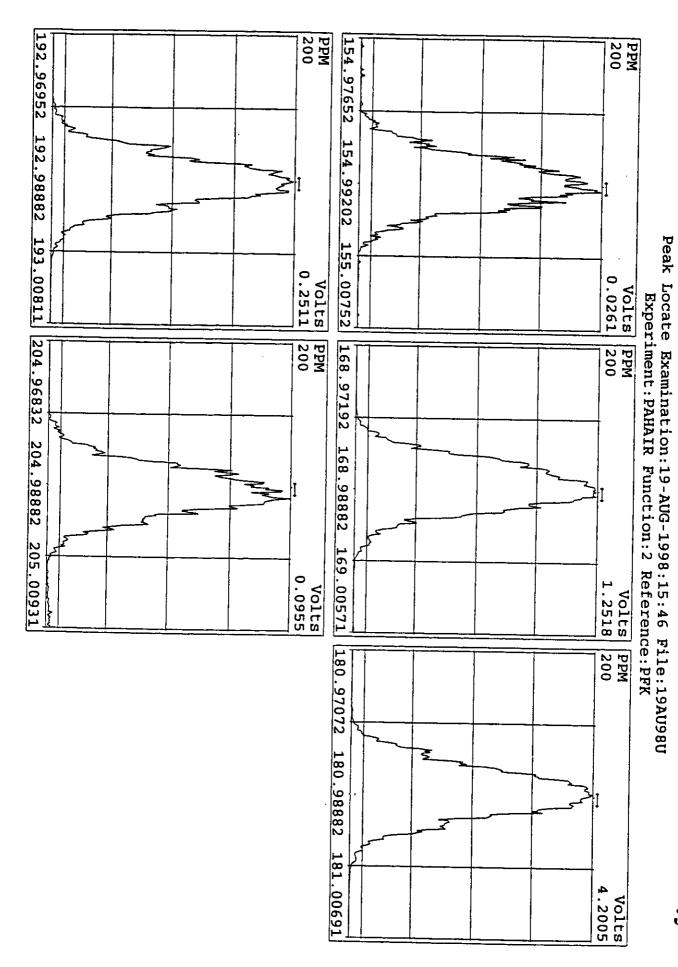
02:19:39 PM	20-AUG-1998
	:19:39

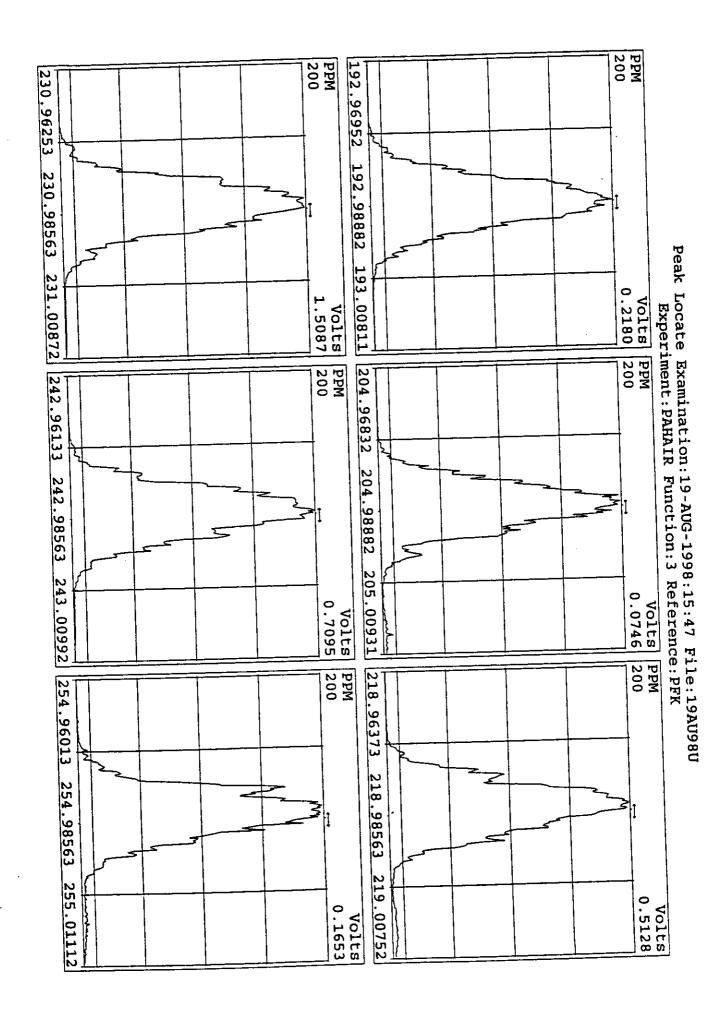
PAH CALIBRATION TABLE

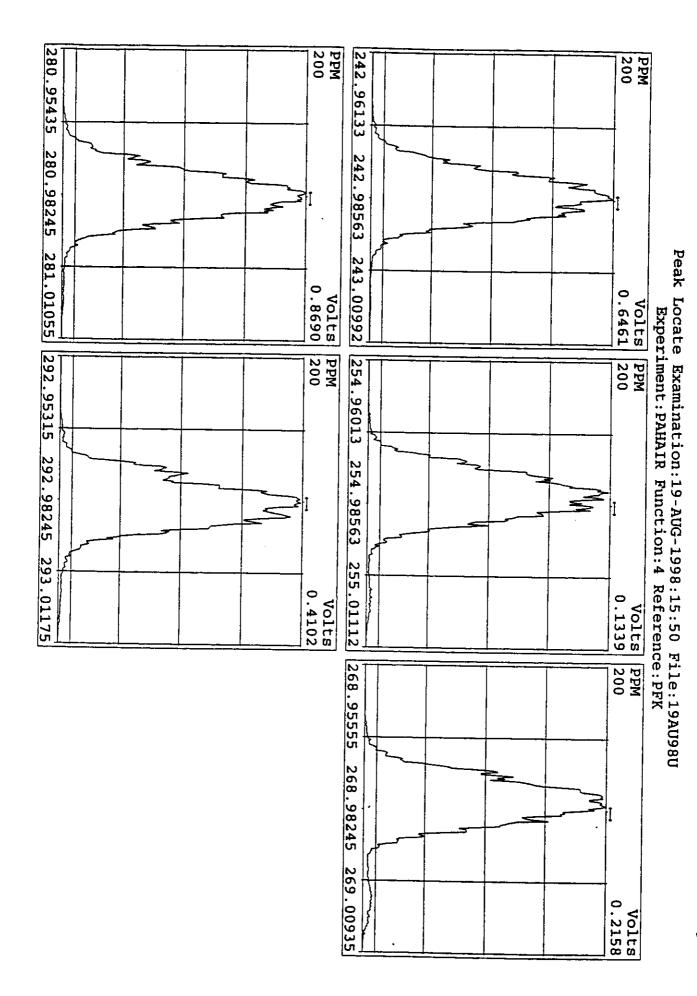
	13C-Naphthalene 13C-Fluorene				Benzo(ghi)perylene	d12-Benzo(ghi)perylene	Dibenz(ah)anthracene	Mass Spec : ULTIMA GC Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier a 260V
R R	RRF	RRF Amount	RRF Amount RF	RRF Amount		265-040,-04E;		
1. 00	1.00	0.99	0.63	1.11	Nean	Multip		
0.000	0.000	0.034	0.060	0.036	s.D.	lier a 2		
0.000	0.000	3.467	9.532	3.270	XRSD	•		
110	30.		386	60.08 60.08	10 1 10 1	NITIAL (
1.00		100.00	50.05 30.05	100.00 64.00 64.00	50.00	File name : PANAIRO819 Date analyzed : 19-AUG-98 NITIAL CALIBRATION CURVE		
1.00	3 1 8 8 8 8	100.00	100.00	10.15 10.15 10.15 10.15	3 100-00	yzed : 1		
2.0	3.1. 30.0	100.95	200.00 100.00	50.1.5 20.1.5 20.1.5	200.00	AHAIR081 9-AUG-98		
1.00	3 888	0.96	500.00	755.81 1.07 20.00	500.00	PAHAIRO81998J.RRF 19-AUG-98 VE		
					٥	-		
					~			

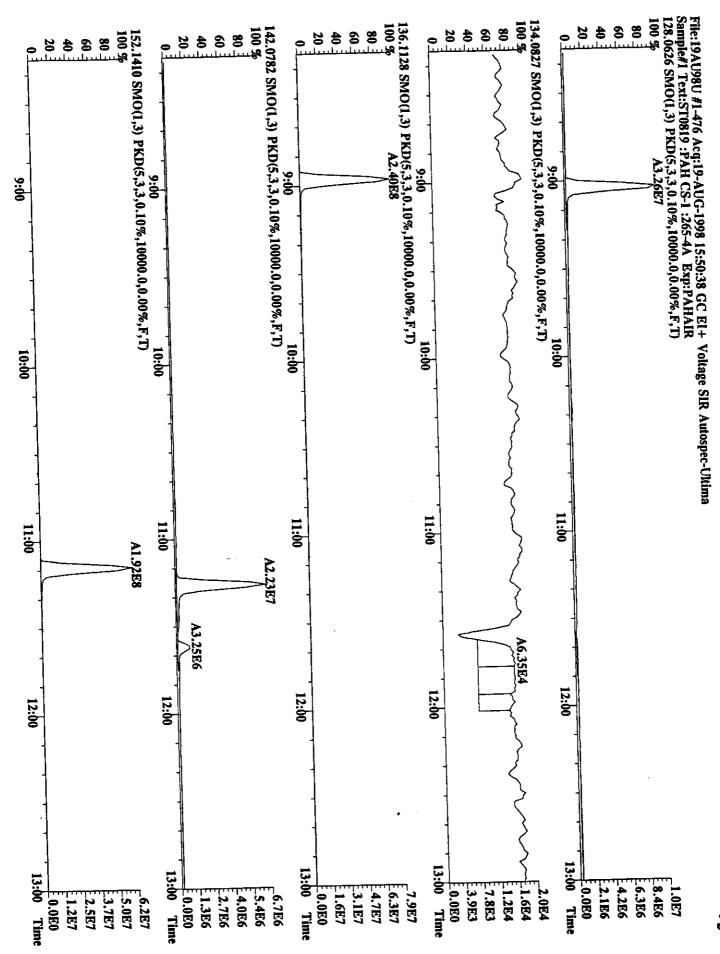
	. 1
20-AUG-1998 09:38:36 AM	PAH Ical RESULTS
Mass Spec : ULTIMA	Results : 19AU98U011.RES : PAHAIRCAL1.TRG Date analyzed : 19-AUG-98
GC Column : DB-5 Data file : 19AU98U ST	N819 :PAH CS-1 :265-4A EX Total Isotope R. T. RRF pg Rec/ Response Ratio mm:ss
d10-2-Methylnaphthalene	384118000 1.00 Y 11: 9 Y 0.00 100.00
d8-Naphthalene	480650000 1.00 Y 8: 58 Y 1.25 100.00
Naphthalene	65289400 1.00 Y 9: 2 Y 1.36 10.00 0.000
2-Methylnaphthalene	44629600 1.00 Y 11: 16 Y 0.93 10.00 0.000
d8-Acenaphthylene	648198000 1.00 Y 14: 13 Y 1.69 100.00
Acenaphthylene	55444200 1.00 Y 14: 16 Y 0.86 10.00 0.000
d10-Acenaphthene	331750000 1.00 Y 14: 47 Y 0.86 100.00
Acenaphthene	33717200 1.00 Y 14: 53 Y 1.02 10.00 0.000
d10-Anthracene	241516000 1.00 Y 19: 47 Y 0.00 100.00
d10-Fluorene	312842000 1.00 Y 16: 29 Y 1.30 100.00
Fluorene	34982600 1.00 Y 16: 35 Y 1.12 10.00 0.000
d10-Phenanthrene	632978000 1.00 Y 19: 38 Y 2.62 100.00
Phenanthrene	57229600 1.00 Y 19: 42 Y 0.90 10.00 0.000
Anthracene	54911200 1.00 Y 19: 51 Y 0.87 10.00 0.000
d14-Terphenyl	596780000 1.00 Y 24: 54 Y 0.00 100.00
d10-Fluoranthene	567796000 1.00 Y 23: 32 Y 0.95 100.00
Fluoranthene	62147000 1.00 Y 23: 35 Y 1.09 10.00 0.000
d10-Pyrene	588356000 1.00 Y 24: 14 Y 0.99 100.00
Pyrene	67727800 1.00 Y 24: 18 Y 1.15 10.00 0.000
d12-Benzo(a) anthracene	508128000 1.00 Y 28: 5 Y 0.85 100.00
Benzo(a) anthracene	53508800 1.00 Y 28: 10 Y 1.05 10.00 0.000
d12-Chrysene	608616000 1.00 Y 28: 12 Y 1.02 100.00
Chrysene	64472400 1.00 Y 28: 18 Y 1.06 10.00 0.000
d12-Benzo(e)pyrene	705306000 1.00 Y 32: 37 Y -1.00 100.00
d12-Benzo(b)fluoranthene	454992000 1.00 Y 31: 38 Y 0.65 100.00
Benzo(b)fluoranthene	49181800 1.00 Y 31: 43 Y 1.08 10.00 0.000
d12-Benzo(k) fluoranthene Benzo(k) fluoranthene	622060000 1.00 Y 31: 43 Y 0.88 100.00 79232400 1.00 Y 31: 49 Y 1.27 10.00 0.000
d12-Benzo(a) pyrene	532350000 1.00 Y 32: 49 Y 0.75 100.00
Benzo(e) pyrene	80983000 1.00 Y 32: 44 Y 1.52 10.00 0.000
Benzo(a) pyrene	59236000 1.00 Y 32: 55 Y 1.11 10.00 0.000
d12-Perylene	429470000 1.00 Y 33: 8 Y 0.61 100.00
Perylene	75514600 1.00 Y 33: 15 Y 1.76 10.00 0.000
d12-Indeno (123-cd) pyrene	483778000 1.00 Y 37: 56 Y 0.69 100.00
Indeno (123-cd) pyrene	30600000 1.00 Y 38: 4 Y 0.63 10.00 0.000
d14-Dibenz (ah) anthracene	308436000 1.00 Y 37: 58 Y 0.44 100.00
Dibenz (ah) anthracene	33295000 1.00 Y 38: 9 Y 1.08 10.00 0.000
d12-Benzo(ghi)perylene Benzo(ghi)perylene	427814000 1.00 Y 39: 19 Y 0.61 100.00 1.00 Y 39: 30 Y 1.00 10.00 0.863
d10-Fluorene	312842000 1.00 Y 16: 29 Y 0.00 100.00
13C-Fluorene	* No Peak 0.00 N 16: 34 N 0.00 100.00

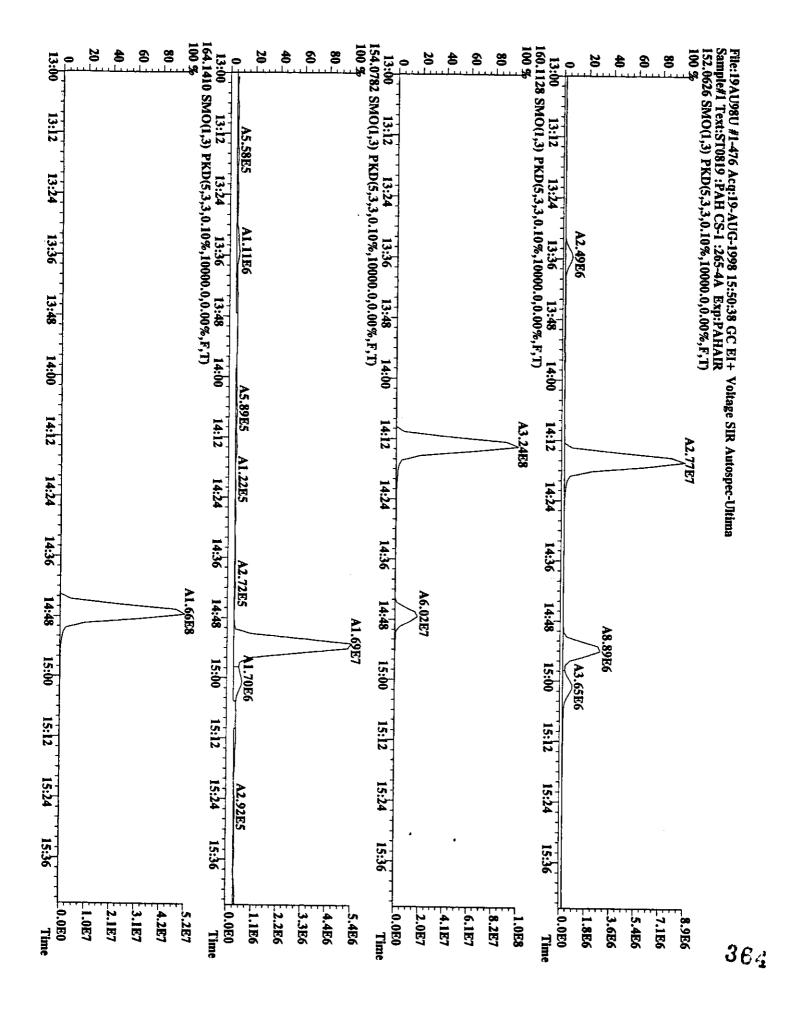

Mass Spec : ULTIMA GC Column : DB-5 Data file : 19AU98U	Results : ST0819G :PAH		Date analyzed		IRCAL2.TI IG-98.	RG
Weight : 1 Name	Total	Isotope Ratio	R. T. RRF			ec/ MDL
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	70655800 97661000 52821400 33092000	1.00 Y	8: 58 Y 9: 2 Y		00.00 .00.00 50.00 0 50.00 0	
d8-Acenaphthylene Acenaphthylene	102593200 45561000			1.45 1 0.89	.00.00 50.00 0	.000
d10-Acenaphthene Acenaphthene	63379400 30235400			0.90 1 0.95	.00.00 50.00 0	.000
d10-Anthracene d10-Fluorene Fluorene	41622200 44113200 19334800	1.00 Y	16: 28 Y		.00.00 .00.00 50.00 0	.000
d10-Phenanthrene Phenanthrene Anthracene	108617000 45664000 44457200	1.00 Y	19: 41 Y		.00.00 50.00 0. 50.00 0.	
d14-Terphenyl d10-Fluoranthene Fluoranthene	93803800 106255000 54752600	1.00 Y	23: 31 Y	1.13 1	.00.00 .00.00 50.00 0.	.000
d10-Pyrene Pyrene	102265800 56310800			1.09 1 1.10	.00.00 50.00 0.	.000
d12-Benzo(a)anthracene Benzo(a)anthracene	84111400 44511000				.00.00 50.00 0.	. 000
d12-Chrysene Chrysene	107935800 54051800				00.00 50.00 0.	.000
d12-Benzo(e) pyrene d12-Benzo(b) fluoranthene Benzo(b) fluoranthene	144534400 94962200 49402200	1.00 Y	31: 38 Y	0.66 1	00.00 00.00 50.00 0.	.000
d12-Benzo(k) fluoranthene Benzo(k) fluoranthene	118742400 71234400				00.00 50.00 0.	. 000
d12-Benzo(a) pyrene Benzo(e) pyrene Benzo(a) pyrene	107118000 79505400 54722200	1.00 Y	32: 43 Y	1.48	00.00 50.00 0. 50.00 0.	
d12-Perylene Perylene	88007400 70882600	1.00 Y 1.00 Y	33: 8 Y 33: 14 Y		00.00 50.00 0.	.000
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene	105228000 35200000				00.00 50.00 0.	.000
d14-Dibenz (ah) anthracene Dibenz (ah) anthracene	63324600 35590600		=		00.00 50.00 0.	.000
d12-Benzo(ghi)perylene Benzo(ghi)perylene	93810400 47258200	1.00 Y 1.00 Y			00.00 50.00 0 3	3394

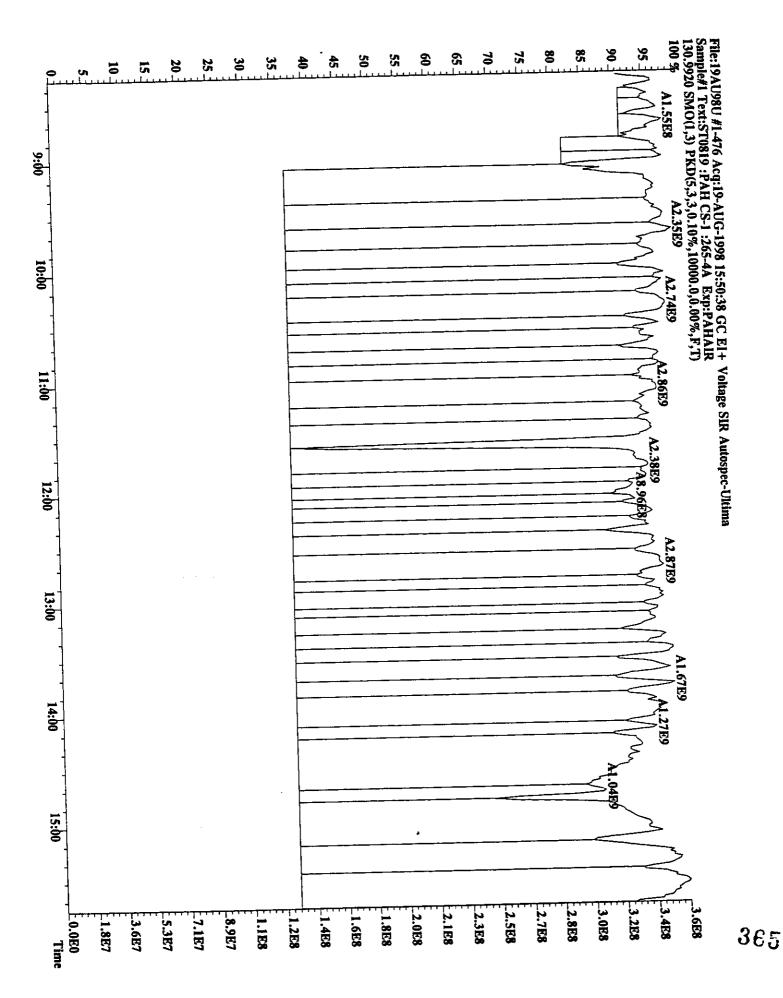

	PAH Ical RESULTS	1.
20-AUG-1998 09:56:11 AM	PAHAIRCAL3.TRG	
Mass Spec : ULTIMA GC Column : DB-5	pate analyzed . 19 Hod 99	
Data file : 19AU98U Weight : 1 Name	Total Isotope R. T. RRF pg Rec/ Response Ratio mm:ss	
	422174000 1 00 Y 11: 8 Y -1.00 100.00	
d10-2-Methylnaphthalene d8-Naphthalene	471190000 1.00 Y 8: 58 Y 1.12 100.00 0.000)
Naphthalene 2-Methylnaphthalene	400296000 1.00 Y 11: 15 Y 0.85 100.00 0.000	J
d8-Acenaphthylene Acenaphthylene	626304000 1.00 Y 14: 12 Y 1.48 100.00 593376000 1.00 Y 14: 15 Y 0.95 100.00 0.00	0
d10-Acenaphthene Acenaphthene	350080000 1.00 Y 14: 46 Y 0.83 100.00 354614000 1.00 Y 14: 52 Y 1.01 100.00 0.00	0
d10-Anthracene d10-Fluorene		0
Fluorene	328294000 1.00 1 10. 31 2 2.66 100.00	
d10-Phenanthrene Phenanthrene Anthracene	666764000 1.00 Y 19: 30 Y 0.90 100.00 0.00 601400000 1.00 Y 19: 41 Y 0.89 100.00 0.00	r 0 10
d14-Terphenyl	699008000 1.00 Y 24: 52 Y -2.00 100.00	
d10-Fluoranthene Fluoranthene	671478000 1.00 1 23 34 V 1.12 100.00 0.00)0
d10-Pyrene Pyrene	681704000 1.00 Y 24: 13 Y 0.98 100.00 0.00	00
d12-Benzo(a) anthracene Benzo(a) anthracene	501406000 1.00 Y 28: 4 Y 0.72 100.00 1.00 Y 28: 4 Y 0.72 100.00 0.00	00
d12-Chrysene Chrysene	e 641272000 1.00 Y 28: 11 Y 0.92 100.00 e 664328000 1.00 Y 28: 16 Y 1.04 100.00 0.0	00
d12-Benzo(e)pyrene	= 748758000 1.00 Y 32: 35 Y -2.00 100.00 = 474608000 1.00 Y 31: 36 Y 0.63 100.00	00
d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	e 528214000 1.00 Y 31: 42 Y 1.11 100.00 0.0	00
d12-Benzo(k)fluoranthen Benzo(k)fluoranthen	e 814150000 1:00 1 01 01	00
d12-Benzo (a) pyren Benzo (e) pyren Benzo (a) pyren	e 853246000 1.00 ¥ 32. 53 ¥ 1.06 100.00 0.0	100 100
d12-Perylen Perylen	e 450492000 1.00 Y 33: 6 Y 0.60 100.00 0.0	000
d12-Indeno (123-cd) pyren Indeno (123-cd) pyren	ne 522654000 1.00 Y 37: 52 Y 0.70 100.00	000
d14-Dibenz (ah) anthracer Dibenz (ah) anthracer	ne 331568000 1.00 Y 37: 55 Y 0.44 100.00 0.00	000
d12-Benzo(ghi)peryler Benzo(ghi)peryler	ne 457822000 1.00 Y 39: 16 Y 0.61 100.00 1.00 Y 39: 25 Y 1.03 100.00 0	360
d10-Fluore 13C-Fluore	ne 285868000 1.00 Y 16: 28 Y -1.00 100.00	
<u>,</u>		


Mass Spec : ULTIMA GC Column : DB-5 Data file : 19AU98U	Results : ST0819C :PA		Date analyz	: PAFed : 19-	HAIRCAL4.TRG -AUG-98
Weight : 1 Name	Total Response	Isotope Ratio	R.T. R	RF	pg Rec/ MDL
d10-2-Methylnaphthaler d8-Naphthaler Naphthaler 2-Methylnaphthaler	e 321956000 e 600734000	0 1.00 Y 0 1.00 Y	8: 57 Y 9: 1 Y	0.00 1.25 0.93 0.70	100.00 100.00 200.00 0.000 200.00 0.000
d8-Acenaphthyler		0 1.00 Y	14: 12 Y	1.58	100.00
Acenaphthyler		0 1.00 Y	14: 15 Y	0.81	200.00 0.000
d10-Acenaphther	e 239254000	1.00 Y	14: 46 Y	0.93	100.00
Acenaphther	e 376688000	1.00 Y	14: 53 Y	0.79	200.00 0.000
d10-Anthracer d10-Fluorer Fluorer	e 170668400	1.00 Y	19: 46 Y 16: 28 Y 16: 34 Y	-1.00 1.08 1.05	100.00 100.00 200.00 0.000
d10-Phenanthren Phenanthren Anthracen	e 639548000	1.00 Y	19: 36 Y 19: 41 Y 19: 50 Y	2.70 0.75 0.75	100.00 200.00 0.000 200.00 0.000
d14-Terpheny d10-Fluoranthen Fluoranthen	e 391988000	1.00 Y	24: 52 Y 23: 30 Y 23: 34 Y	-2.00 1.00 1.00	100.00 100.00 200.00 0.000
d10-Pyren		1.00 Y	24: 12 Y	1.02	100.00
Pyren		1.00 Y	24: 16 Y	1.06	200.00 0.000
d12-Benzo(a)anthracen	e 306152000	1.00 Y	28: 4 Y	0.78	100.00
Benzo(a)anthracen	e 634006000		28: 8 Y	1.04	200.00 0.000
d12-Chrysen		1.00 Y	28: 11 Y	1.08	100.00
Chrysen		1.00 Y	28: 16 Y	0.88	200.00 0.000
d12-Benzo(e)pyren d12-Benzo(b)fluoranthen Benzo(b)fluoranthen	e 310836000	1.00 Y	32: 35 Y 31: 36 Y 31: 42 Y	-2.00 0.63 1.06	100.00 100.00 200.00 0.000
d12-Benzo(k) fluoranthen	458844000		31: 42 Y	0.93	100.00
Benzo(k) fluoranthen	998720000		31: 46 Y	1.09	200.00 0.000
d12-Benzo(a) pyren Benzo(e) pyren Benzo(a) pyren	1063608000	1.00 Y	32: 41 Y	1.44	100.00 200.00 0.000 200.00 0.000
d12-Perylen		1.00 Y	33: 6 Y	0.62	100.00
Perylen		1.00 Y	33: 12 Y	1.66	200.00 0.000
d12-Indeno(123-cd)pyren	309102000	1.00 Y	37: 53 Y	0.63	100.00
Indeno(123-cd)pyren	350000000	1.00 Y	38: 0 Y	0.57	200.00 0.000
d14-Dibenz (ah) anthracen	187749200	1.00 Y	37: 54 Y	0.38	100.00
Dibenz (ah) anthracen	424146000	1.00 Y	38: 6 Y	1.13	200.00 0.000
d12-Benzo(ghi)perylend	277246000	1.00 Y	39: 16 Y	0.56	100.00
Benzo(ghi)perylend	529478000	1.00 Y	39: 25 Y	0.95	200.00 0 ിന്റ്റ്
d10-Fluorene	170668400	1.00 Y	16: 28 Y	-1.00	100.00
13C-Fluorene	* * No Peak	0.00 N	16: 33 N	0.00	

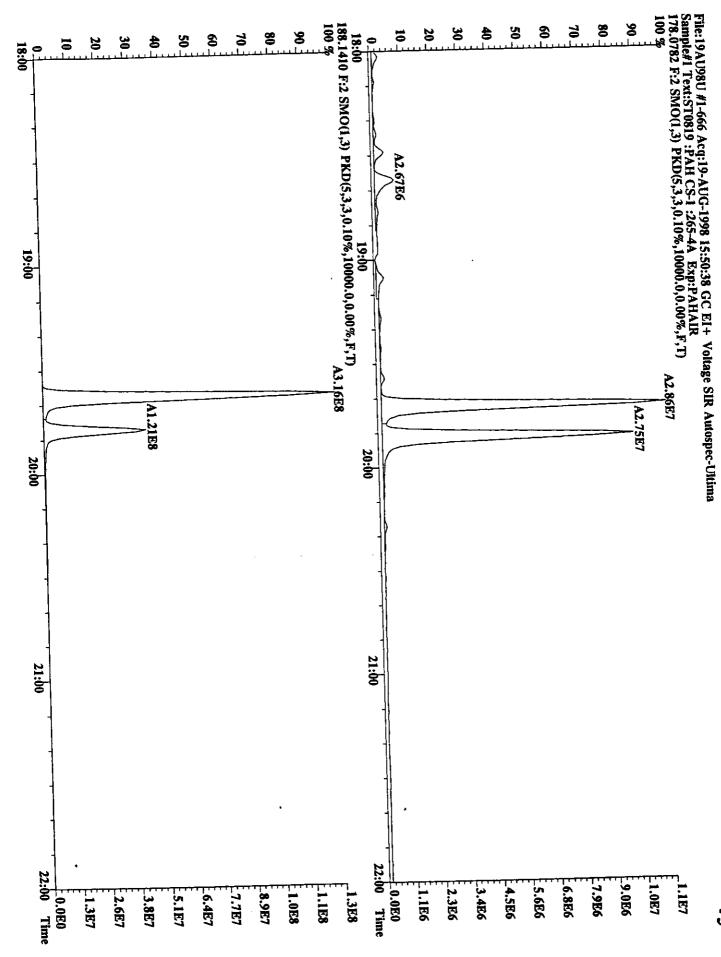

1000 00.59.14 AM	PAH Ical RESULTS	•
20-AUG-1998 09:59:14 AM Mass Spec : ULTIMA	Results: 19AU98U051.RES : PAHAIRCAL5.TRG Date analyzed: 19-AUG-98	
GC Column : DB-5 Data file : 19AU98U S' Weight : 1 Name	T0819D :PAH CS-5 :265-4E Ex Total Isotope R. T. RRF pg Rec/ Response Ratio mm:ss MDL	
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	312318000 1.00 Y 11: 8 Y -1.00 100.00 384698000 1.00 Y 8: 58 Y 1.23 100.00 1787952000 1.00 Y 9: 2 Y 0.93 500.00 0.000 1342716000 1.00 Y 11: 15 Y 0.70 500.00 0.000	
d8-Acenaphthylene Acenaphthylene	483206000 1.00 Y 14: 12 Y 1.55 100.00 1963764000 1.00 Y 14: 14 Y 0.81 500.00 0.000	
d10-Acenaphthene Acenaphthene	271792000 1.00 Y 14: 46 Y 0.87 100.00 1193762000 1.00 Y 14: 52 Y 0.88 500.00 0.000	
d10-Anthracene d10-Fluorene Fluorene	196074200 1.00 Y 19: 45 Y -2.00 100.00 209792000 1.00 Y 16: 28 Y 1.07 100.00 1108328000 1.00 Y 16: 33 Y 1.06 500.00 0.000	
d10-Phenanthrene Phenanthrene Anthracene	502286000 1.00 Y 19: 36 Y 2.56 100.00 2036380000 1.00 Y 19: 40 Y 0.81 500.00 0.000 2063520000 1.00 Y 19: 49 Y 0.82 500.00 0.000	
d14-Terphenyl d10-Fluoranthene Fluoranthene	451978000 1.00 Y 24: 52 Y -2.00 100.00 448256000 1.00 Y 23: 30 Y 0.99 100.00 2150020000 1.00 Y 23: 34 Y 0.96 500.00 0.000	
d10-Pyrene Pyrene	445760000 1.00 Y 24: 13 Y 0.99 100.00 2349400000 1.00 Y 24: 16 Y 1.05 500.00 0.000	
d12-Benzo(a) anthracene Benzo(a) anthracene	376244000 1.00 Y 28: 4 Y 0.83 100.00 1931110000 1.00 Y 28: 8 Y 1.03 500.00 0.000	
d12-Chrysene Chrysene	522746000 1.00 Y 28: 11 Y 1.16 100.00 2305500000 1.00 Y 28: 15 Y 0.88 500.00 0.000	
d12-Benzo(e)pyrene d12-Benzo(b)fluoranthene Benzo(b)fluoranthene	571326000 1.00 Y 32: 35 Y -2.00 100.00 322248000 1.00 Y 31: 36 Y 0.56 100.00 1685828000 1.00 Y 31: 41 Y 1.05 500.00 0.000	
d12-Benzo(k)fluoranthene Benzo(k)fluoranthene	539896000 1.00 Y 31: 42 Y 0.94 100.00 2725660000 1.00 Y 31: 46 Y 1.01 500.00 0.000	
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	438166000 1.00 Y 32: 47 Y 0.77 100.00 2945800000 1.00 Y 32: 41 Y 1.34 500.00 0.000 2058000000 1.00 Y 32: 52 Y 0.94 500.00 0.000	
d12-Perylene Perylene	362286000 1.00 Y 33: 5 Y 0.63 100.00 2899860000 1.00 Y 33: 11 Y 1.60 500.00 0.000	
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene	453826000 1.00 Y 37: 51 Y 0.79 100.00 1276000000 1.00 Y 37: 59 Y 0.56 500.00 0.000	
d14-Dibenz (ah) anthracene Dibenz (ah) anthracene	289594000 1.00 Y 37: 54 Y 0.51 100.00 1551682000 1.00 Y 38: 4 Y 1.07 500.00 0.000	
d12-Benzo(ghi)perylene Benzo(ghi)perylene	412828000 1.00 Y 39: 15 Y 0.72 100.00 35 1974510000 1.00 Y 39: 24 Y 0.96 500.00 0.00	•
d10-Fluorene 13C-Fluorene	209792000 1.00 Y 16: 28 Y -1.00 100.00	

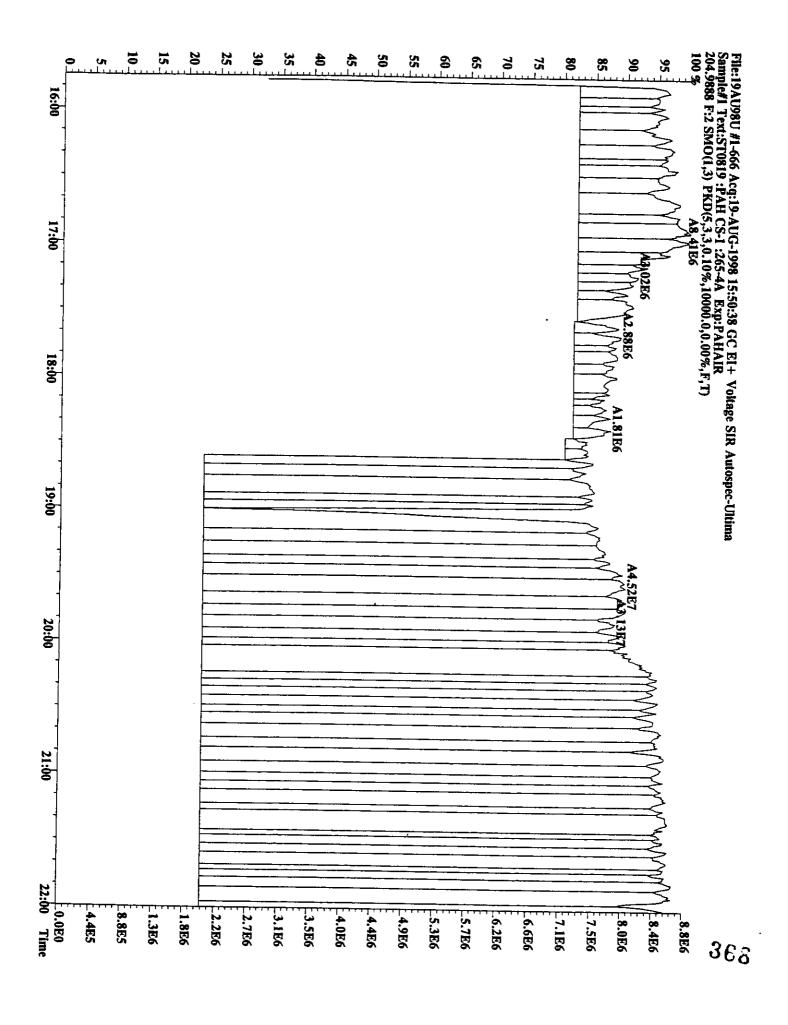

FILE	SAMP No. (1)	LAB. SAMP No	CUSTOMER ID	CLEAN UP 1 (SDS)	CLEAN UP 2 (D2)	TYPE	CONCn.
19AU98U	123456789111111111122222222233333333334444456	ST0819 ST0819A ST0819B ST0819C ST0819F SB0819A 300569-1LC 300533-1 300533-3 300533-6 300533-5 300533-8 300569-1 300569-2 300569-3 300569-3 300569-5 300569-7 SB0819B ST0819G		265-4A 265-4B 651-21 265-4E C8 651-21 C8 Soil Air Air Air Air Air Soil Soil Soil Soil Soil Soil Soil Soil	PAH PAH PAH PAH PAH PAH PAH PAH PAH PAH	VSE-22 VSE-22	11111111111111111111111111111111111111
19AU98U 19AU98U 19AU98U 19AU98U	46 47 48 49 50						

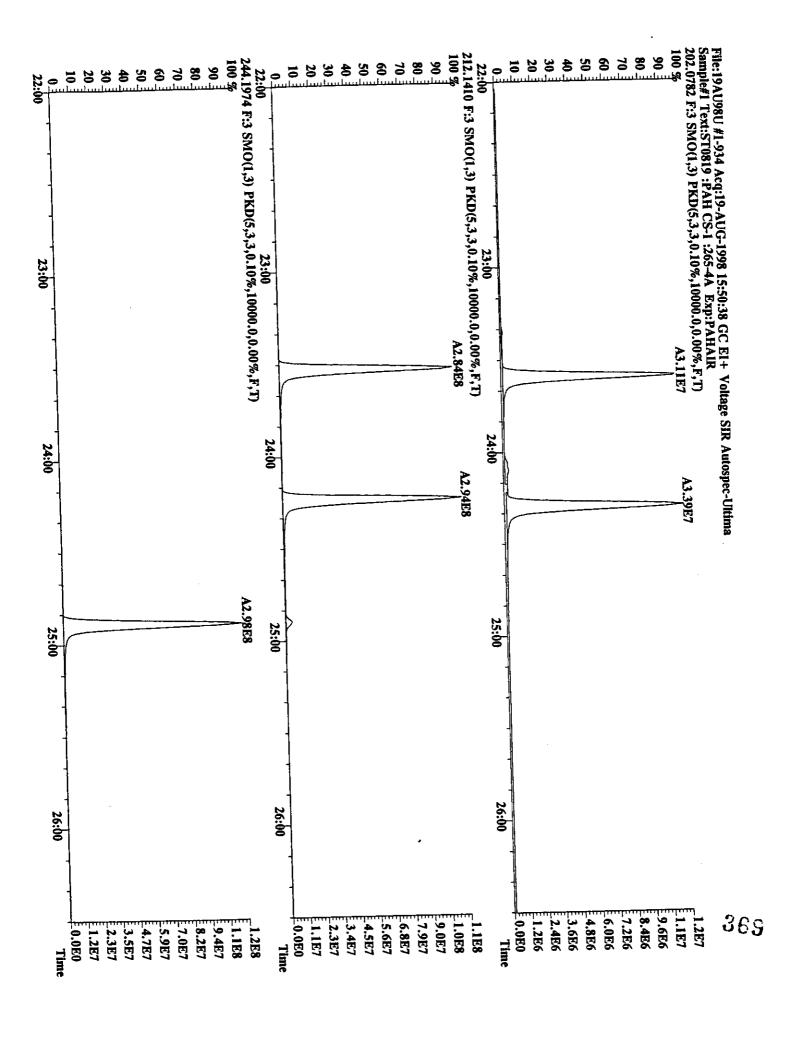


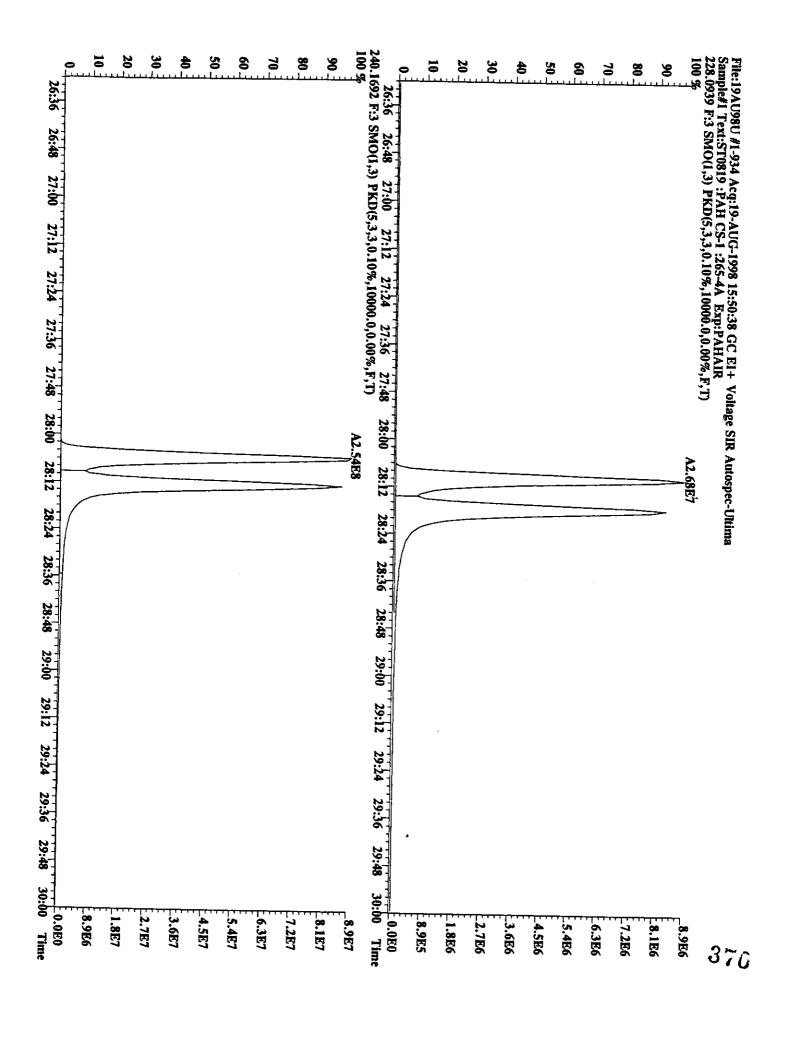


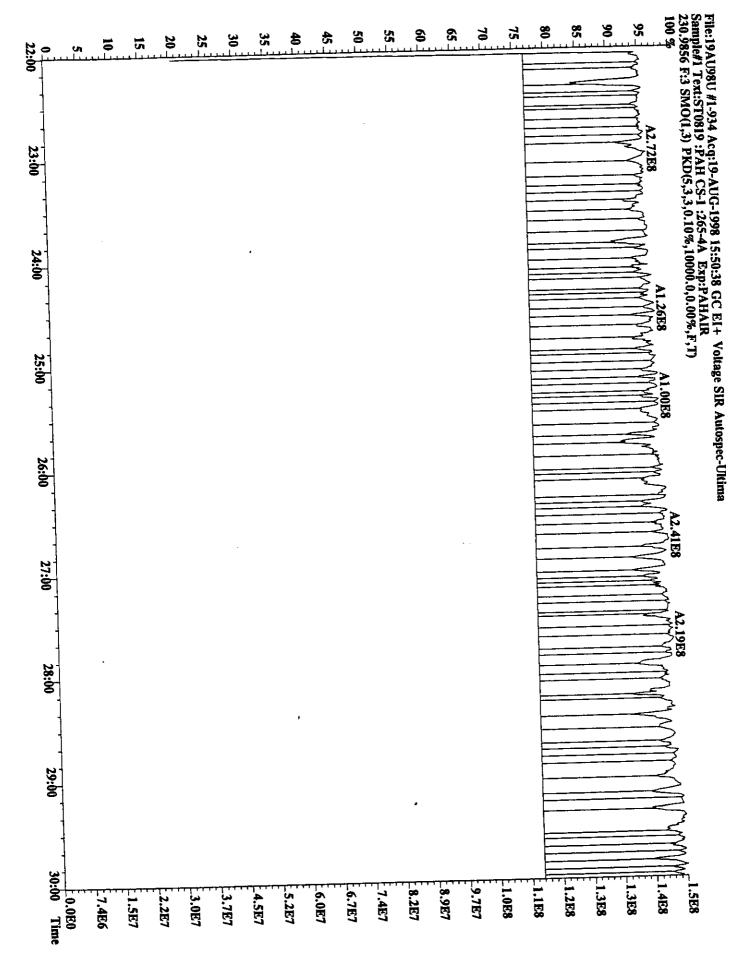


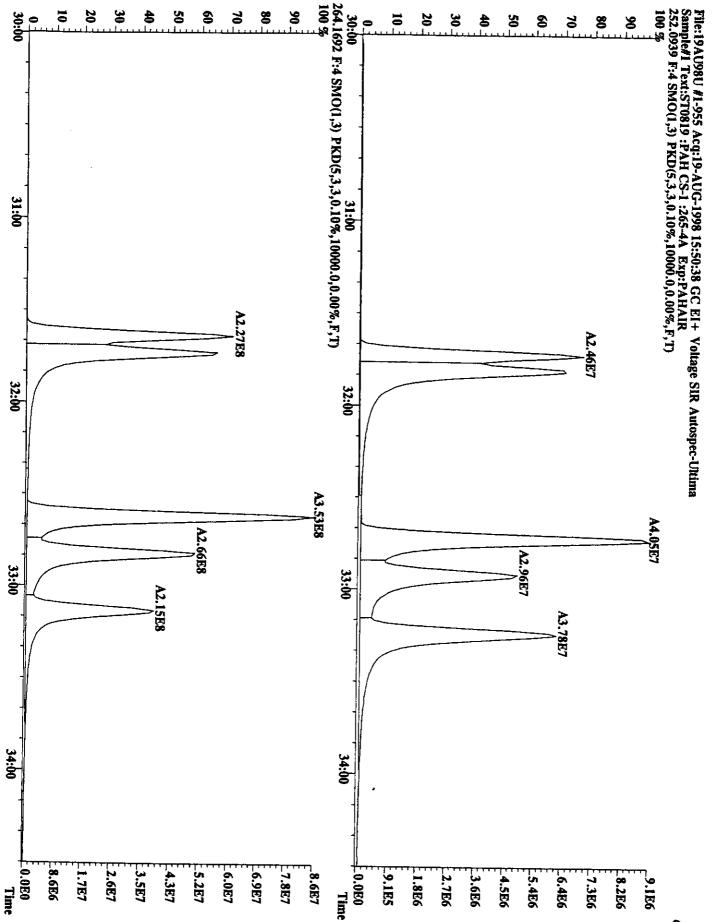


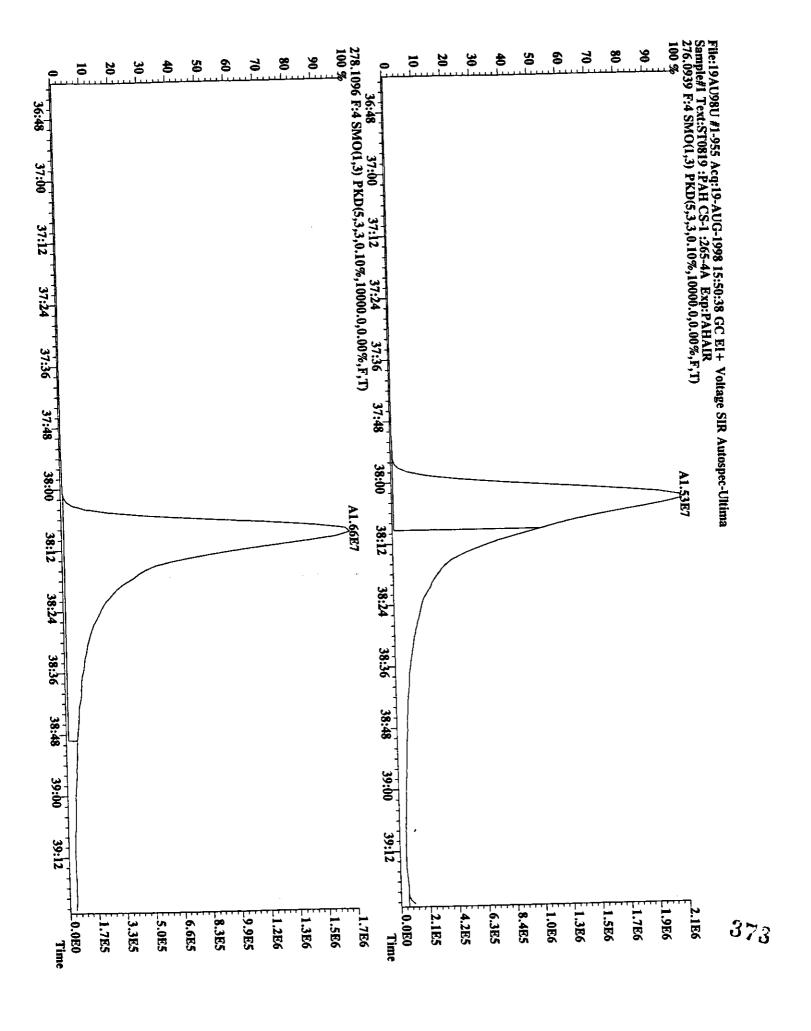


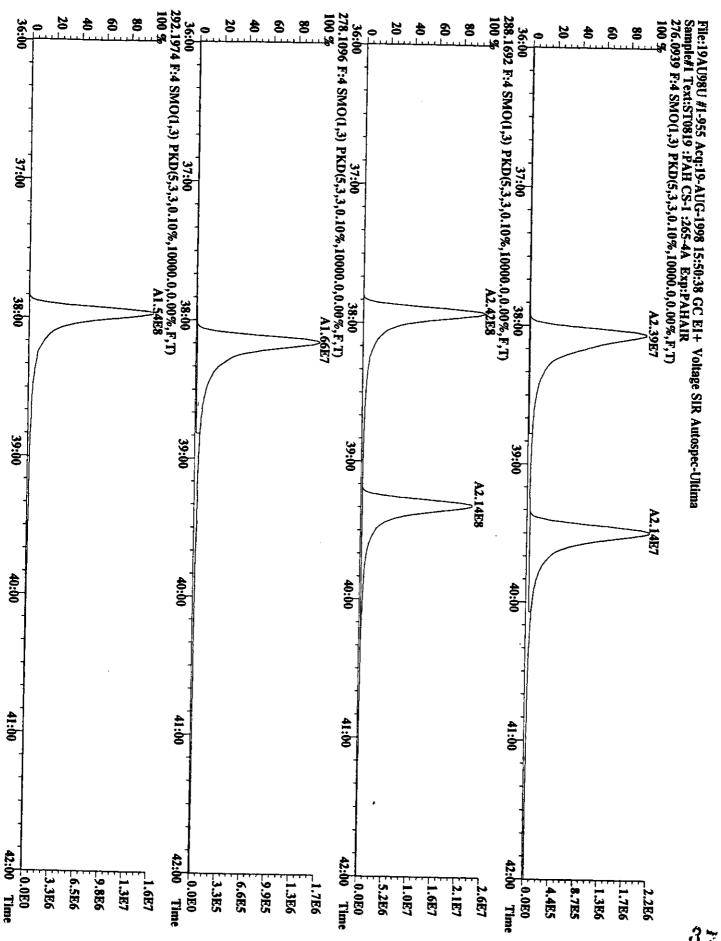


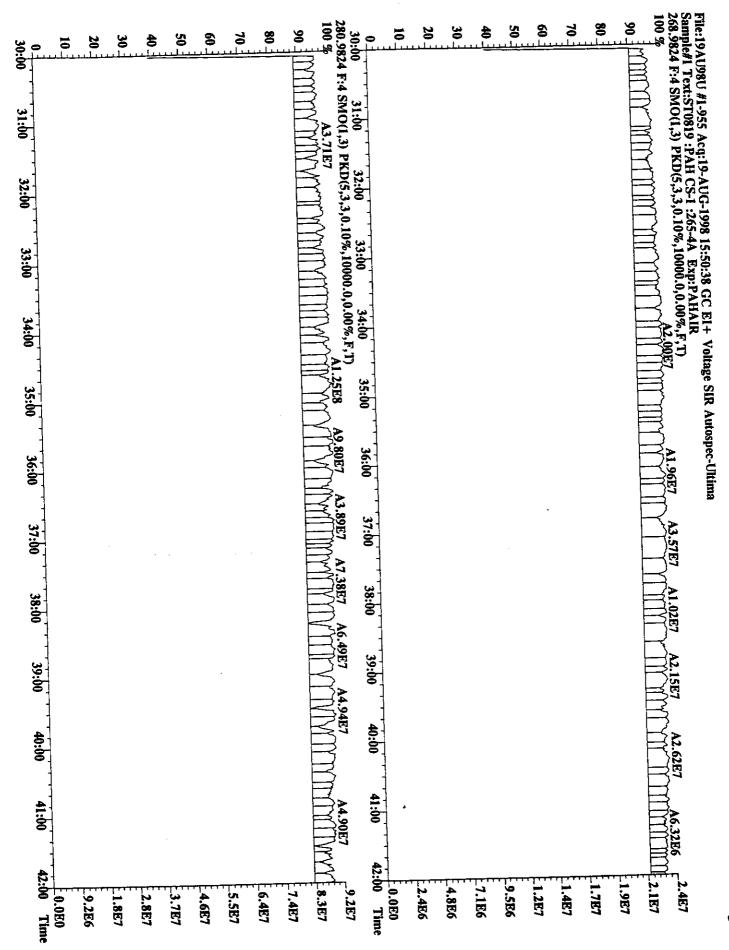


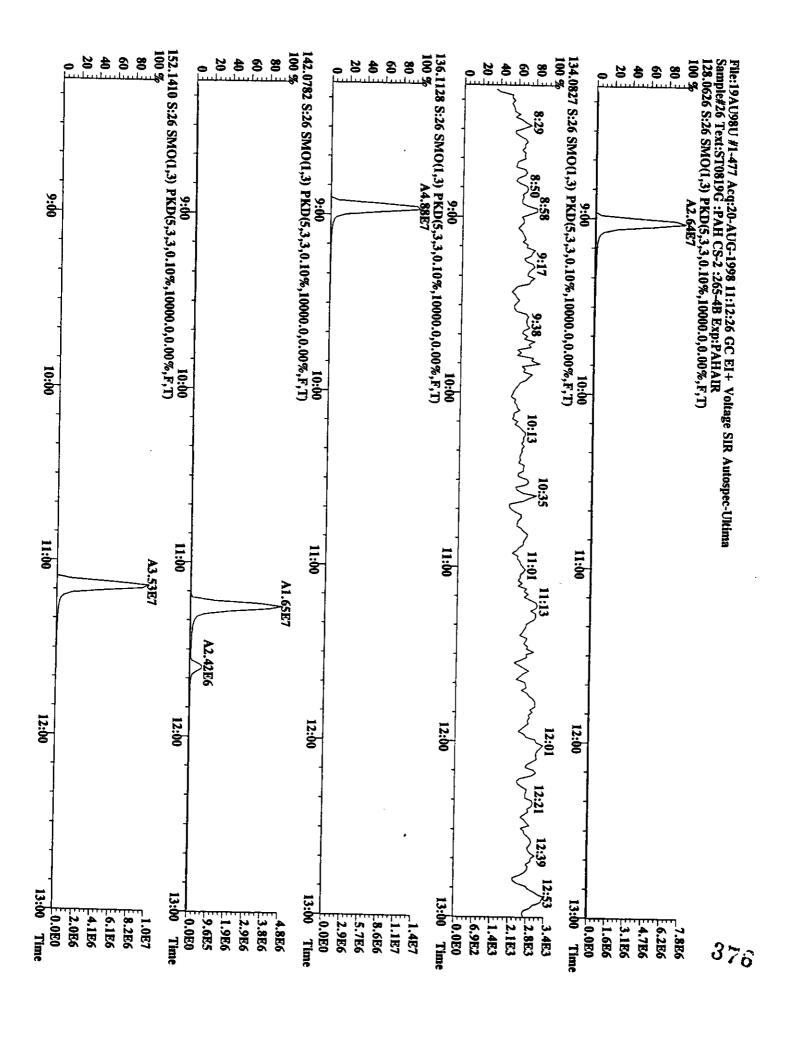


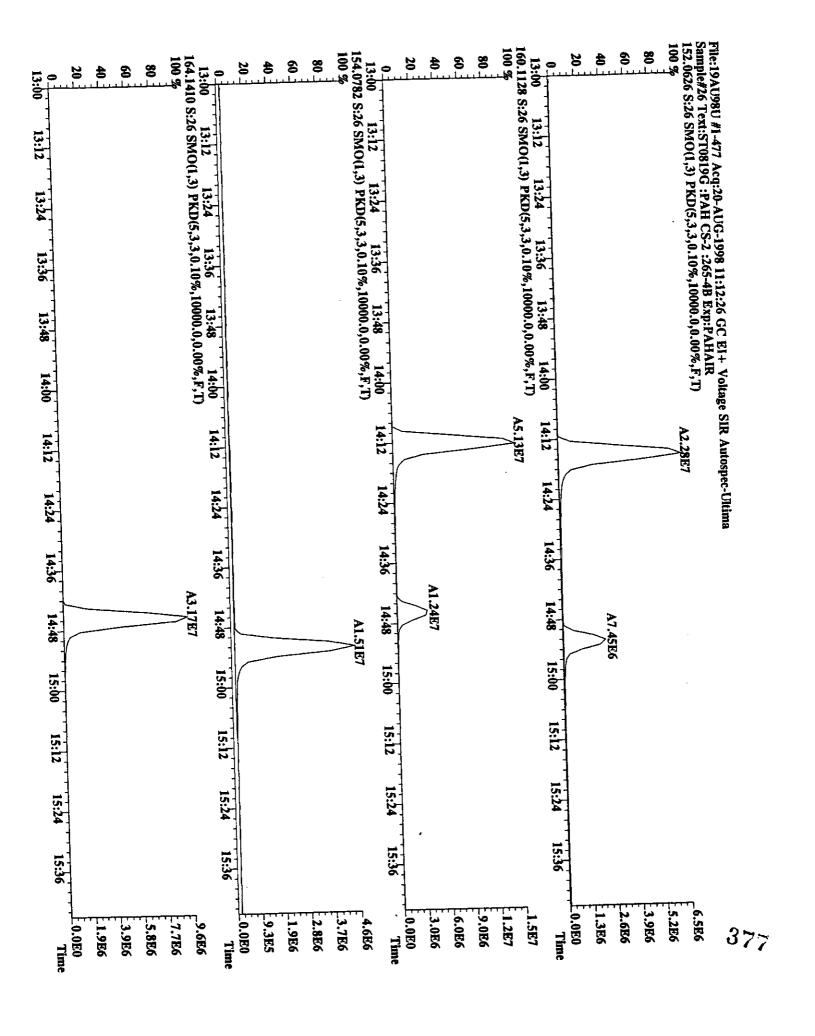


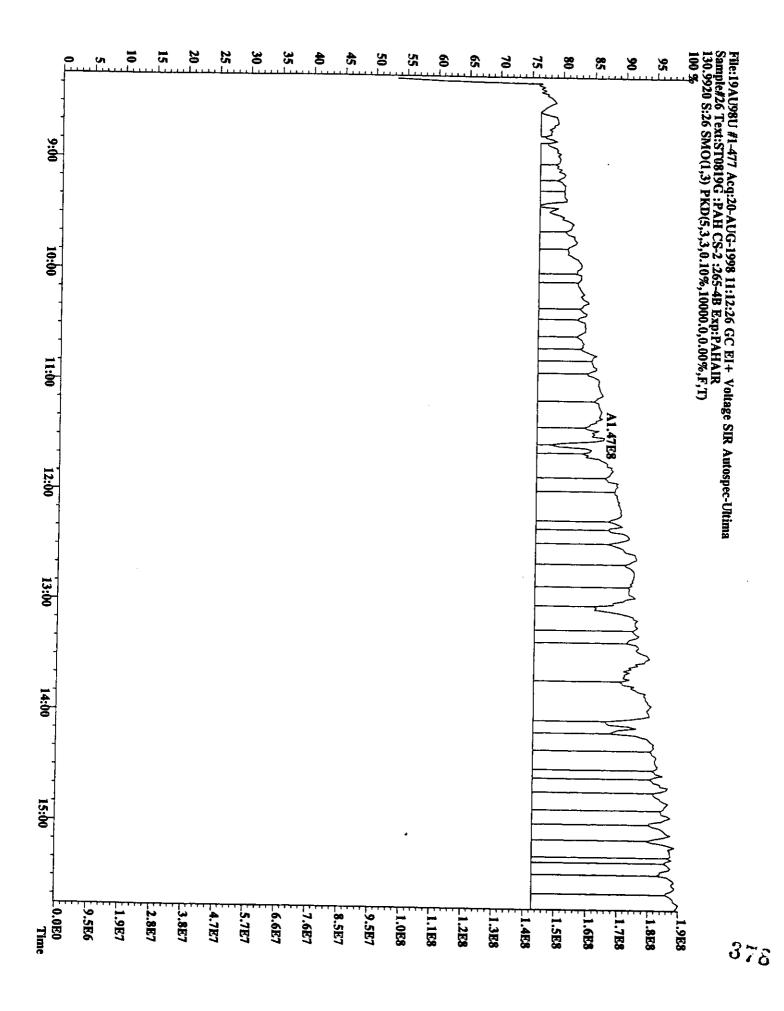


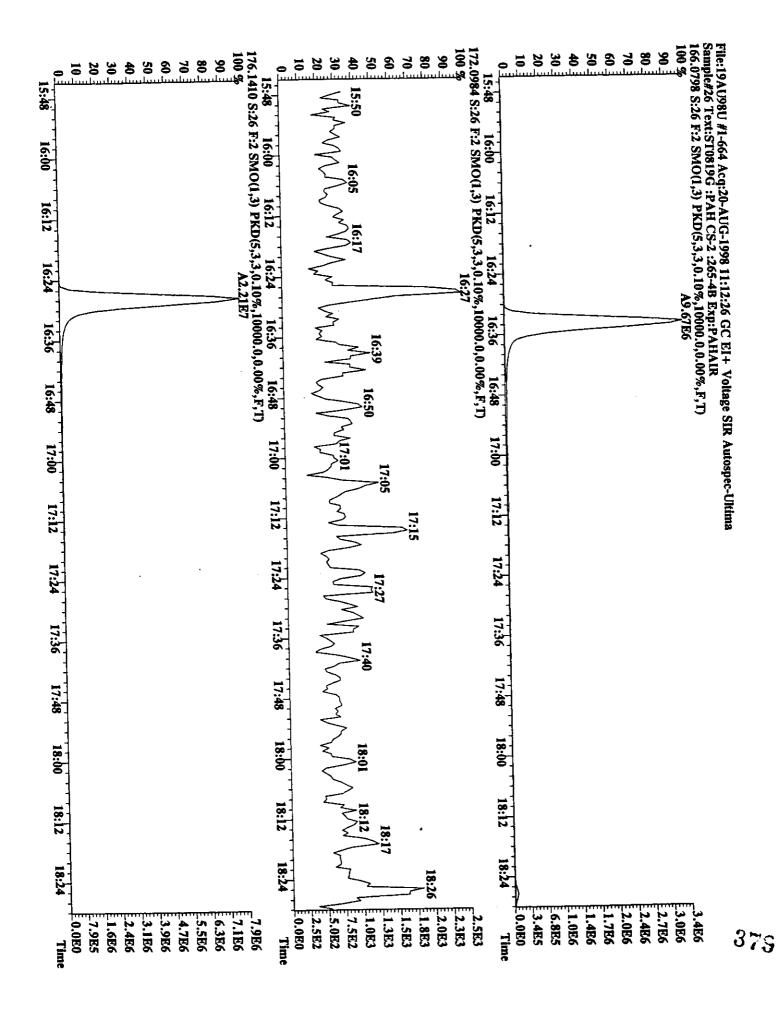


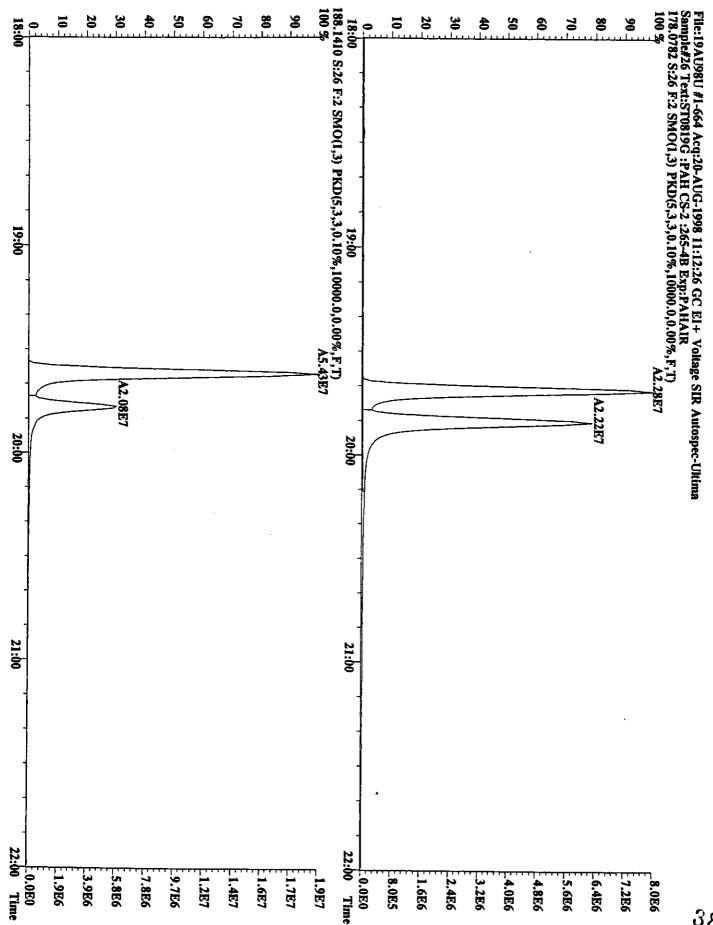




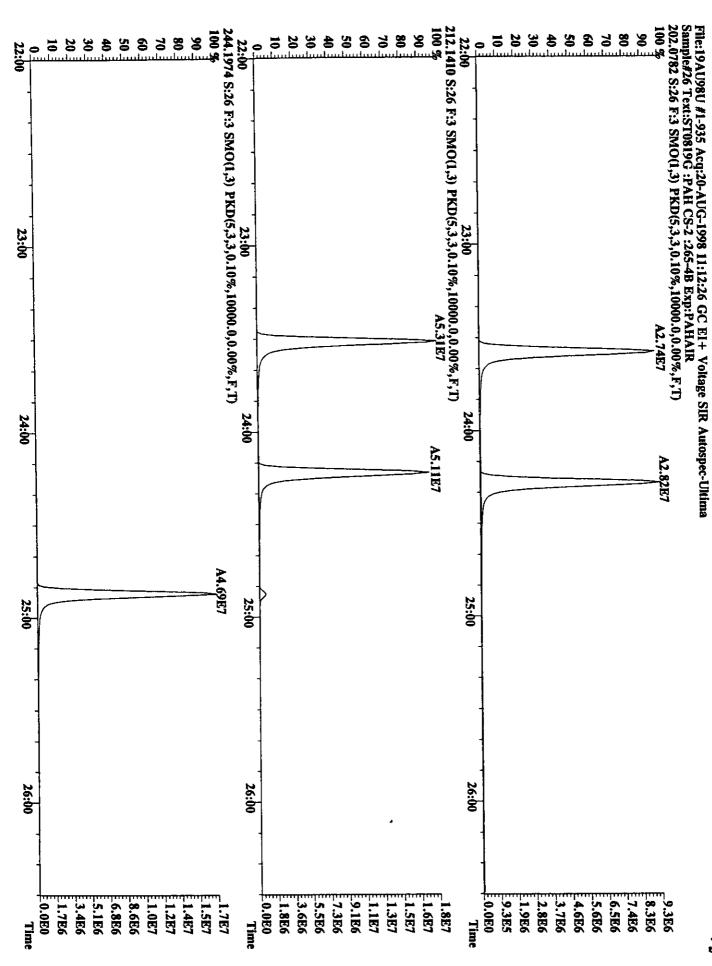


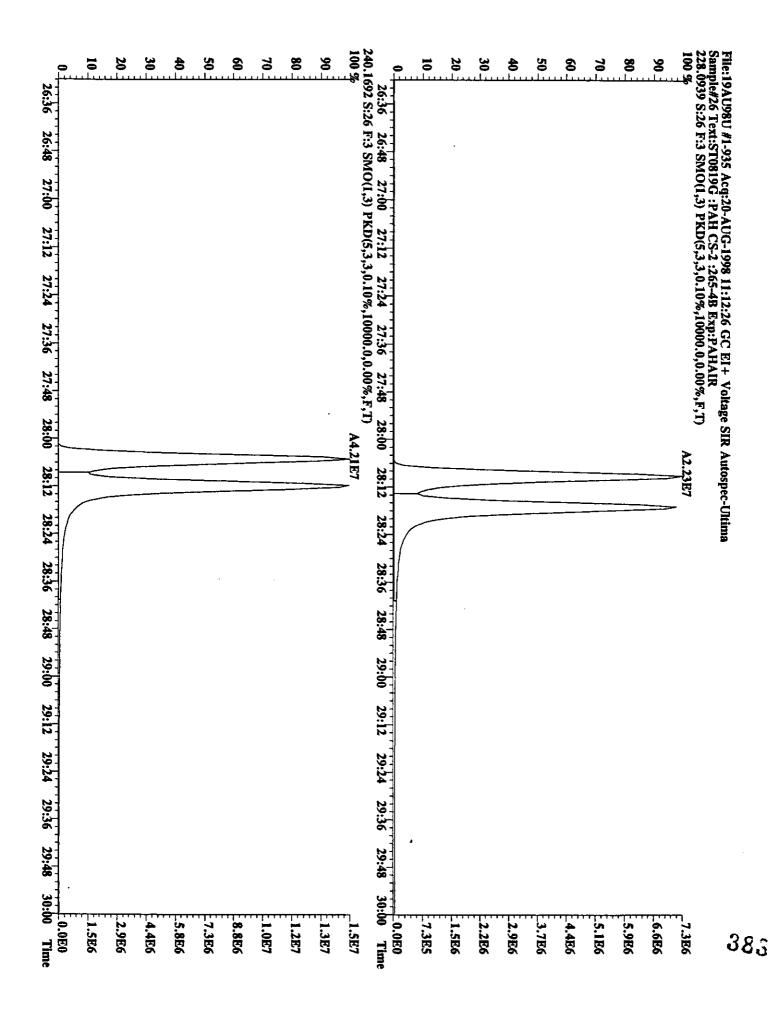


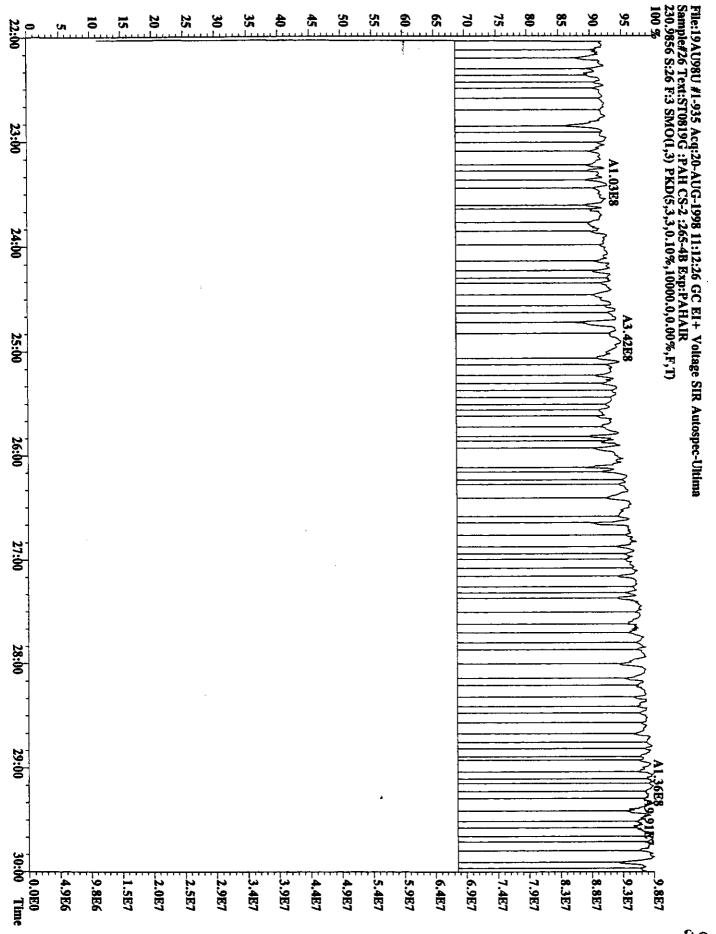


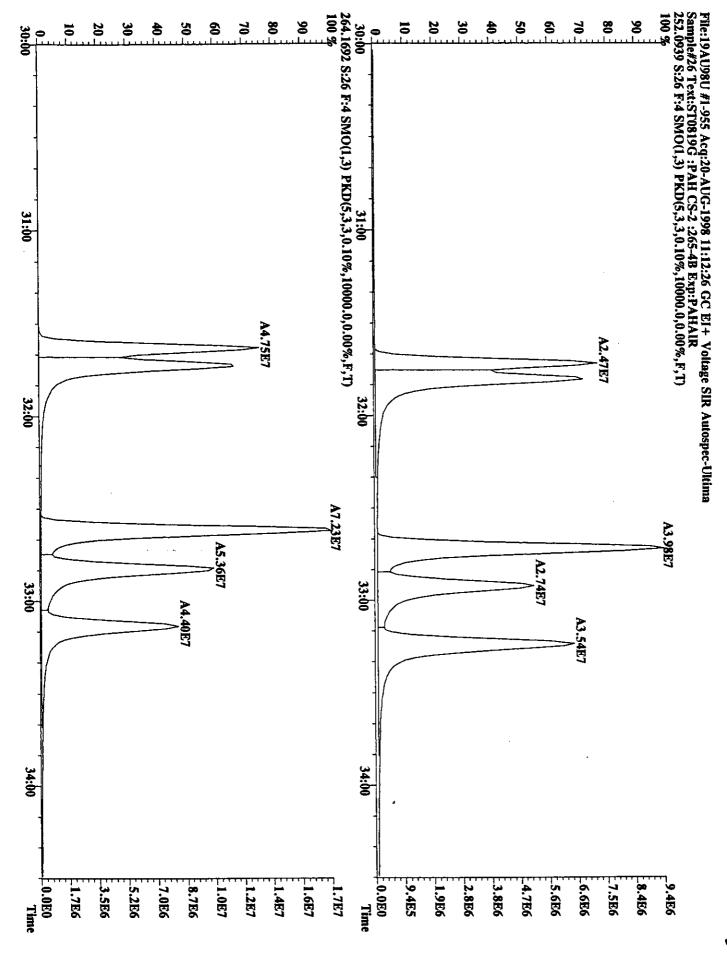


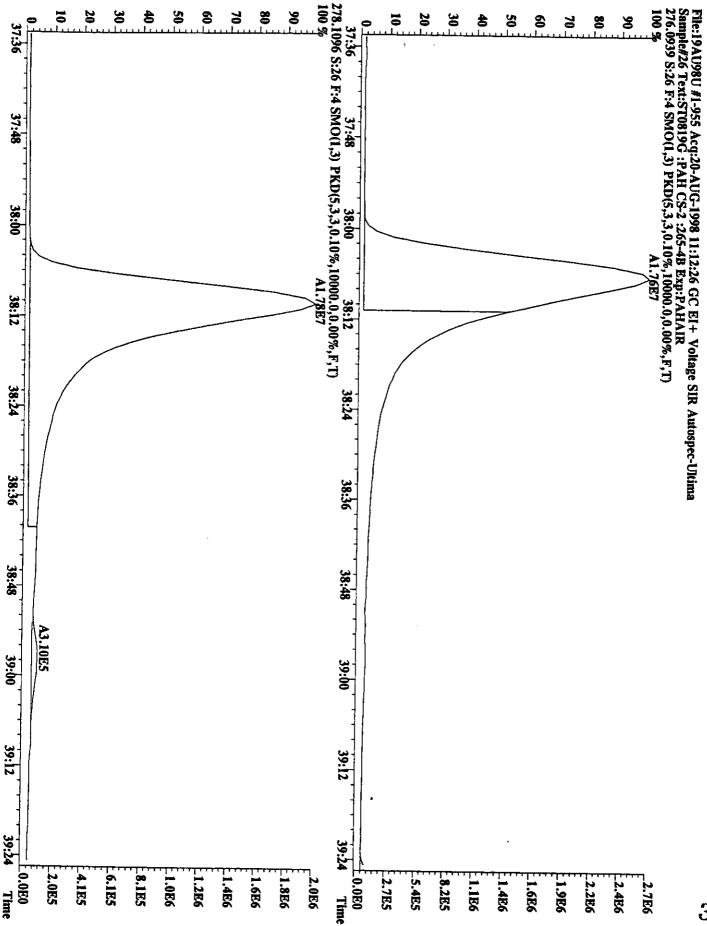


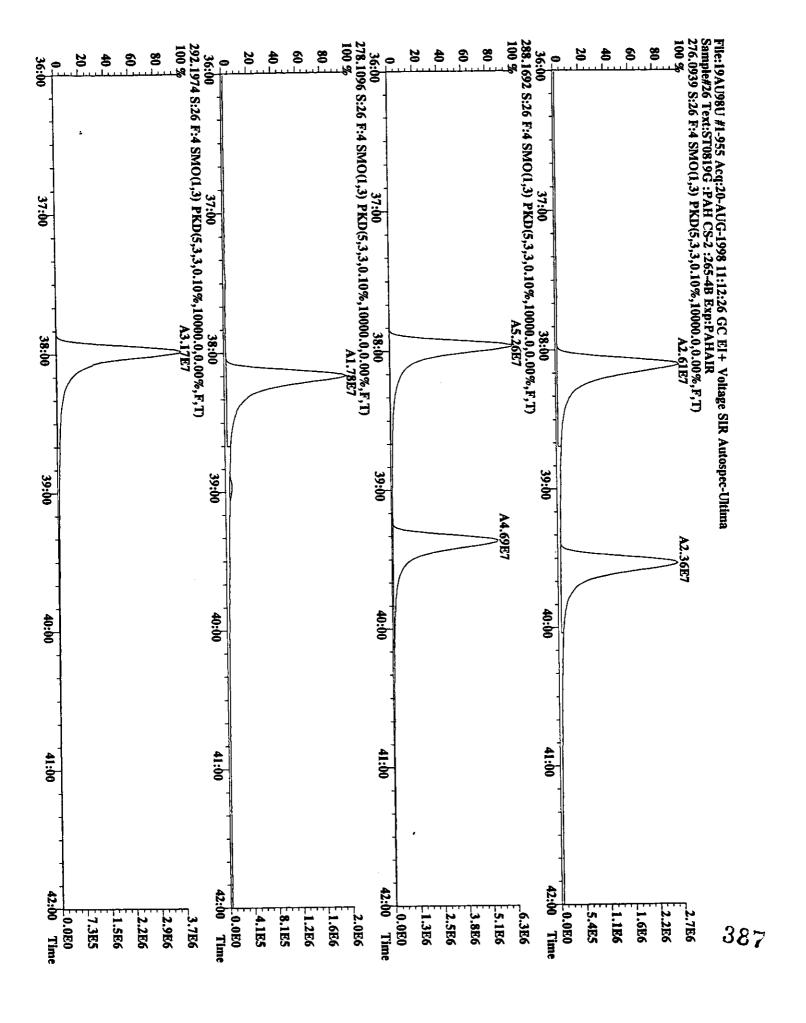


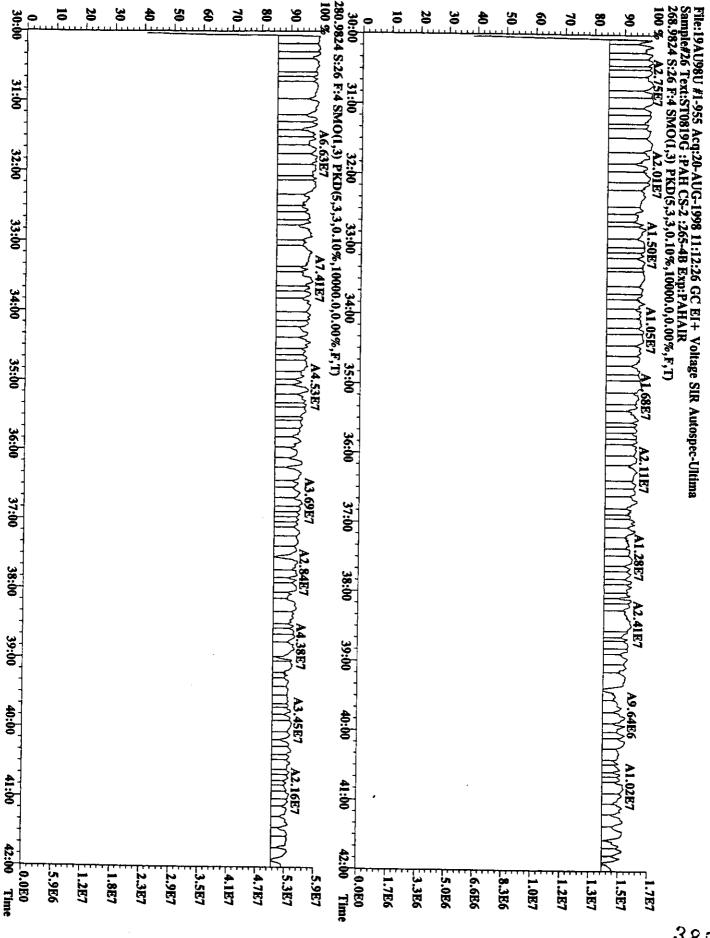


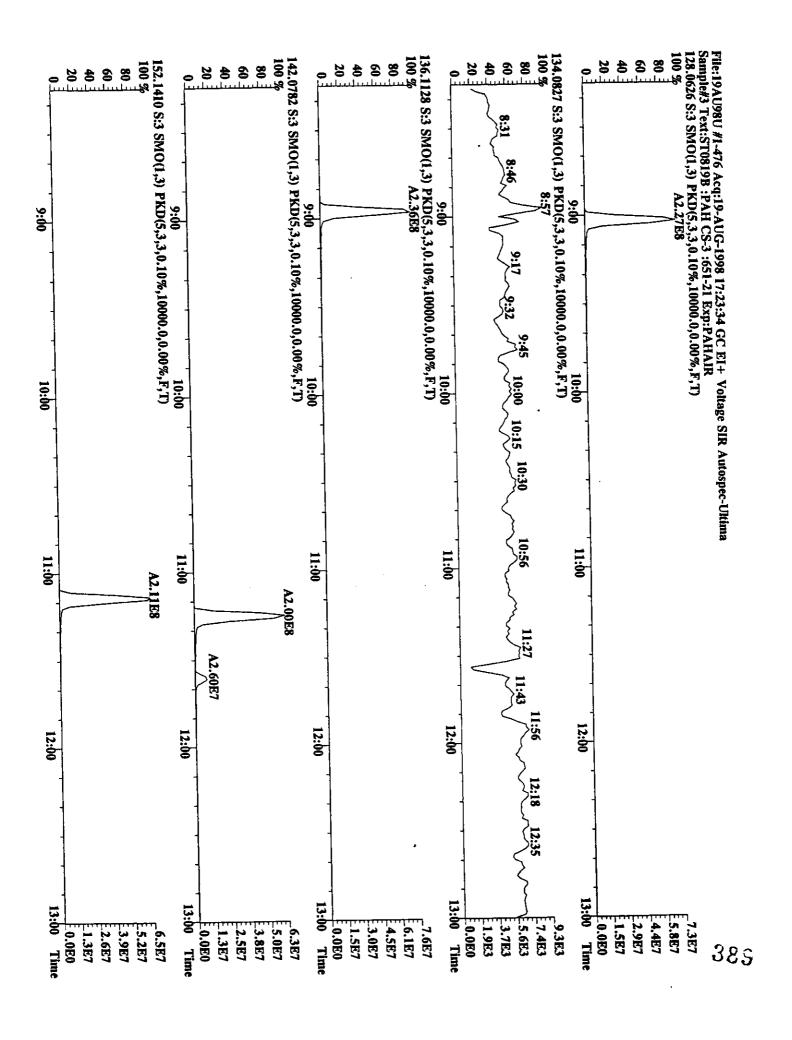


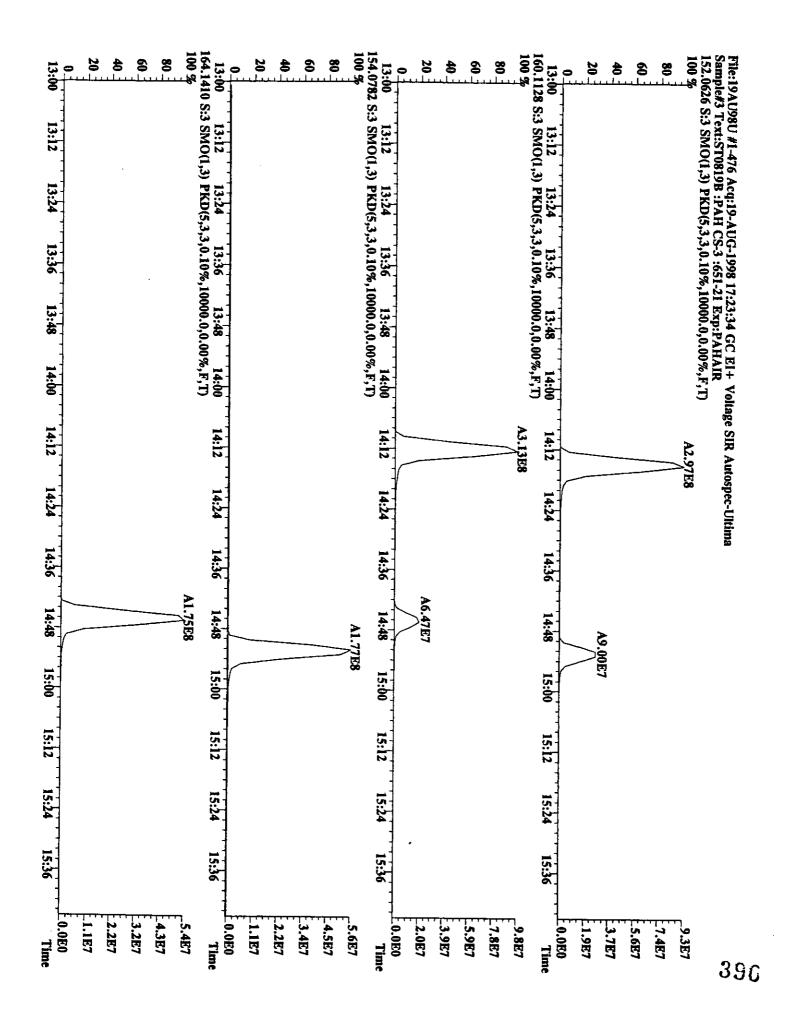


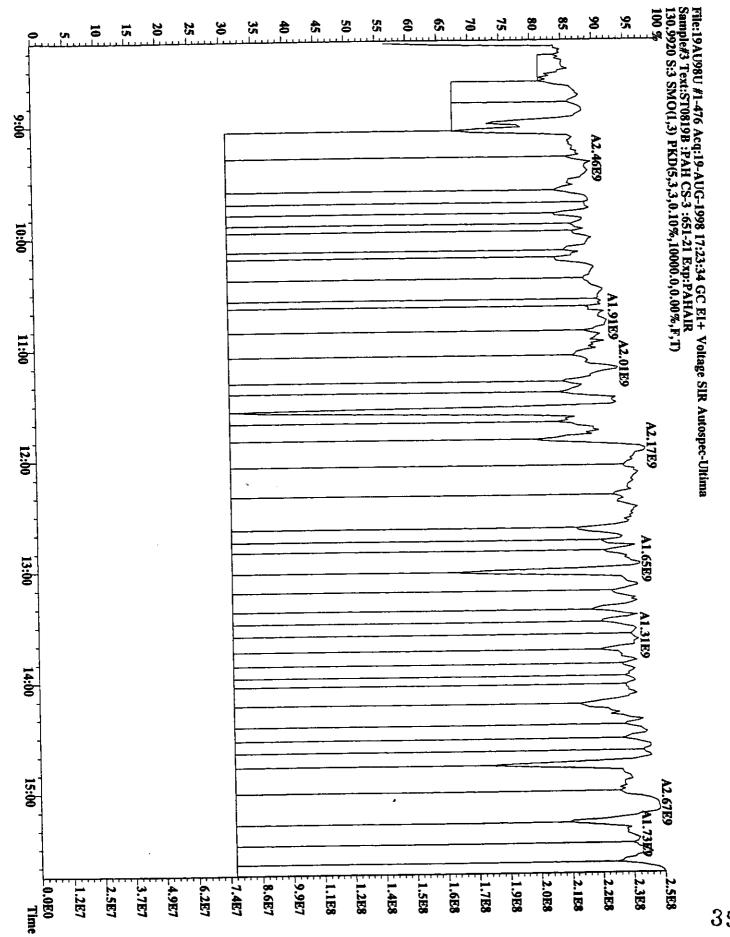


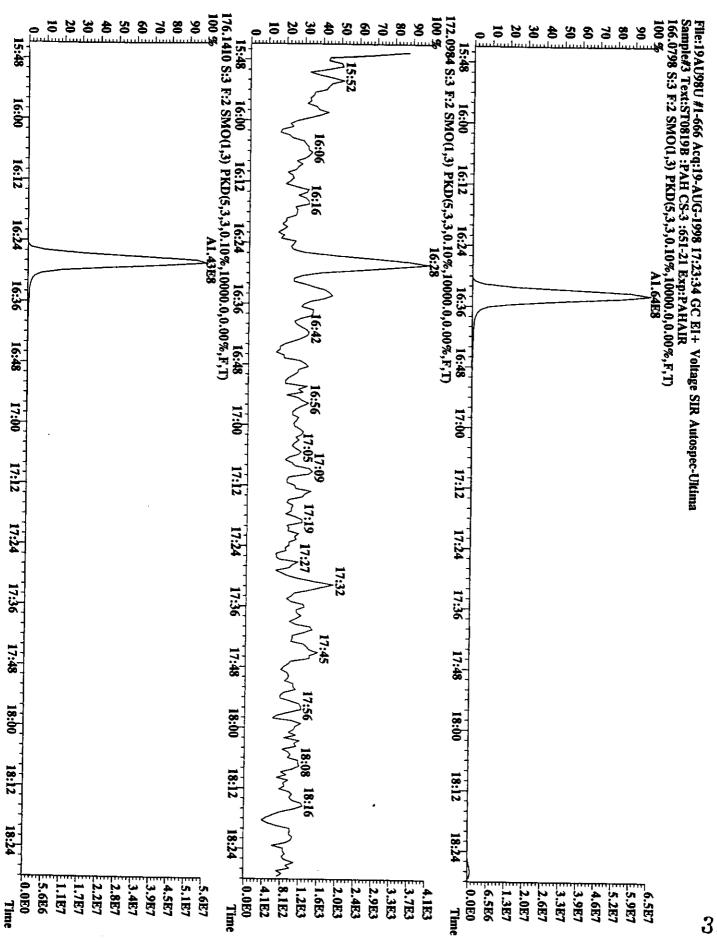


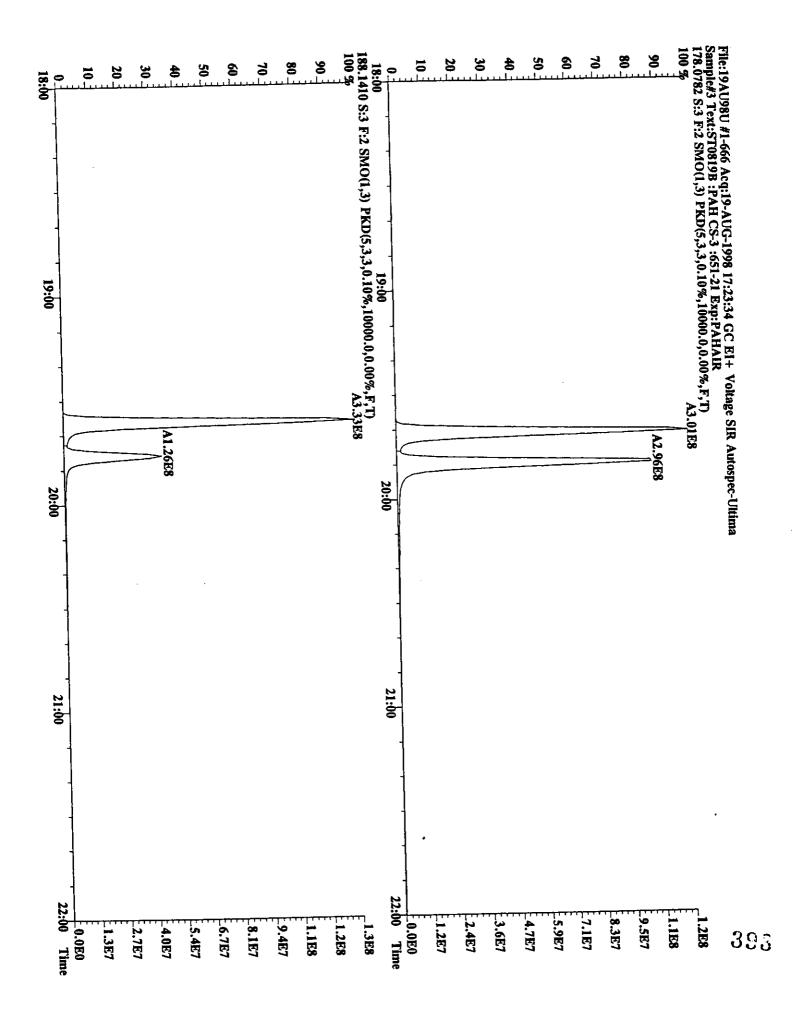


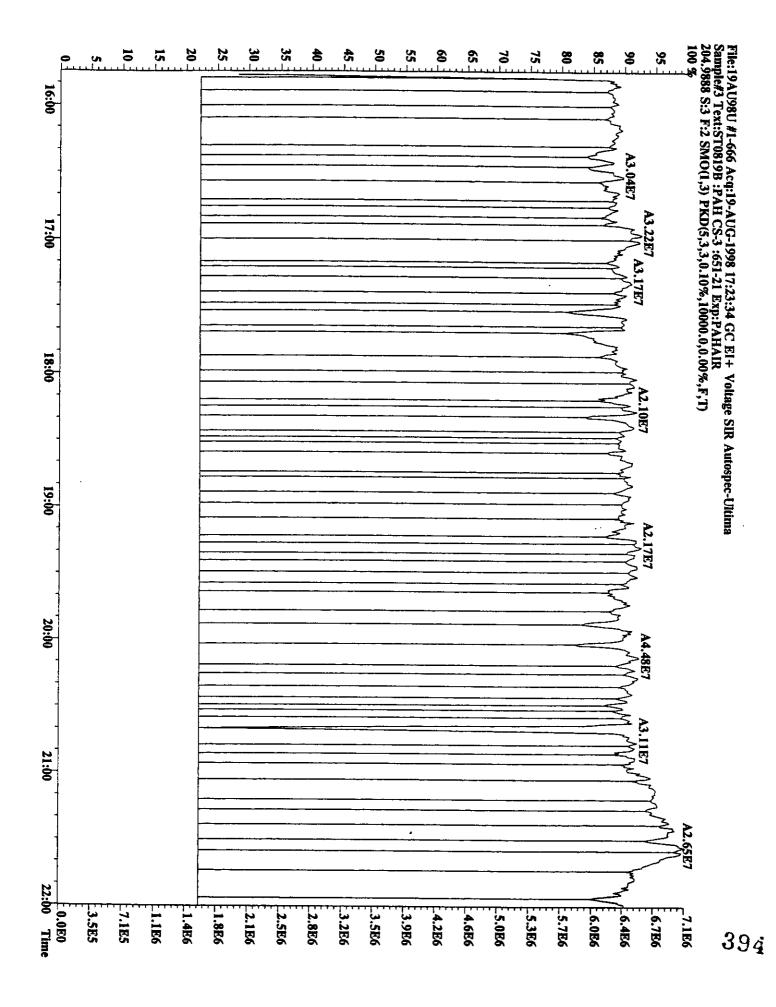


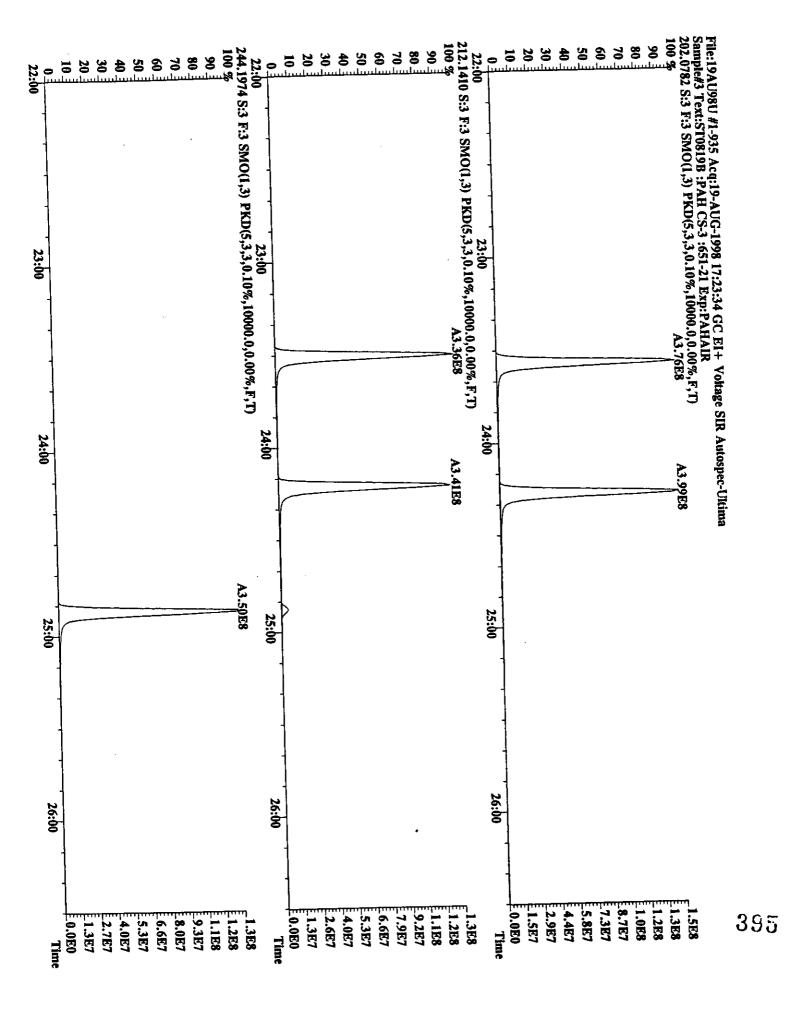


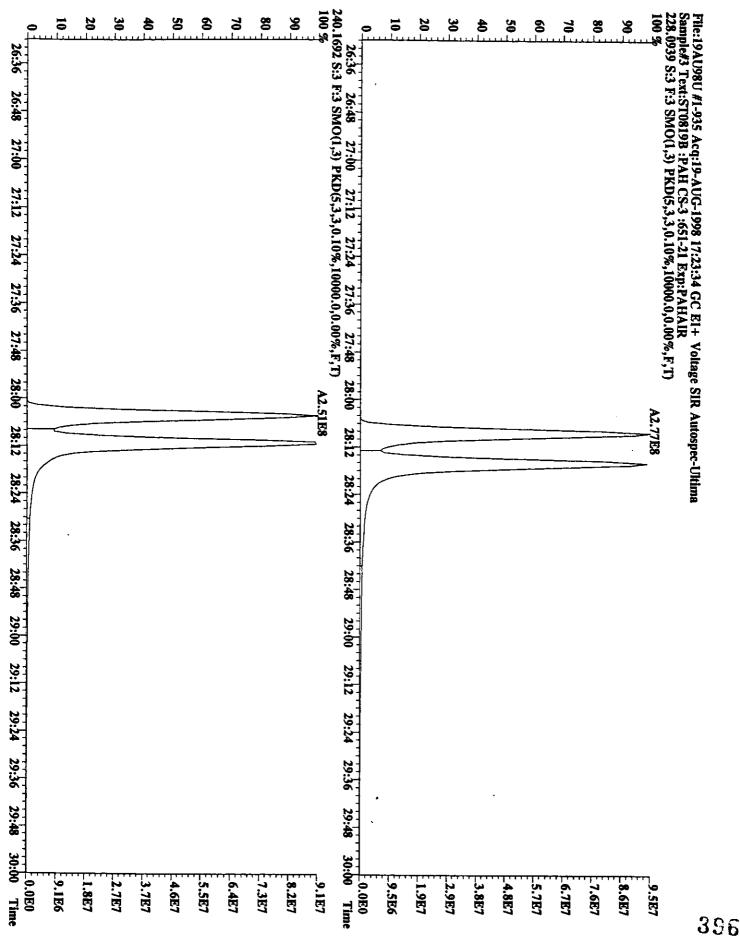


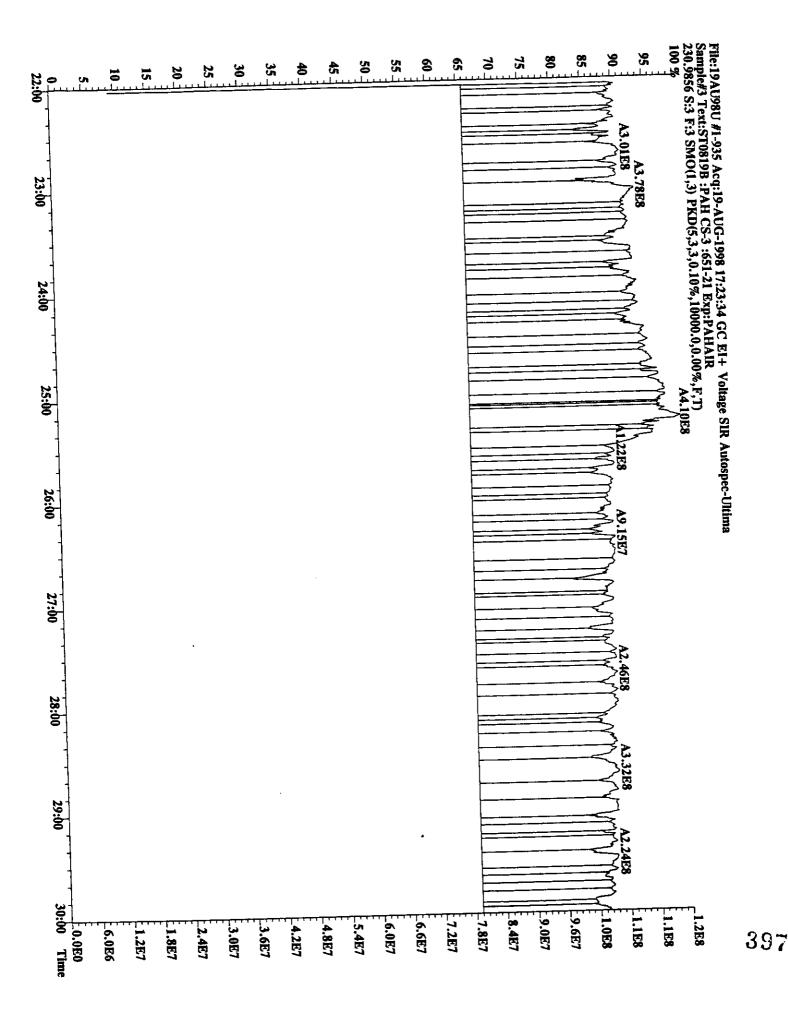


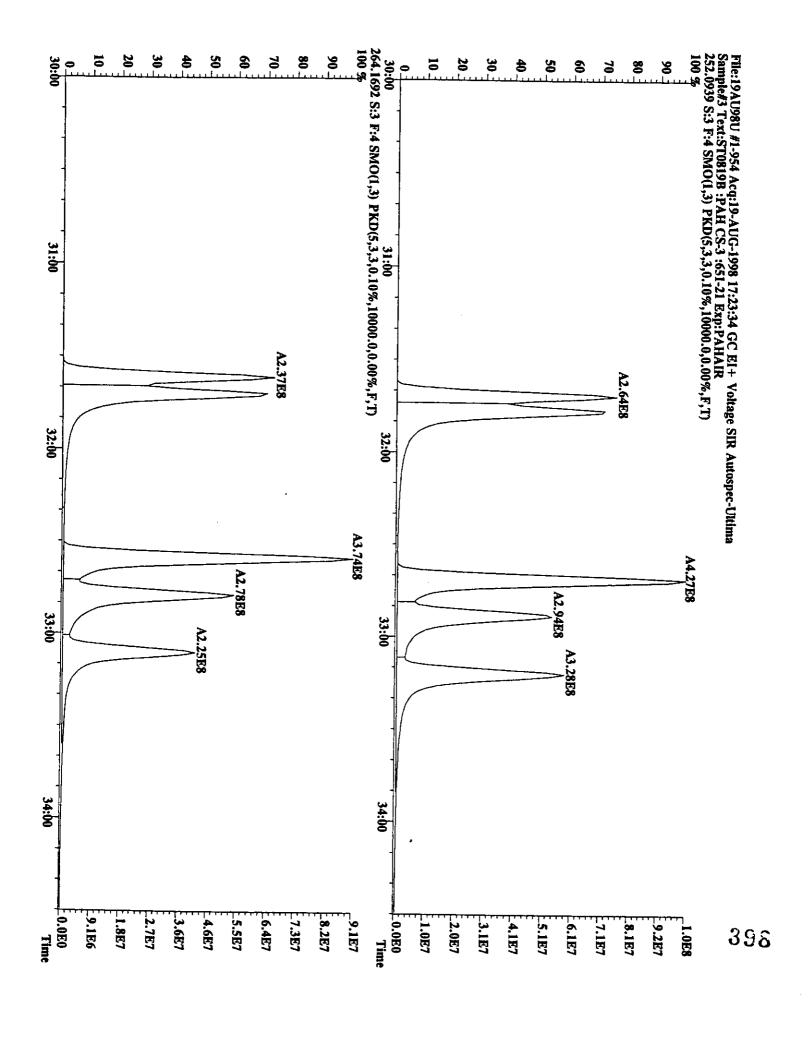


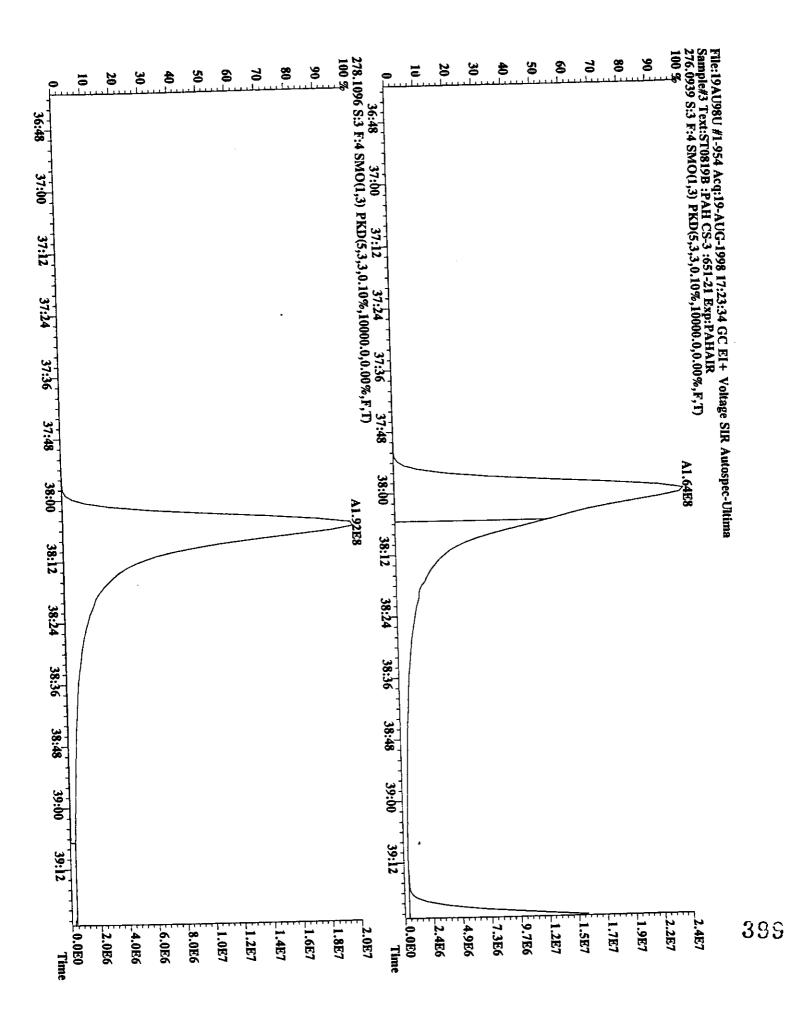


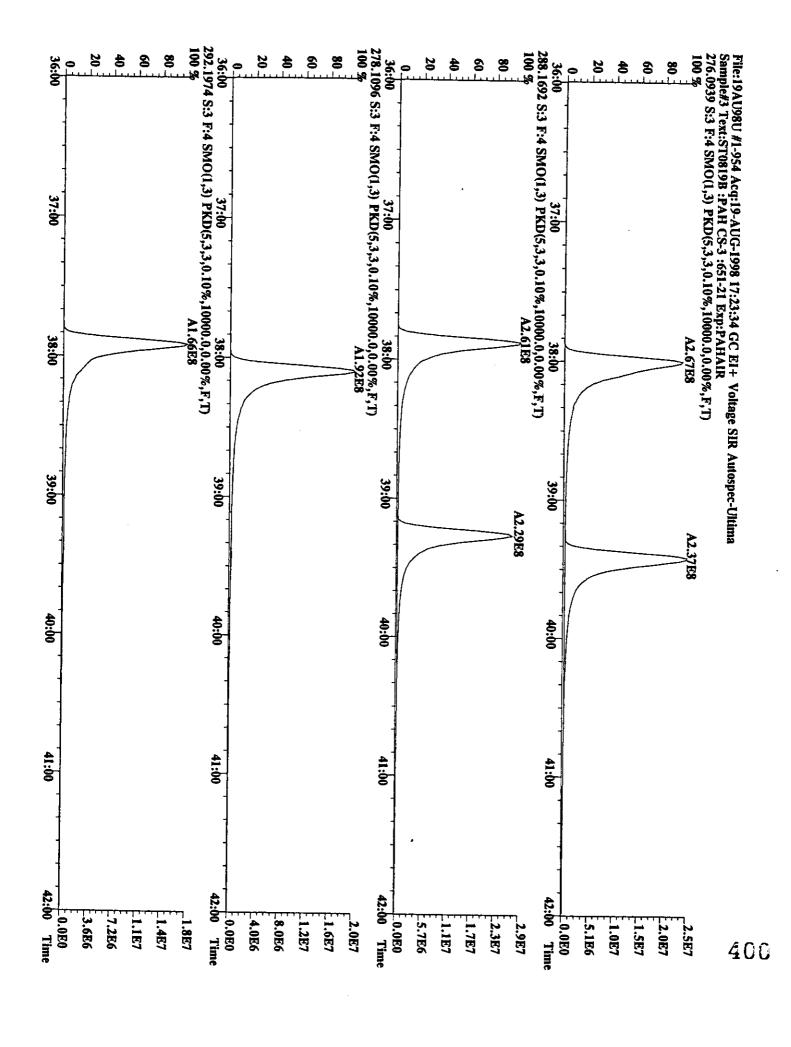


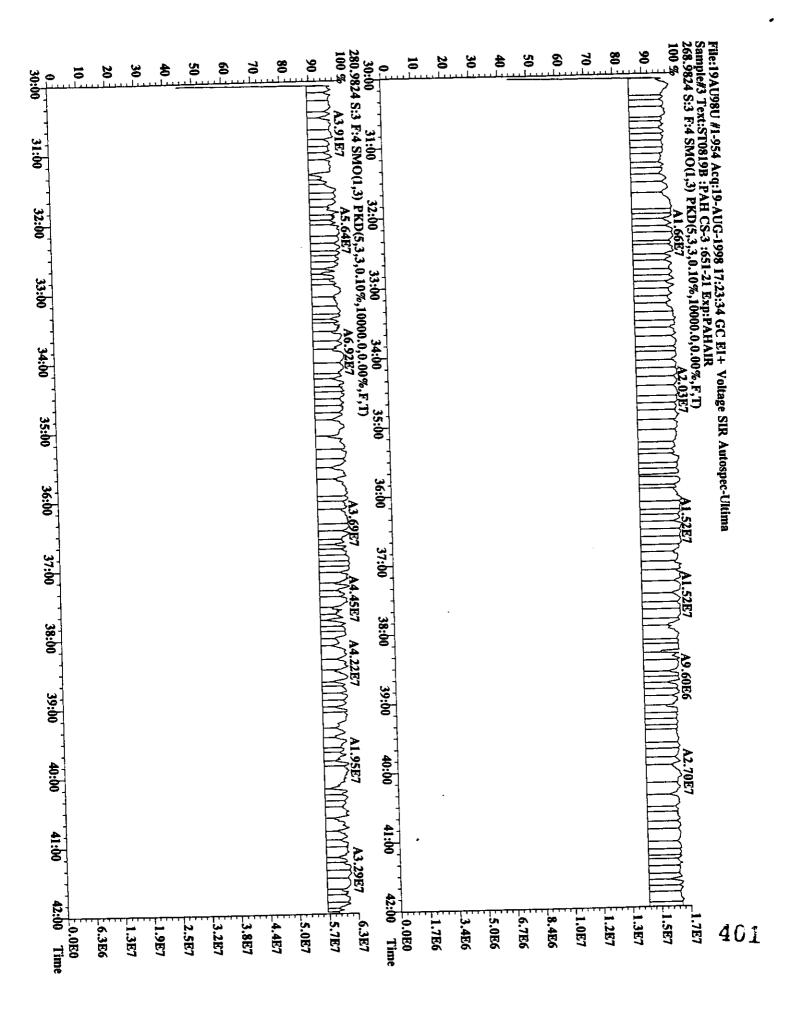


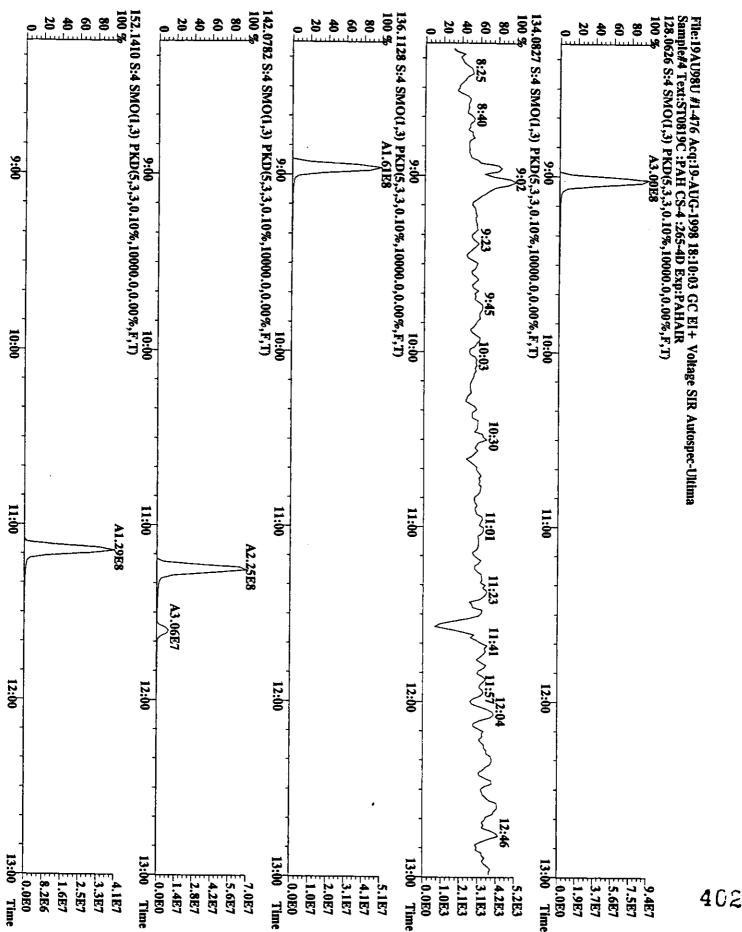


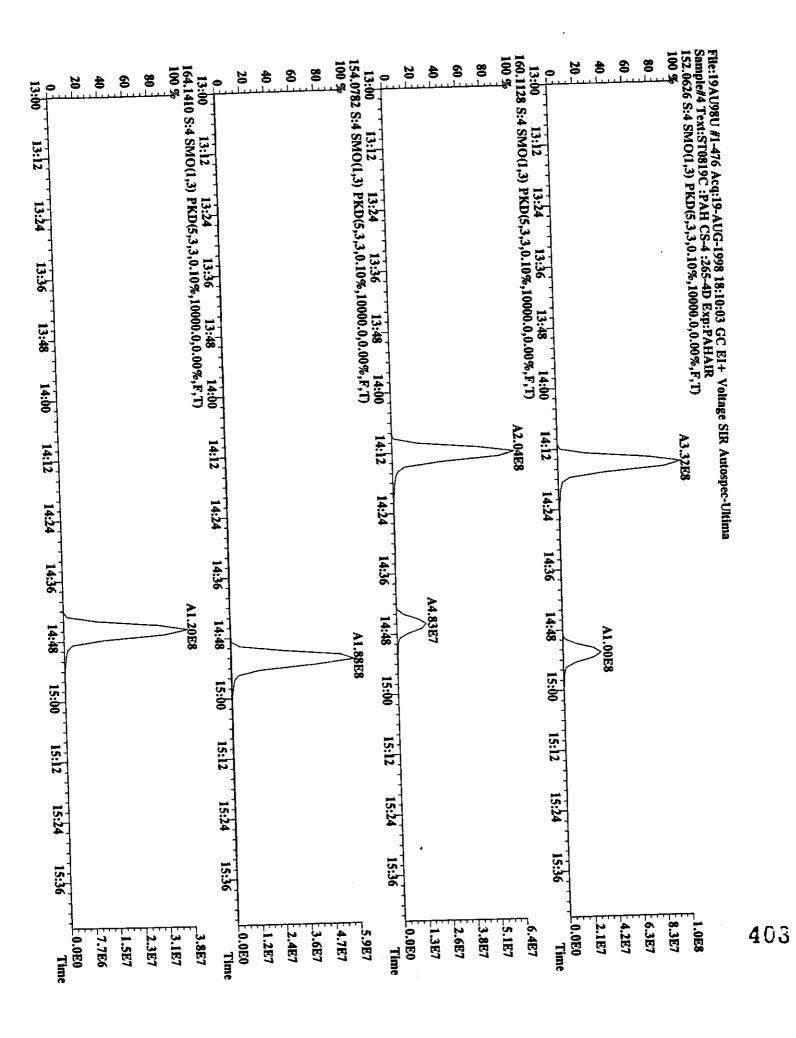


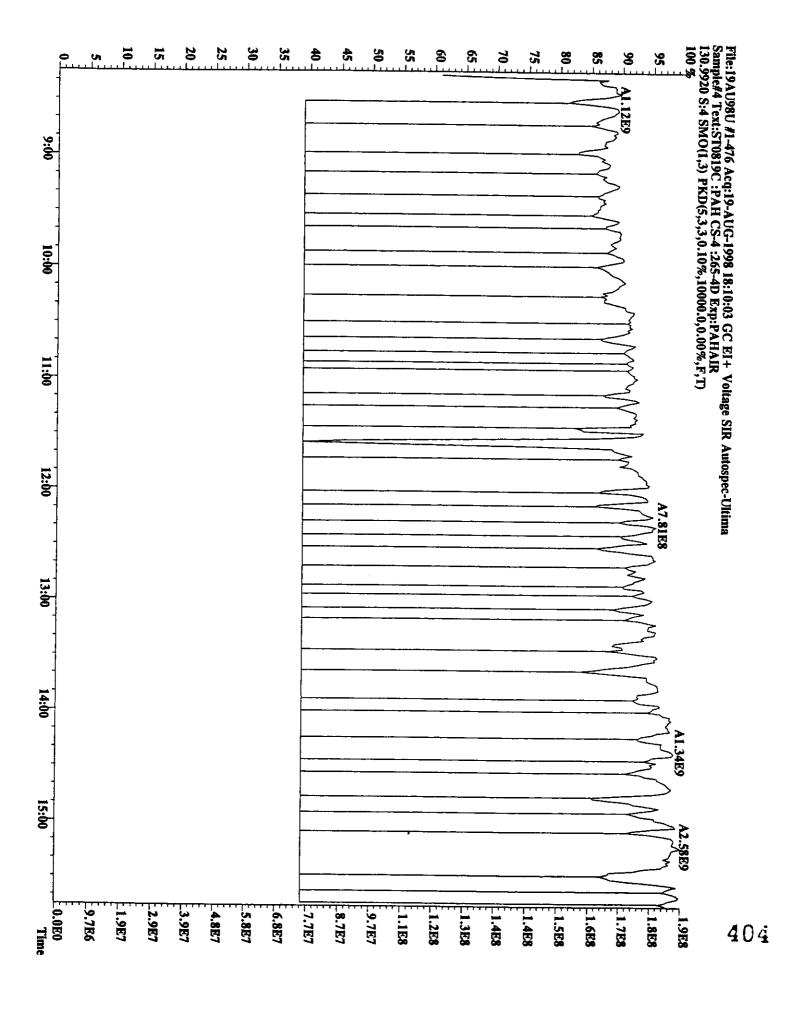


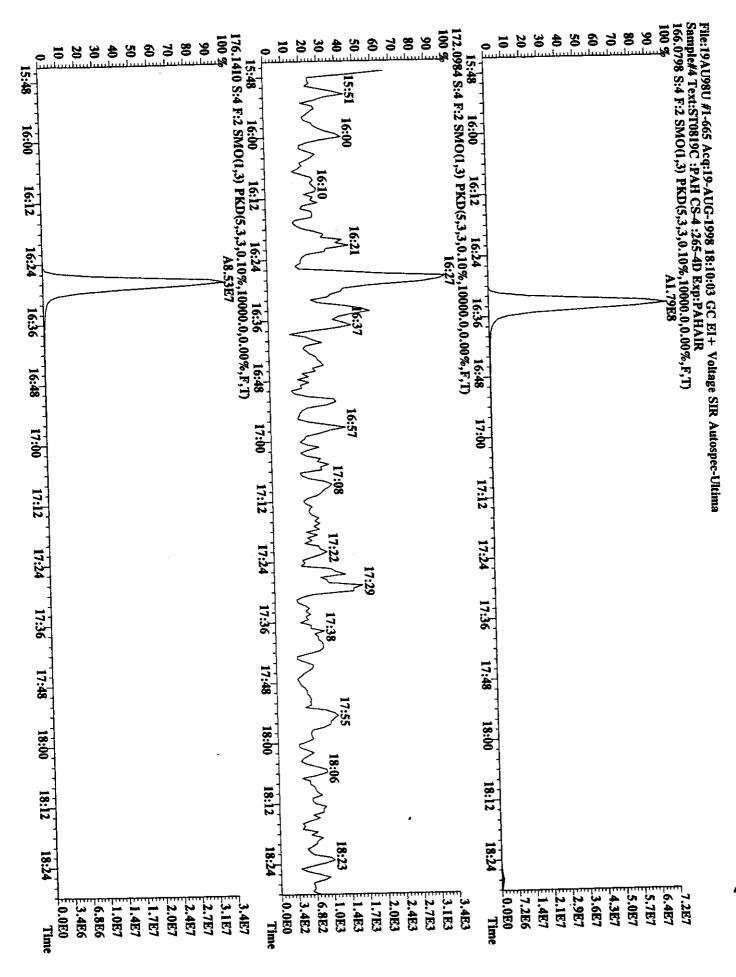


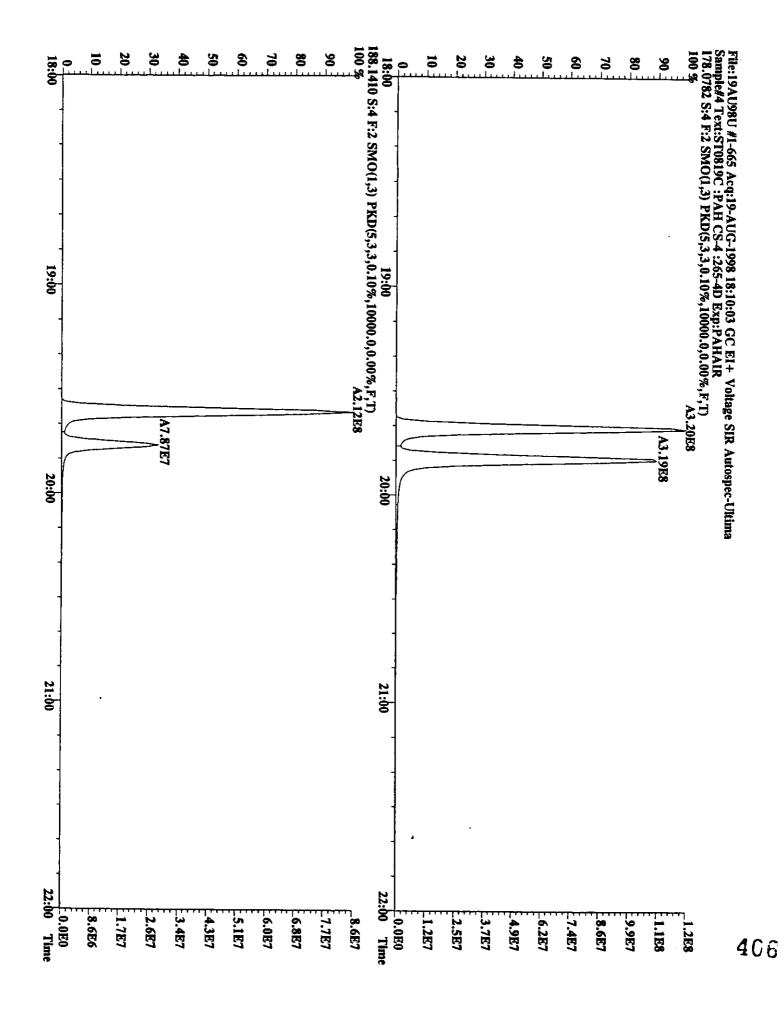


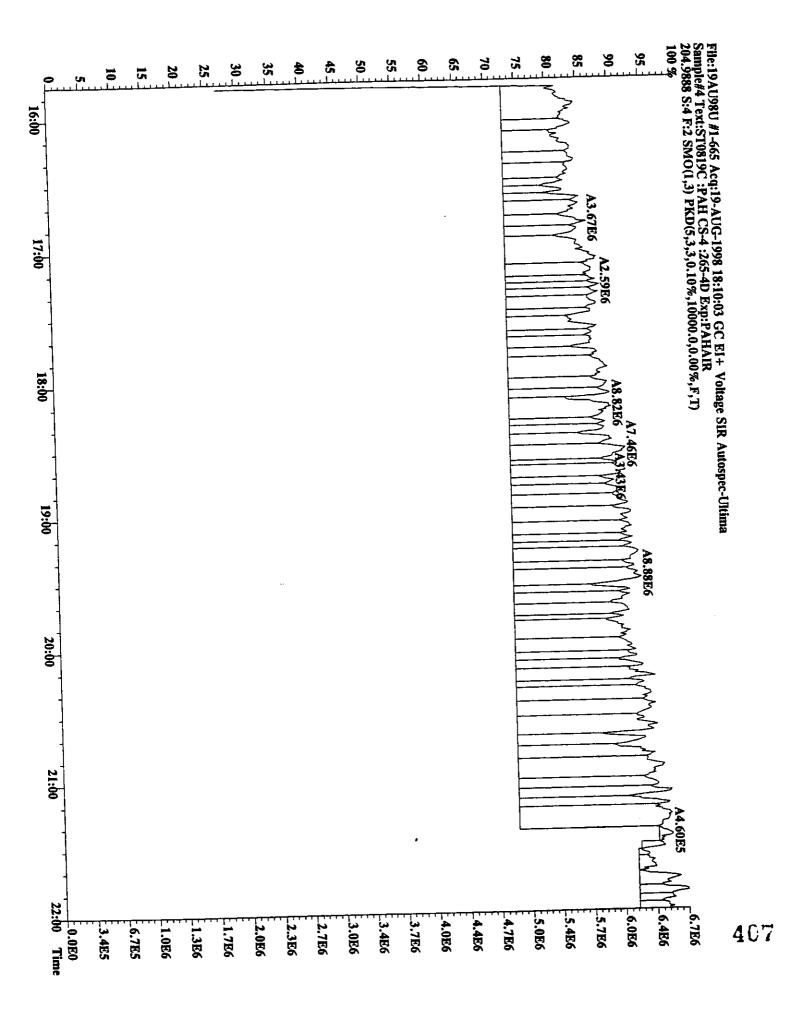


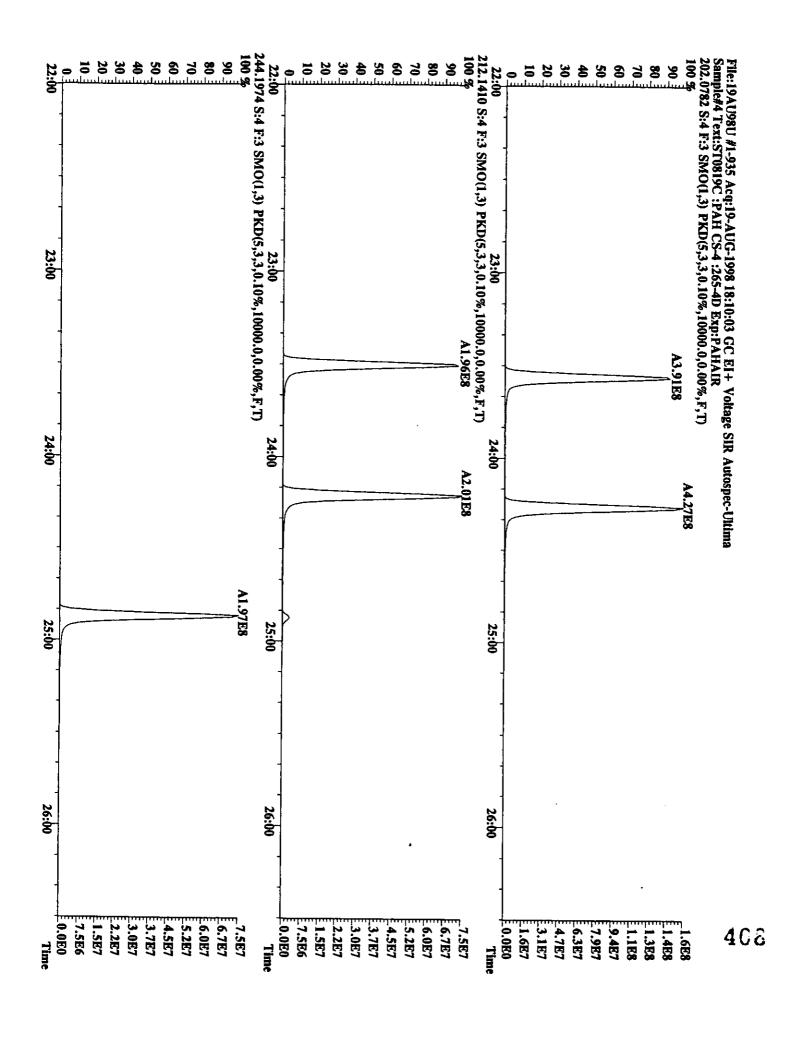


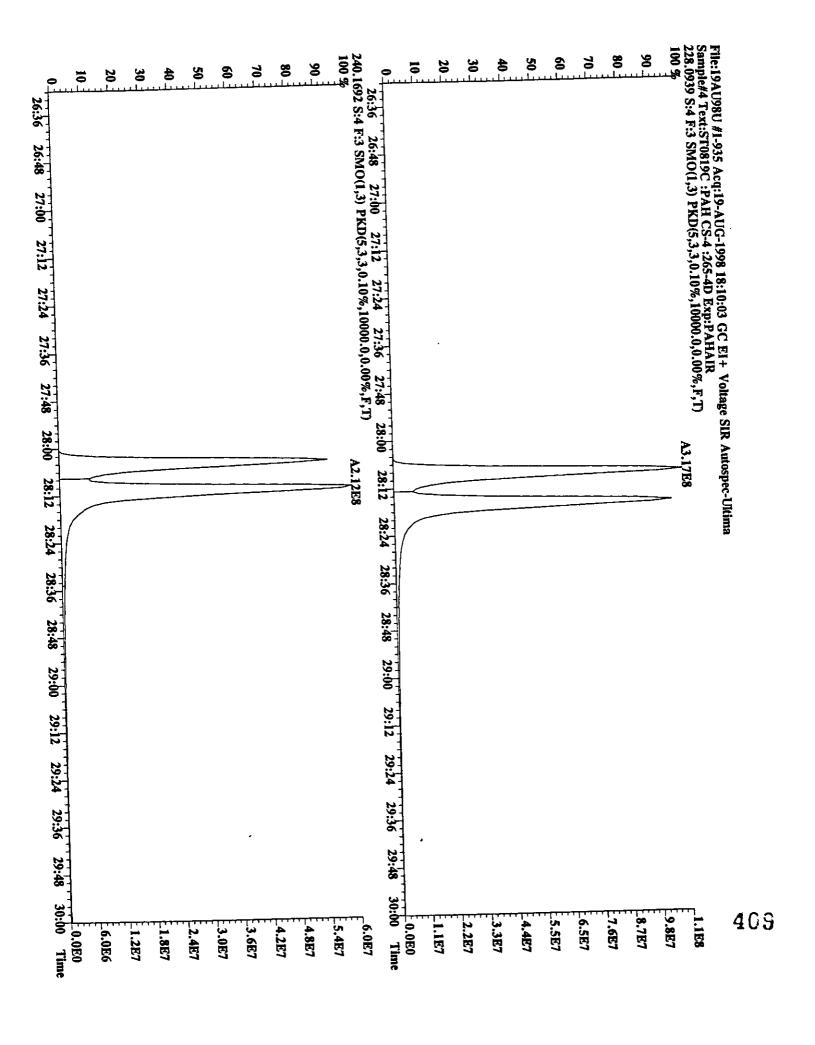


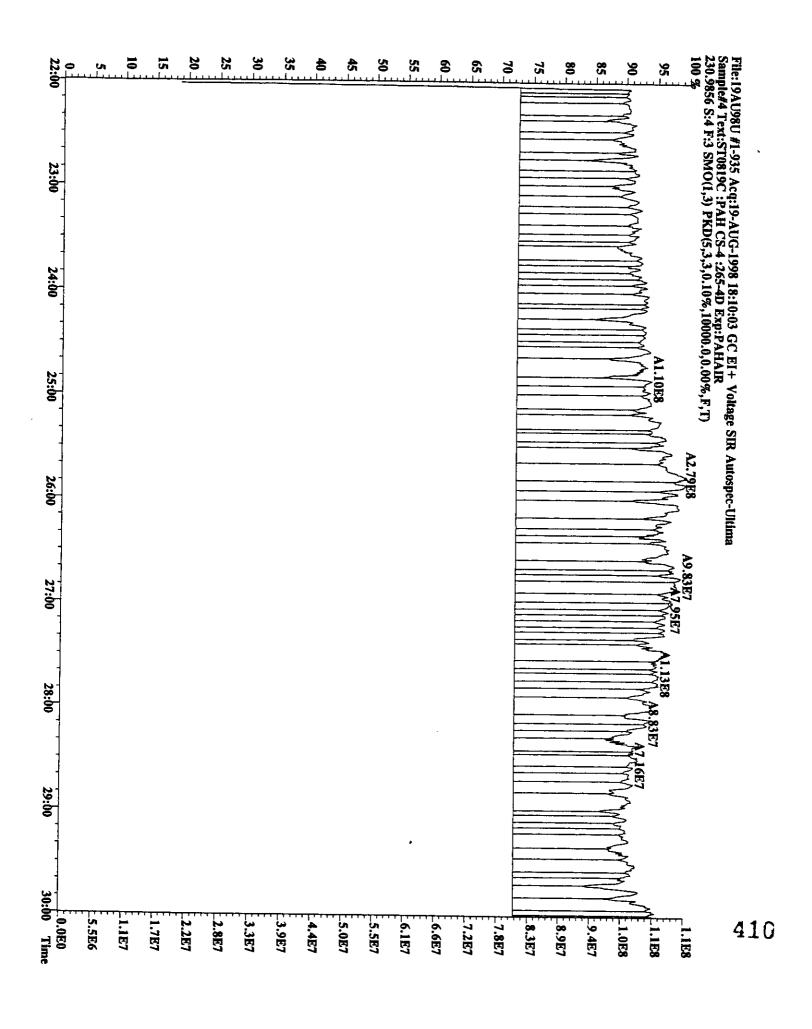


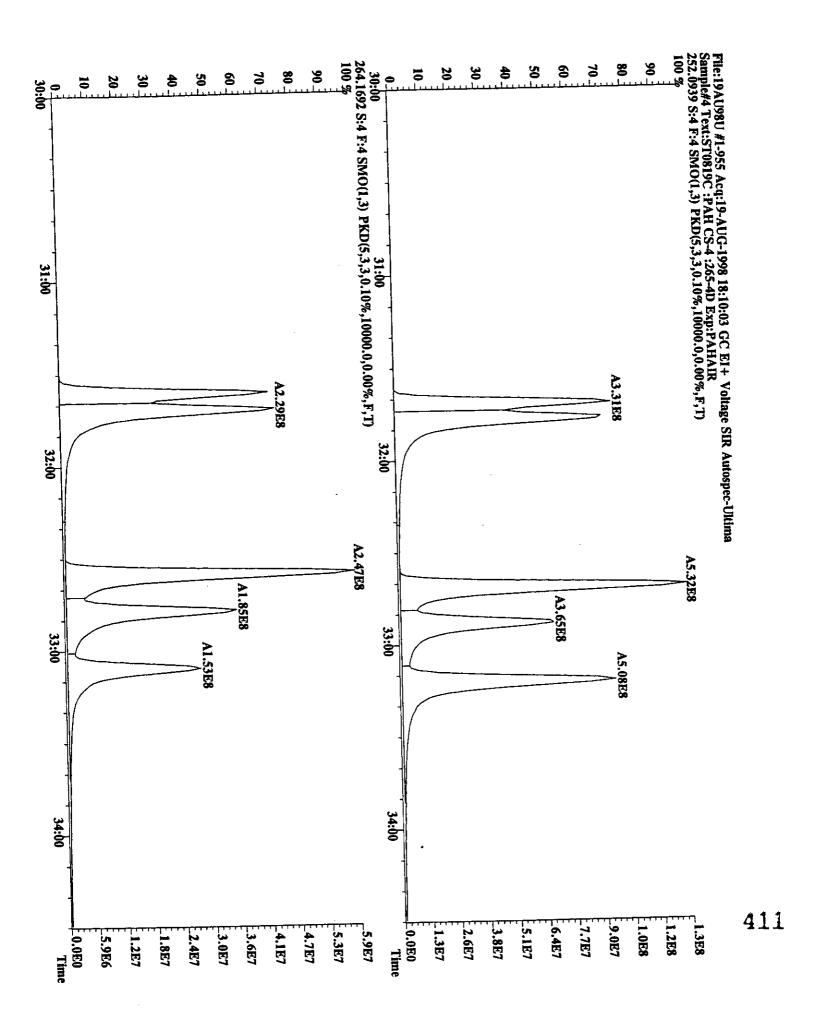


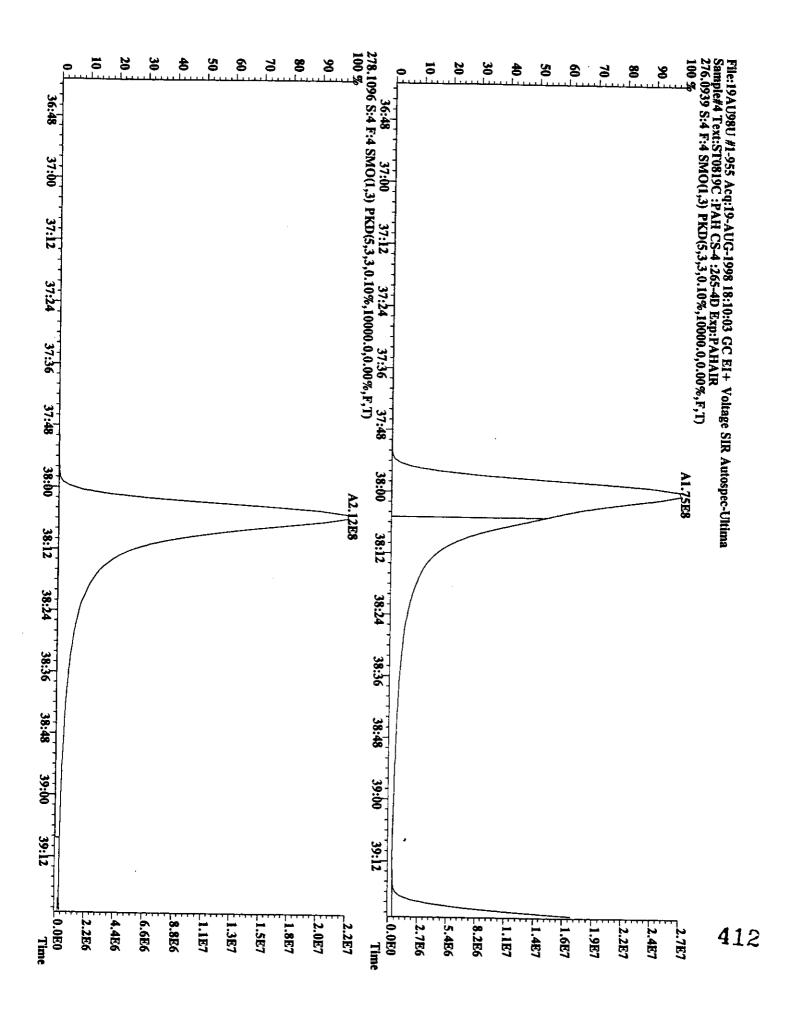


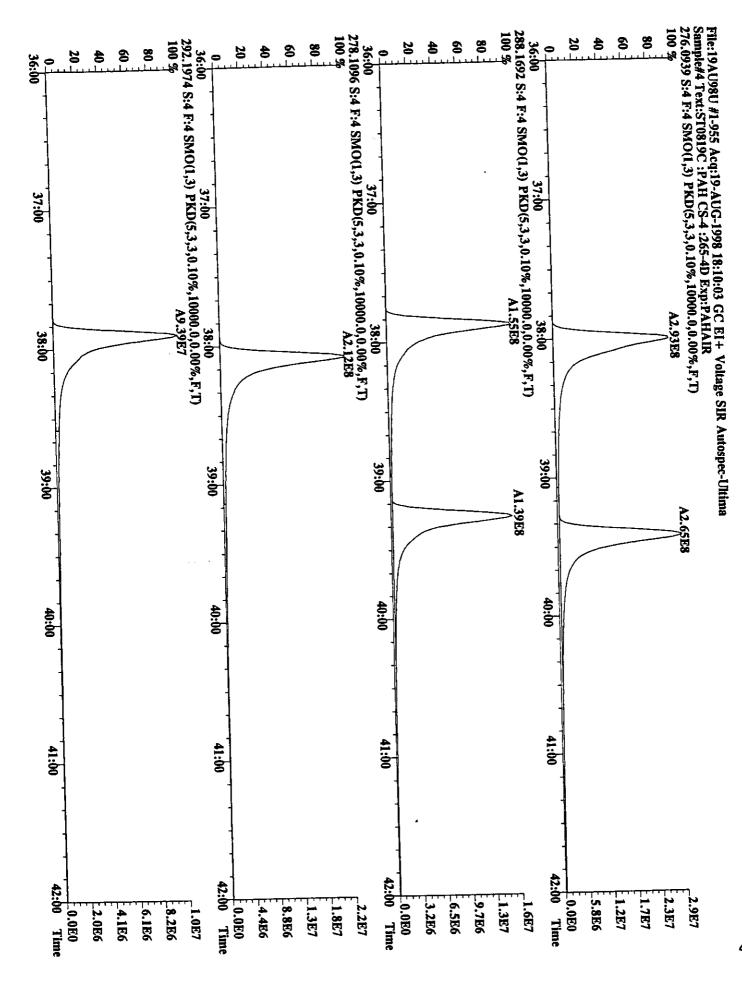


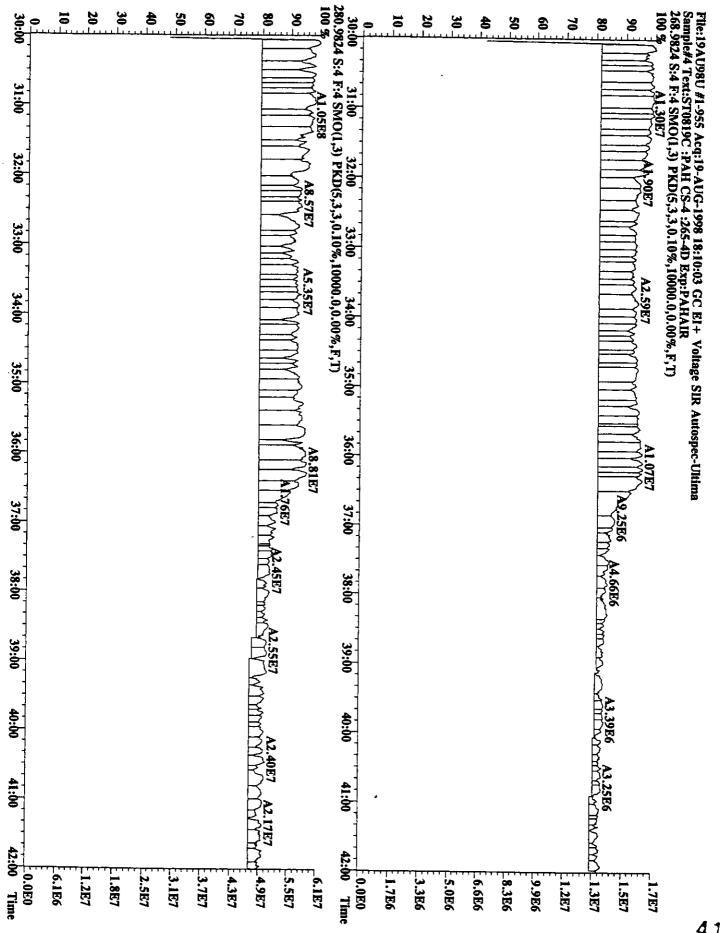




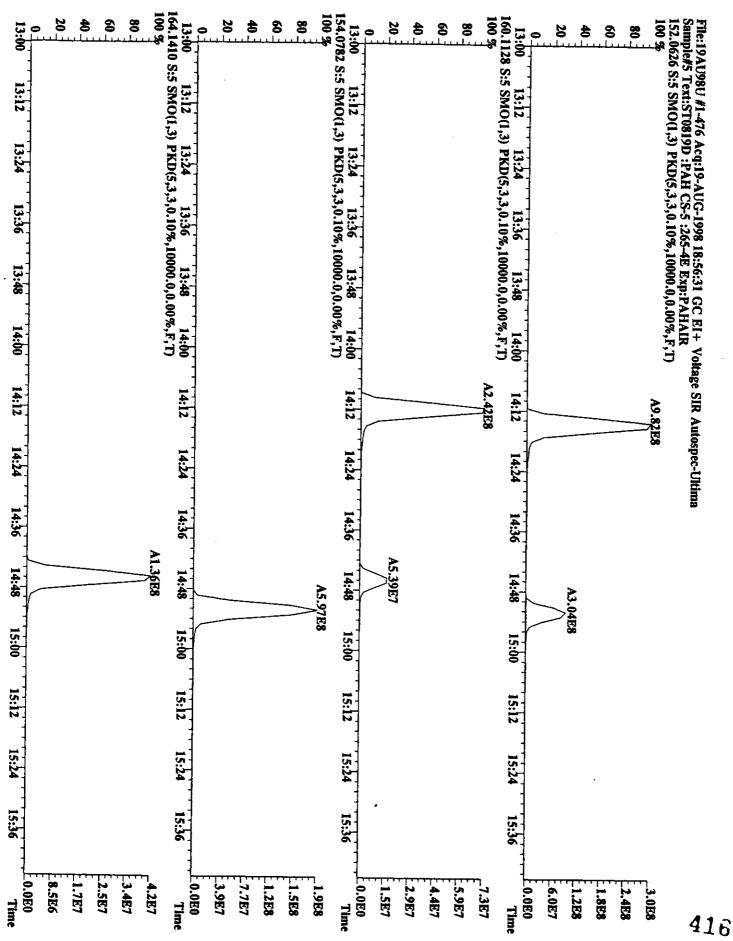


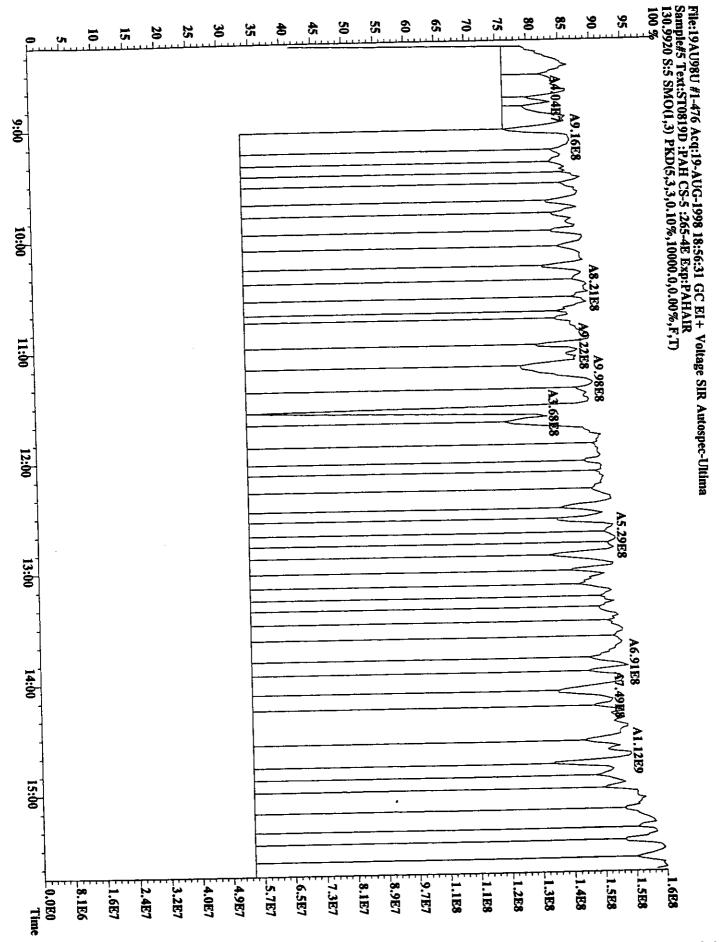


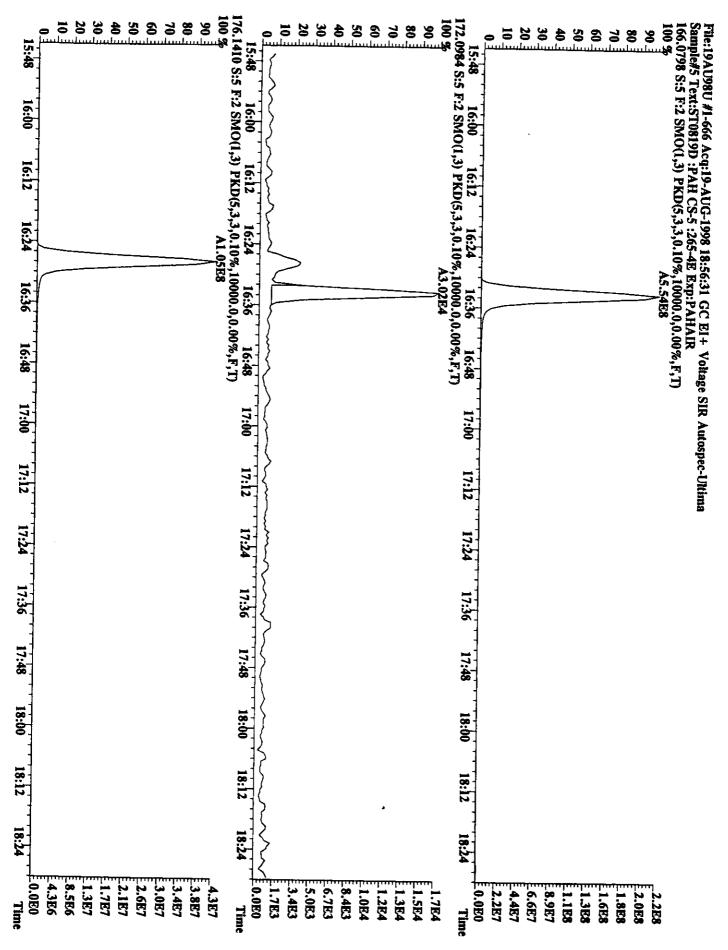


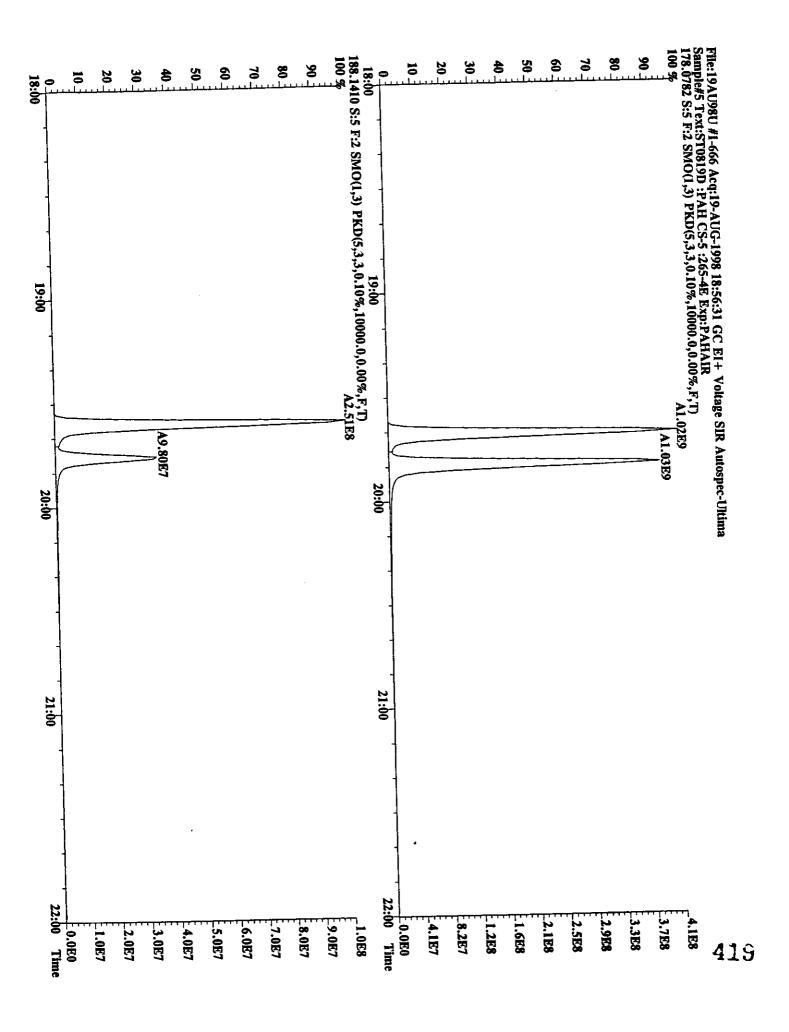


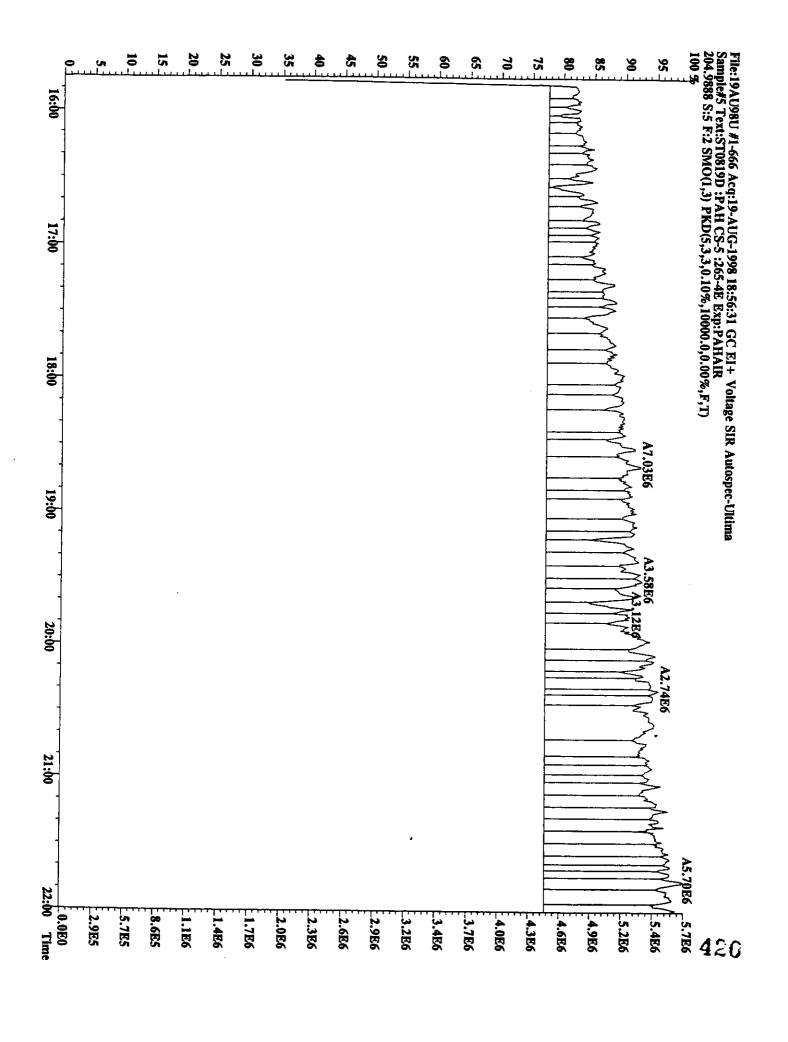


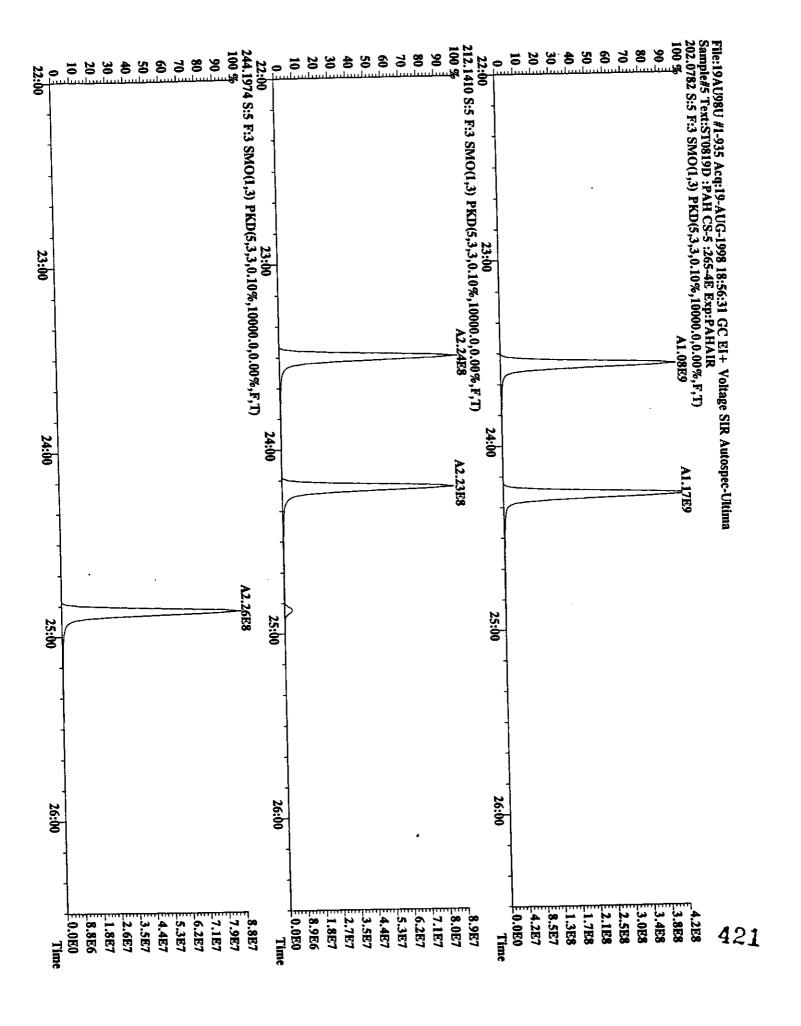


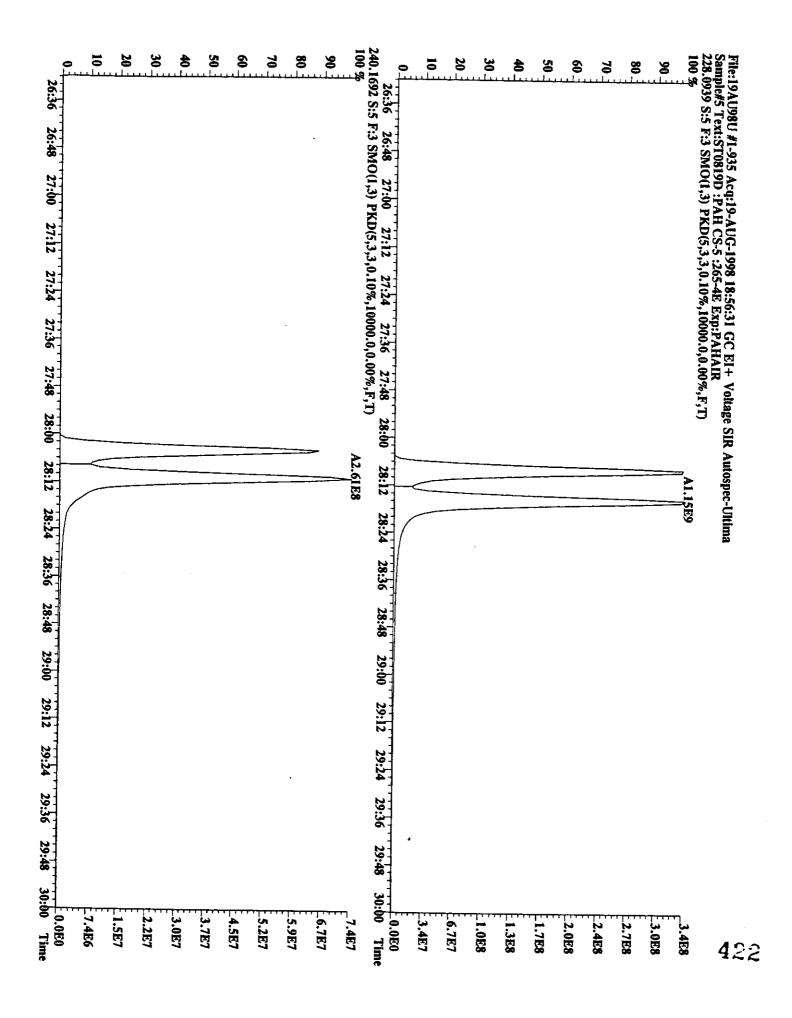


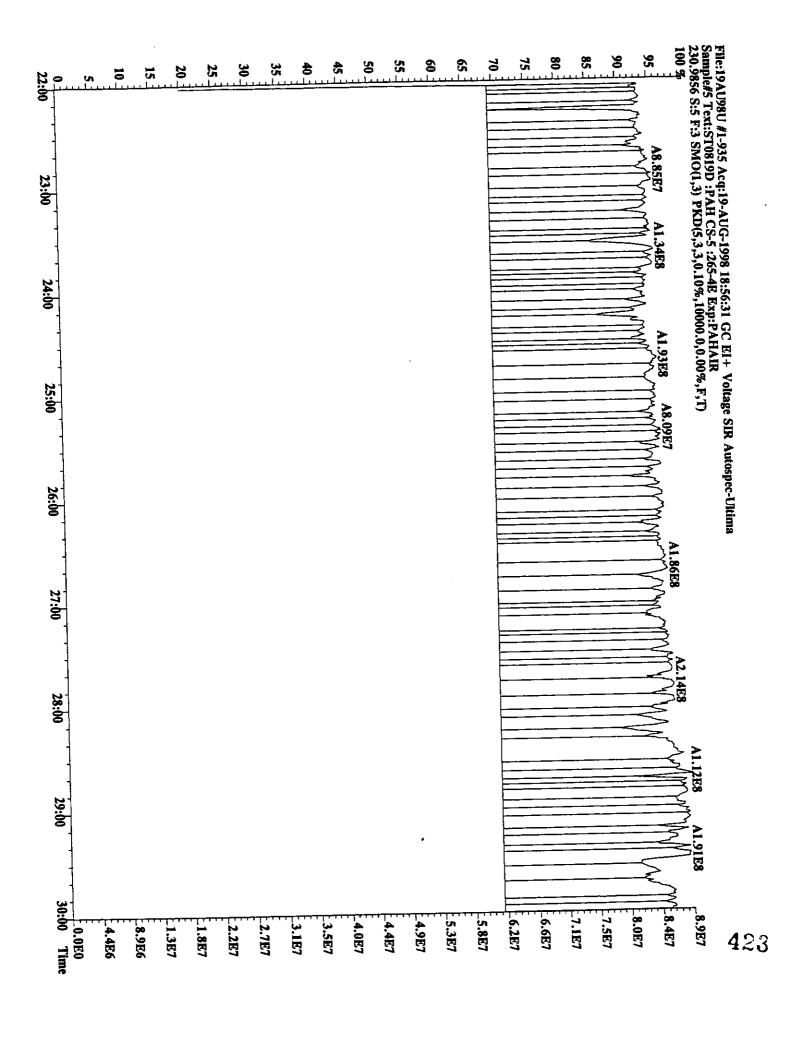


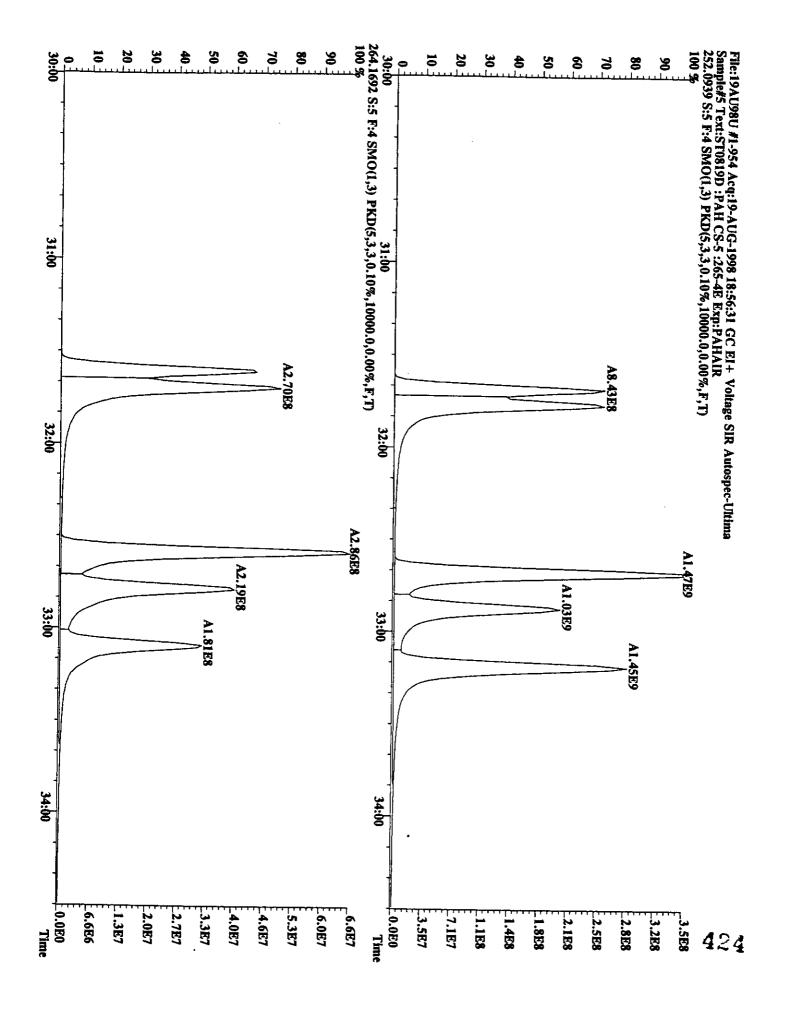


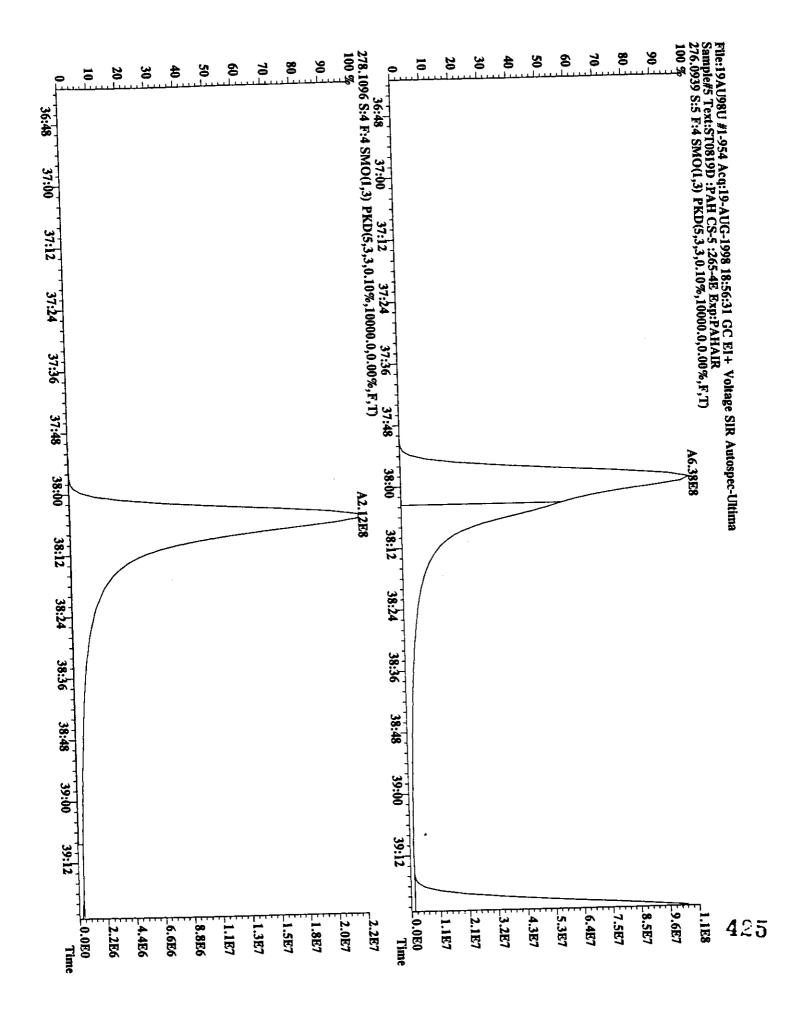


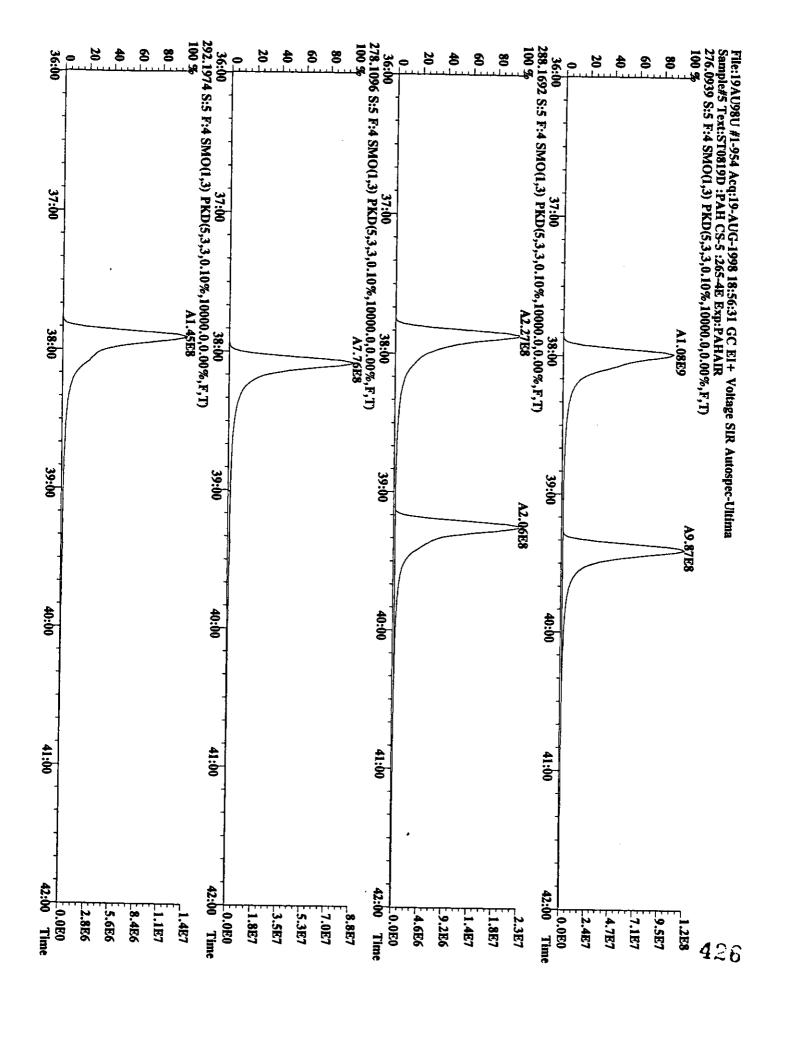


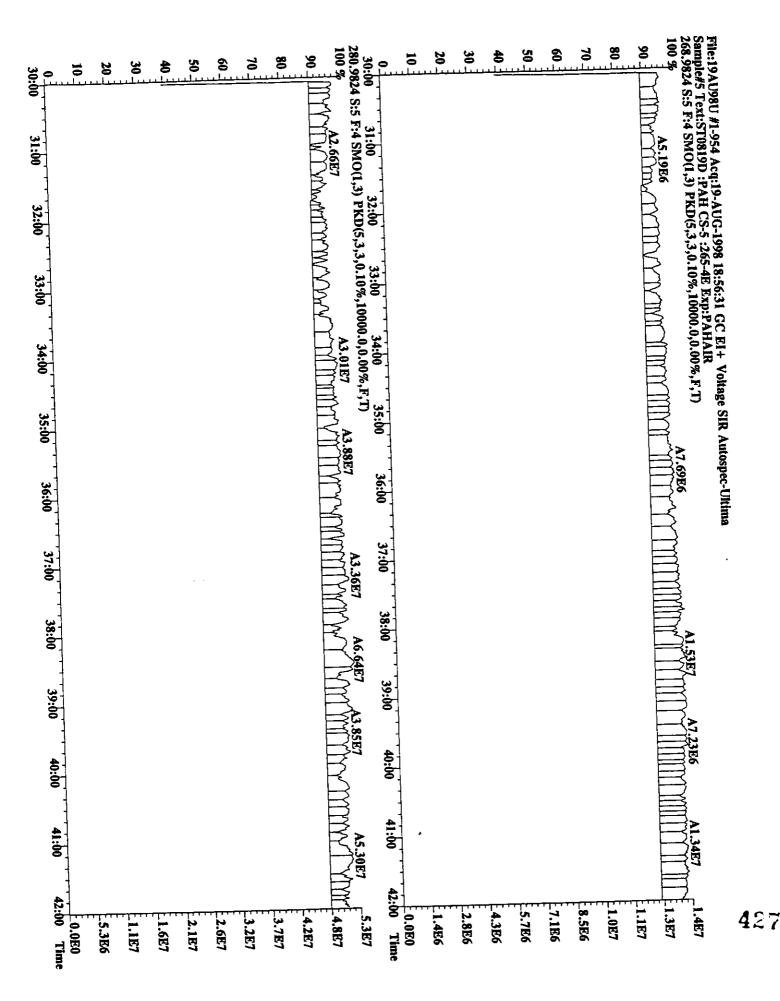












QUANTERRA INCORPORATED

West Sacramento Initial Calibration Checklist High Resolution

ICAL ID PAHAIR 100198U. RRF Meth	od ID_PAH	-
Column ID DB-5 Instr	ument ID Ulfima	
STD ID's 265-04A >> 265-04E	Multiplier Sett	ing Z 60√.
Analyzed By Q. Olgous	_ Date Analyzed_10/0	1/98
Prepared By O Alypus	Date Prepared 16/02	198
Reviewed By SMA	Date Reviewed 16/	102/98
analysis of ical	INITIATED	REVIEWER
Curve summary present?		<i>`</i>
CS1-CS5, CPSM, solvent blank present?	100	VOQ
Copy of logfile present?		V
CPSM Blow-up/Static resolution check present?	NAO	NAO/V
Target file RT's correct?		V
250 RRFs within method-specified limits?		
Signal-to-noise criteria met?		
Isotopic ratios within limits?	NA	NA
High point free of saturation?		V
Chromatographic windows correct?		~
CPSM valley < 25%?	NA (i)	NAO
Manual reintegrations checked and hardcopies included?		V
COMMENTS: ONO PAH CPSM ONO.1% Corryover secon following CS-5 Not prior to PAH curves.	is used. in the solvent No solvent blank	

Method 8290: %RSD \leq 20% for natives, \leq 30% for labelled analytes; S/N \geq 10 Method 1613A: $\%CV \le 35\%$ (See Table 7, Method 1613A); $S/N \ge 10$ Method 23: %RSD \leq values specified in Table 5. Method 23: S/N > 2.5PAH: %RSD \leq 30% for natives and labelled compounds: S/N \geq 10 PCB: %RSD $\leq 25\%$ for natives, $\leq 30\%$ for labelled compounds: $5/N \geq 2.5$ NCASI 551: %RSD ≤ 20% for natives and labelled compounds: ≥ 5 DBD/DBF: %RSD \leq 30% for natives and labelled compounds; S/N \geq 10

QA-384 NE 2/97 428

2-Methylnaphthalene

d8-Acenaphthylene

Naph that ene

d8-Naphthalene

PAH CALIBRATION TABLE

Mass Spec : ULTIMA GC Column : D8-5 265-04A --> 265-04E; Multiplier @ 260V. INITIAL CALIBRATION CO File name : PAHAIR100198U.RRF Date analyzed : 01-0CT-98

1417141	
	Date
CALLIERRATION CURVE	analyzed
CURVE	••
	01-001-96
	¥

5

RR F	Amount	7	Amount	72 72 72 72 72 72 72 72 72 72 72 72 72 7	Amount	<u></u>	RF	RRF	쪾	Amount	72 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Amount	RRF	굒	Amount	77 7 78 7	Amount	RRF	쮸	Amount	72 7 72 7	Allocation	ZZT	7	Amount	RR.	Alliouric	RRF	짂	Amount	22 7 72 7	Amount	RRF	RF C	RRF	꾸	Amount	
1.26	;	7.00		1.23		1.49		0.97) 		0.95		2.74	!		1.15		1.36			1.14		0.00	2		1.02		1.16	•		0.66		1.20		1./0	1		Mean
5 0.067		0.157		0.044		0.154		0.179			0.041		0.585	1		0.078		0.109			0.071			0.00		0.034		0.071	2		0.138		0.205		0.140	274 0	1	s.D.
5.306	•	9.978		3.570		10.335		0.44			4.325		15.900			6.809			13 /15		6.206			5-815		3.301		0.072			21.003		17.067	-	0.000			XR SD
1.26	50.00 50.00	ųi	100.00	ķ	12.21	ż	122.27	8)))	7.0	. o. 88	9.77	5.88	304.73	100.00	1.20	11.96	2	27.7	100.00	1.26	12.61	10.00 00.00	٠ ا	35	1.03	10.33	6 8	20.7	100	0.89	8.8	100 100 100 100 100 100 100 100 100 100	15.52	0.00	1.7	100.00	-
1.26	50.00	1.65	165.10	1.29	64.63	7 - 00 0	157.80	100.00	200	84	0.97	48.56	50.00	70. F	701.00	1.24	61.81	50.00	1 53	150.50	1.12	55.92	50_00	0.68	68-27	3 3 3 3 3	53.17	50.00	112.00		9	34.41	50.00	59.91	50.00	1.60		
1.17	100.00	1.66	166.15	31.18	118.10	3 - 3 -	158,48	100.00	0.81	88	0.89	88.92	100 00	2 98	207.00	1.04	104.48	100.00	1.47	146-61	3.2	108.02	100.00	0.63	62.70	3 c 3 c	98.02	00.00	1.07	76	30.5	57.75 1	0.8 2	12.12	00.00		80.53	3
	248.31								1.08	215.19	200.95	186.76	200.00	2.41	241 44	3.9	217.93	200.00	1.24	124.50	3.5	226.76	200.00	0.67	66.67	5. 8	200.11	00.00	- 15	16.00		13.66 2	00.00 5	18.5	00.00	81	81.12	} }
1.35	676.95	1.56	156.09	120 120 120 120	629.15	500.00	149.99	80. 80.	1.24	618.06	500.99	495.42	500.00	2.24	773,55	3 -	581.04	500.00	1.13	112.61	3-	100	300	0.70	69.97	8. 8	2.0	00.00	1.23	22.99	30	82.14	00	10.75	28	1.99	198.82	5
																																						0

d10-Fluorene

fluorene

d10-Phenanthrene

Phenanthrene

Anthracene

d10-Fluoranthene

Pyrene

d10-Pyrene

Fluoranthene

Acenaphthene

d10-Acenaph thene

Acenaph thy lene

### Date analyzed: 01-OCT-98 Mean S.D. XASD 1 2 3 4 5 6	014-01benz(an)anthracene Amount RF RRF		Indeno(123-cd)pyrene Amount	RRF d12-Indeno(123-cd)pyrene Amount	Perylene Amount		d12-Perylene RRF	Benzo(a)pyrene Amount RF	RRT	Benzo(e)pyrene Amount	RRT	d12-Benzo(a)pyrene Amount	RRT	Benzo(k)fluoranthene Amount	200	d12-Benzo(k)fluoranthene Amount	RRT	Benzo(b)fluoranthene Amount	70 X 70 T 17 T	d12-Benzo(b)fluoranthene Amount	70 70 71 71 71 71 71 71 71 71 71 71 71 71 71	Chrysene Amount		d12-Chrysene RRF		Rental's lanthraces RRF	d12-Benzo(a)anthracene Amount		203-04A> 203-04E; Multiplier a	Mass Spec : ULTIMA GC Column : DB-5	
File name PAHAIR100198U.RRF Date analyzed : 01-0CT-98	0.20	0.60	0.37	1.74	į	0.65	1.11		1.62	,	0.74	į	1.20	9.	8		1.30		0.48	:			•	1.28	1	0.81	Mean	1	260V.		
INITIAL CALIBRATION CURVE 1	0.031	0.031	0.040	0.145		0-020	0.084		0.085		0.023		0.061	0.000	מכח ח		0.085		0.026	0.05/	2	0.073		0.069		0.051	s.O.				
File name : PAHAIR100198U.RRF Date analyzed : 01-OCT-98 1	15.283	5.150	10.705	8.315		558	7.550		5.216	,	3.065	:	5.111	£. 170	2 10%		6.540		5.475	4.00		0.400	`			6.243	ZRSD				
AHAIR100198U.RRF 11000 100.00 82.24 88.02 0.82 0.88 200.00 500.00 82.25 125.72 1.23 1.26 200.00 500.00 122.50 125.72 1.11 1.15 100.00 100.00 100.62 101.05 100.00 500.00 249.84 695.00 11.27 1.39 100.00 100.00 100.62 101.05 100.00 500.00 249.84 695.00 100.63 100.00 11.57 1.39 100.00 500.00 249.85 695.00 100.00 500.00 249.86 695.00 11.57 1.55 100.00 500.00 233.26 575.34 1.17 1.15 100.00 100.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 310.00 500.00 326.09 929.14 1.63 1.86 100.00 500.00 326.09 929.14 200.00 500.00 326.09 929.14 200.00 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00	100.00 19.47 0.19	5.81 0.58	37.05 0.37 10.00	100 1.82	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	60.50	100 - 1 100 - 1 100 - 1 100 - 1	70 70	1.73 73.73	10.00	71.22 0.71	100.00	12.67		0.50	100.00	15.55 1.35	10.00	48.56 0.49	100.00	11.72				12.57		100.00	INITIAL			
AHAIR100198U.RRF 11000 100.00 82.24 88.02 0.82 0.88 200.00 500.00 82.25 125.72 1.23 1.26 200.00 500.00 122.50 125.72 1.11 1.15 100.00 100.00 100.62 101.05 100.00 500.00 249.84 695.00 11.27 1.39 100.00 100.00 100.62 101.05 100.00 500.00 249.84 695.00 100.63 100.00 11.57 1.39 100.00 500.00 249.85 695.00 100.00 500.00 249.86 695.00 11.57 1.55 100.00 500.00 233.26 575.34 1.17 1.15 100.00 100.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 310.00 500.00 326.09 929.14 1.63 1.86 100.00 500.00 326.09 929.14 200.00 500.00 326.09 929.14 200.00 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00																												CALIBRAI		File nam Date ans	
AHAIR100198U.RRF 11000 100.00 82.24 88.02 0.82 0.88 200.00 500.00 82.25 125.72 1.23 1.26 200.00 500.00 122.50 125.72 1.11 1.15 100.00 100.00 100.62 101.05 100.00 500.00 249.84 695.00 11.27 1.39 100.00 100.00 100.62 101.05 100.00 500.00 249.84 695.00 100.63 100.00 11.57 1.39 100.00 500.00 249.85 695.00 100.00 500.00 249.86 695.00 11.57 1.55 100.00 500.00 233.26 575.34 1.17 1.15 100.00 100.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 313.45 826.10 1.57 1.65 200.00 500.00 310.00 500.00 326.09 929.14 1.63 1.86 100.00 500.00 326.09 929.14 200.00 500.00 326.09 929.14 200.00 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00 326.09 500.00	100.00 18.57 0.19	58.18 0.58	34.97 0.35 100.00	100.00	100.00	6.13 6.13	3 33 3.9.3	100.00 80	150.84 1.51																			TON CORY		iyzed:	,,,
																												ř	i	PAHAIR10	
)0198U.RR	
																								-						~~	

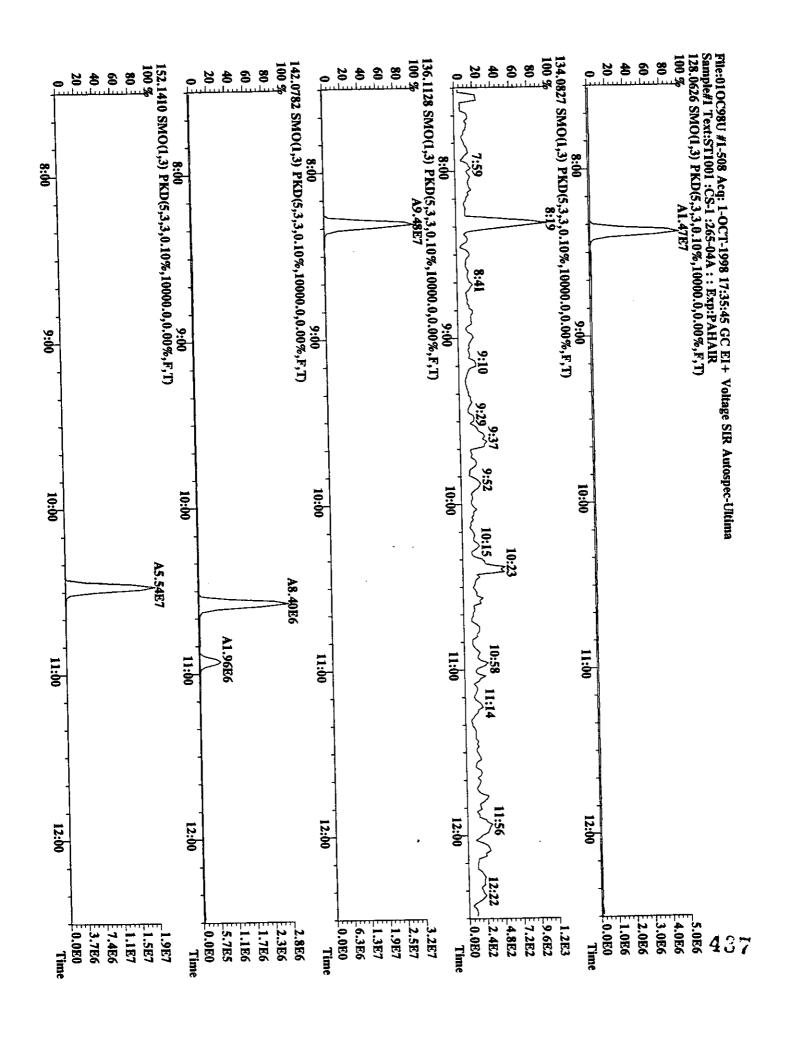
10

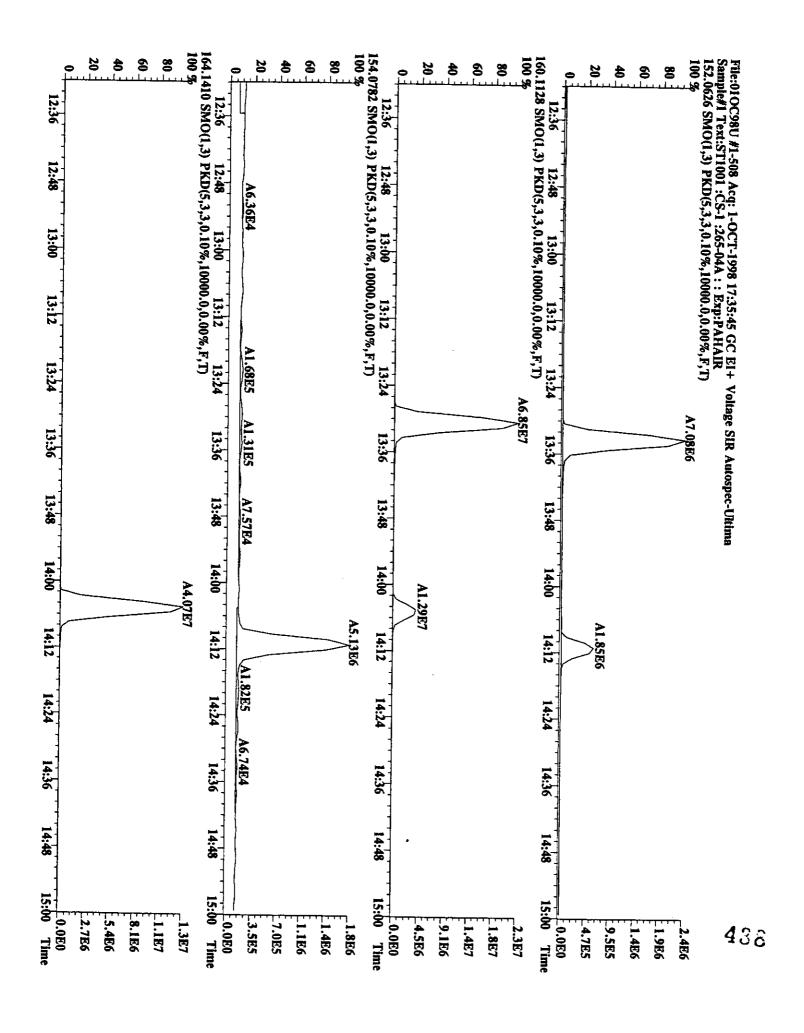
Benzot giri / per y terio		7	n ibenz(ah)anthracene	265-04A> 265-04E; Mult	Mass Spec : ULTINA	
2 P	RRF RRF	RF RRF Amount	Amount	iplier a		
1.11	0.41	1.28	Mean	260V.		
0.030	0.035	0.051	s.D.			
2.671	8.601	3.957	%RSD	;		
	10.5 1857	100.00		INITIAL CALIBRATION CURVE	₽;	
	50.00			LIBRATIO	File name : PANAIR100198U.RRF Date analyzed : 01-0CT-98	
	0.38 100.00			N CURVE	: PA zed : 01	
	0.39 200.00				HAIR1001 -OCT-98	
1.12	500.00	1.30 100.00 44.20	500.00 651.39		98U.RRF	
			0^			
			7			
			æ			
			•	•		
			2	5		

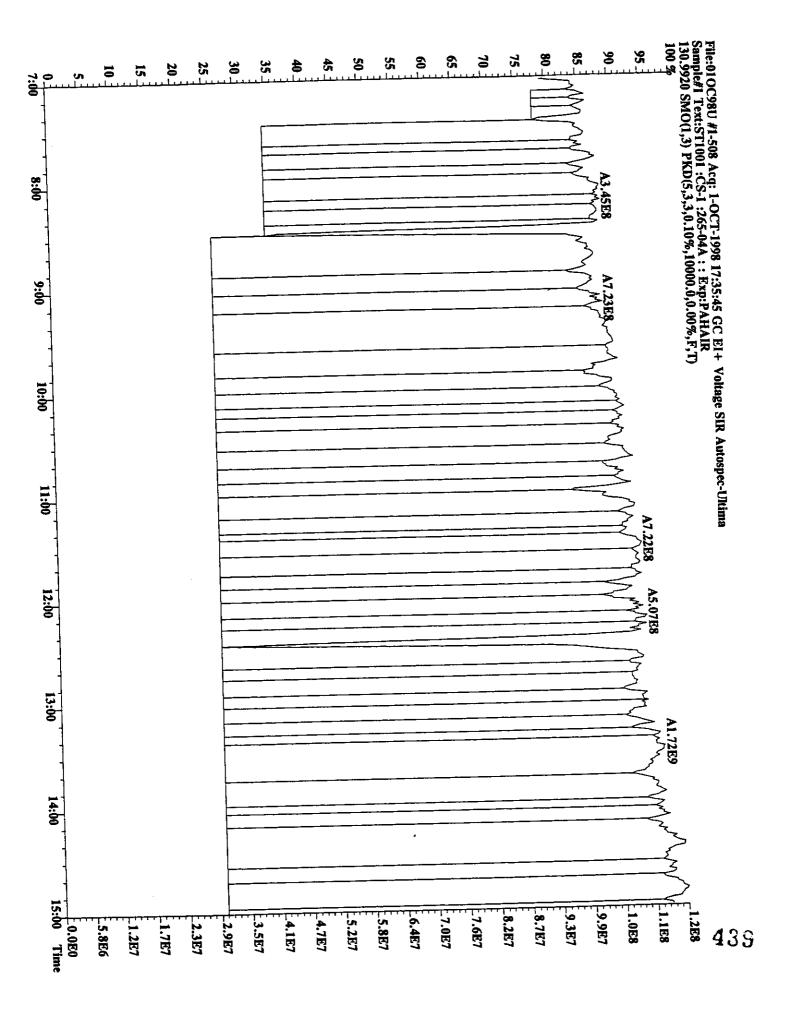
02-DCT-1998 09:56:35 AM

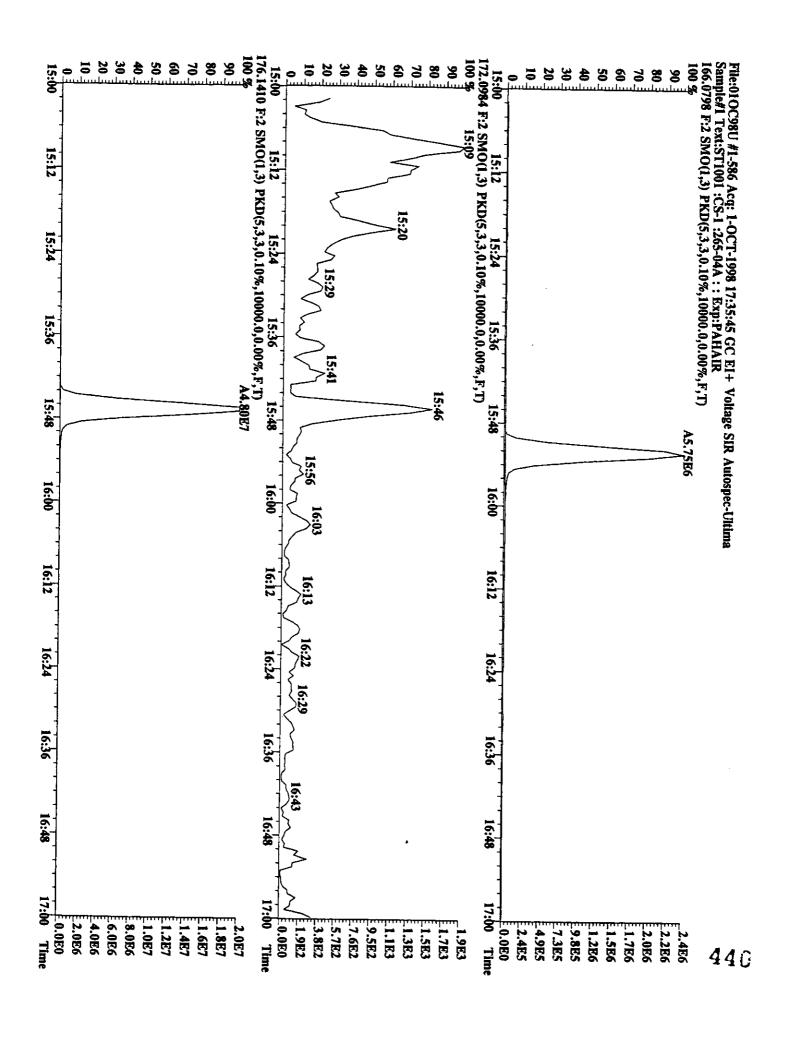
PAH CALIBRATION TABLE

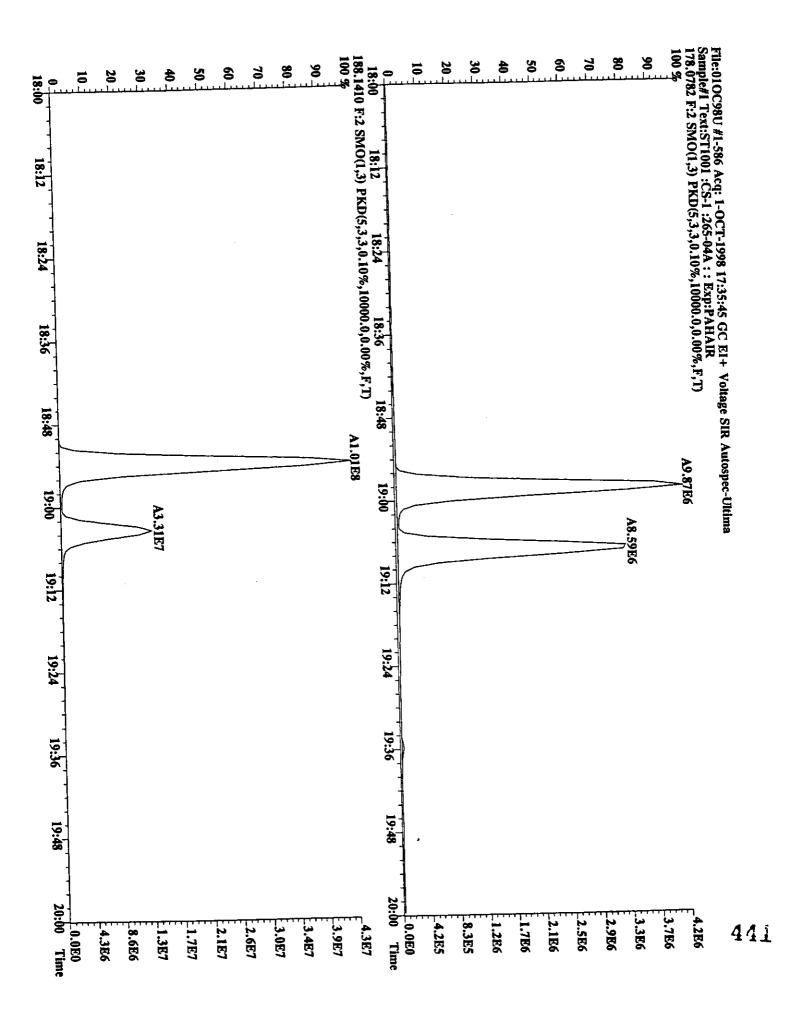
Mass Spec : ULTIMA Results : 010C98U011.RES : PAHAIRCAL1.TRG GC Column : DB-5 Date analyzed : 01-0CT-98 Data file: 010C98U ST1001 :CS-1 :265-04A : : Ex Weight : 1 Total Isotope R. T. RRF Rec/ pg Name Response Ratio mm:ss MDL d10-2-Methylnaphthalene 110799200 1.00 Y 10: 28 Y 0.00 100.00 d8-Naphthalene 189666000 1.00 Y 8: 19 Y 1.71 100.00 Naphthalene 29434600 1.00 Y 8: 23 Y 1.55 10.00 0.000 2-Methylnaphthalene 16800660 1.00 Y 10: 35 Y 0.89 10.00 0.000 d8-Acenaphthylene 137066800 1.00 Y 13: 31 Y 1.24 100.00 Acenaphthylene 14160260 1.00 Y 13: 33 Y 1.03 10.00 0.000 d10-Acenaphthene 81344200 1.00 Y 5 Y 14: 0.73 100.00 Acenaphthene 10258380 1.00 Y 14: 11 Y 1.26 10.00 0.000 d10-Anthracene 66290800 1.00 Y 19: 3 Y 0.00 100.00 d10-Fluorene 96050000 1.00 Y 15: 47 Y 1.45 100.00 Fluorene 11491020 1.00 Y 15: 52 Y 1.20 10.00 0.000 202010000 1.00 Y d10-Phenanthrene 18: 54 Y 3.05 100.00 Phenanthrene 19738800 1.00 Y 18: 58 Y 0.98 10.00 0.000 Anthracene 17184620 1.00 Y 19: 7 Y 0.85 10.00 0.000 d14-Terphenyl 223606000 1.00 Y 24: 11 Y -1.00 100.00 d10-Fluoranthene 273396000 1.00 Y 22: 47 Y 1.22 100.00 Fluoranthene 33374600 1.00 Y 22: 50 Y 1.22 10.00 0.000 d10-Pyrene 292556000 1.00 Y 23: 29 Y 1.31 100.00 36964000 1.00 Y Pyrene 23: 32 Y 1.26 10.00 0.000 d12-Benzo(a) anthracene 183043000 1.00 Y 27: 21 Y 0.82 100.00 Benzo(a) anthracene 23008400 1.00 Y 27: 25 Y 1.26 10.00 0.000 d12-Chrysene 259364000 1.00 Y 27: 28 Y 100.00 1.16 Chrysene 30400400 1.00 Y 27: 33 Y 1.17 10.00 0.000 d12-Benzo(e)pyrene 371336000 1.00 Y 31: 41 Y 0.00 100.00 d12-Benzo(b) fluoranthene 180333000 1.00 Y 30: 46 Y 0.49 100.00 Benzo(b) fluoranthene 24427600 1.00 Y 30: 51 Y 1.35 10.00 0.000 d12-Benzo(k) fluoranthene 357682000 1.00 Y 30: 51 Y 100.00 0.96 Benzo(k) fluoranthene 45322800 1.00 Y 30: 55 Y 1.27 10.00 0.000 d12-Benzo(a)pyrene 264468000 1.00 Y 31: 51 Y 0.71 100.00 Benzo(e) pyrene 45637600 1.00 Y 31: 46 Y 1.73 10.00 0.000 Benzo(a) pyrene 32356800 1.00 Y 31: 56 Y 1.22 10.00 0.000 d12-Perylene 224648000 1.00 Y 32: 0.60 100.00 40866400 1.00 Y Perylene 32: 15 Y 1.82 10.00 0.000 d12-Indeno (123-cd) pyrene 137581800 1.00 Y 36: 31 Y 0.37 100.00 Indeno (123-cd) pyrene 8000000 1.00 Y 36: 39 Y 0.58 10.00 0.000 d14-Dibenz (ah) anthracene 72286600 1.00 Y 36: 37 Y 0.19 100.00 Dibenz (ah) anthracene 9140000 1.00 Y 36: 46 Y 1.26 10.00 0.000 d12-Benzo(ghi)perylene 167734200 1.00 Y 37: 47 0.45 100.00 Benzo(ghi)perylene 10.00 o.4002 18000000 1.00 Y 37: 56 Y 1.07

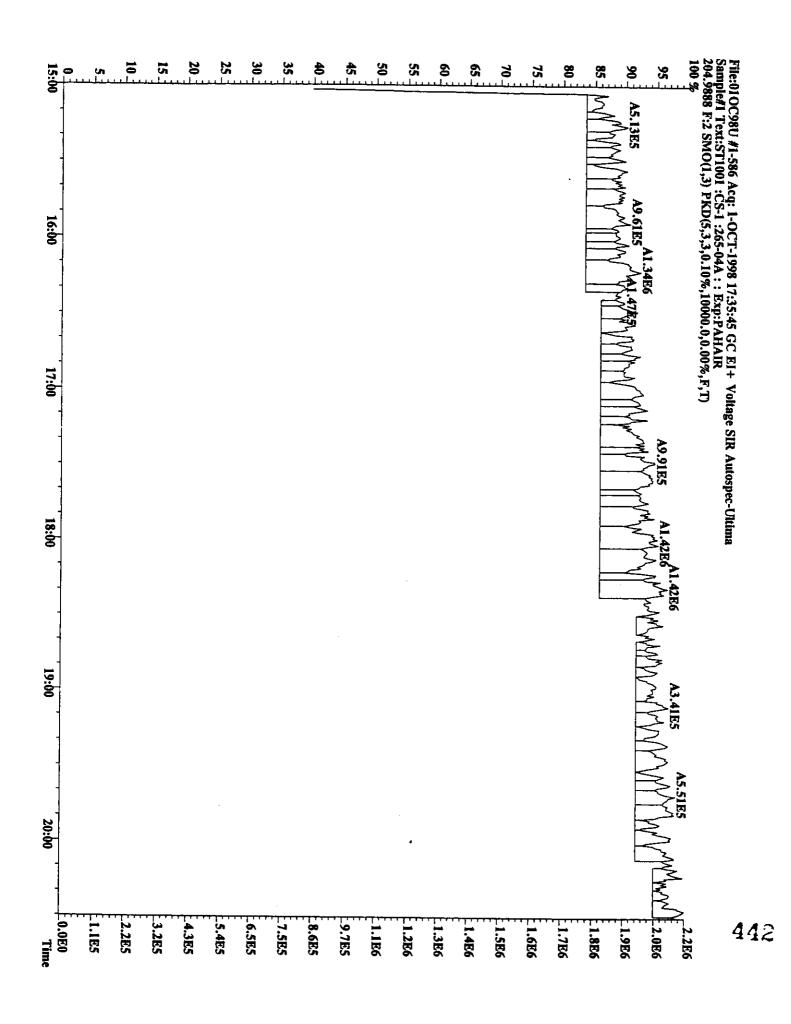

PAH Ical RESULTS

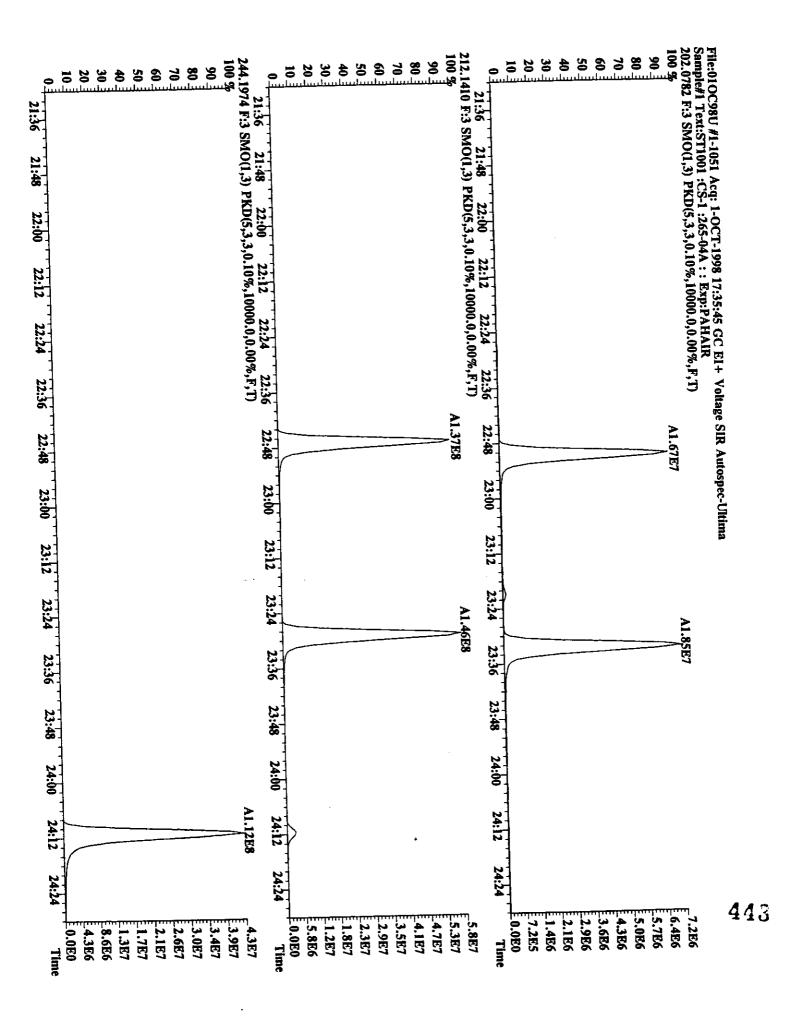

: PAHAIRCAL2.TRG Results: 010C98U021.RES Mass Spec : ULTIMA Date analyzed: 01-OCT-98 GC Column : DB-5 ST1001A :CS-2 :265-04B : Ex Data file : 010C98U Rec/ Isotope R. T. RRF pg Total : 1 Weight MDL mm:ss Response Ratio Name 100.00 10: 28 Y 0.00 134307600 1.00 Y d10-2-Methylnaphthalene 100.00 1.60 8: 19 Y 214944000 1.00 Y d8-Naphthalene 50.00 0.000 8: 23 Y 1.20 128782200 1.00 Y Naphthalene 50.00 0.000 10: 35 Y 0.69 73971800 1.00 Y 2-Methylnaphthalene 100.00 1.14 152576600 1.00 Y 13: 31 Y d8-Acenaphthylene 50.00 0.000 13: 34 Y 1.06 81117800 1.00 Y Acenaphthylene 0.68 100.00 5 Y 14: 91695800 1.00 Y d10-Acenaphthene 50.00 0.000 51273200 1.00 Y 14: 11 Y 1.12 Acenaphthene 100.00 0.00 75224800 1.00 Y 19: 3 Y d10-Anthracene 100.00 1.53 15: 46 Y 114746200 1.00 Y d10-Fluorene 50.00 0.000 1.24 15: 52 70928400 1.00 Y Fluorene 3.01 100.00 18: 54 Y 226644000 1.00 Y d10-Phenanthrene 50.00 0.000 18: 58 Y 0.97 110062200 1.00 Y Phenanthrene 50.00 0.000 0.89 19: 7 Y 100803600 1.00 Y Anthracene 100.00 0.00 24: 11 Y 143463400 1.00 Y d14-Terphenyl 100.00 1.58 226392000 1.00 Y 22: 47 Y d10-Fluoranthene 1.29 50.00 0.000 146312600 1.00 Y 22: 51 Y Fluoranthene 100.00 1.65 23: 28 Y 236858000 1.00 Y d10-Pyrene 50.00 0.000 23: 32 Y 1.26 149305600 1.00 Y Pyrene 100.00 0.74 27: 21 Y 105981000 1.00 Y d12-Benzo(a) anthracene 50.00 0.000 27: 25 Y 1.30 69000600 1.00 Y Benzo(a) anthracene 100.00 1.07 27: 28 Y 153666800 1.00 Y d12-Chrysene 50.00 0.000 1.25 96114400 1.00 Y 27: 32 Y Chrysene 100.00 -1.0031: 40 Y 228652000 1.00 Y d12-Benzo(e)pyrene 100.00 0.46 30: 46 Y 106163600 1.00 Y d12-Benzo(b) fluoranthene 50.00 0.000 30: 50 Y 1.32 70270400 1.00 Y Benzo(b) fluoranthene 0.97 100.00 30: 51 Y 221236000 1.00 Y d12-Benzo(k) fluoranthene 50.00 0.000 30: 55 Y 1.27 140696200 1.00 Y Benzo(k) fluoranthene 0.75 100.00 31: 51 Y 171550000 1.00 Y d12-Benzo(a)pyrene 50.00 0.000 1.65 31: 46 Y 141922600 1.00 Y Benzo (e) pyrene 50.00 0.000 31: 56 Y 1.17 100767200 1.00 Y Benzo (a) pyrene 0.68 100.00 9 Y 32: 154760400 1.00 Y d12-Perylene 50.00 0.000 1.86 32: 14 Y 144099400 1.00 Y Perylene 0.33 36: 32 Y 100.00 75380600 1.00 Y d12-Indeno(123-cd)pyrene 50.00 0.000 0.65 36: 38 Y 24600000 1.00 Y Indeno (123-cd) pyrene 100.00 0.18 40401400 1.00 Y 36: 36 Y d14-Dibenz (ah) anthracene 50.00 0.000 1.20 36: 46 Y 24336000 1.00 Y Dibenz (ah) anthracene 100.0433 0.38 86132400 1.00 Y 37: 47 Y 50.00 0.000 d12-Benzo(ghi)perylene 1.12 37: 56 Y 48371600 1.00 Y Benzo(ghi)perylene

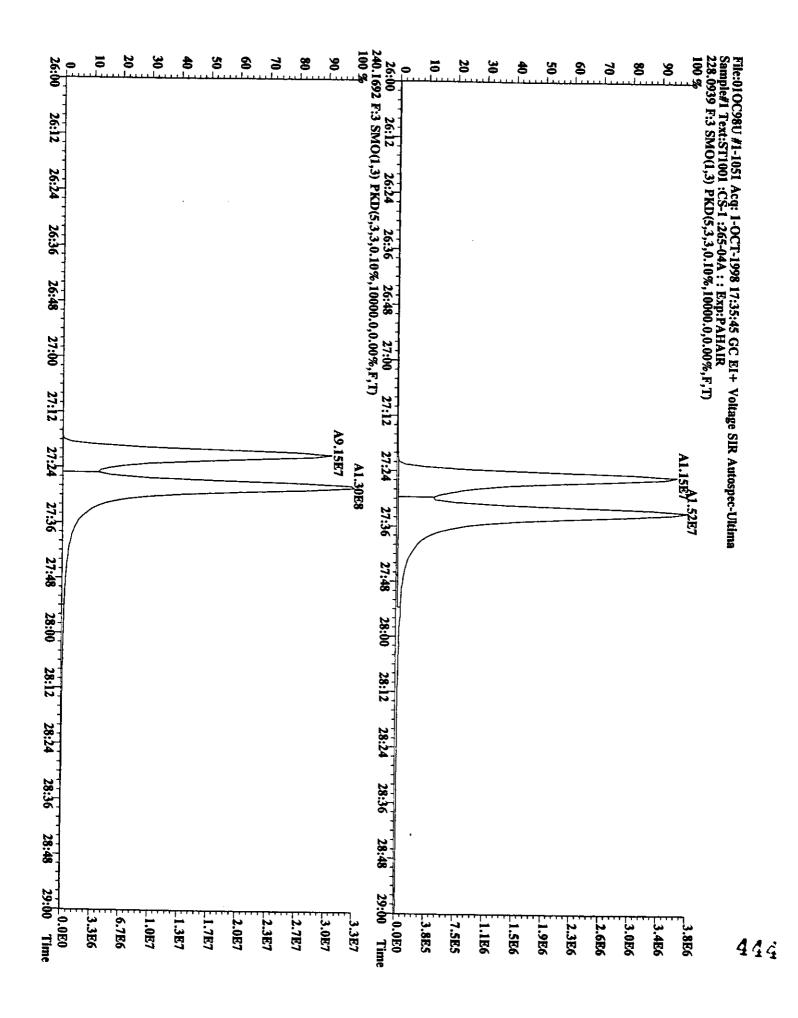

Mass Spec : ULTIMA GC Column : DB-5 Data file : 010C98U	Results : 010C98U0 ST1001B : CS-3 : 265-0	Date analyzed	: PAHAIRCAL3.TI : 01-OCT-98	RG
Weight : 1 Name	Total Isotope Response Ratio	R. T. RRF		ec/ MDL
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	132646200 1.00 Y 239460000 1.00 Y 268480000 1.00 Y 138281000 1.00 Y	8: 19 Y 8: 23 Y	1.00 100.00 1.81 100.00 1.12 100.00 0 0.58 100.00 0	.000
d8-Acenaphthylene Acenaphthylene	141540200 1.00 Y 138743400 1.00 Y		1.07 100.00 0.98 100.00 0	.000
d10-Acenaphthene Acenaphthene	83168600 1.00 Y 89837400 1.00 Y		0.63 100.00 1.08 100.00 0	.000
d10-Anthracene d10-Fluorene Fluorene	74035200 1.00 Y 108542800 1.00 Y 113410400 1.00 Y	15: 47 Y	0.00 100.00 1.47 100.00 1.04 100.00 0.	.000
d10-Phenanthrene Phenanthrene Anthracene	220596000 1.00 Y 196147600 1.00 Y 178499800 1.00 Y	18: 58 Y	2.98 100.00 0.89 100.00 0. 0.81 100.00 0.	.000
d14-Terphenyl d10-Fluoranthene Fluoranthene	155127000 1.00 Y . 245840000 1.00 Y 290336000 1.00 Y	22: 47 Y	0.00 100.00 1.58 100.00 1.18 100.00 0.	. 000
d10-Pyrene Pyrene	257736000 1.00 Y 300752000 1.00 Y		1.66 100.00 1.17 100.00 0.	.000
d12-Benzo(a)anthracene Benzo(a)anthracene	124313600 1.00 Y 146343000 1.00 Y		0.80 100.00 1.18 100.00 0.	.000
d12-Chrysene Chrysene	174354000 1.00 Y 195614600 1.00 Y		1.12 100.00 1.12 100.00 0.	.000
d12-Benzo(e) pyrene d12-Benzo(b) fluoranthene Benzo(b) fluoranthene	268388000 1.00 Y 124457200 1.00 Y 146725000 1.00 Y	30: 45 Y	0.00 100.00 0.46 100.00 1.18 100.00 0.	.000
d12-Benzo(k)fluoranthene Benzo(k)fluoranthene	263876000 1.00 Y 305166000 1.00 Y		0.98 100.00 1.16 100.00 0 .	000
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	193132800 1.00 Y 291316000 1.00 Y 202776000 1.00 Y	31: 46 Y	0.72 100.00 1.51 100.00 0. 1.05 100.00 0.	000
d12-Perylene Perylene			0.66 100.00 1.55 100.00 0.	000
d12-Indeno(123-cd)pyrene Indeno(123-cd)pyrene	93849400 1.00 Y 54600000 1.00 Y		0.35 100.00 0.58 100.00 0.	000
d14-Dibenz (ah) anthracene Dibenz (ah) anthracene	49851200 1.00 Y 64502600 1.00 Y		0.19 100.00 1.29 100.00 4 3	ဝဓ္မဝ
d12-Benzo(ghi)perylene Benzo(ghi)perylene	102197600 1.00 Y 109793600 1.00 Y		0.38 100.00 1.07 100.00 0.0	_

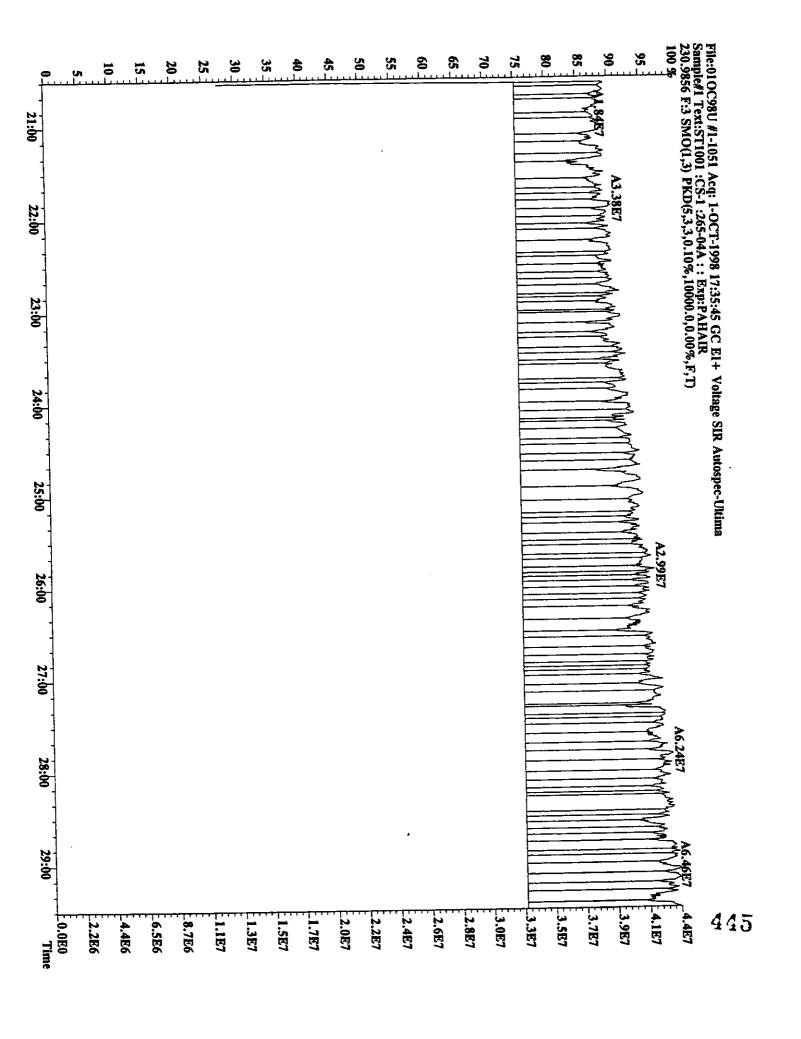

Mass Spec : ULTIMA	Results: 010C98U041.RES : PAHAIRCAL4. Date analyzed: 01-0CT-98	TRG
GC Column : DB-5 Data file : 010C98U Weight : 1 Name	ST1001C :CS-4 :265-04D : Ex Total Isotope R. T. RRF P9 Response Ratio mm:ss	Rec/ MDL
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	110680200 1.00 Y 10: 28 Y -1.00 100.00 200462000 1.00 Y 8: 19 Y 1.81 100.00 438038000 1.00 Y 8: 23 Y 1.09 200.00 227838000 1.00 Y 10: 35 Y 0.57 200.00	0.000
d8-Acenaphthylene Acenaphthylene	127112400 1.00 Y 13: 31 Y 1.15 100.00 254366000 1.00 Y 13: 33 Y 1.00 200.00	0.000
d10-Acenaphthene Acenaphthene	73792200 1.00 Y 14: 5 Y 0.67 100.00 167331600 1.00 Y 14: 11 Y 1.13 200.00	0.000
d10-Anthracene d10-Fluorene Fluorene	97709200 1.00 Y 15: 46 I 1.22 200.00	
d10-Phenanthrene Phenanthrene Anthracene	353918000 1.00 Y 18: 58 T 0.53 200.00	0.000
d14-Terphenyl d10-Fluoranthene Fluoranthene	262546000 1.00 Y 22: 40 Y 1 21 200.00	
d10-Pyrene Pyrene	282962000 1.00 Y 23: 28 Y 1.69 100.00	0.000
d12-Benzo(a)anthracen Benzo(a)anthracen	137340200 1.00 Y 27: 20 Y 0.82 100.00 358144000 1.00 Y 27: 25 Y 1.30 200.00	0.000
d12-Chrysen Chrysen	204576000 1.00 Y 27: 27 Y 1.23 100.0	0 0.000
d12-Benzo(e)pyren d12-Benzo(b)fluoranthen Benzo(b)fluoranthen	e 143642200 1.00 Y 30: 45 Y 1.25 200.0 e 358870000 1.00 Y 30: 49 Y 1.25 200.0	0 0 0.000
d12-Benzo(k) fluoranthen Benzo(k) fluoranthen	e 723118000 1.00 1 30. 33 1 =	0 0.000
d12-Benzo(a)pyren Benzo(e)pyren Benzo(a)pyren	e 719408000 1.00 1 31: 43 1 1.03 200.0	0.000
d12-Peryler Peryler	e 203898000 1.00 Y 32: 8 Y 0.66 100.0 e 666124000 1.00 Y 32: 14 Y 1.63 200.0	0.000
d12-Indeno(123-cd)pyrei Indeno(123-cd)pyrei	le 135800000 1.00 1 50. 57 2	0.000
d14-Dibenz(ah)anthrace Dibenz(ah)anthrace	ne 62783600 1.00 Y 36: 35 Y 0.20 100.0	00 00405 8 00
d12-Benzo(ghi)peryle Benzo(ghi)peryle	ne 121648200 1.00 Y 37: 46 Y 0.39 100.	00 0.000
d10-Fluore 13C-Fluore	ne 97709200 1.00 Y 15: 46 Y -1.00 100.	

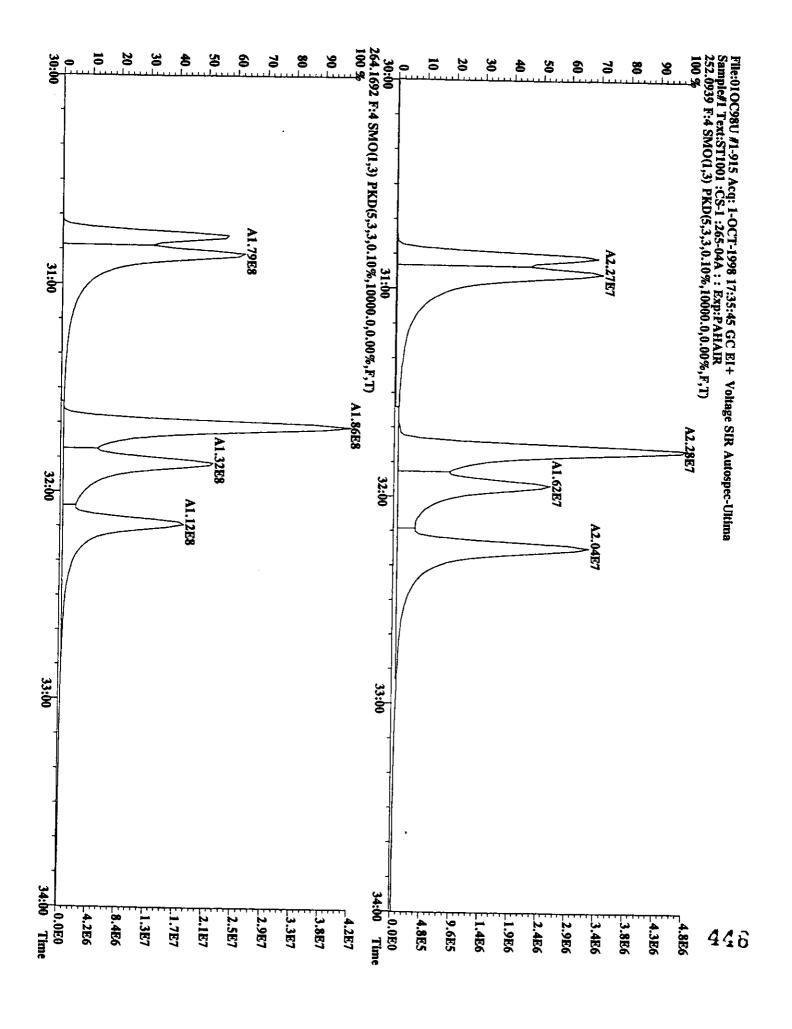

Mass Spec : ULTIMA GC Column : DB-5 Data file : 010C98U	Results : ST1001D :CS-		Date analyzed	: PAF	HAIRCAL5.TRG -OCT-98
Weight : 1 Name	Total Response	Isotope Ratio	04E : Ex R. T. RRF mm:ss		pg Rec/ MDL
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	107764600 214262000 1111880000 604524000	1.00 Y 1.00 Y	10: 29 Y 8: 18 Y 8: 23 Y 10: 34 Y	1.00 1.99 1.04 0.56	100.00
d8-Acenaphthylene	132535200		13: 31 Y	1.23	100.00
Acenaphthylene	693206000		13: 33 Y	1.05	500.00 0.000
d10-Acenaphthene	75400800		14: 5 Y	0.70	100.00
Acenaphthene	416428000		14: 11 Y	1.10	500.00 0.000
d10-Anthracene	90130400	1.00 Y	19: 3 Y	0.00	100.00
d10-Fluorene	101497800		15: 46 Y	1.13	100.00
Fluorene	589742000		15: 52 Y	1.16	500.00 0.000
d10-Phenanthrene	201484000	1.00 Y	18: 53 Y	2.24	100.00
Phenanthrene	998200000		18: 58 Y	0.99	500.00 0.000
Anthracene	1245296000		19: 7 Y	1.24	500.00 0.000
d14-Terphenyl	185488200	1.00 Y	24: 11 Y	0.00	100.00
d10-Fluoranthene	278218000		22: 46 Y	1.50	100.00
Fluoranthene	1750396000		22: 50 Y	1.26	500.00 0.000
d10-Pyrene	289520000		23: 28 Y	1.56	100.00
Pyrene	1959900000		23: 32 Y	1.35	500.00 0.000
d12-Benzo(a) anthracene	163268600		27: 20 Y	0.88	100.00
Benzo(a) anthracene	1111520000		27: 24 Y	1.36	500.00 0.000
d12-Chrysene	233188000		27: 27 Y	1.26	100.00
Chrysene	1341774000		27: 32 Y	1.15	500.00 0.000
d12-Benzo(e) pyrene d12-Benzo(b) fluoranthene Benzo(b) fluoranthene	345112000 181269200 1259814000	1.00 Y	30: 45 Y	1.00 0.53 1.39	100.00 100.00 500.00 0.000
d12-Benzo(k) fluoranthene	348738000	1.00 Y	30: 50 Y	1.01	100.00
Benzo(k) fluoranthene	2006440000	1.00 Y	30: 54 Y	1.15	500.00 0.000
d12-Benzo(a)pyrene Benzo(e)pyrene Benzo(a)pyrene	2187260000	1.00 Y		0.77 1.65 1.08	
d12-Perylene Perylene	216440000 2011040000			0.63 1.86	100.00 500.00 0.000
d12-Indeno (123-cd) pyrene	150332800	1.00 Y	36: 30 Y	0.44	100.00
Indeno (123-cd) pyrene	464000000	1.00 Y	36: 38 Y	0.62	500.00 0.000
d14-Dibenz (ah) anthracene	88335000	1.00 Y		0.26	100.00
Dibenz (ah) anthracene	575408000	1.00 Y		1.30	500.00 0.000
d12-Benzo(ghi)perylene	152552400	1.00 Y		0.44	100.00438
Benzo(ghi)perylene	853976000	1.00 Y		1.12	500.00 0.000

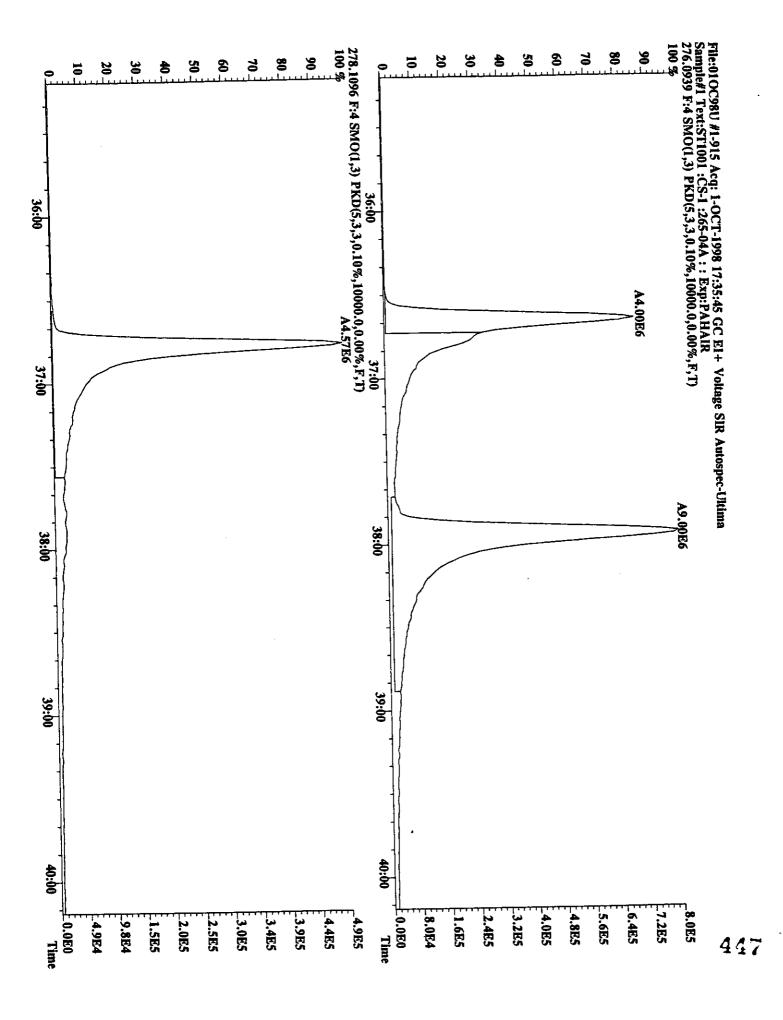


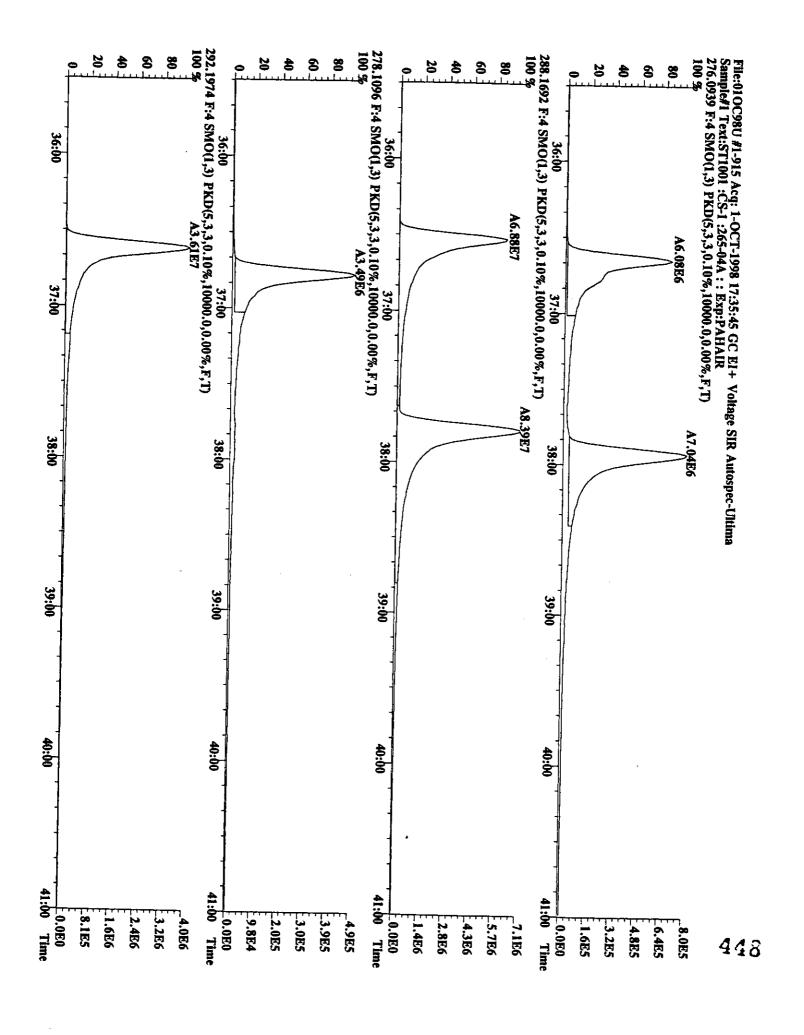


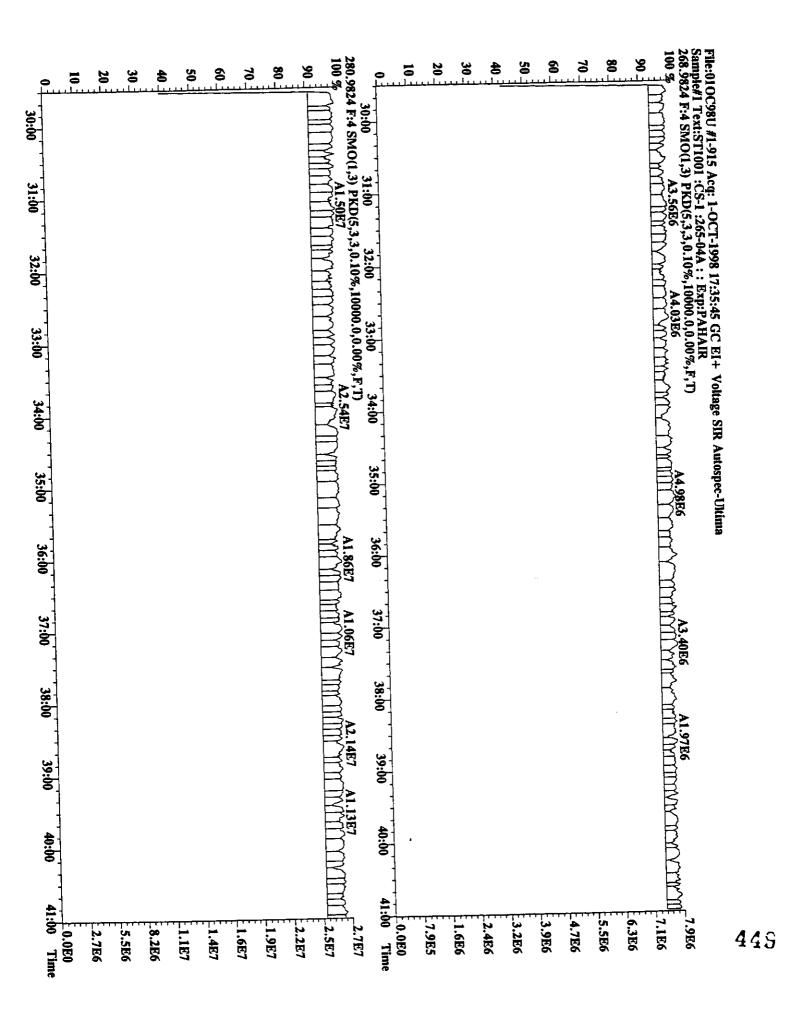


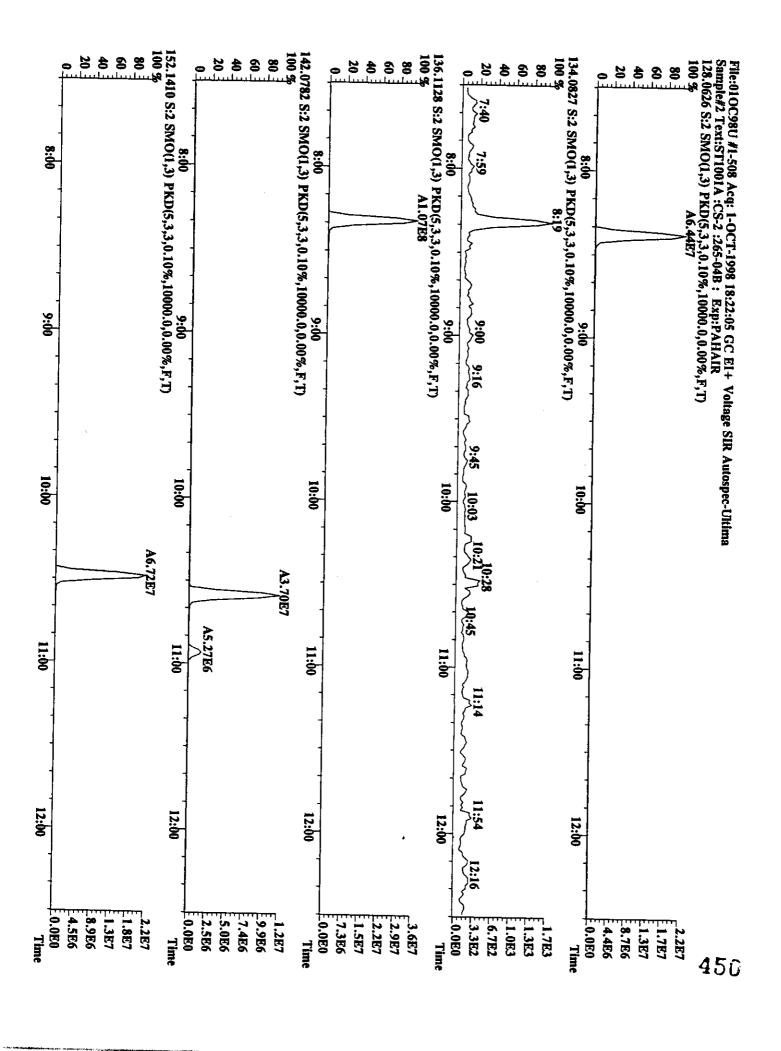


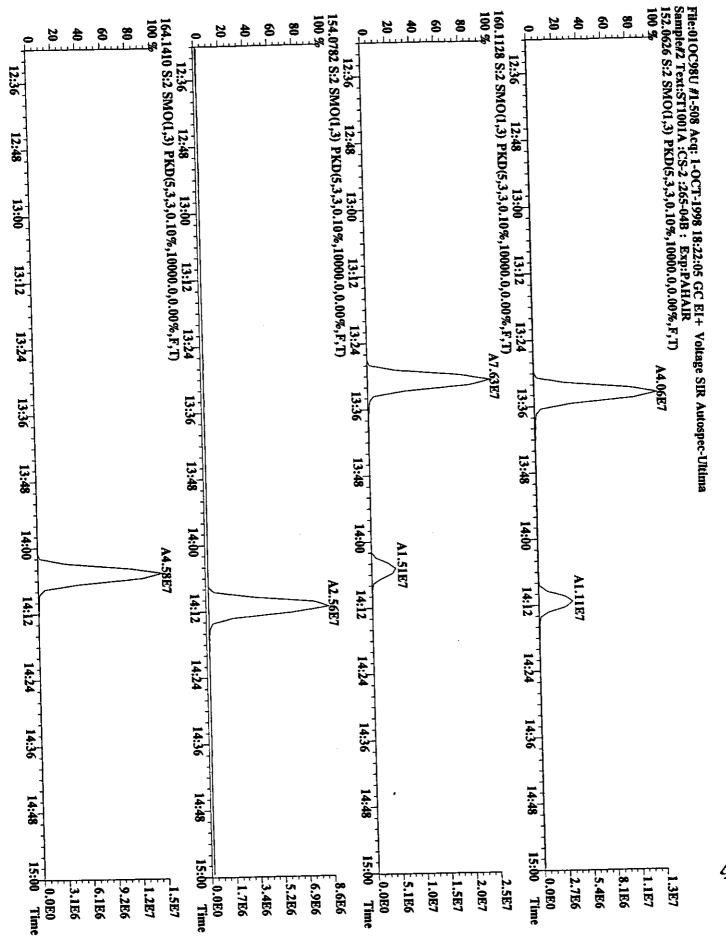


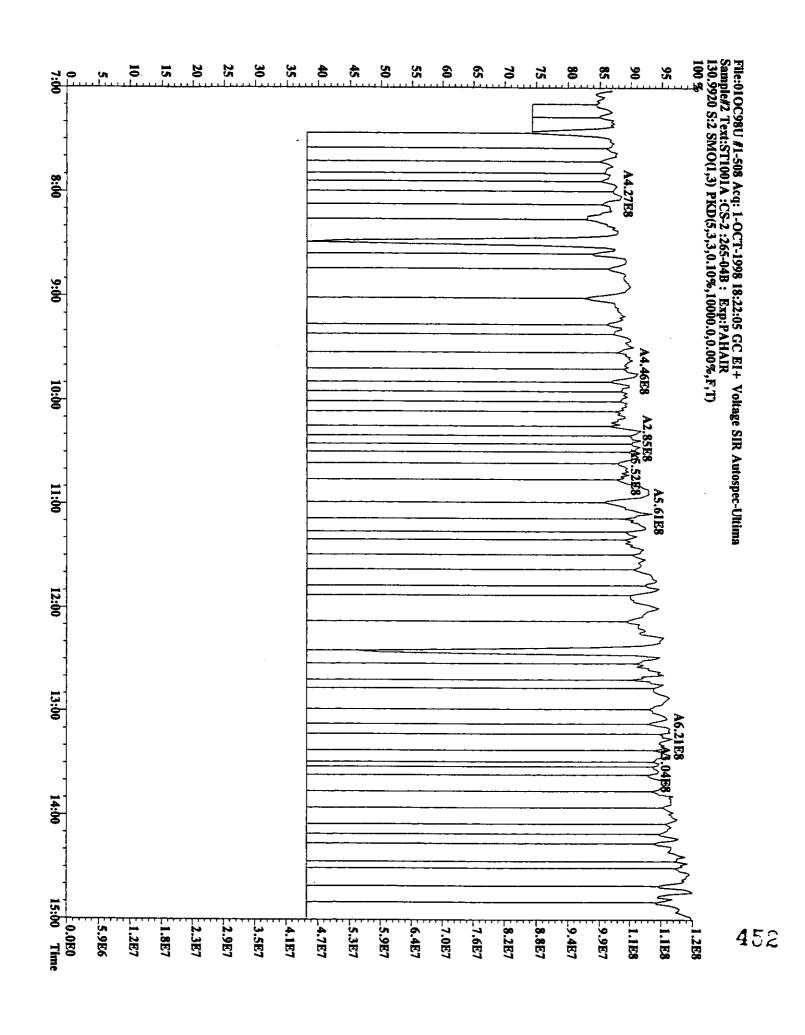


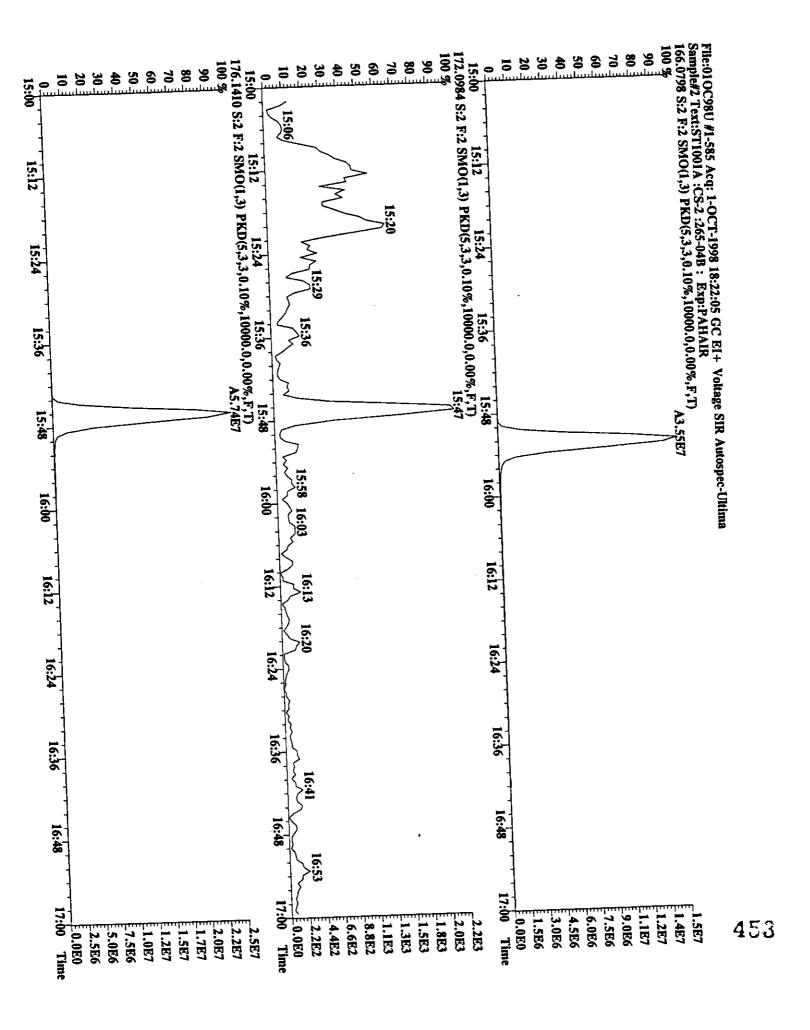


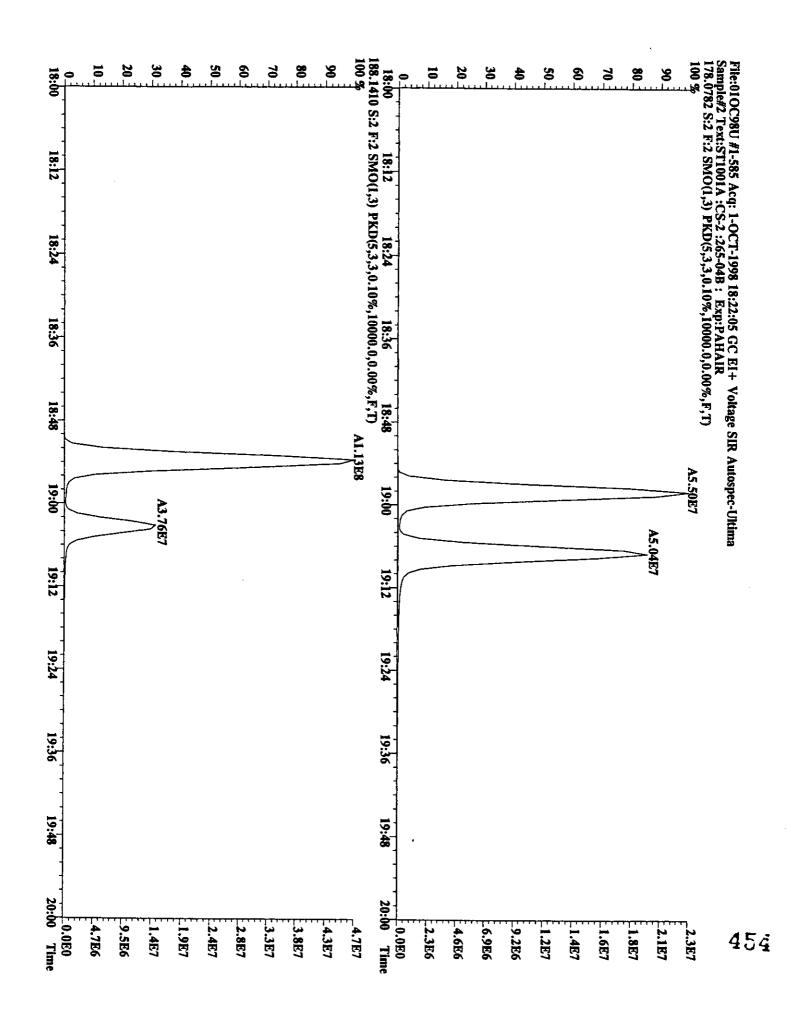


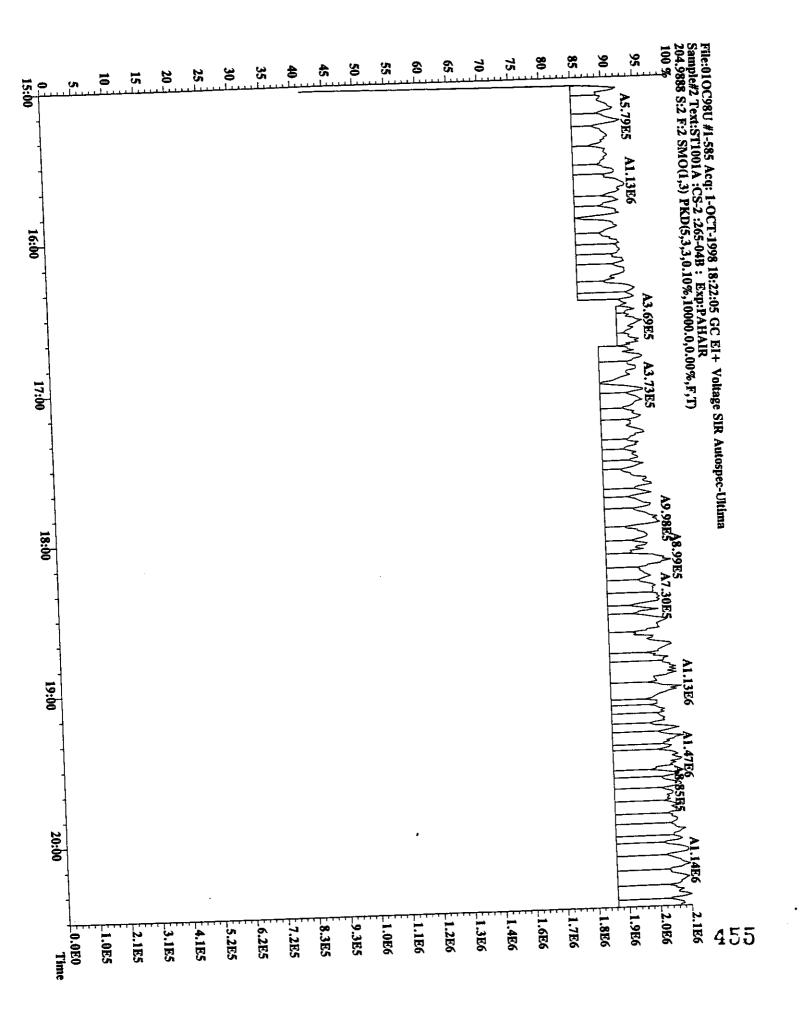


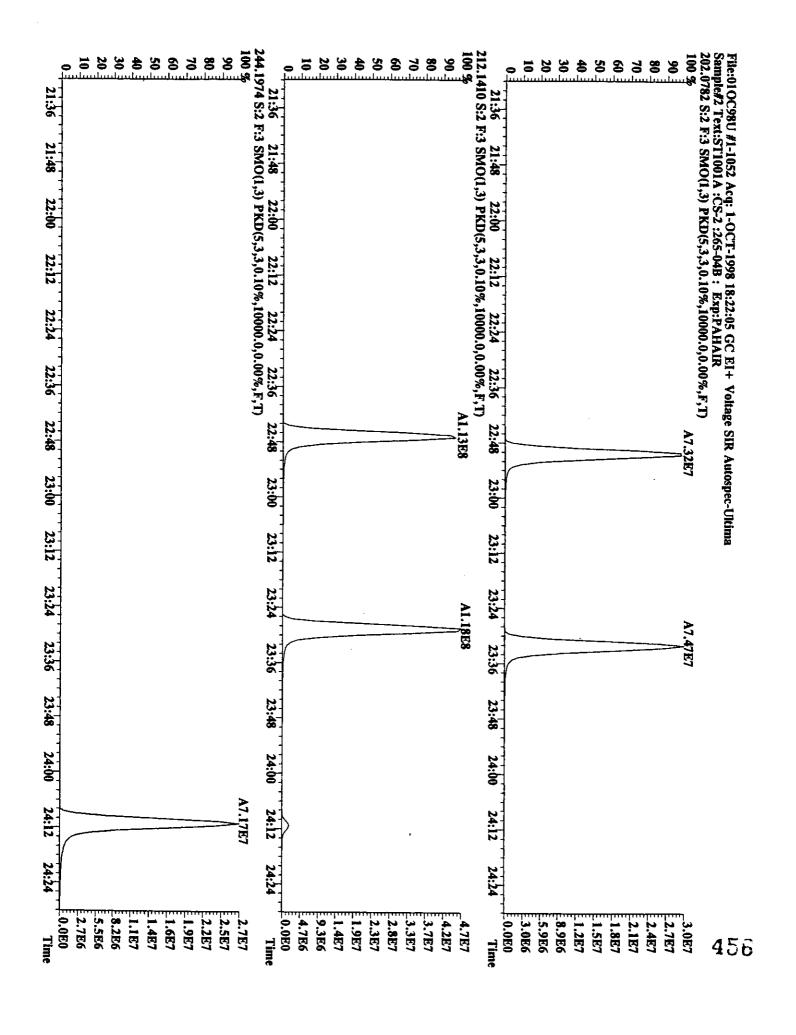


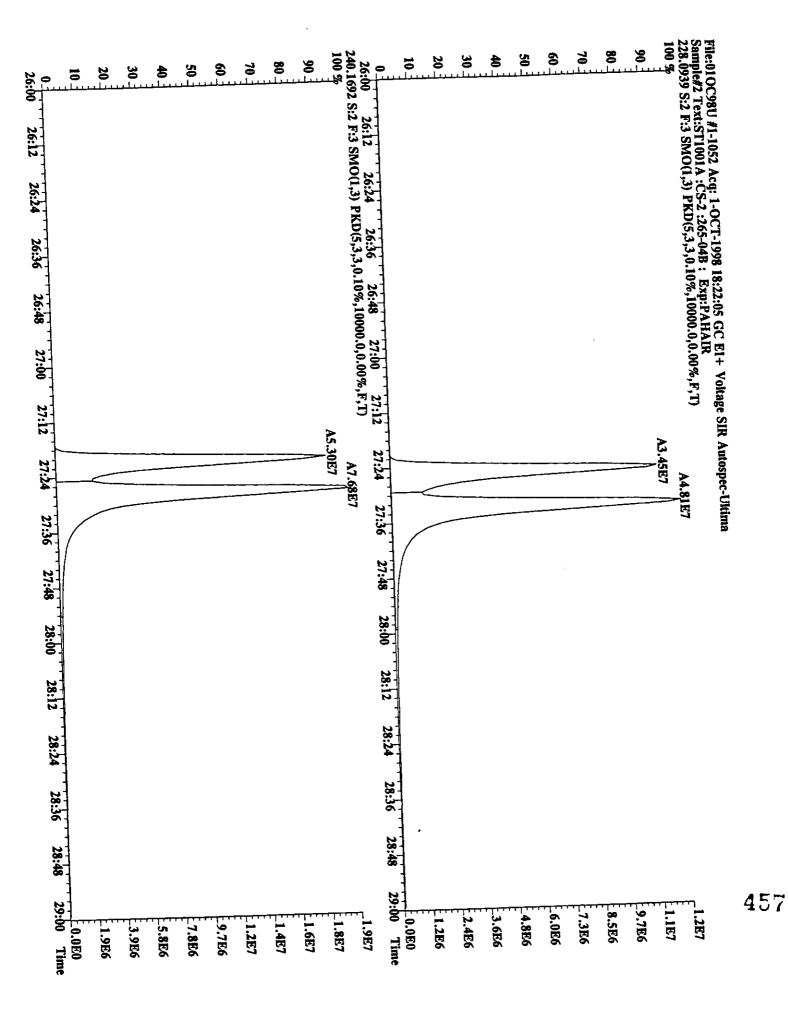


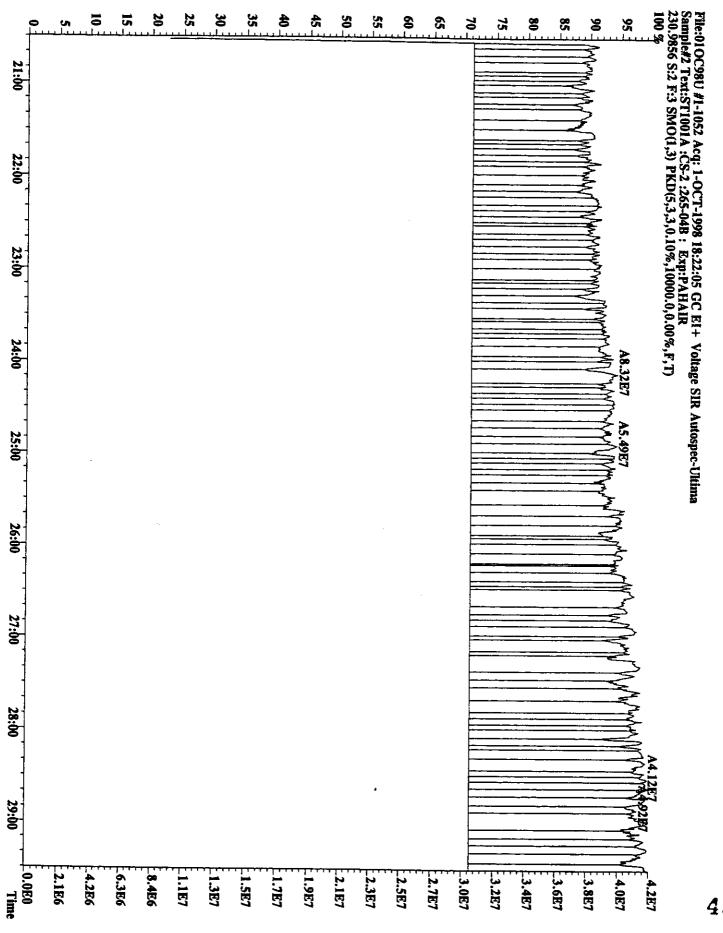


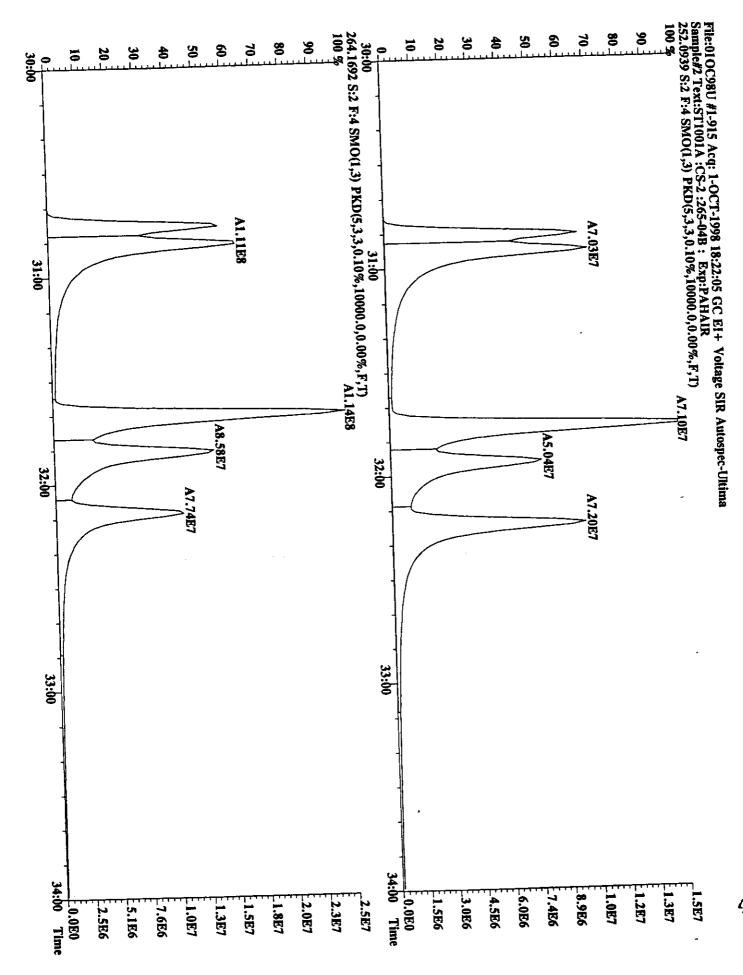


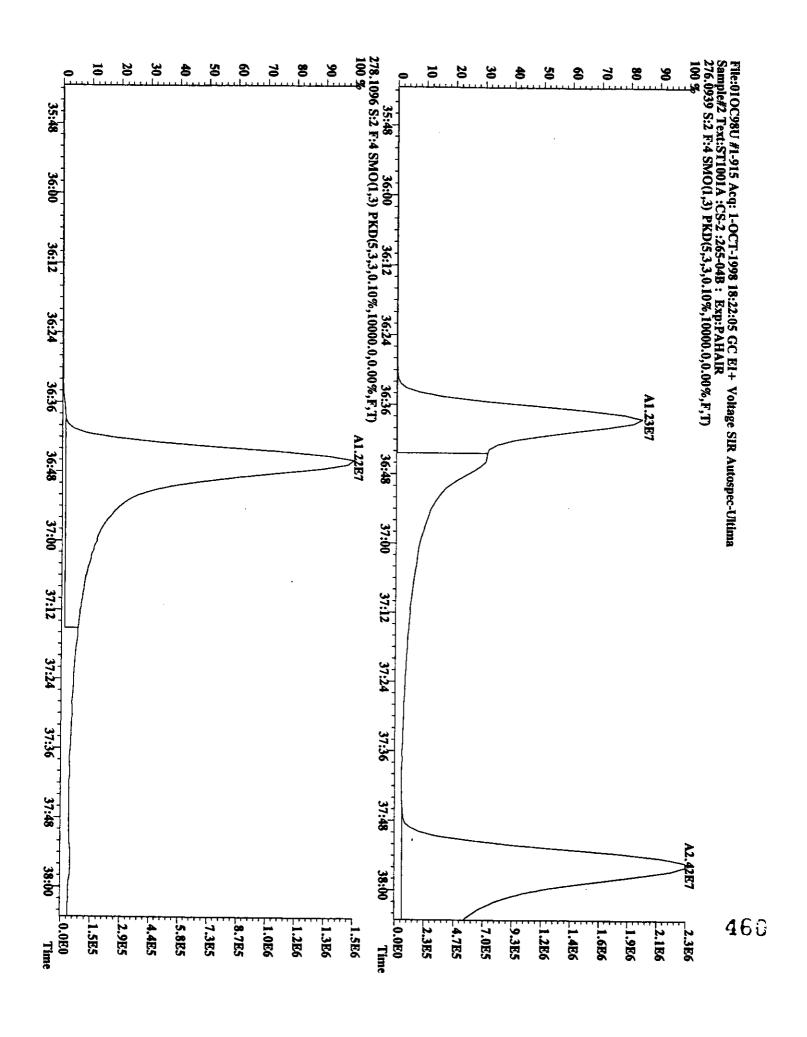


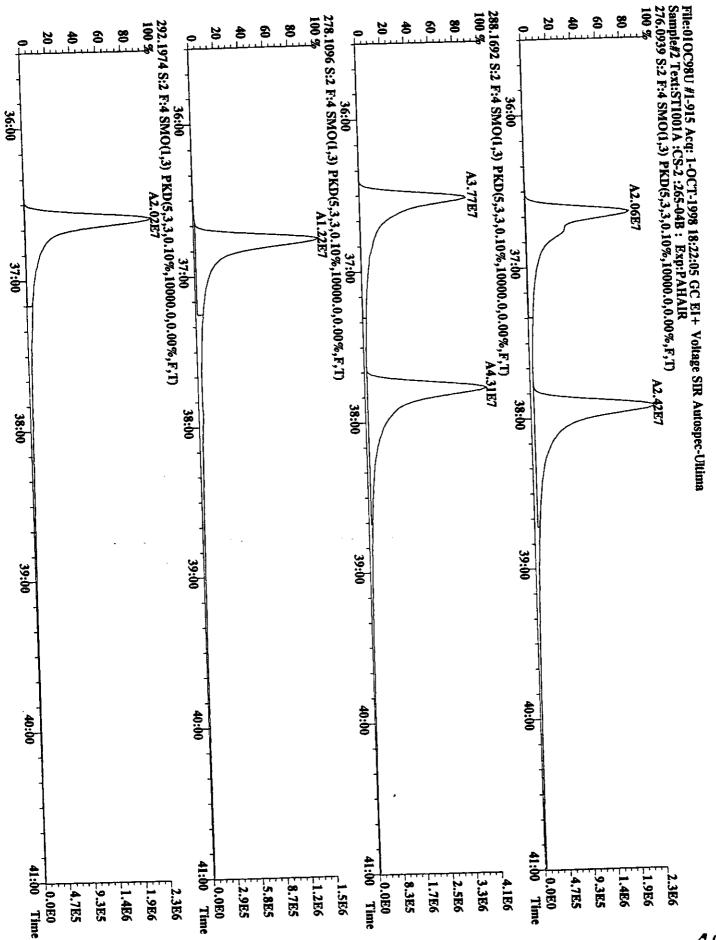


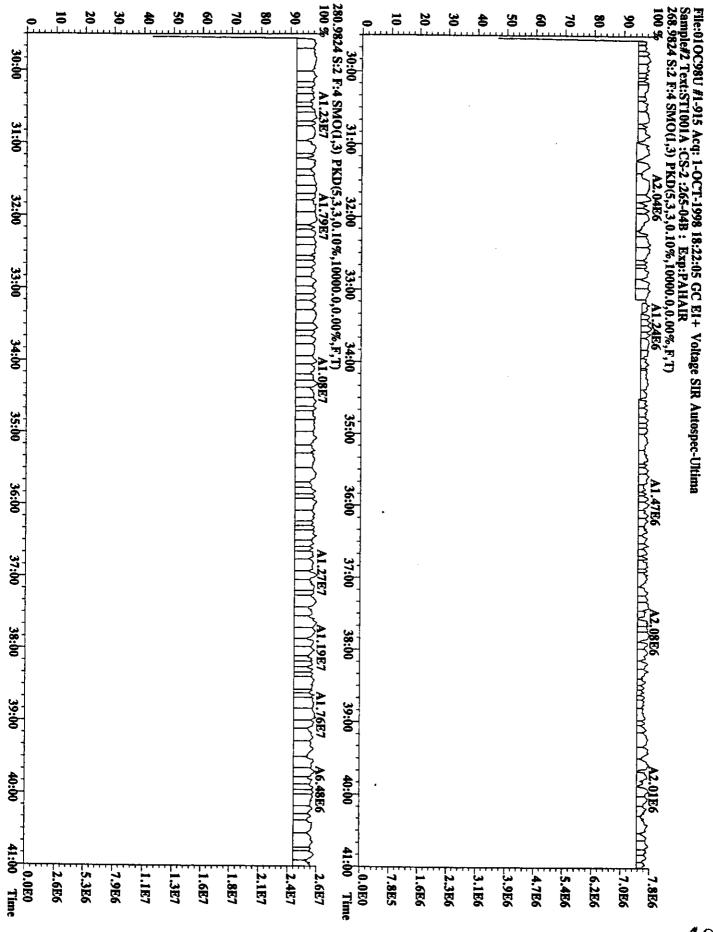


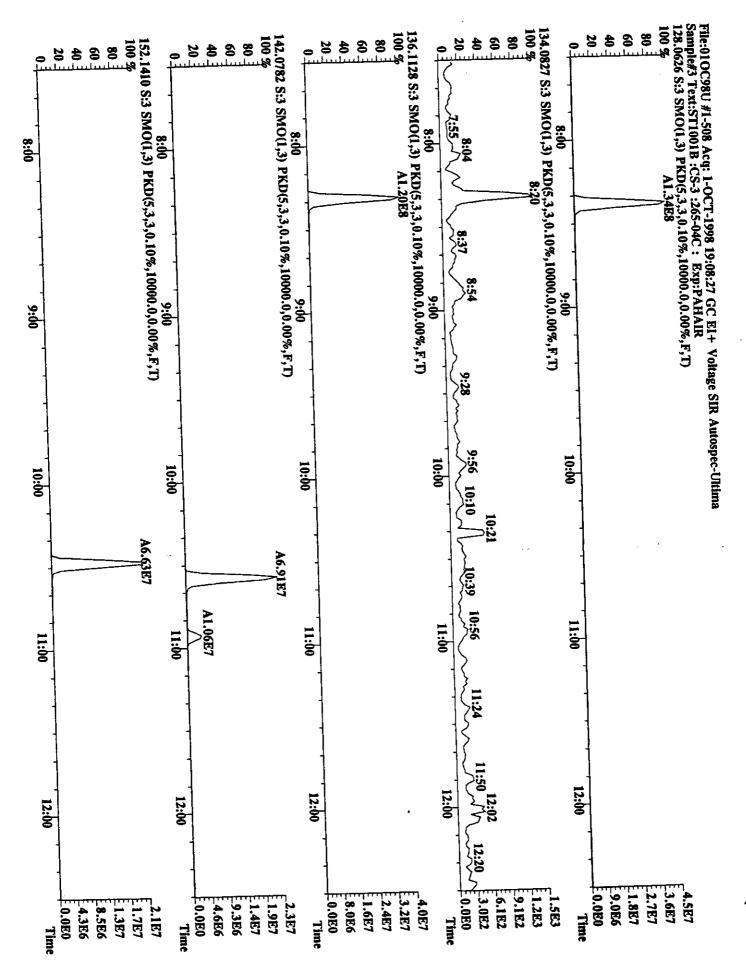


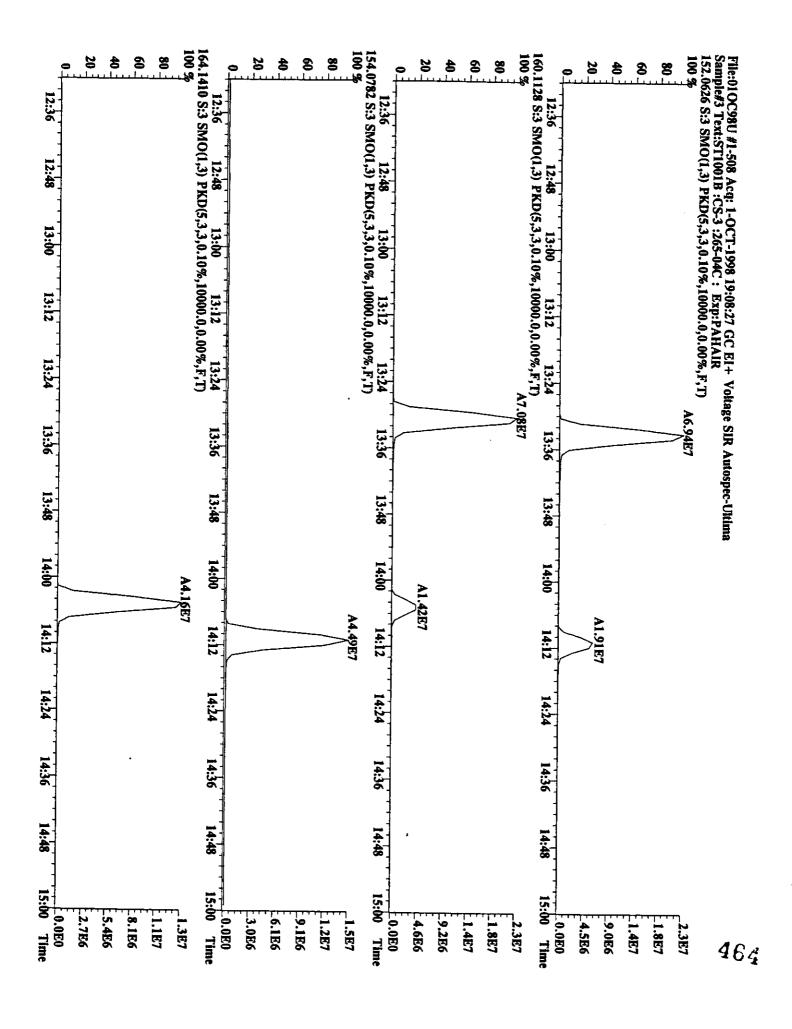


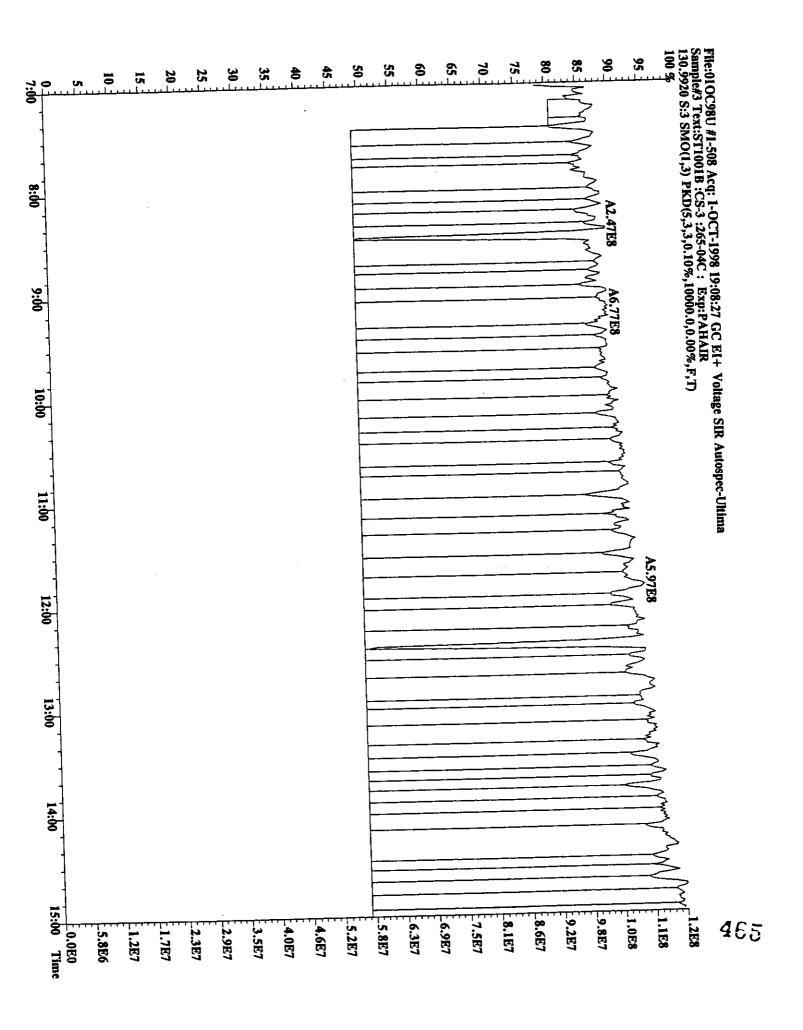


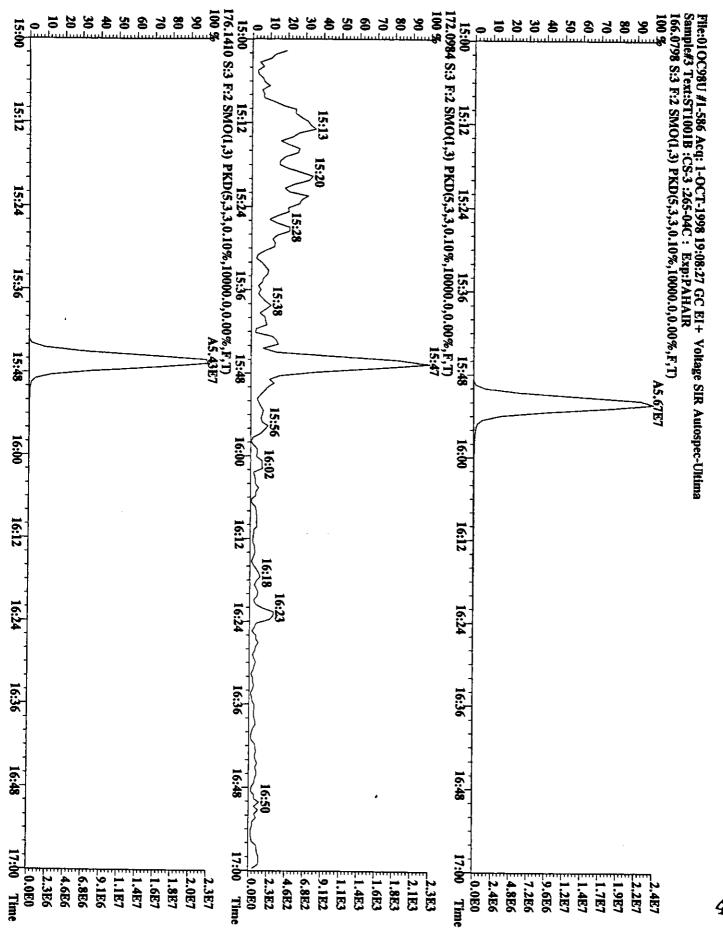


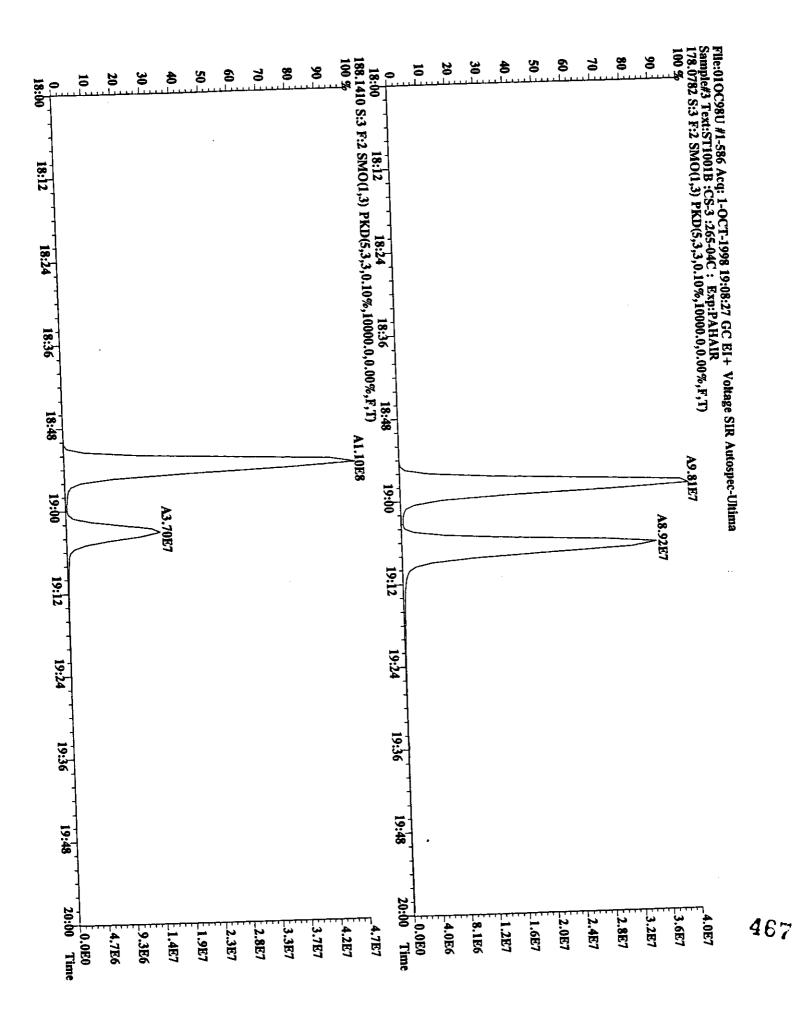


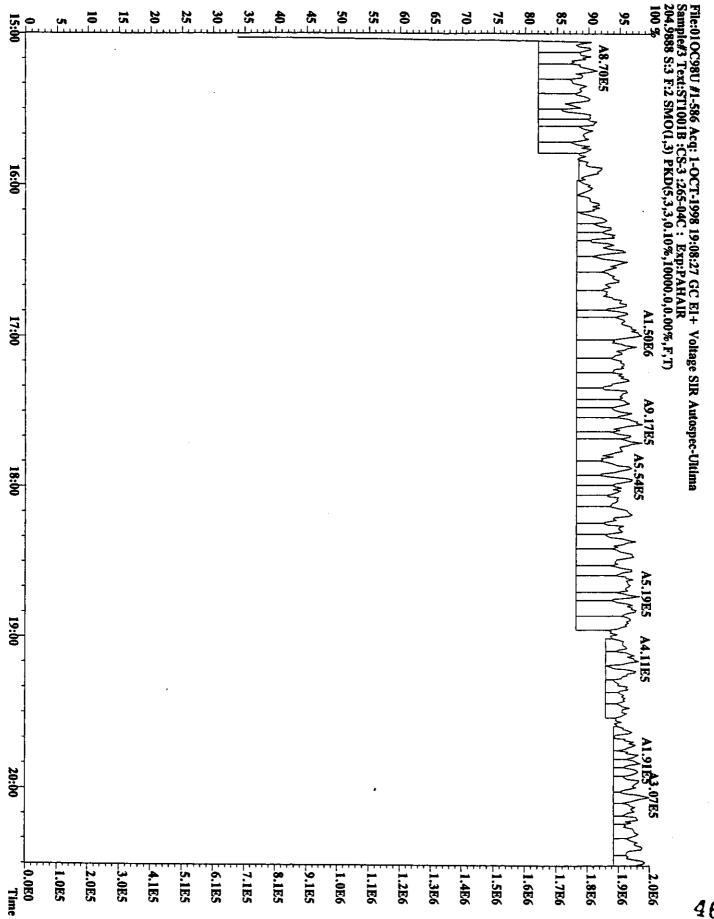


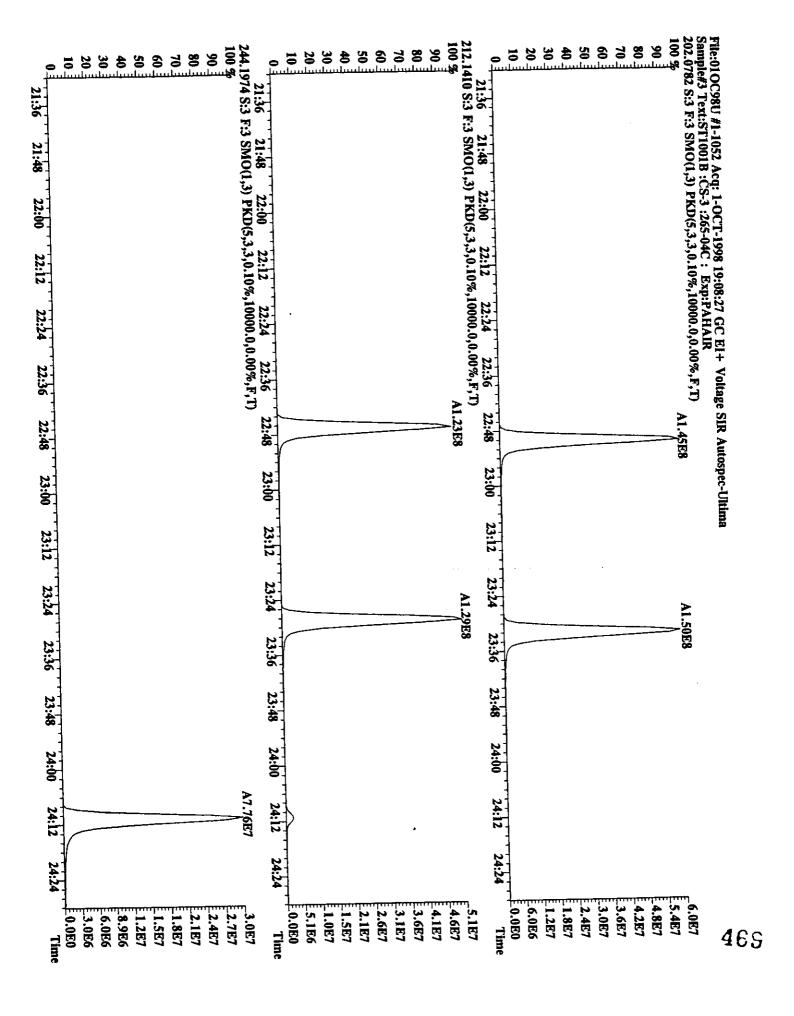


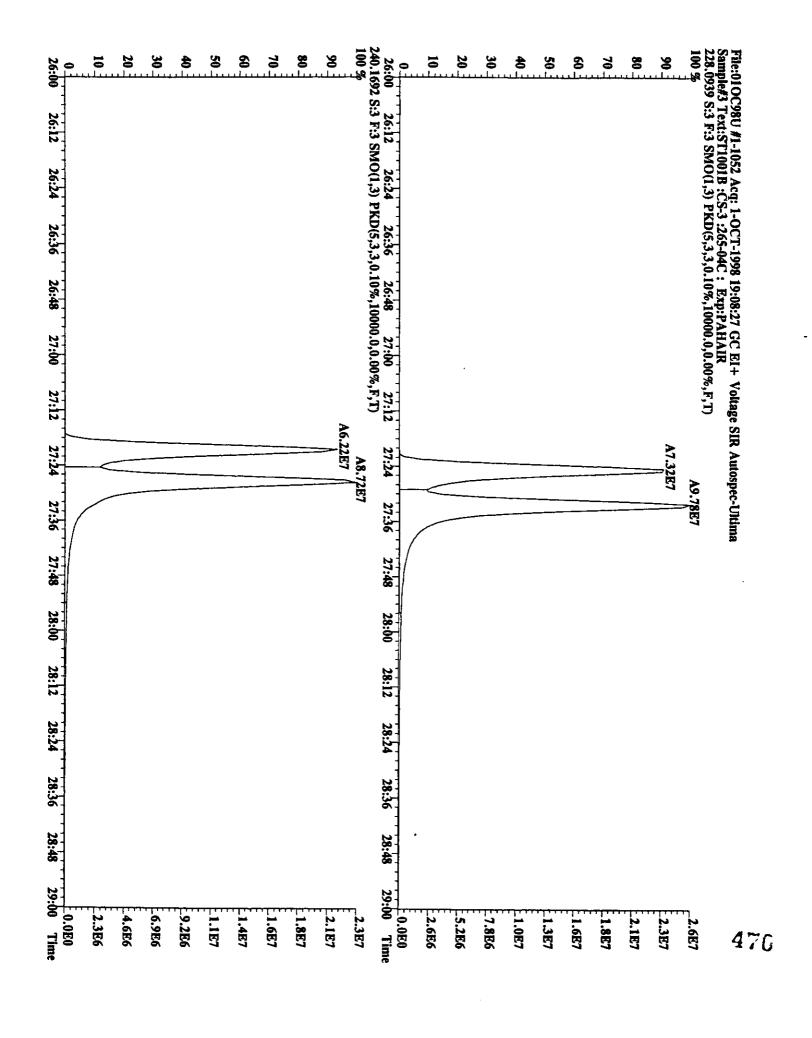


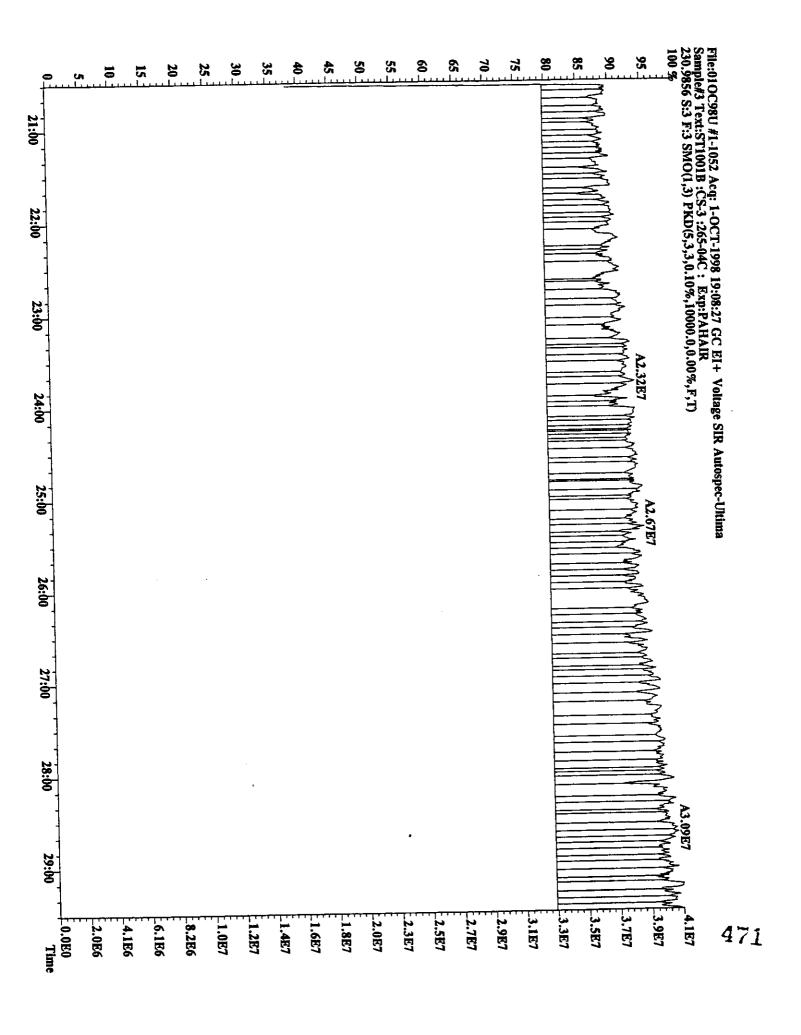


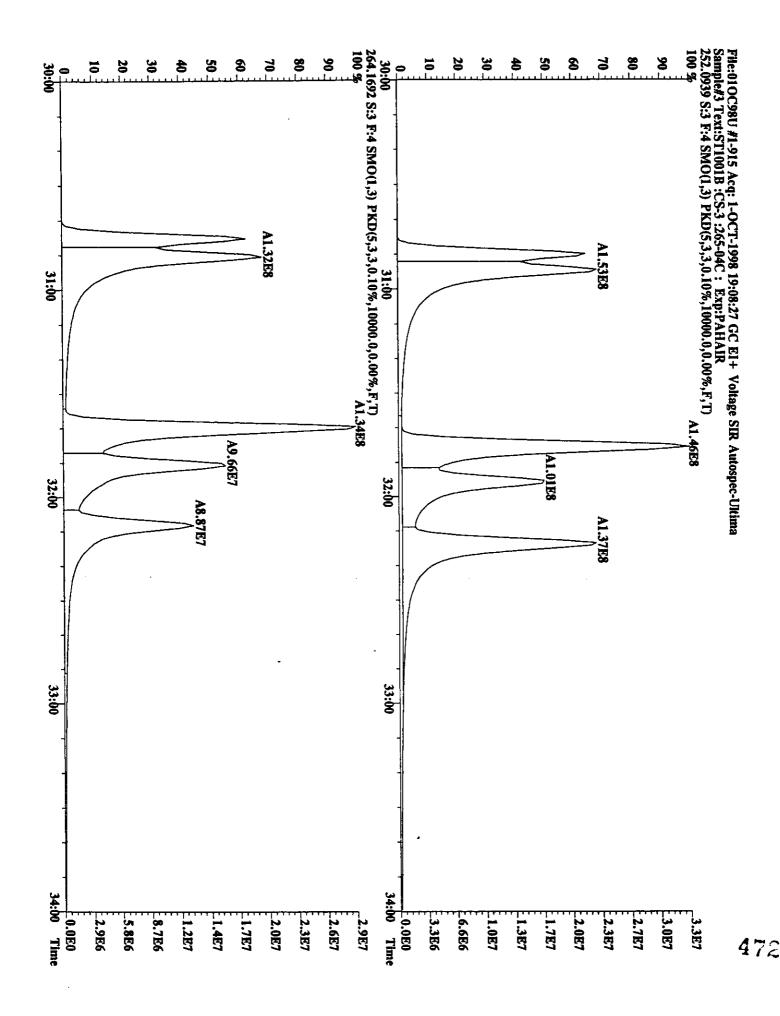


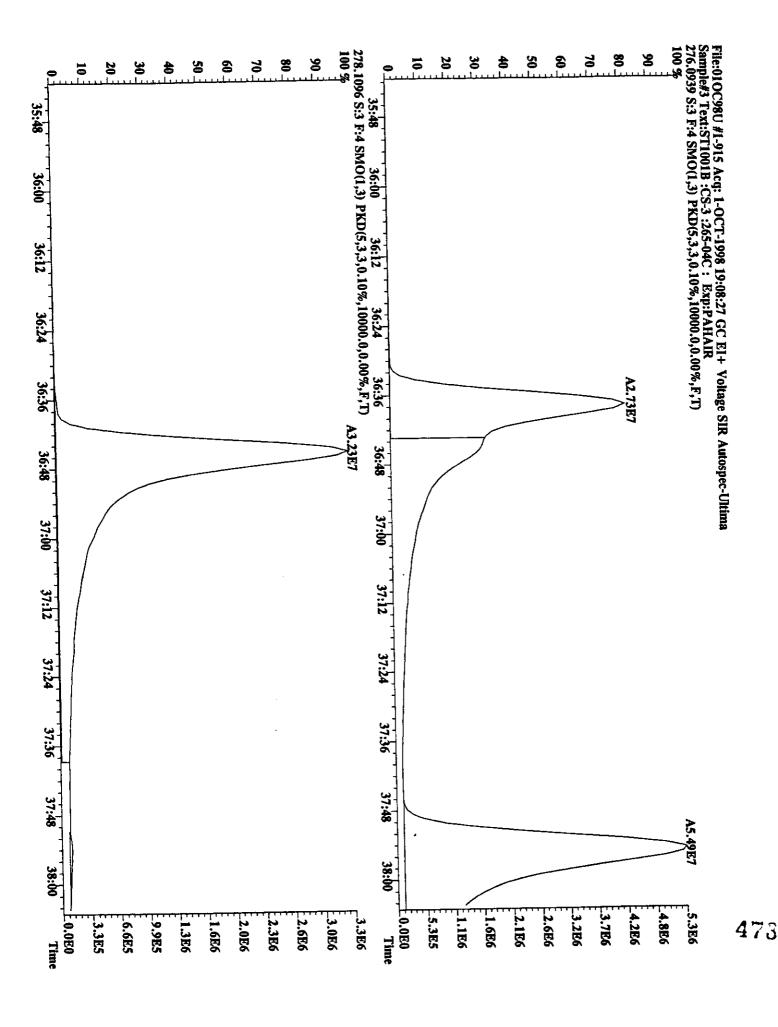


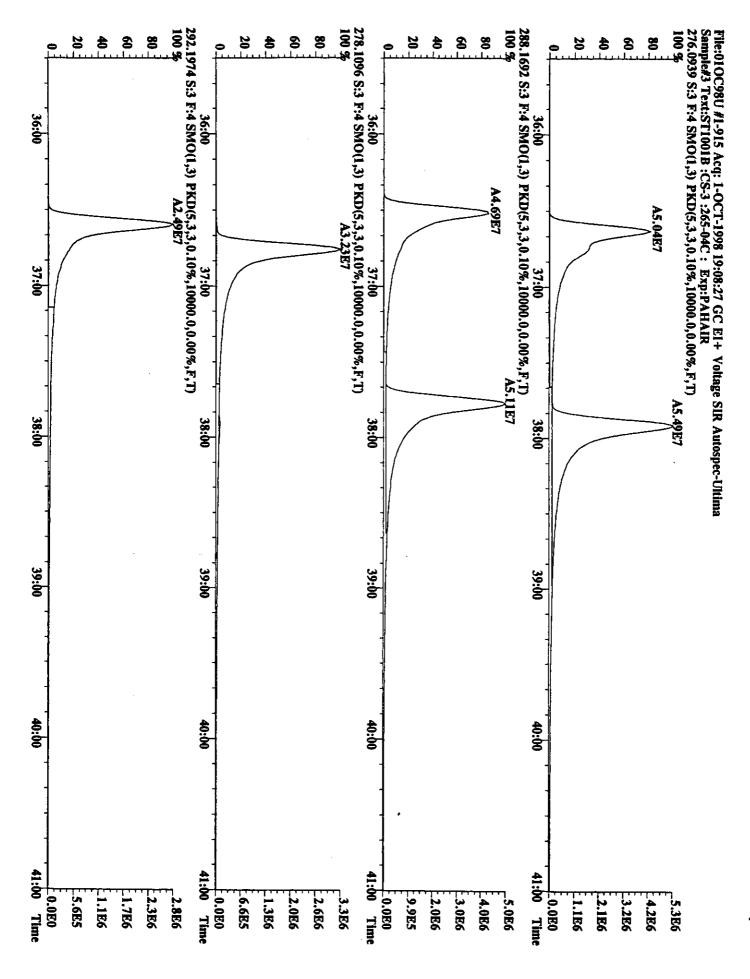


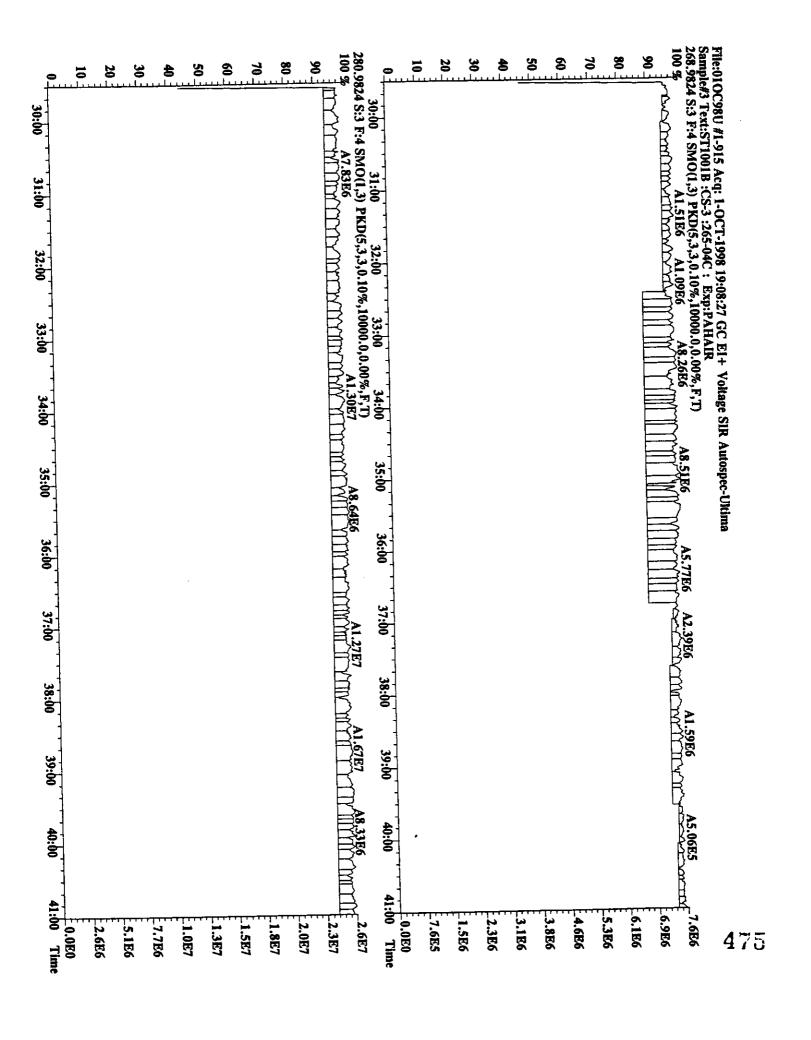


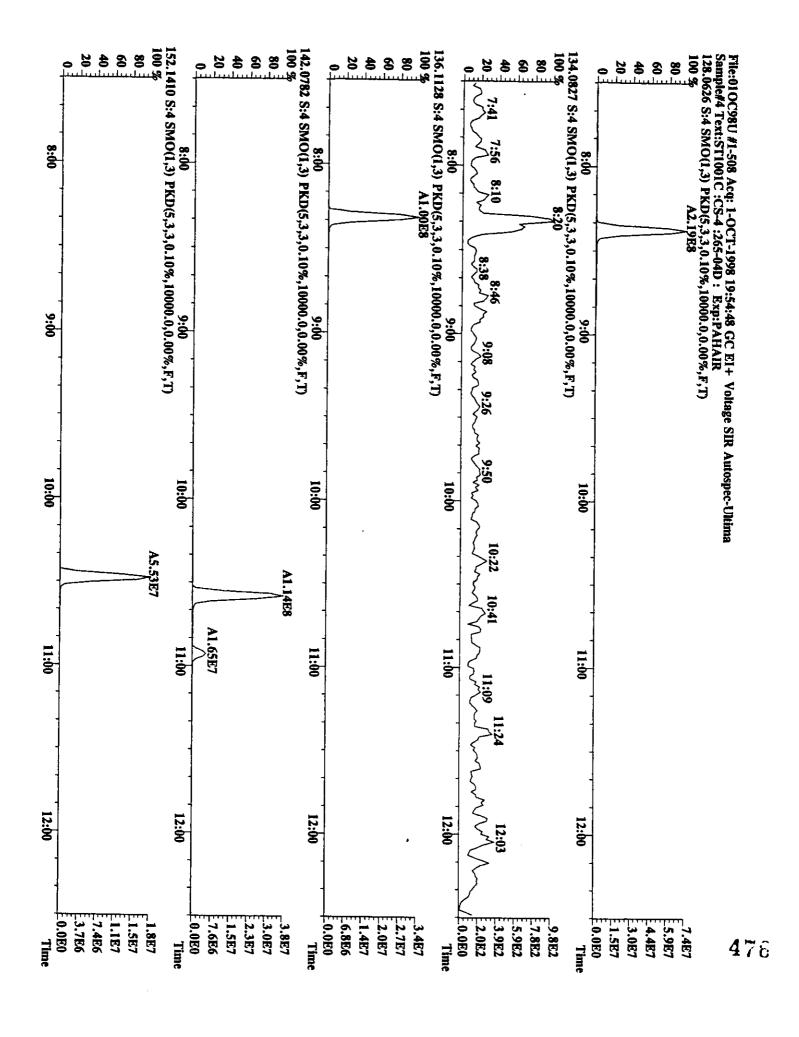


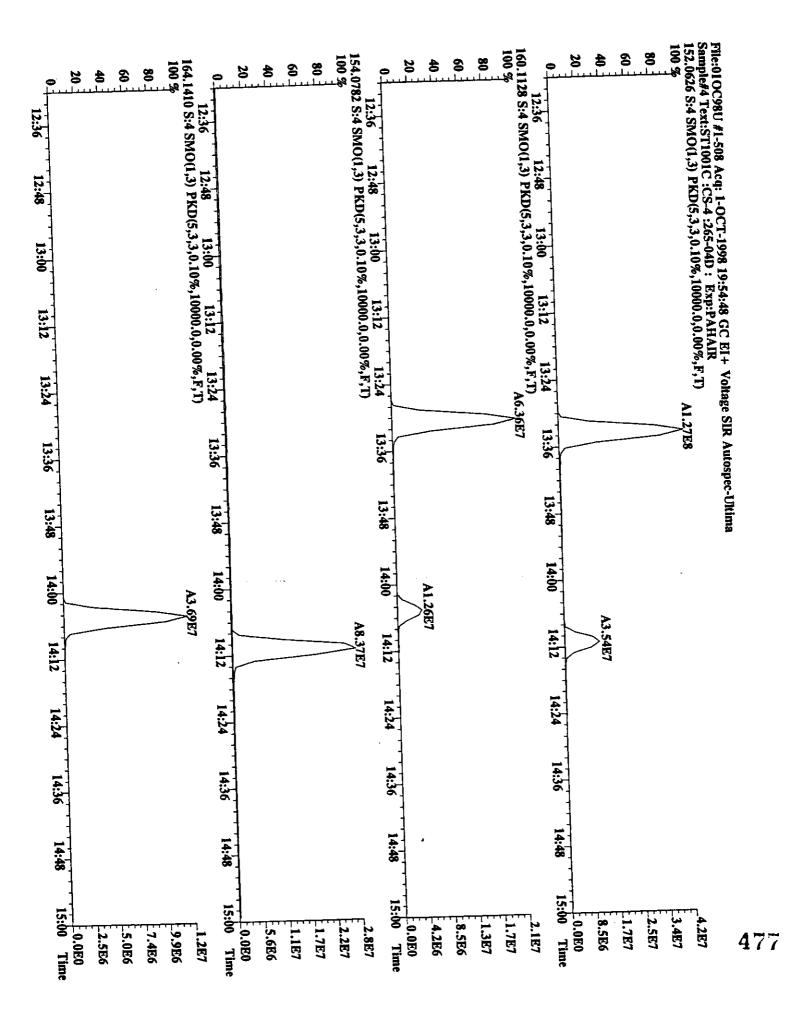


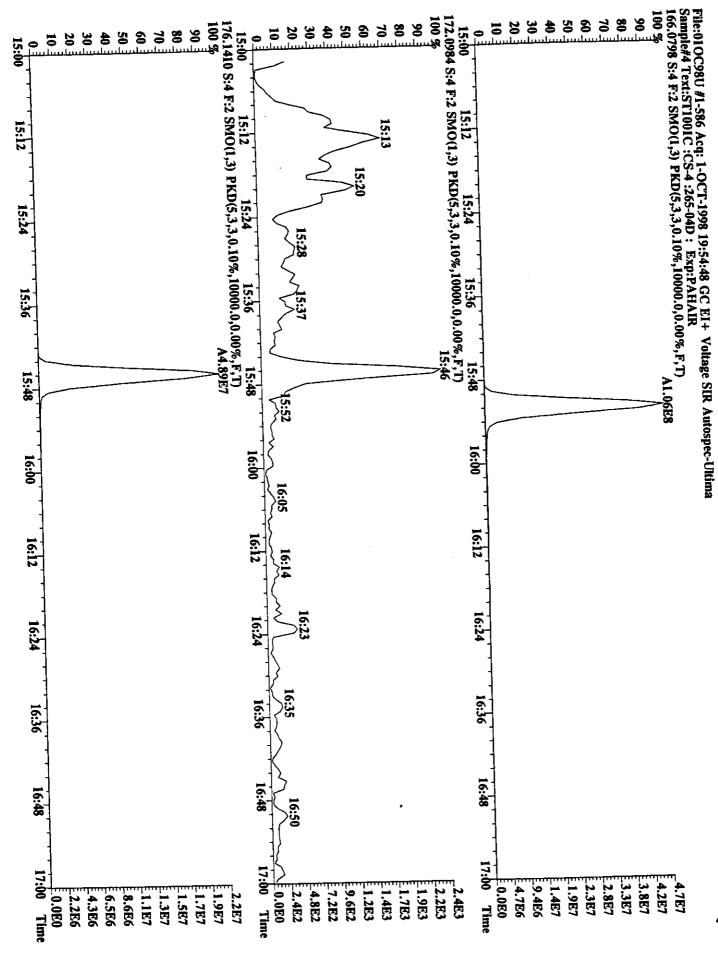


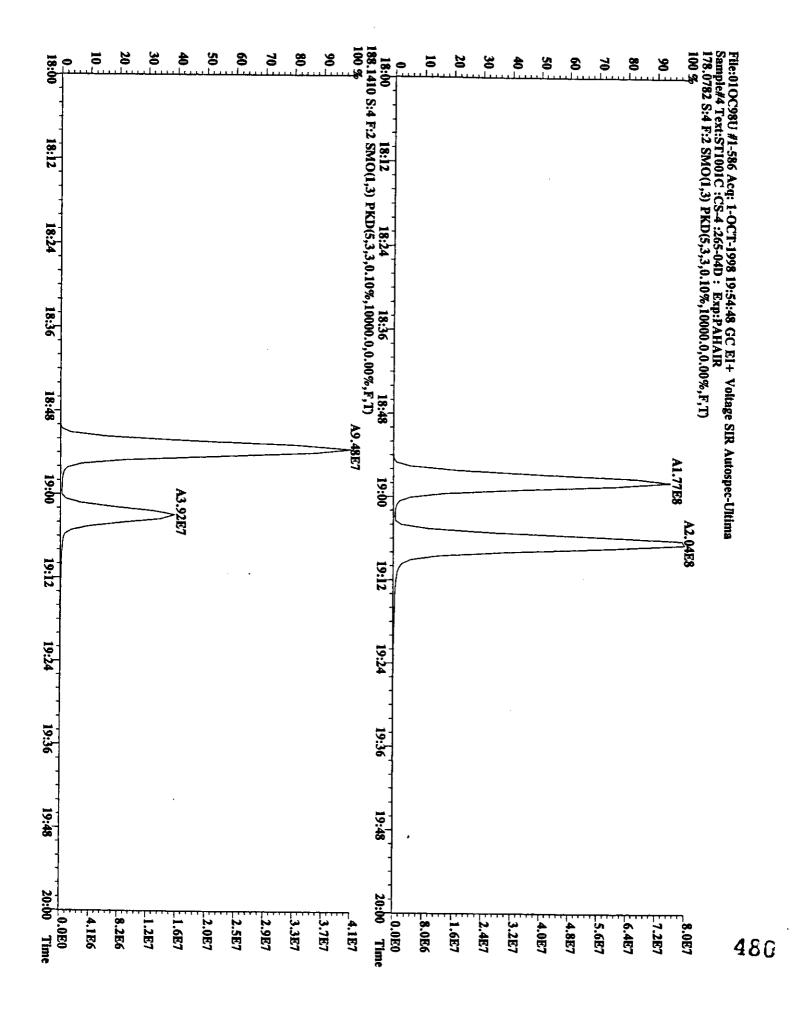


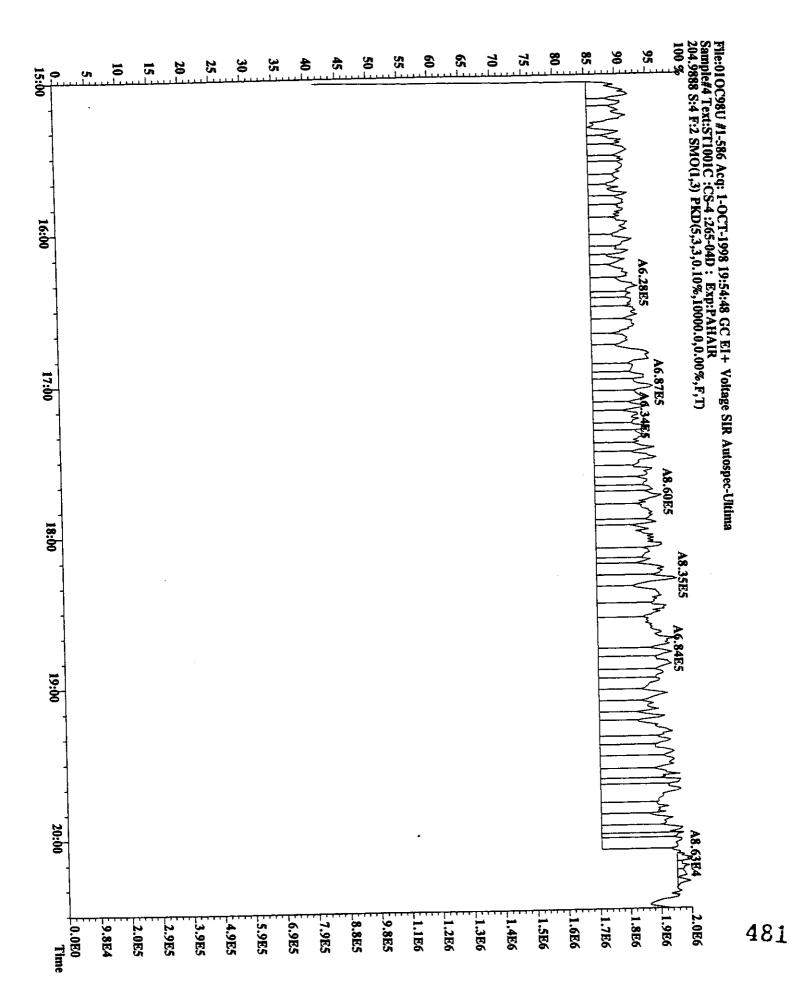


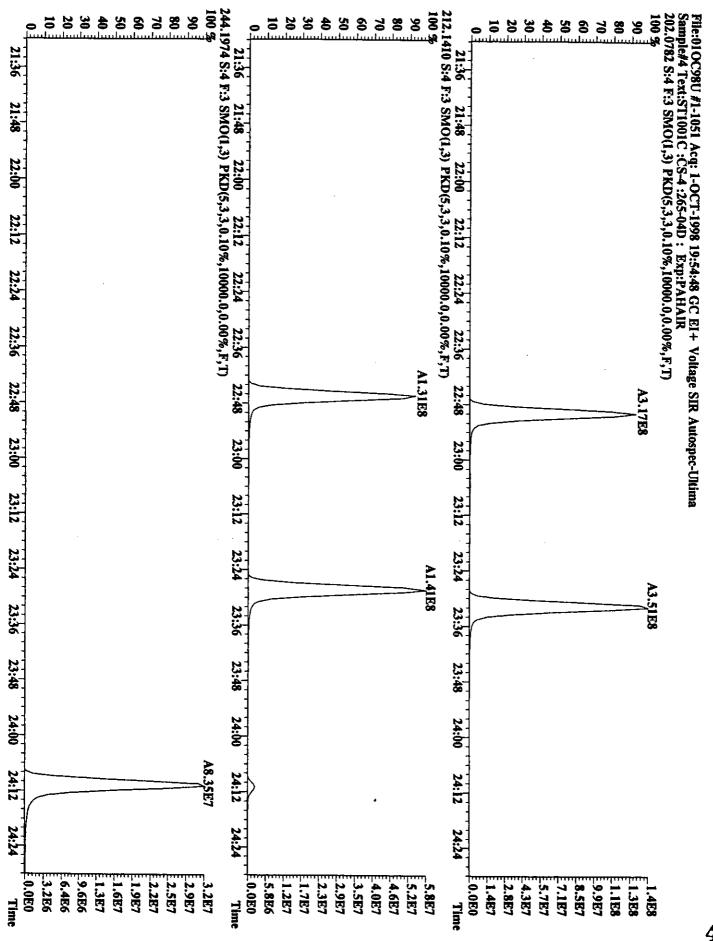


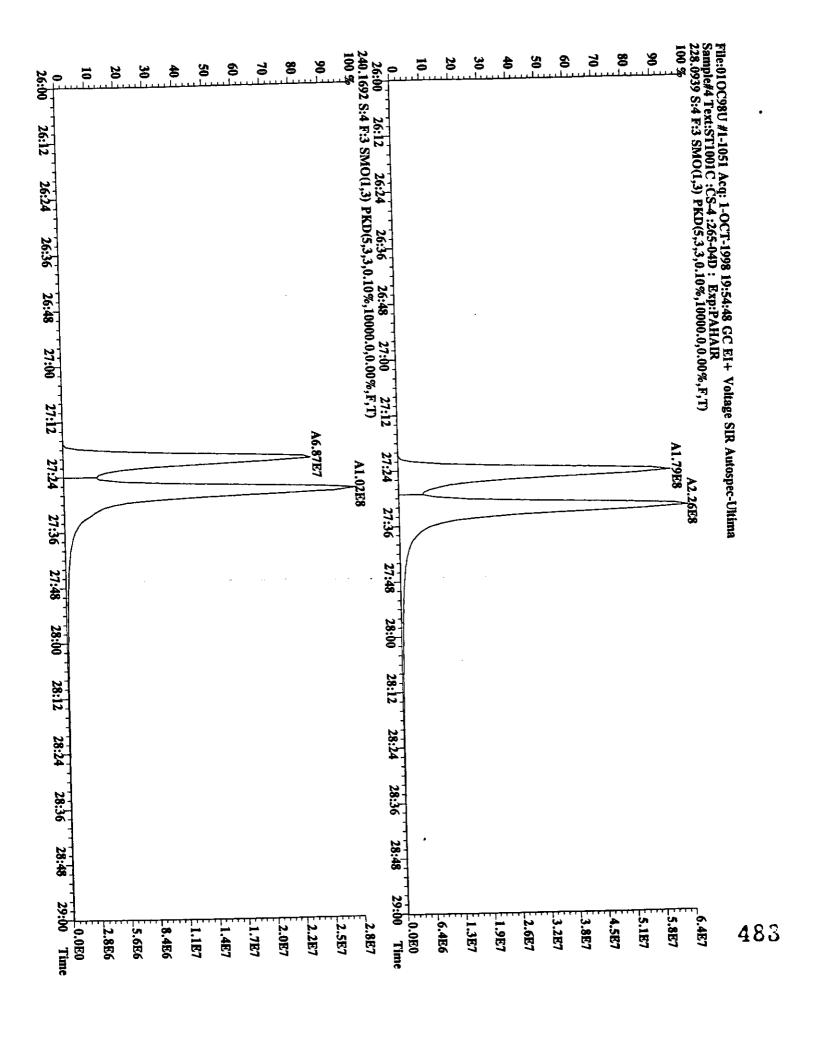


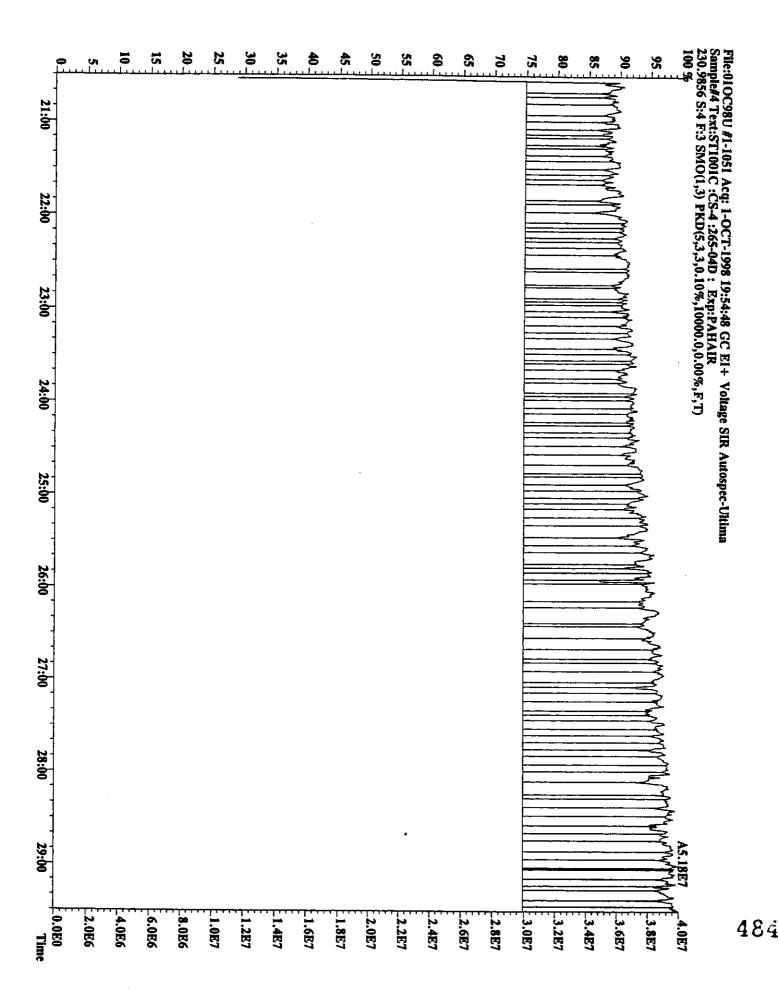


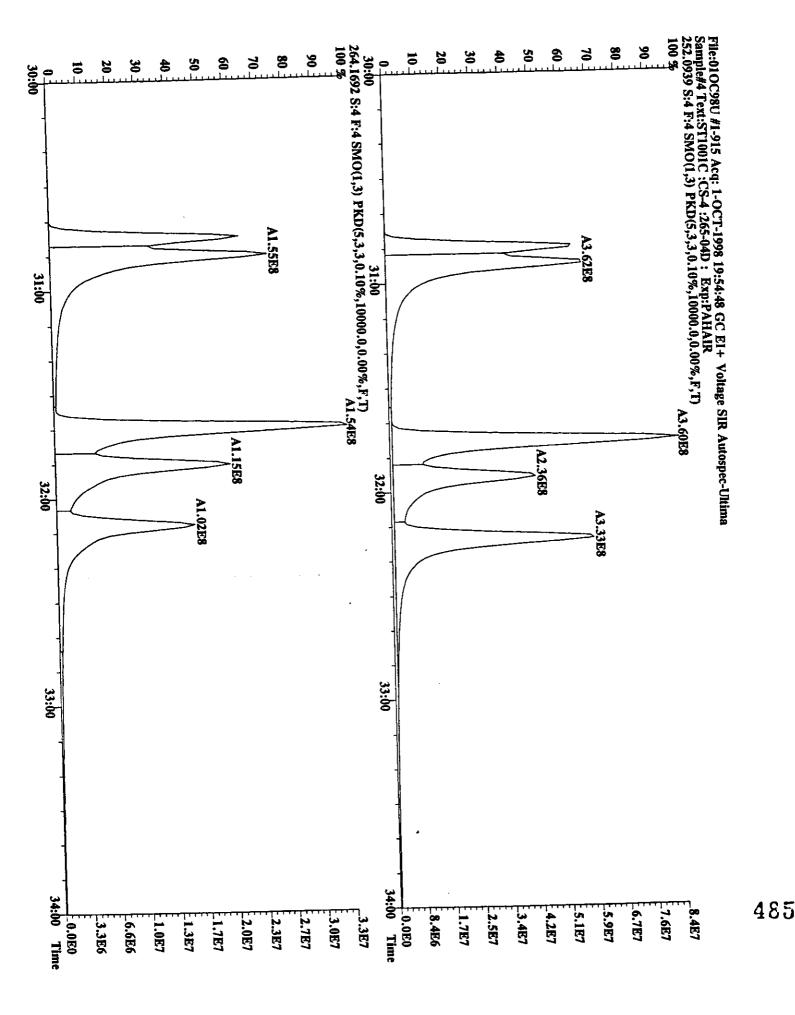


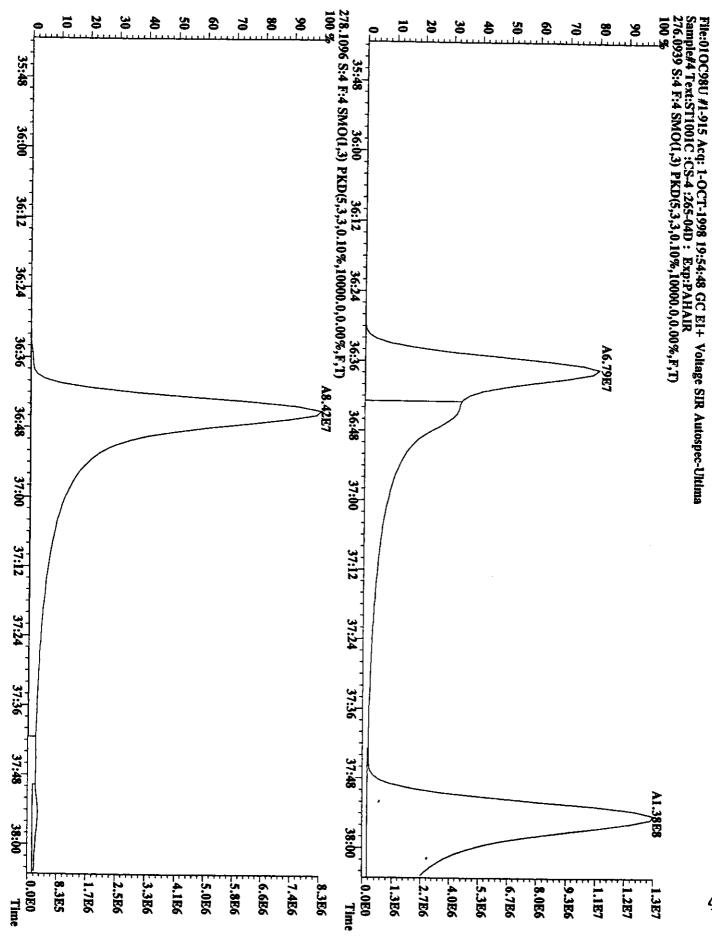


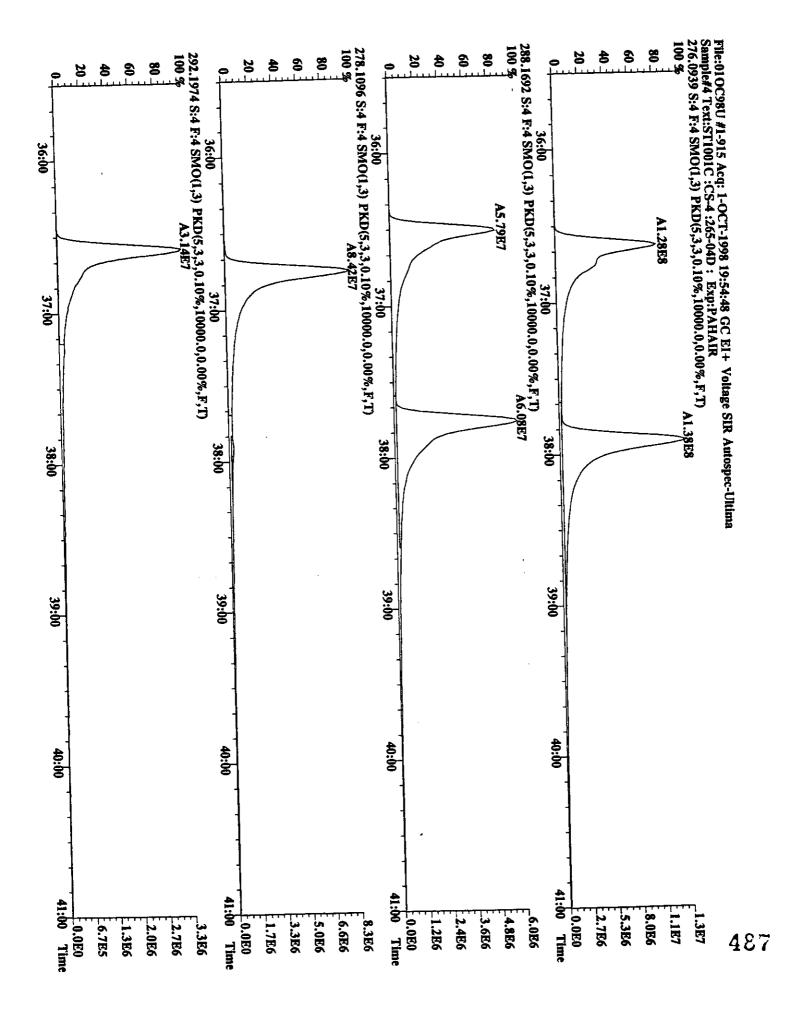


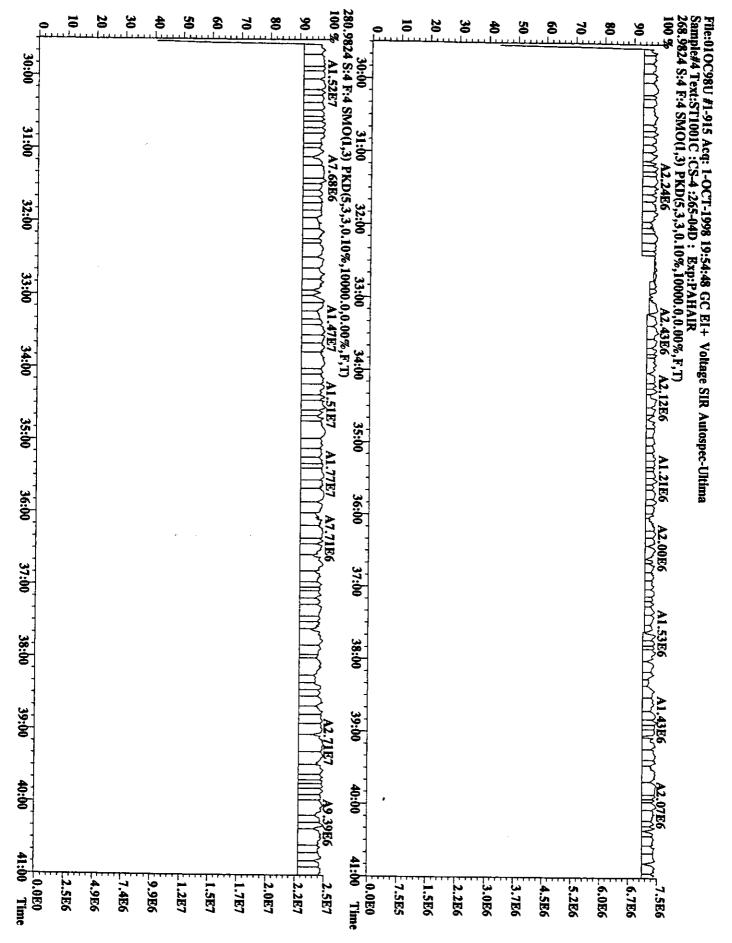


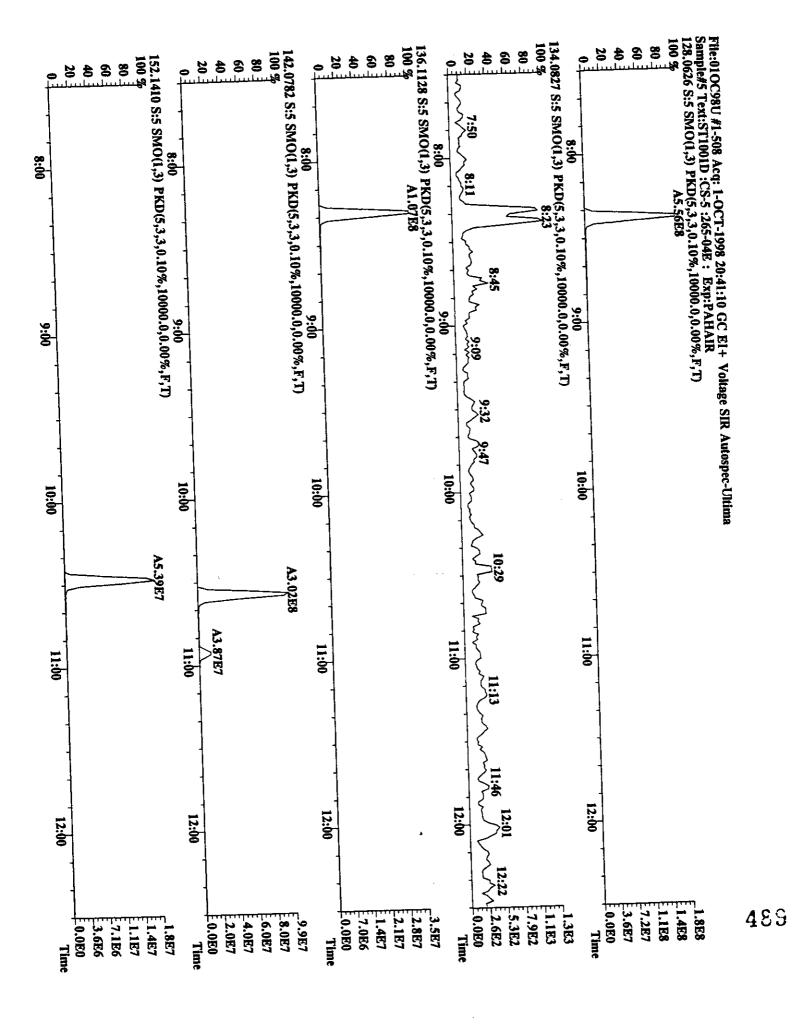


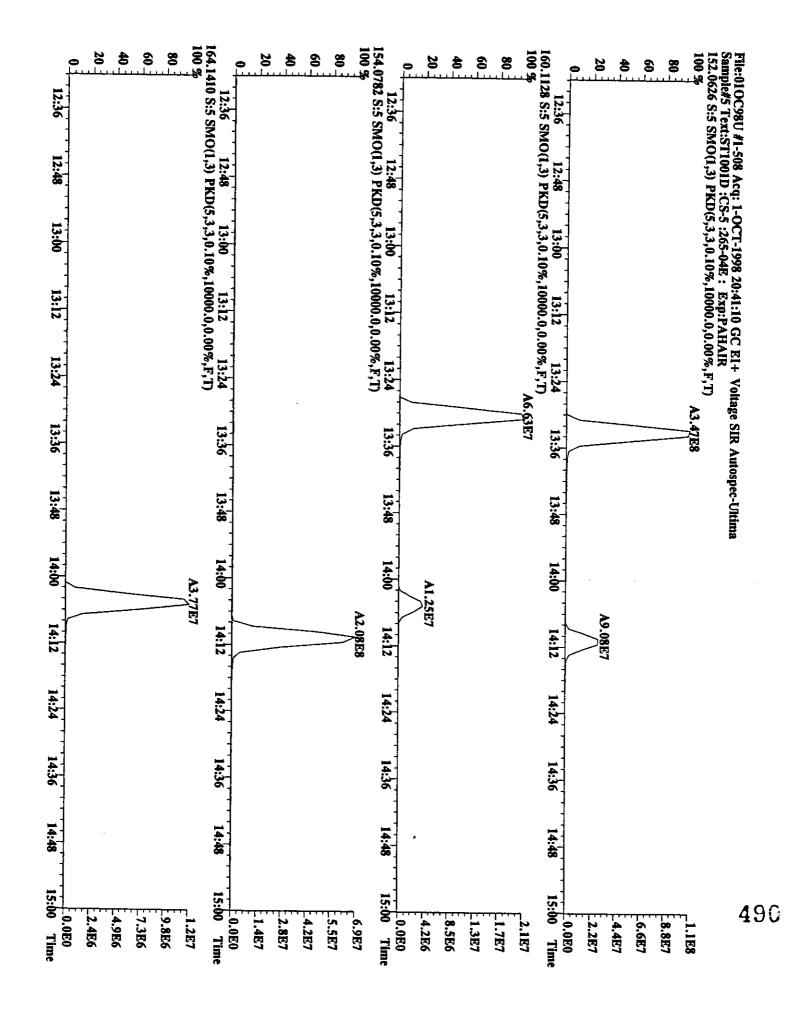


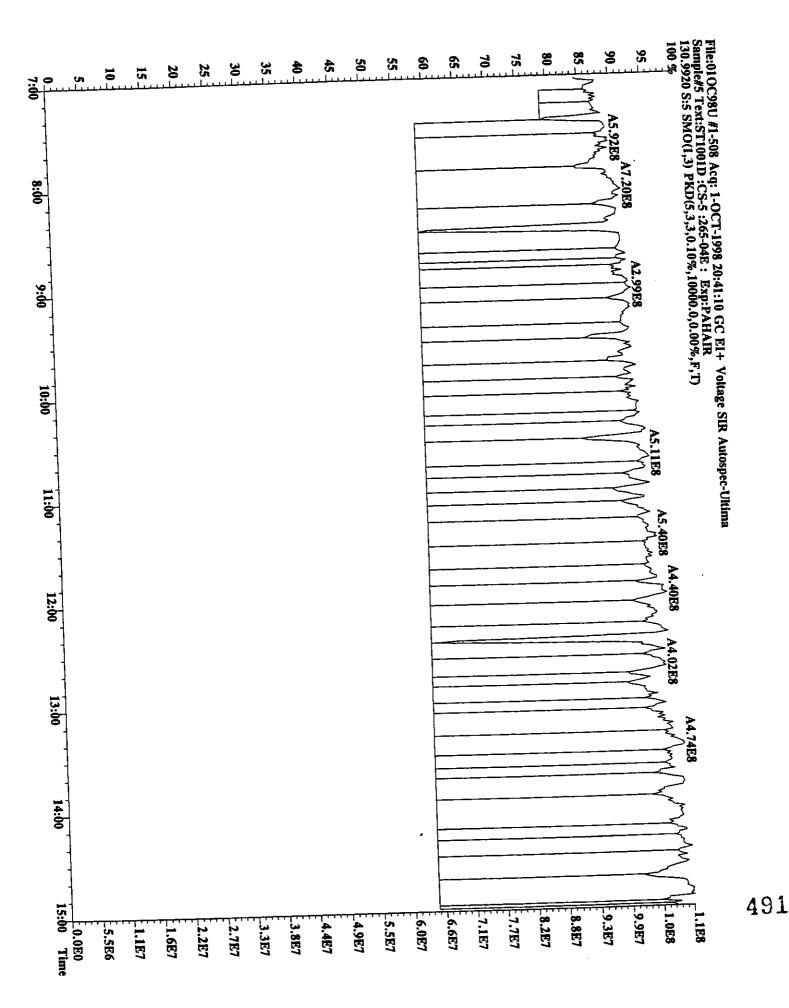


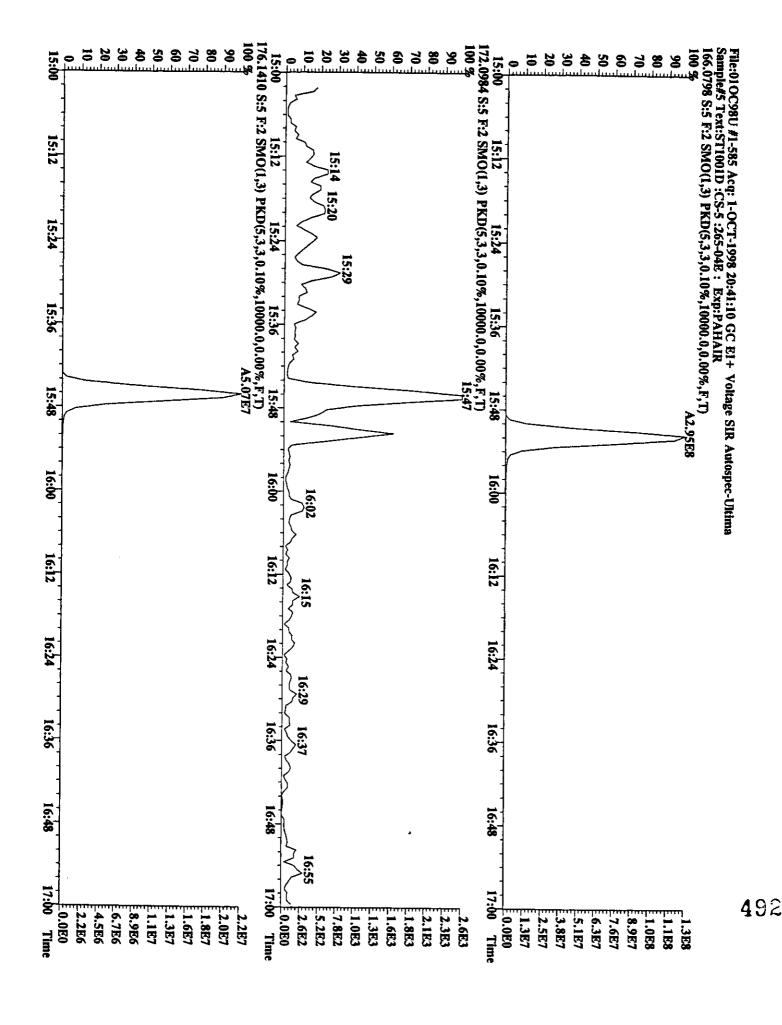


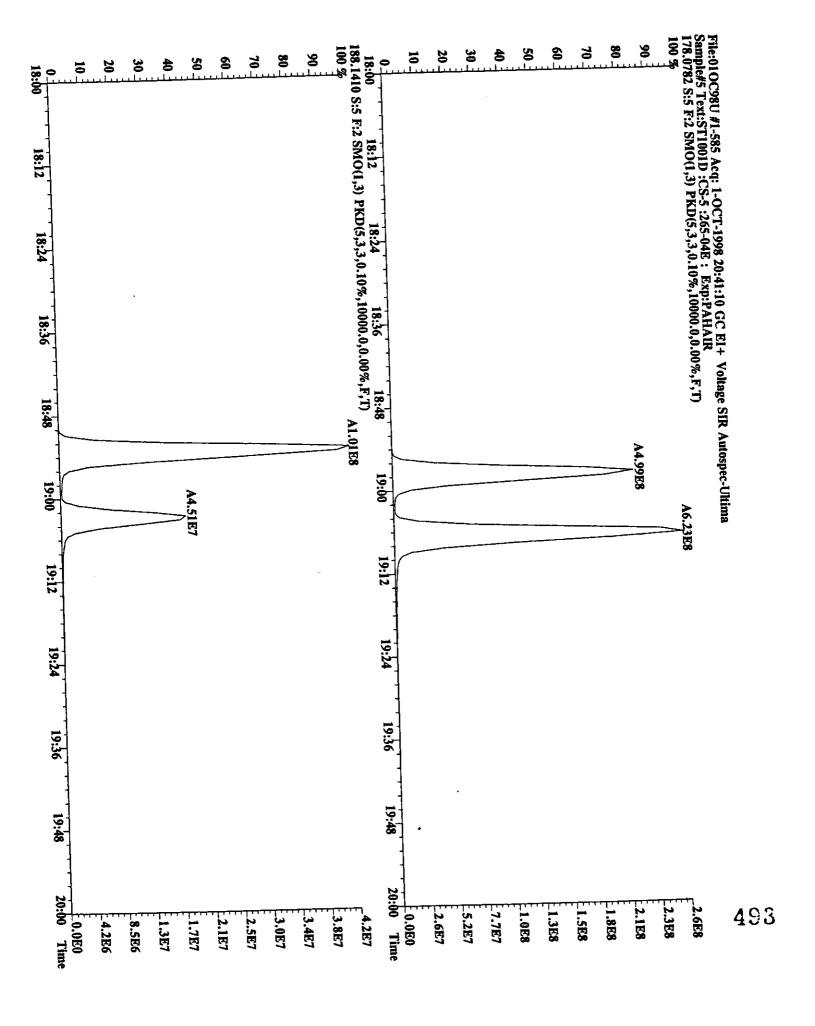


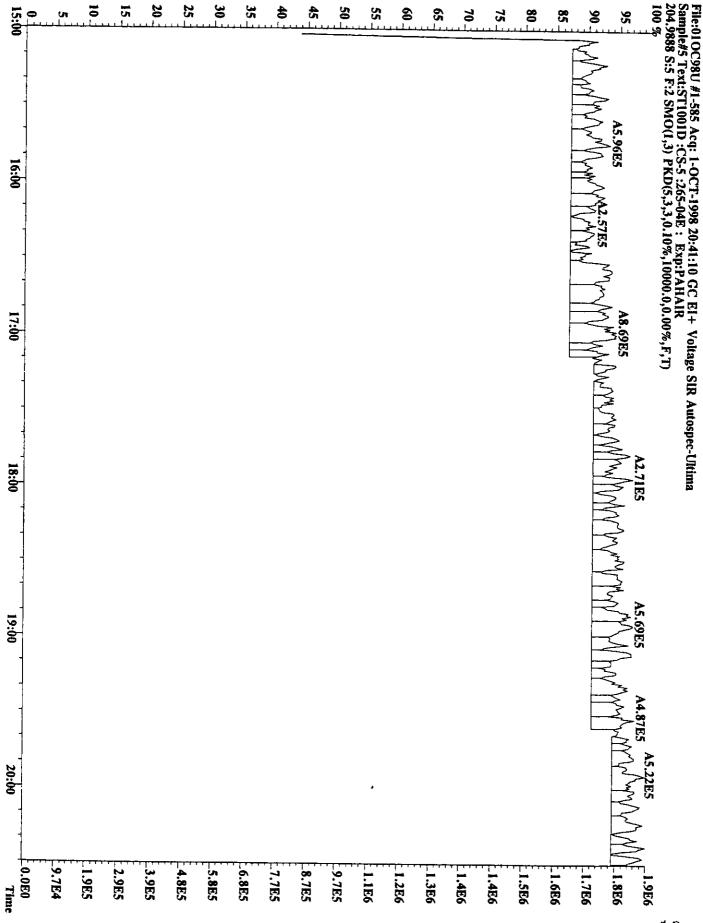


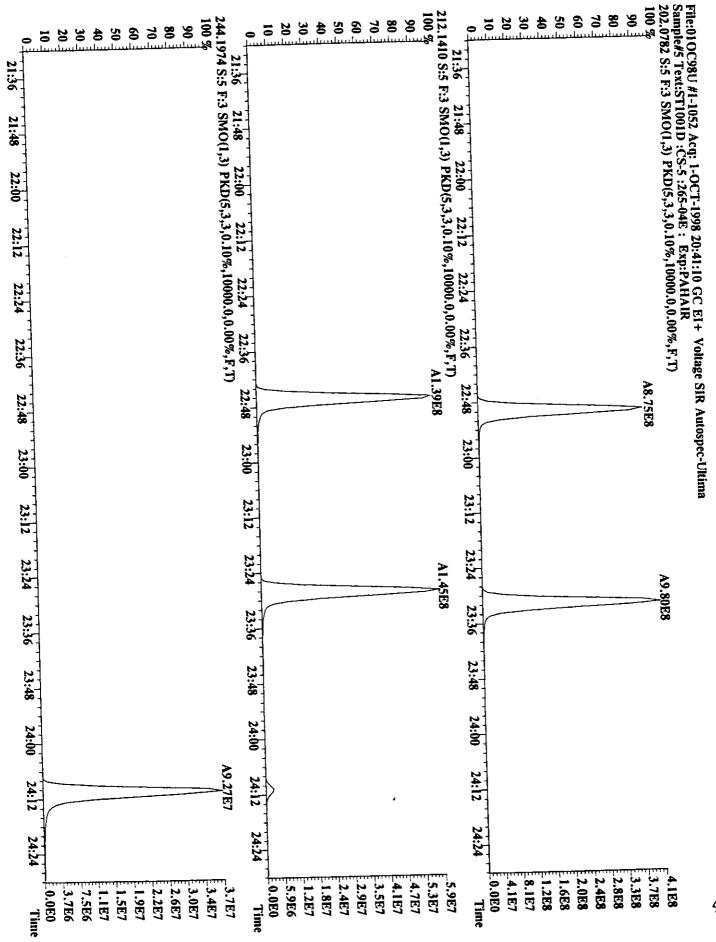


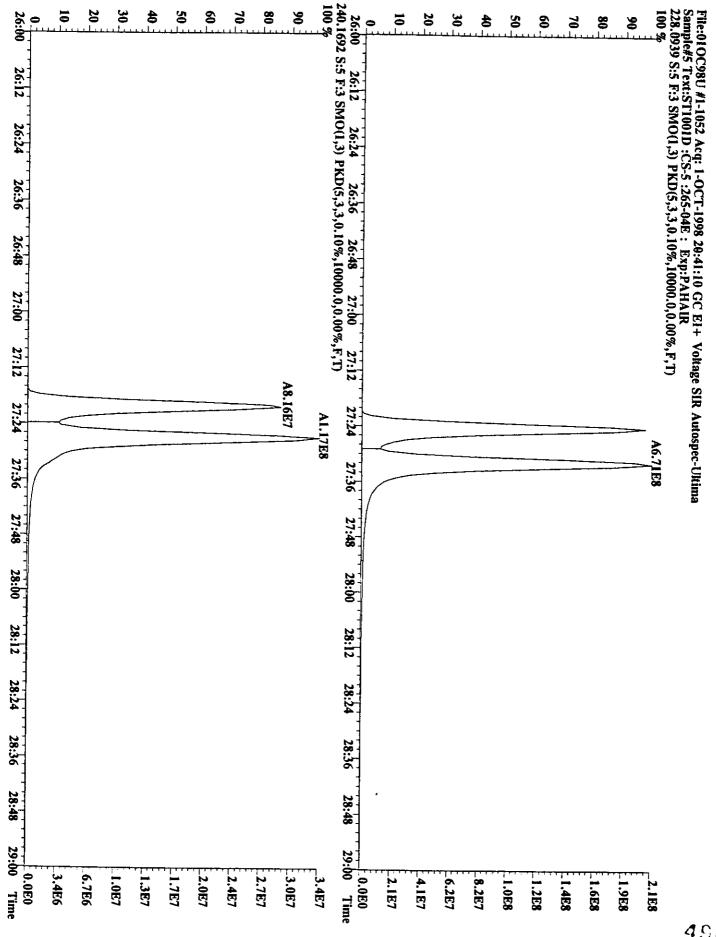


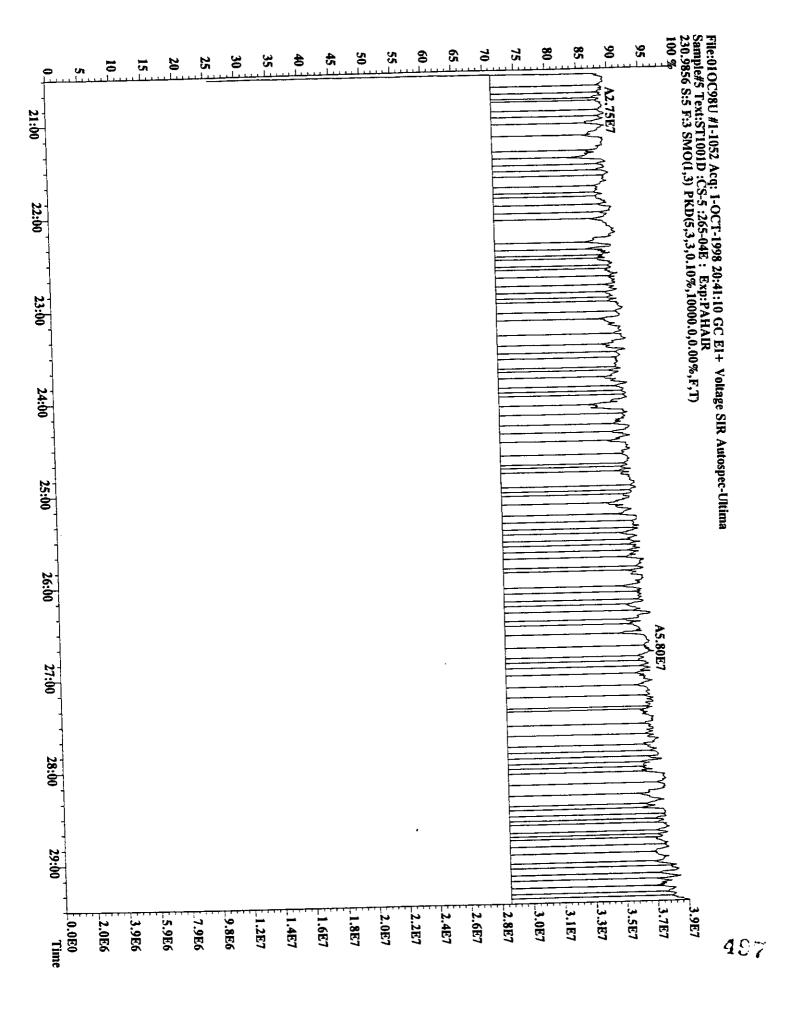


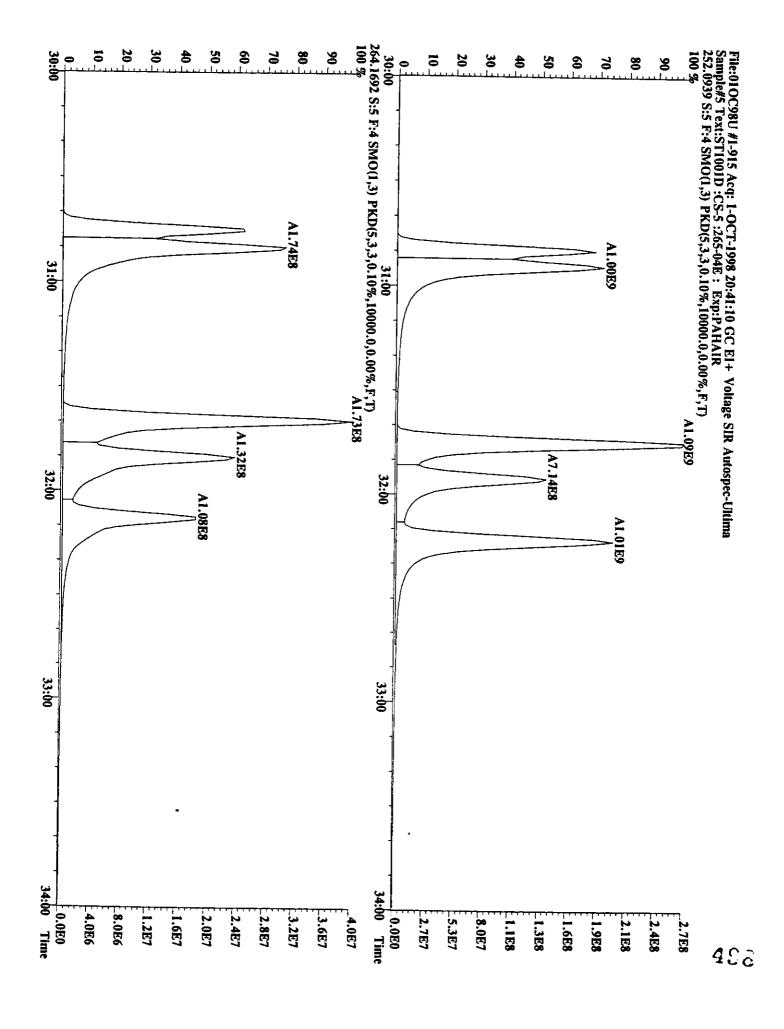


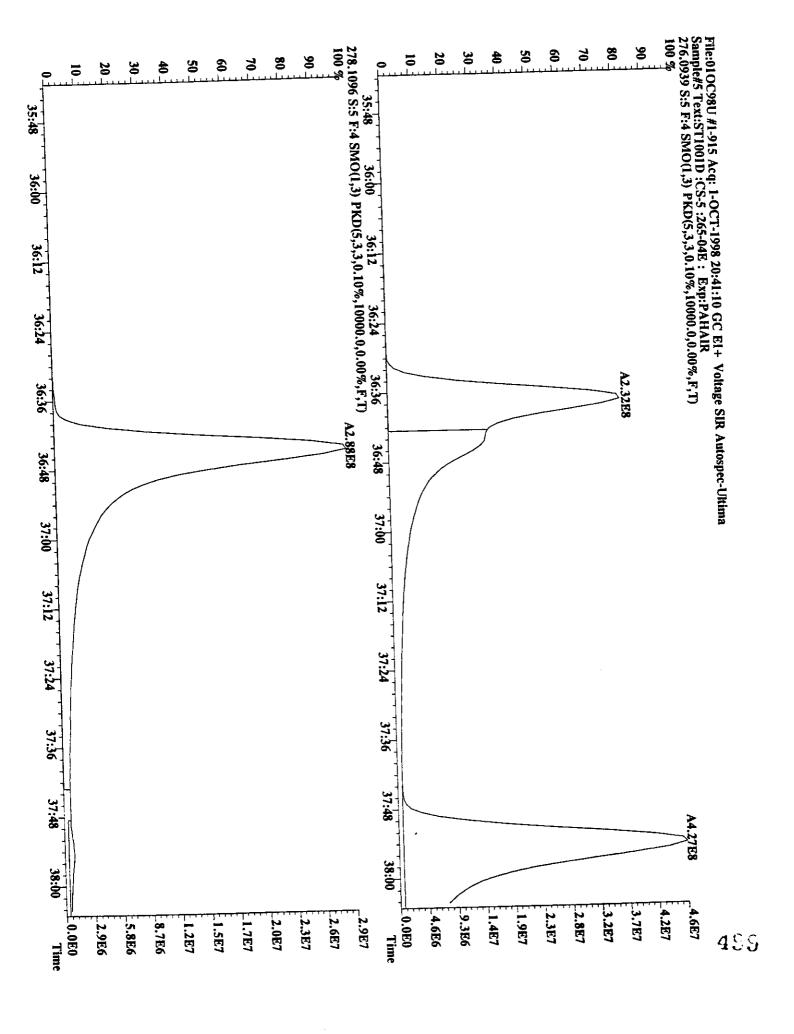


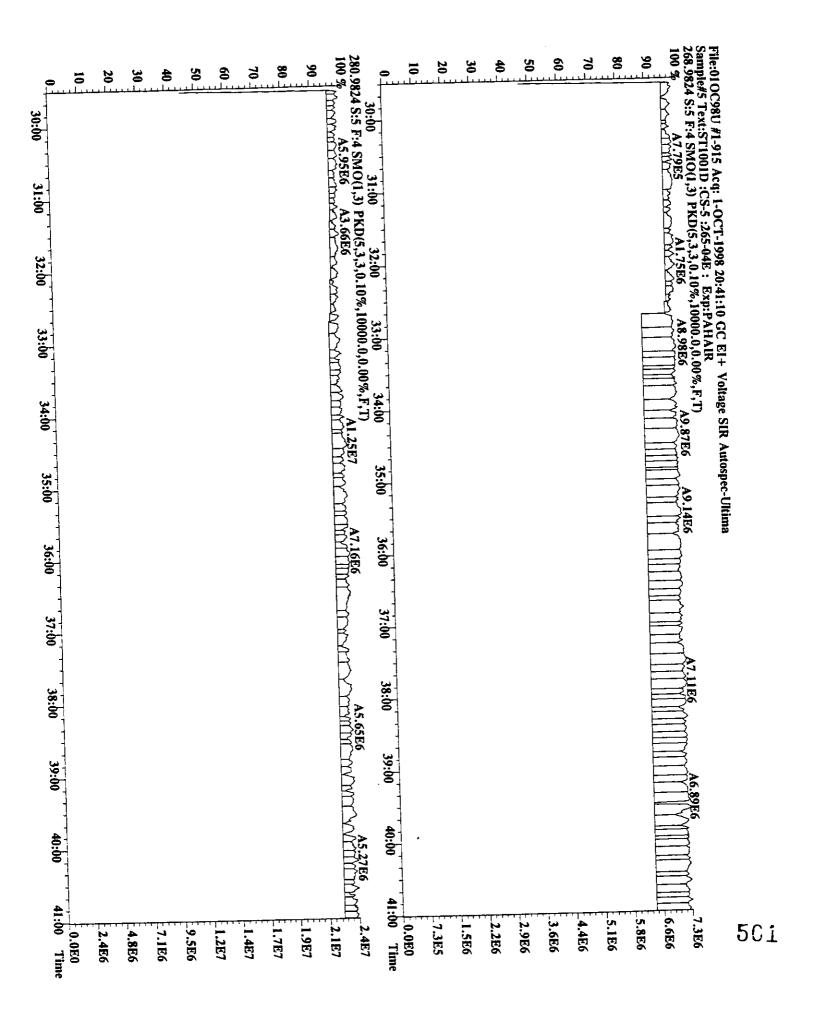


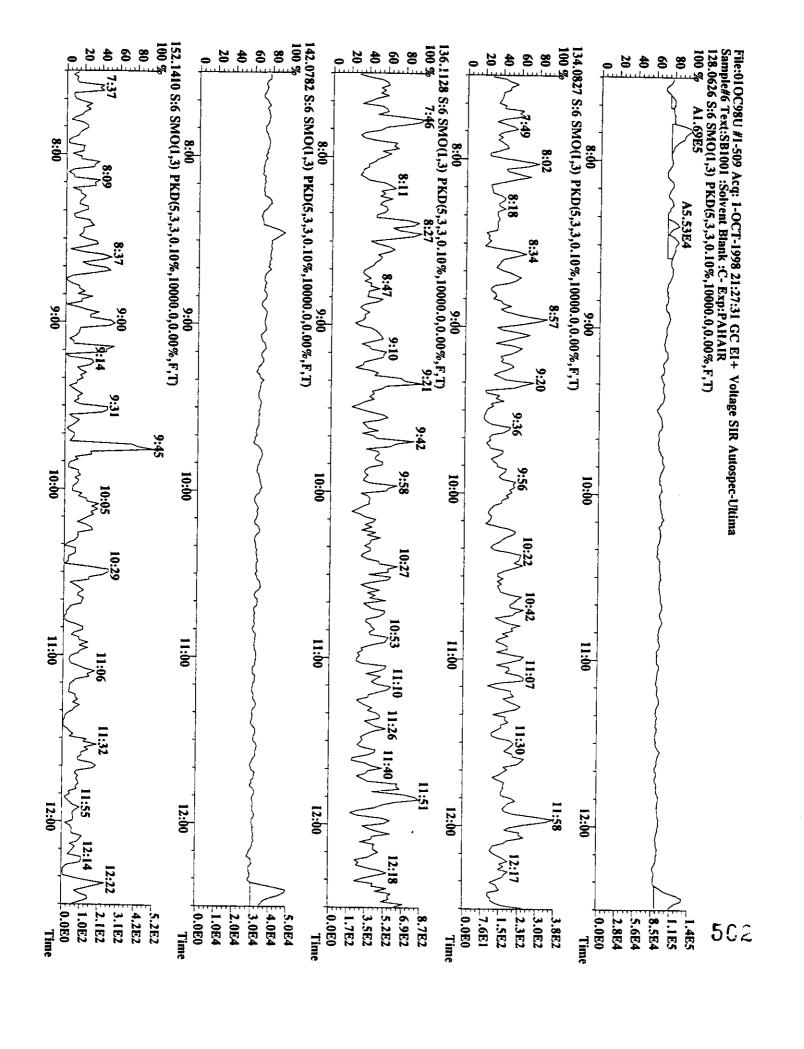


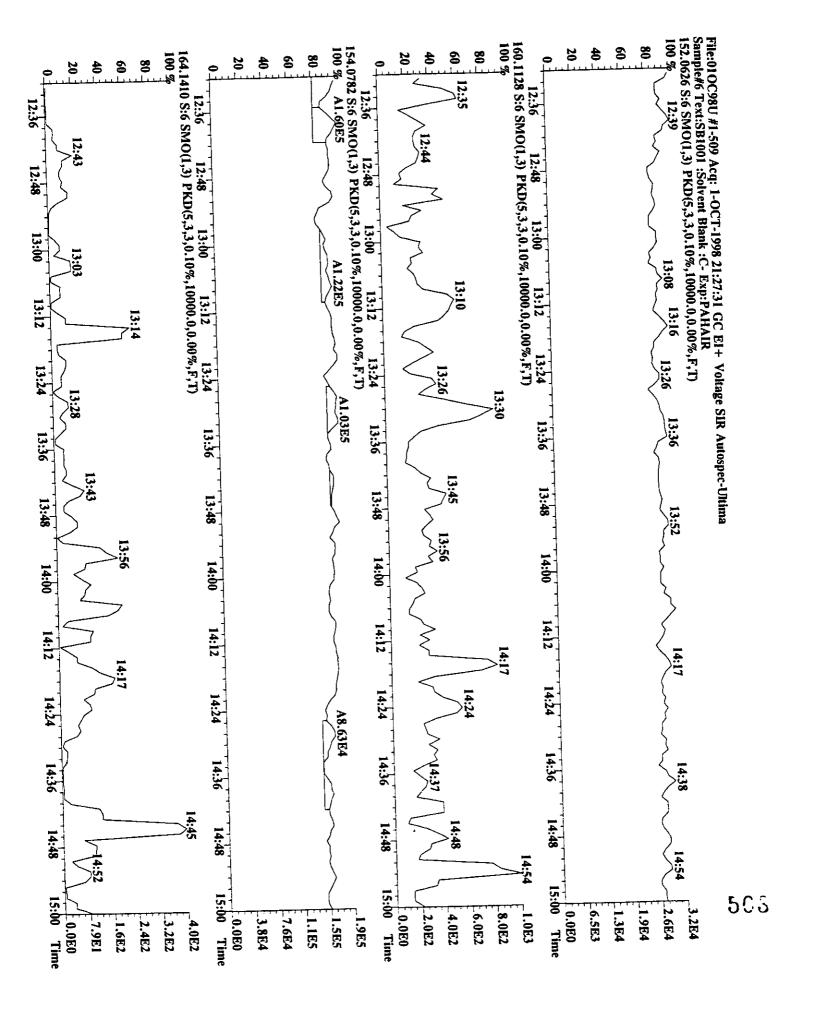


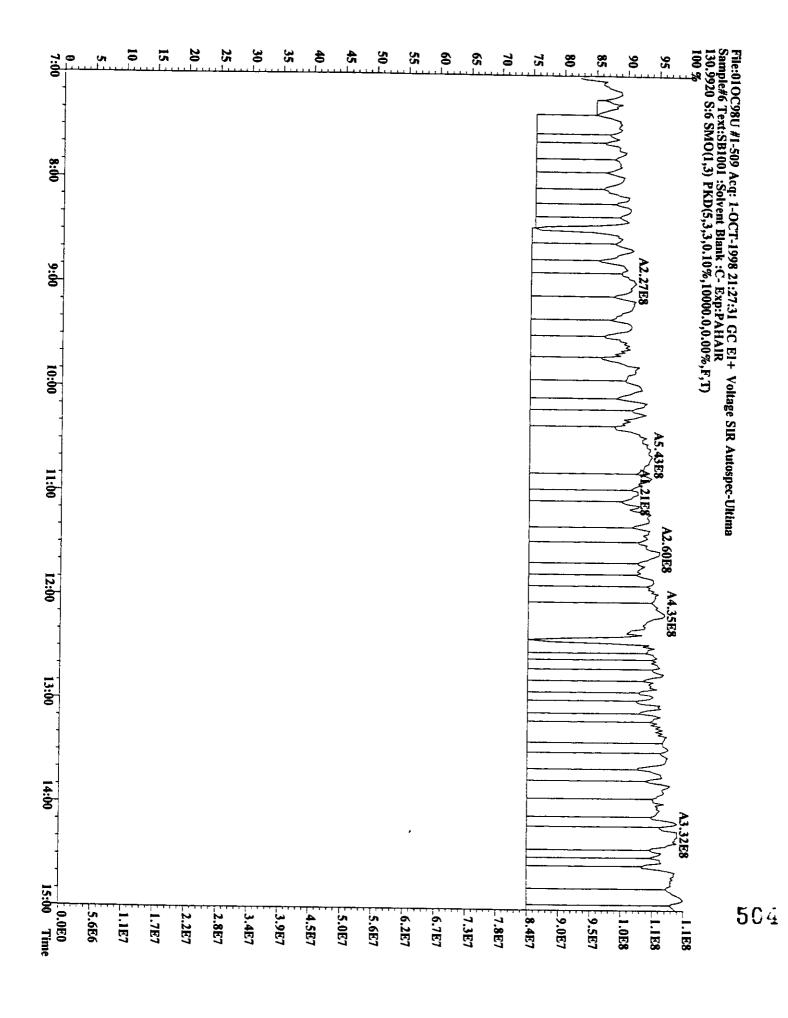


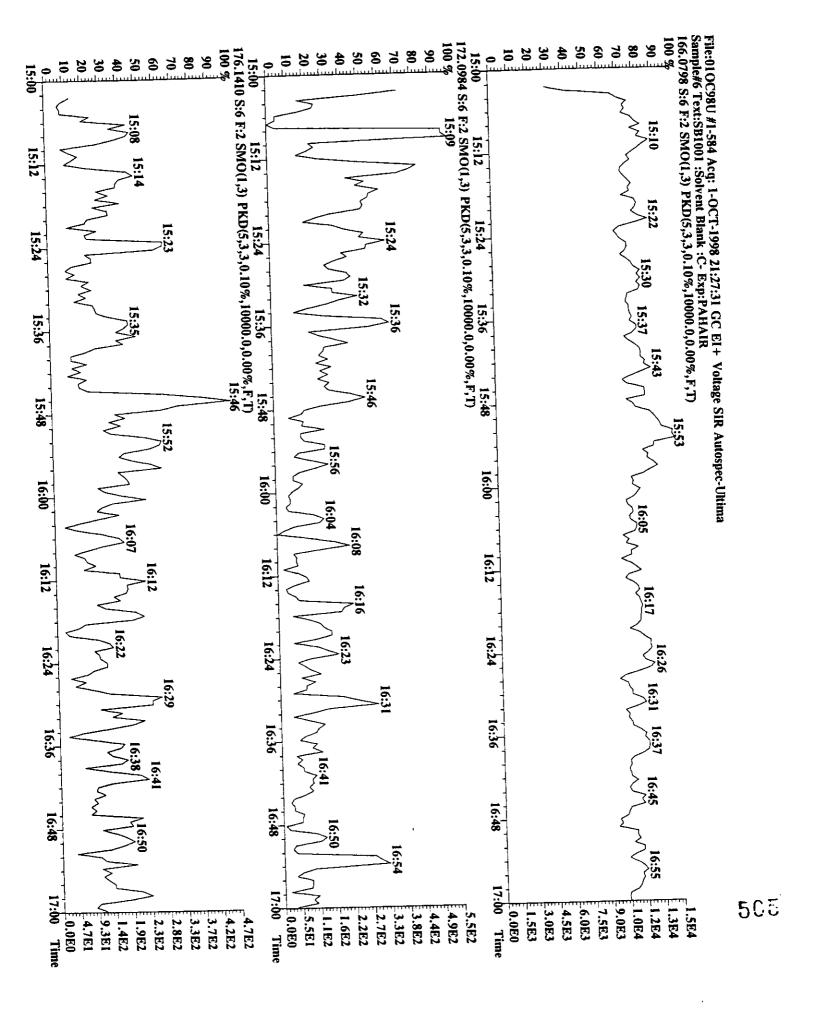


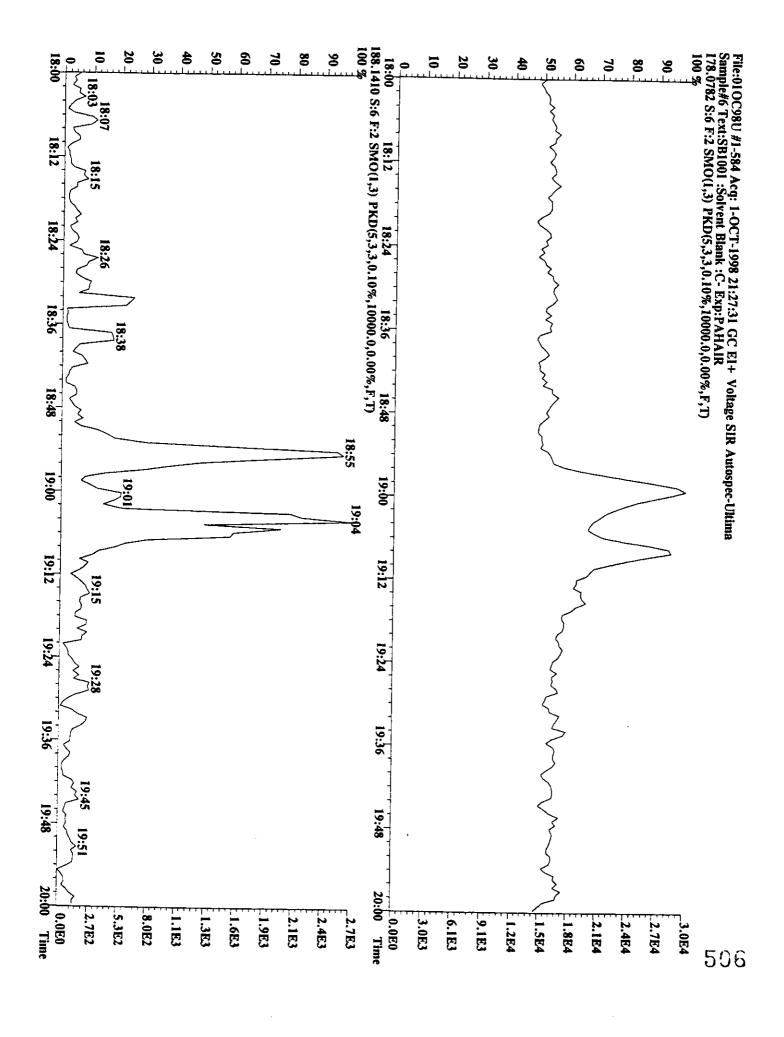


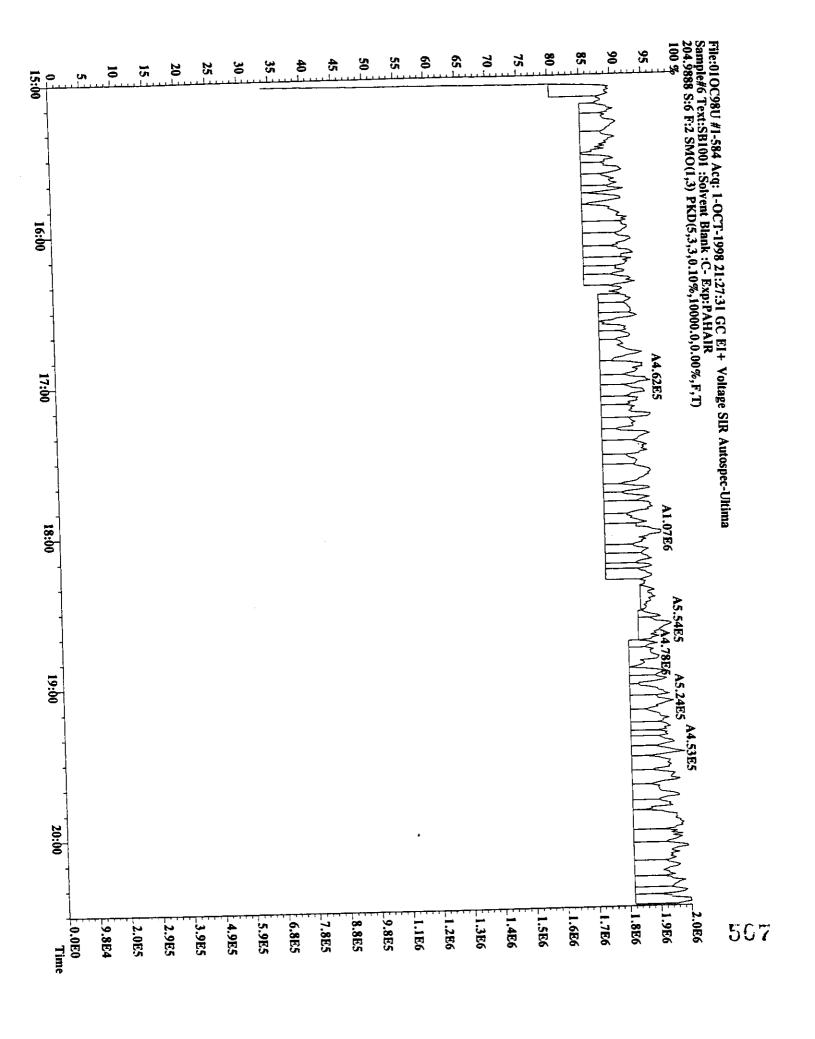


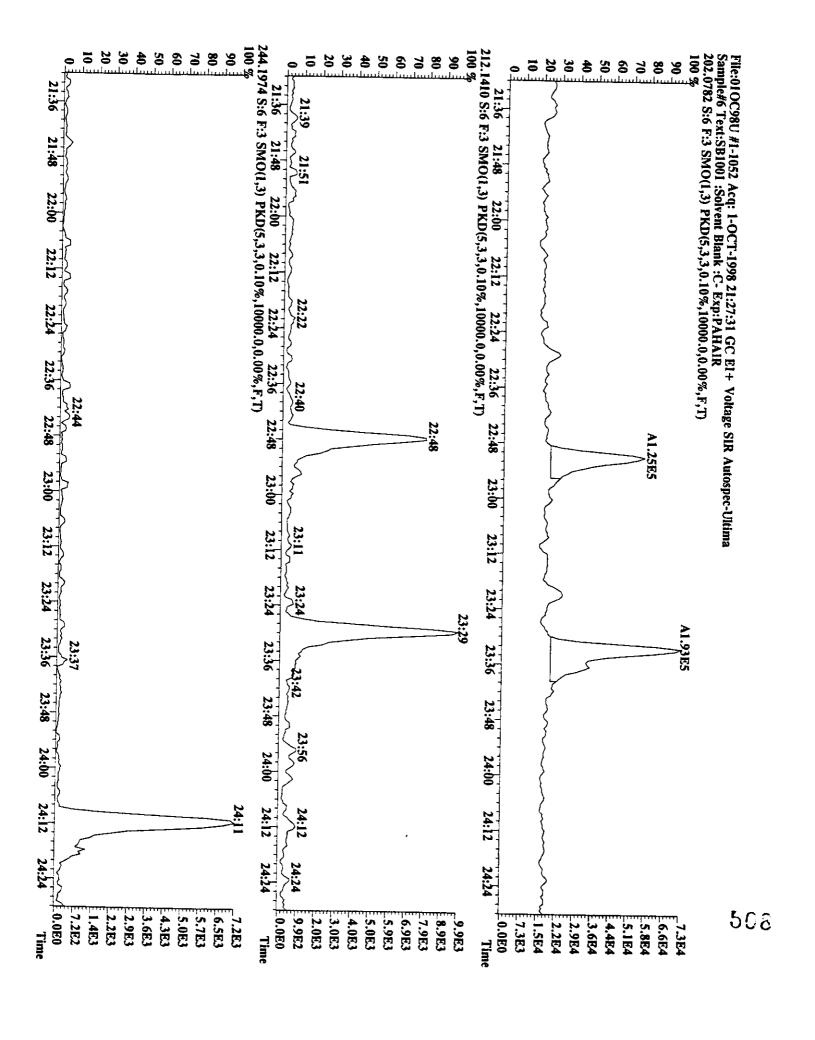


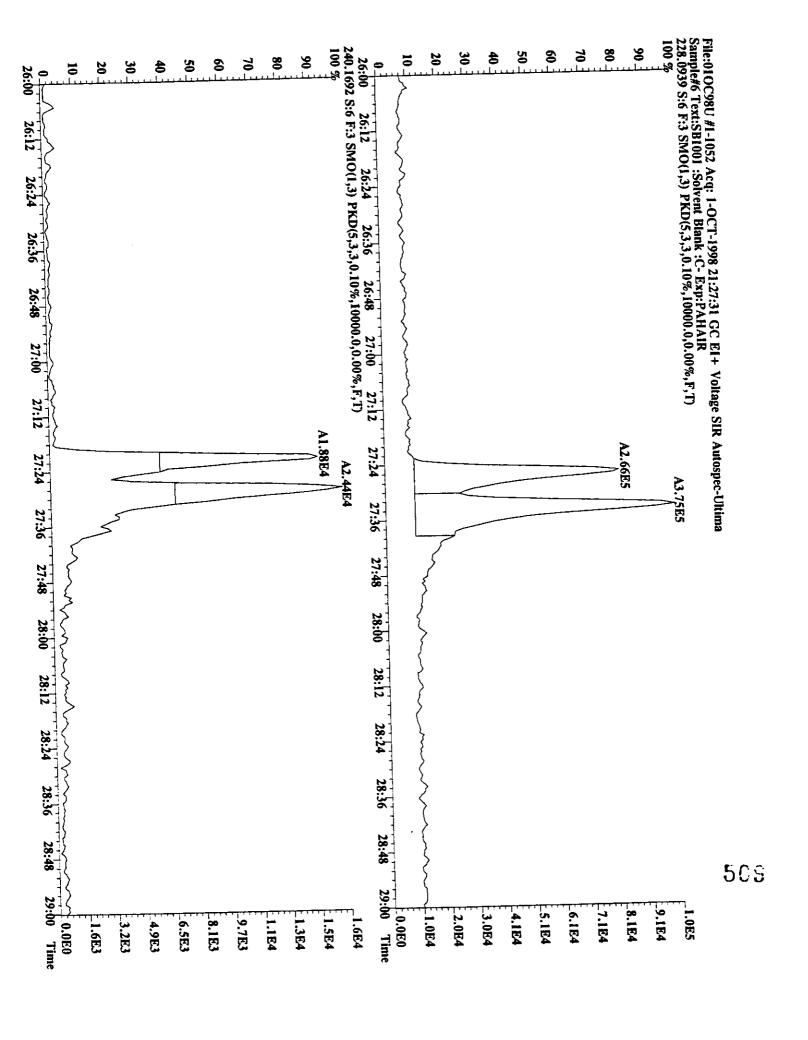


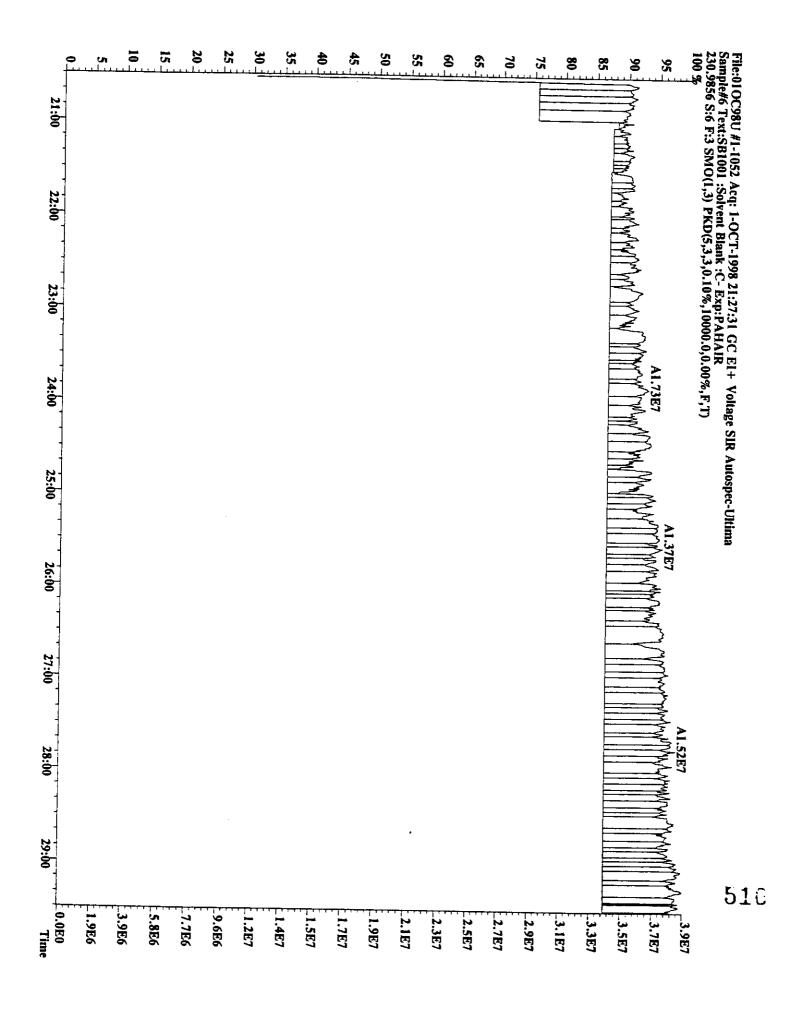


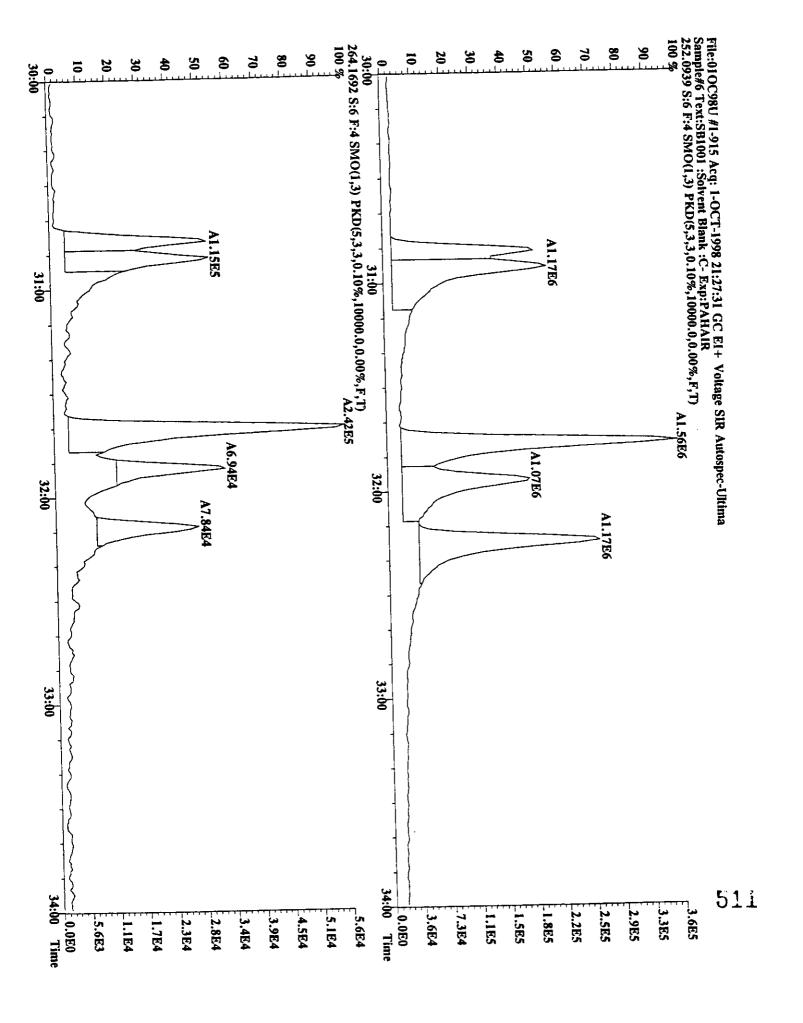


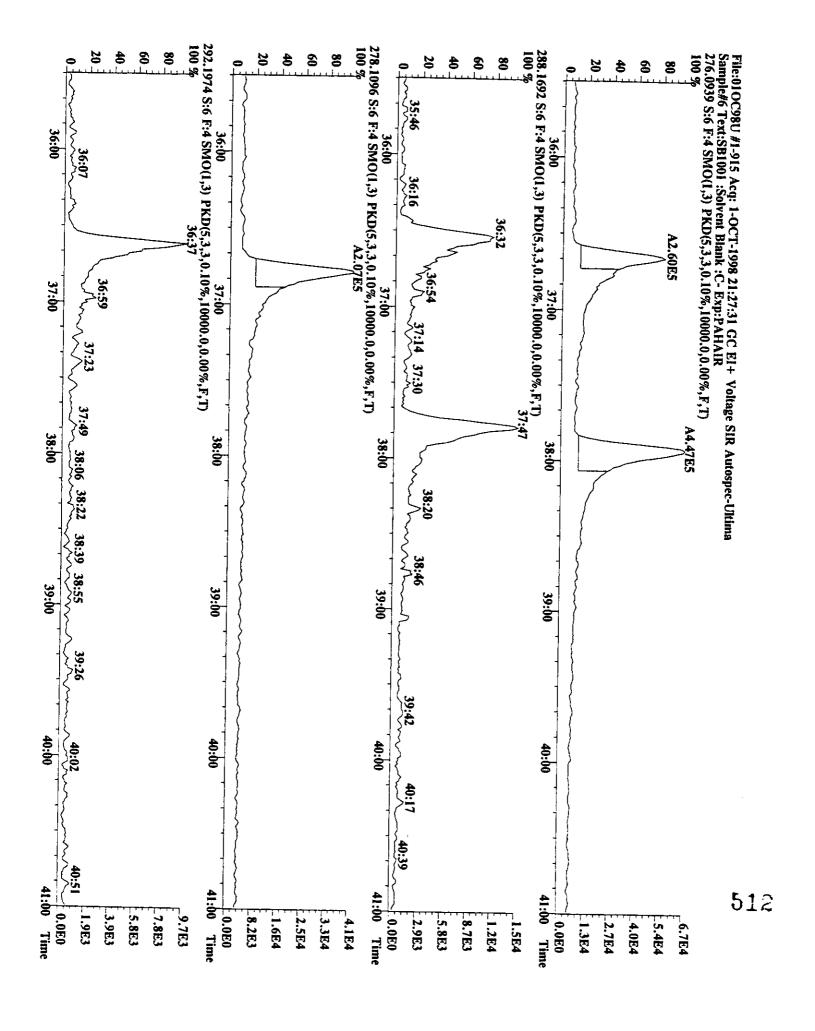


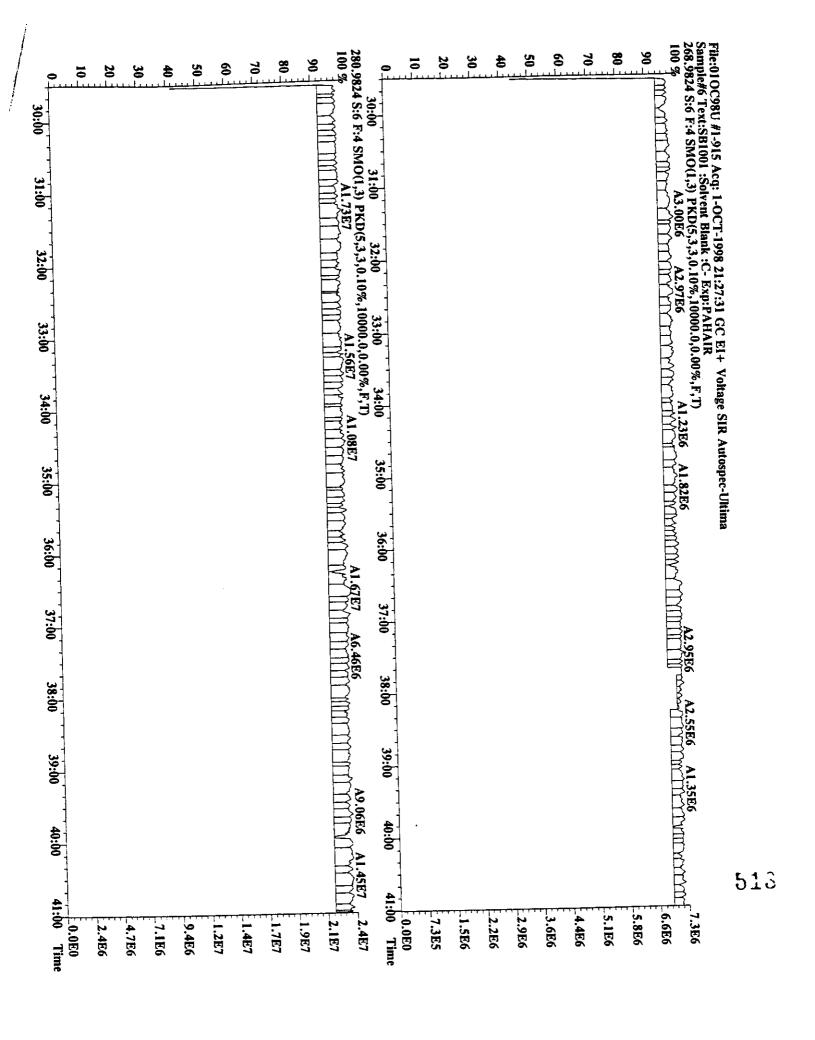












•

Continuing Calibration

QUANTERRA INCORPORATED

West Sacramento

Daily Standard Checklist Dioxin/Furan High Res

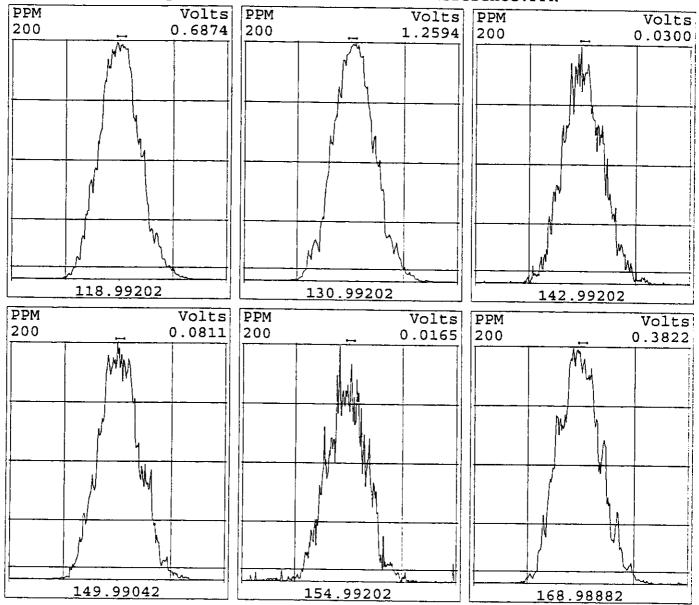
STD ID STIGOSA Method ID PAH Colu	umn ID <u>Ds.5 (ω)</u> Instr	ID ULTIMA
Standard Solution <u>JCC.04C</u> Prepared By <u>OICKEU</u>	Prepared Da	ate 10-8-93
Analyzed By CRICKER Date Analyzed 10 - 6-	98	_
Reviewed By a. Alexand Date Reviewed 10/8/	48	
- ANALYSIS OF DAILY STANDARD	INITIATED	REVIEWED
Standard, CPSM, and solvent blank present?	√⊙	<u> </u>
Copy of Instrument logfile present?	√	
	V •	10
CPSM blow up and peak profile present?		
Curve summary present?	NΑ	NA
Summary of 1613A criteria present?	1	
Daily standard within method specified limits*?	NA	NA
Daily ion abundance ratios within limits?	NA (D	NA(i)
CPSM valley < 25%?	/()	(1)
CPSM window correct?		
Samples analyzed within 12 hrs of daily standard?	<u> </u>	

COMMENTS:			
() NA COSM IN PIRH A	44C4515		
			515
			5 =

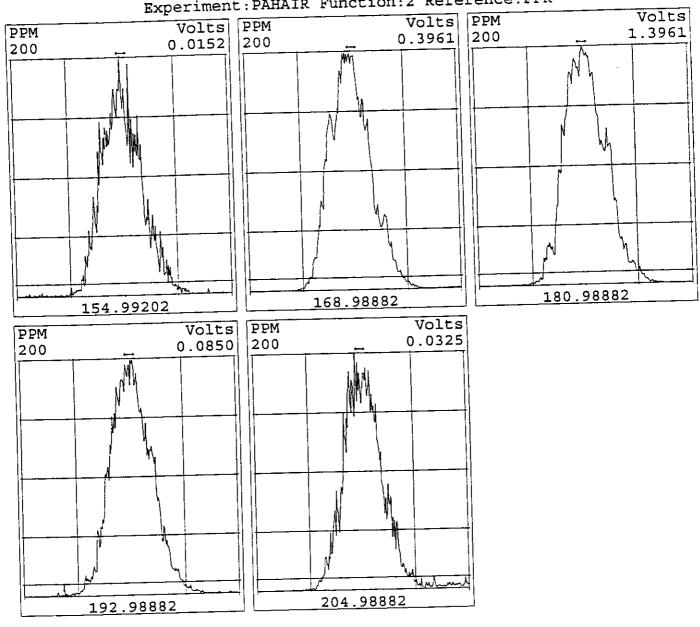
For Method 1613A, see 3rd Revision to Method 1613 Performance Specifications, Table 7.

For NCASI 551, Control Limit (CL) = \pm /- 20% from curve RRFs for all analytes. For Method 8290, CL = \pm /- 20% from curve RRFs for native analytes, CL = \pm /- 30% from curve RRFs for

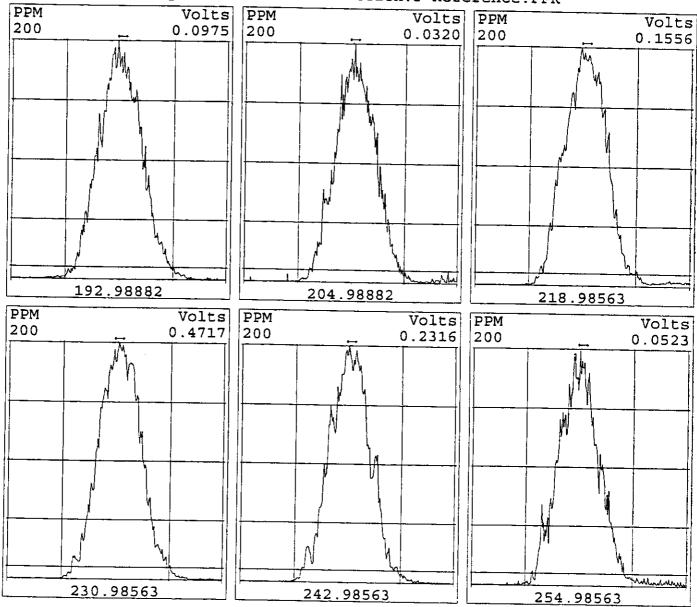
Mass Spec : ULTIMA Results : 050C98U191A.RES : PAHAIRCAL3.TRG GC Column : DB-5 Date analyzed: 05-OCT-98 ST1005A :CS-3 :265-04C :_ Ex Data file: 050C98U Weight : 1 Total Isotope R. T. RRF 왐 pg Name Response Ratio mm:ss Dev d10-2-Methylnaphthalene 81518800 1.00 Y 10: 28 Y 0.00 100.00 d8-Naphthalene 112288600 1.00 Y 8: 17 Y 1.38 100.00 -23 Naphthalene 128959200 1.00 Y 8: 22 Y 1.15 100.00 -4 2-Methylnaphthalene 80905200 1.00 Y 10: 33 Y 0.72 100.00 10 d8-Acenaphthylene 112023200 1.00 Y 13: 29 Y 1.37 100.00 18 Acenaphthylene 95701800 1.00 Y 13: 32 Y 0.85 100.00 -17 d10-Acenaphthene 64072200 1.00 Y 14: 4 Y 0.79 100.00 15 Acenaphthene 64509200 1.00 Y 14: 10 Y 1.01 100.00 -12 d10-Anthracene 54703600 1.00 Y 19: 2 Y -1.00 100.00 d10-Fluorene 66098400 1.00 Y 15: 45 Y 1.21 100.00 -11 Fluorene 69408600 1.00 Y 15: 51 Y 1.05 100.00 -8 d10-Phenanthrene 153558000 1.00 Y 18: 53 Y 2.81 100.00 3 Phenanthrene 126066600 1.00 Y 18: 56 Y 100.00 0.82 -14 Anthracene 117413800 1.00 Y 19: 5 Y 0.76 100.00 -21 d14-Terphenyl 142614800 1.00 Y 24: 10 Y -1.00 100.00 d10-Fluoranthene 171990400 1.00 Y 22: 46 Y 1.21 100.00 -19 Fluoranthene 195860200 1.00 Y 22: 49 Y 1.14 100.00 -8 d10-Pyrene 174999400 1.00 Y 23: 27 Y 100.00 1.23 -22 206378000 1.00 Y Pyrene 23: 31 Y 1.18 100.00 -6 d12-Benzo(a)anthracene 105010600 1.00 Y 27: 19 Y 0.74 100.00 -9 Benzo(a) anthracene 107742200 1.00 Y 27: 23 Y 1.03 100.00 -20 d12-Chrysene 136000800 1.00 Y 27: 26 Y 0.95 100.00 -18Chrysene 128763000 1.00 Y 27: 31 Y 0.95 100.00 -18 d12-Benzo(e)pyrene 184142400 1.00 Y 31: 38 Y -2.00100.00 d12-Benzo(b) fluoranthene 111668600 1.00 Y 30: 44 Y 0.61 100.00 26 Benzo(b) fluoranthene 133092400 1.00 Y 30: 49 Y 1.19 100.00 - 8 d12-Benzo(k) fluoranthene 157235400 1.00 Y 30: 49 0.85 100.00 Benzo(k) fluoranthene -13178773800 1.00 Y 30: 53 1.14 100.00 -5 d12-Benzo(a)pyrene 125085400 1.00 Y 31: 49 Y 0.68 100.00 - 8 Benzo(e)pyrene 204634000 1.00 Y 31: 44 Y 1.64 100.00 1 Benzo(a)pyrene 130062000 1.00 Y 31: 54 Y 1.04 100.00 -6 d12-Perylene 97250400 1.00 Y 32: 6 0.53 100.00 -18 Pervlene 175006400 1.00 Y 32: 12 Y 1.80 100.00 3 d12-Indeno(123-cd)pyrene 72248800 1.00 Y 36: 29 0.39 100.00 5 Indeno (123-cd) pyrene 100.00 46600000 1.00 Y 36: 35 Y 0.64 7 516d14-Dibenz(ah)anthracene 38514000 1.00 Y 36: 33 Y 0.21 100.00 3 Dibenz (ah) anthracene 42946000 1.00 Y 36: 43 1.12 100.00 -13 d12-Benzo(ghi)perylene 70462600 1.00 Y 37: 43 Y 0.38 100.00 -6 Benzo(ghi)perylene 68319800 1.00 Y 37: 52 Y

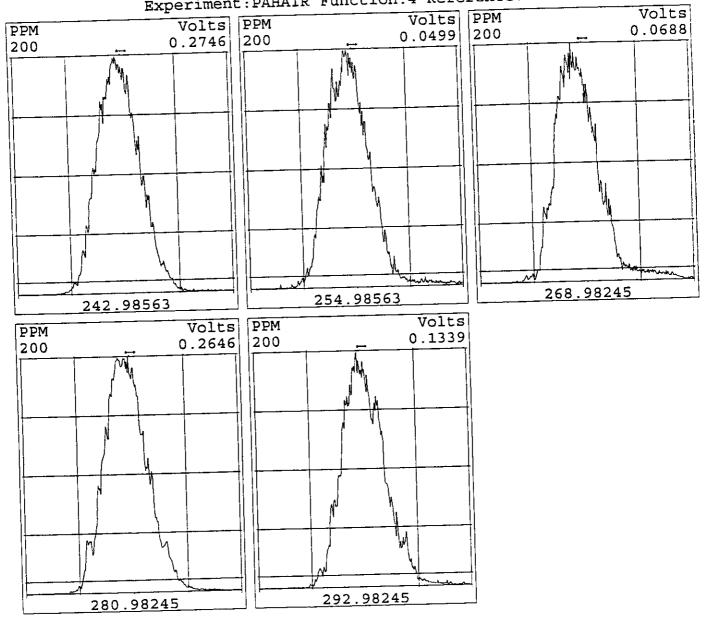

0.97

100.00


-12

FILE	SAMP No. (1)	LAB. SAMP No	CUSTOMER ID	CLEAN UP 1 (SDS)	CLEAN UP 2 (D2)	TYPE (1)	CONCn.
050C98U 050C98U	24 25 26 27 28 29 30 31 32 33	301361-B 301361-MBC 301361-C 301361-D 301361-D 301361-E 301361-BE 301361-CD 301361-ED 301361-5 301361-7 301361-7 301361-7 301361-1 301361-1 301361-1 301361-13 301361-13 301361-13 301361-13 301361-13 301361-13 301361-13 301361-13 301361-13	Solvent Blank METHOD BLANK-B LCS-B METHOD BLANK-C LCS-C METHOD BLANK-D LCS-D DCS-D LCS-E METHOD BLANK-E DCS-C DCS-E 2097-2101 2104-2108 2111-2114 2118-2121 Solvent Blank CS-3 Solvent Blank CS-3 Solvent Blank 2128-2132 2139-2140 2141-2145 2146-2150 2151-2155 DCS-B 100X S-MM5-2-F 100X S-MM5-3-F 100X S-MM5-3-F 100X S-MM5-3-F Solvent Blank	265-040 C-8 TRAIN	РАН РАН РАН РАН РАН РАН РАН РАН РАН РАН	VSE-25	1 0.500 0.500 0.333 0.500 0.500 0.500 0.333 0.333 0.333 0.333 0.500 0.500 0.500 0.333 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
050C98U 050C98U 050C98U 050C98U 050C98U 050C98U 050C98U 050C98U 050C98U 050C98U 050C98U 050C98U 050C98U	J 35 J 36 J 37 J 38 J 40 J 41 J 42 J 43 J 44 U 48 U 49		10-05-98 CP		dum	ped	517


Peak Locate Examination: 5-OCT-1998:17:47 File:05OC98U Experiment:PAHAIR Function:1 Reference:PFK


Peak Locate Examination: 5-OCT-1998:17:48 File:05OC98U Experiment:PAHAIR Function:2 Reference:PFK

Peak Locate Examination: 5-OCT-1998:17:49 File:05OC98U Experiment:PAHAIR Function:3 Reference:PFK

Peak Locate Examination: 5-OCT-1998:17:50 File:05OC98U Experiment:PAHAIR Function:4 Reference:PFK

File name : PAHX100198U.RRF

Date analyzed: 01-007-98 INITIAL CALIBRATION CURVE			
analyzed : BRATION CUR	INITIAL CALI	Date	
	BRATION CURY	analyzed :	

	Pyrene	d10-Pyrene	Fluoranthene	d10-fluoranthene	Anthracene	Phenanthrene	d10-Phenanthrene	fluorene	d10-fluorene	Acenaphthene	d10-Acenaph thene	Acenaphthylene	d8-Acenaphthylene	2-Methylmaphthalene	Naph tha Lene	d8-Naphthalene
RF RF	RRF Amount	RRF Amount	RRF Amount	RRF RRF Amount	RF RRF Amount	RRF Amount	RRF Amount	RRF Amount	RRF Amount RF	RRF Amount	RRF Amount	RRF Amount	RRF Amount	RRF Amount	RRF Amount	Amount
1.26	0.91	1.23	0.86	0.97	0.95	2.74	1.15	1.36	1.14	0.68	1.02	1.16	0.66	1.20	1.78	Mean
0.067	0.098	0.044	0.098	0.179	0.041	0.383	0.078	0.169	0.071	0.040	0.034	0.071	0.138	0.205	0.143	S.D.
5.306	10.789	3,570	11.382	18.441	4.325	13,988	6.809	12.415	6.206	5.815	3.301	6.092	21.003	17.067	8.020	%RSD
12.63 1.26	50.0 878	12.21 1.22 100.00	10.02 10.02	8.51 0.85 100.00	9.77 0.98 10.00	3.05 10.00	100.00	10.00	1.26	1505 1801	70 - 7 70 - 7 70 - 7	1.24 10.00	0.89 0.89	15.52 10.00	171.18 1.71 10.00	100.00
63.04 1.26	103.59 1.04 50.00	64.63 1.29 100.00	99.01 0.99 50.00	44.48 0.89 100.00	48.56 0.97 50.00	3.01 50.00	1.24	50.00	100.00	50.08 50.08	1.06	113.60 1.14 50.00	34.41 0.69 100.00	59.91 1.20 50.00		2 100.00
116.69 1.17	96.03 0.96 100.00	118.10 1.18 100.00	91.60 0.92 100.00	80.92 0.81 100.00	88.92 0.89	297.96 2.98 100.00	1.04	100.00	100.00	100.63	100.98 20.98	106.71	57.75 0.58	112.12 1.12 100.00	180.53 1.81 100.00	3 100.00
248.31 1.24	91.85 0.92 200.00	241.31 1.21 100.00	85.22 0.85 200.00	215.19 1.08 100.00	186.76 0.93	241.46 2.41 200.00	1.09	1.24	100.00	0.67 200.00	1.00	114.85 1.15 200.00	113.66 0.57 100.00	218.51 1.09 200.00	181.12 1.81 200.00	100.00
676.95 1.35	83.89 0.84 500.00	629.15 1.26 100.00	80.62 0.81	618.06 1.24 100.00	50.95 60.99	500.00	1.16	1.13	1.10	500.00 500.00	10.10 10.00	1.23 1.23 500.00	282.14 0.56 100.00	518.93 1.04 500.00	198.82 1.99 500.00	5 100.00
																0

=

INITIAL CALIBRATION CURVE

File name : PAHX100198U.RRF Date analyzed : 01-0CT-98

Mean	
s.D.	
%RSD	
100.00	INTITAC CACIDANITON CONTE
1 2 100.00 100.00	201000
3 100.00	0.00
100.00	
100.00	

9

1

d14-Dibenz(ah)anthracene Amount Rf RRF	Indeno(123-ca)pyrene	d12-Indeno(123-cd)pyrene Amount RF RF RF ROUNT	Perylene	OIZ-rel years	Benzo(a) pyrene	Benzo(e)pyrene	d12-Benzo(a)pyrene	Benzo(K) (tool anxions		hene	Benzo(b)fluoranthene	d12-Benzo(b)fluoranthene	Chrysene	d12-Chrysene	Benzo(a)anthracene	d12-Benzo(a)anthracene
RRF	공 유	RRF RRF	RRF	RRF	RRF	RRF	RRF	RRF	RRF RRF	RRF RRF Amount	RRF Amount	RRF Amount	RRF	RRF Amount	RRF Amount	Amount
0.20	0.60	0.37	1.74	0.65	1.11	1.62	0.74	1.20	0.99	1.30	0.48	1.16	0.67	1.28	0.47	Mean
0.031	0.031	0.040	0.145	0.029	0.084	0.085	0.023	0.061	0.022	0.085	0.026	0.057	0.018	0.069	0.017	s.D.
15.283	5.150	10.705	8.315	4.558	7.550	5.216	3.065	5.111	2.196	6.540	5.475	4.881	_		3.678	%RSD
19.47 0.19	5.81 0.58	37.05 0.37 10.00	18.19 1.82 100.00	0.60	12.23 100.00	17.26 10.00	71.22 0.71 10.00	12.67 1.27 100.00	0.96	1.35	10.00 13.00	1.17 100.00 48.56	10.00 11.72	1.26 100.00 69.85	0.49 10.00 12.57	1 100.00 49.29
17.67 0.18		32.97 50.00	1.86	50.08	58.74 1.17 100.00	1.65 50.00	50.03	100.00	50.00	100.00	0.46 50.00 66.19	100.00 46.43	50.00	1.30 100.00 67.21	0.46 50.00 65.11	100.00 46.35
18.57 0.19		34.97 0.35 100.00	1.55	100.06	104.99 100.00	1.51	0.72	100.15	0.98	1.18 100.00 98.32	0.46 100.00 117.89	100.00	100.00	100.00 64.96	0.46 100.00 117.72	3 100.00 46.32
		37.60 0.38 200.00	1.63	200.00	1.03	1.57	0.74	100.00	1.01 200.00	1.25 100.00 100.62	0.47 200.00 249.84	100.00	200.00			4 100.00 44.58
		43.56 0.44 500.00	1.86	500.00	100.08 77	1.65 500.00	500.00	100.00	1.01 500.00	1.39 100.00 101.05	500.00	100.00 52.52	575.40	100.00 67.57	500.00	5 100.00 47.31
																6

06-0CT-1998	
05:44:52	
Z	

Mass Spec : ULTIMA GC Column : DB-5 MULT 9260V <CS1-CS5:265-04A-04E>

Dioxin Furan CALIBRATION TABLE

	1.06)		0.41	!		1.22	·		Mean		
	0.125			0.035			0.152			S.D.		
	11.769			8.601			12.443			%RSD		
100 100	0.84	8.40	10.00	0.45	45.17	00.00	0.96	9	10.00	_	INITIAL CALIBRATION CURVE	0 79
	î. 12	56.16	50.00	0.38	37.67	100.00	1.20	60.24	50.00	2	ALIBRATI	file name Date anal
100 1	1.07	107.43	100.00	0.38	38.08	100.00	1.29	129.39	100.00	W	ON CURVE	name : PAHX100198U.RRI analyzed : 01-0CT-98
	1.14					100.00						AHX10019
100	1.12	559.79	500.00	0.44	44.20	100.00	1.30	651.39	500.00	u		8U.RRF
										٥.		

œ

ø

5

13C-Fluorene

0.00

0.000 0.000

Benzo(ghi)perylene

Amount
RF
RRF
Amount
RF
RRF
RRF
RRF
Amount
RF
RRF
RRF
RRF
Amount

d12-Benzo(ghi)perylene

Dibenz(ah)anthracene

Mass Spec : ULTIMA GC Column : DB-5 265-04A --> 265-04E; Multiplier @ 260V.

File name : PAHAIR100198U.RRF Date analyzed : 01-007-98

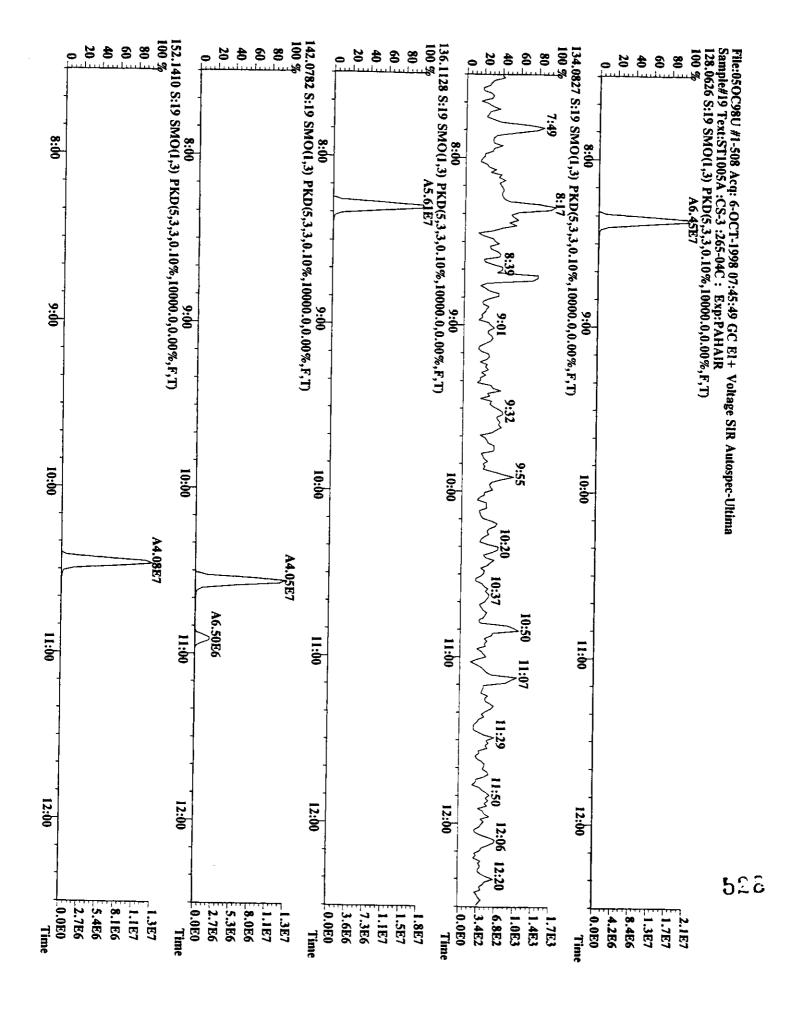
265-04A> 265-04E; Multiplier a 200v-	(tiplier a v	7004.		=	INITIAL CALIBRATION CURVE	LIBRATIO	CURVE			
		Mean	S.D.	%RSD		100 200 300	200	100.00	100.00	6
d8-Naphthalene	Amount				171.18			181.12	198.82	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.78	0.143	8.020				1.81	500 00 1.99	
Naphthalene	Amount				15.52		112.12	218.51	518.93	
	R R R	1.20	0.205	17.067	1.55	51.20		700.00	500.00	
2-Methylnaphthalene	Amount				8.86	34.41		113.66	282.14	
	골 ^주	0.66	0.138	21.003	0.89	0.69		100.00	100.00	
d8-Acenaphthylene	Amount				123.71	113.60		114.85	122.99	
	RR T	1.16	0.071	6.092	1.24	51.14		200-00	500.00	
Acenaphthylene	Amount				10.33	53.17		200.11	523.04	
	R. C	1.02	0.034	3.301	1.03			100.00	100.00	
d10-Acenaphthene	Amount				73.42	68.27		66.67	69.97	
	Ŗ ²	0.68	0.040	5.815	5.0 3.0 3.0	50.68		200.00	500.00	
Acenaphthene	Amount Rf				12.61	55.92	108.02	226.76	552.29	
	RR T	1.14	0.071	6.206	100 00	100.00	100.00	100.00	100.00	
d10-fluorene	Amount				144.89	152.54	146.61	124.50	112.61	
	RRF	1.36	0.169	12.415	1 2 2 5 5	50.00	100 - 100 -	200.00	500.00	
Fluorene	Amount				11.96	61.81	104.48	217.93	581.04	
	RP 2	1.15	0.078	6.809	1.20	100 00	100 00	10.00 10.00	100.00	
d10-Phenanthrene	Amount				304.73	301.29	297.96	241.46	223.55	
	72 7 72 7	2.74	0.383	13.988	15.05 25.05	50.00	100,00	200.00	500.00	
Phenanthrene	Amount				9.77	48.56	88.92	186.76	495,42	
	공 주	0.95	0.041	4.325	0.98	50.97	100.89	200.95	500.00	
Anthracene	Amount				8.51	44.48	80.92	215.19	618.06	
	R A	0.97	0.179	18.441	0.85	100.89	100.00	100.00	100.00	
d10-Fluoranthene	Amount				122.27	157.80	158.48	157.22	149.99	
	RR T	1.49	0.154	10.335	1.22	50 00	100.00	200.00	500.00	
Fluoranthene	Amount				12.21	64.63	118.10	241.31	629.15	
	RRF	1.23	0.044	3.570	100 00	100 00	100.00	100.00	100.00	
d10-Pyrene	Amount				130.84	_	166.15	169.44	156.09	
	RR T	1.58	0.157	9.978	1.31		100.06	200-000	500.00	
Pyrene	Amount				12.63	63.04	116.69	248.31	676.95	
•	2 P	1.26	0.067	7 5.306	1.26		1.17	1.24	1.35	
	77.									

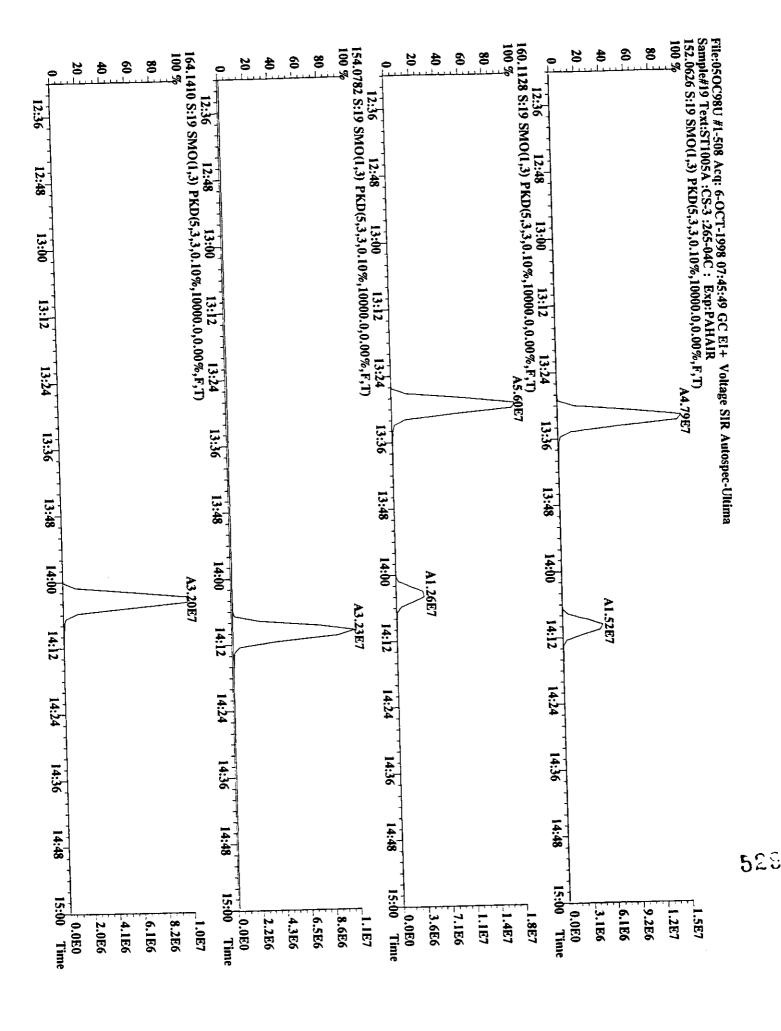
10

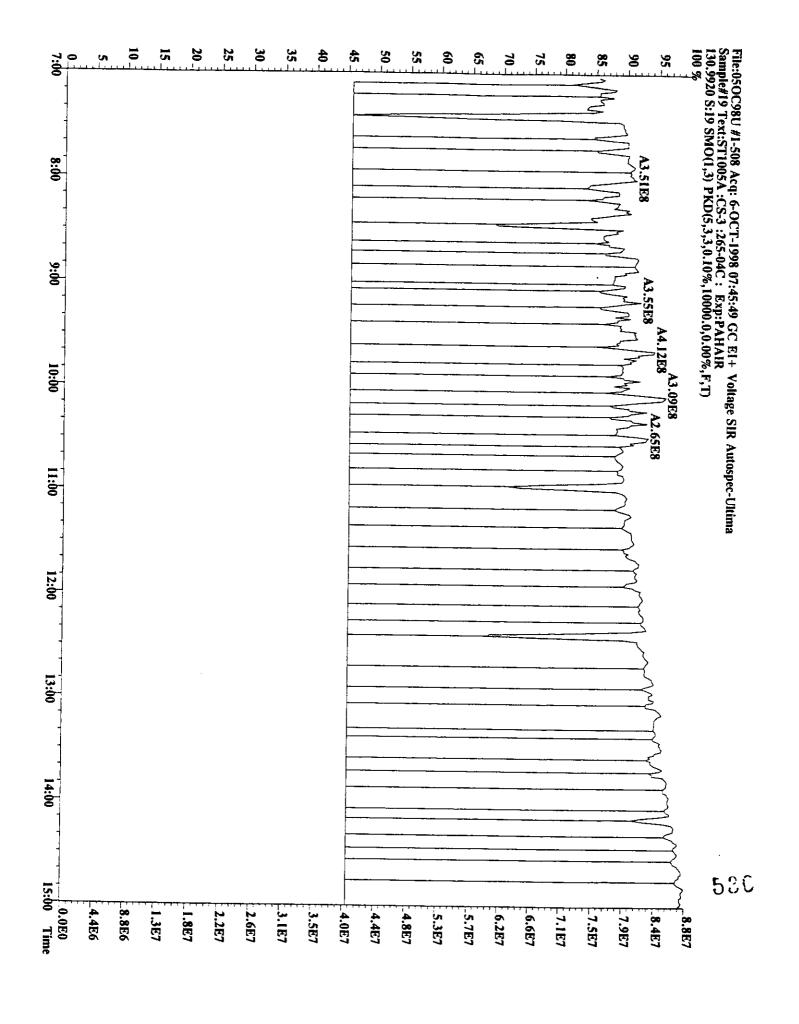
Mass Spec : ULTIMA GC Column : DB-5 265-04A --> 265-04E; Multiplier @ 260V.

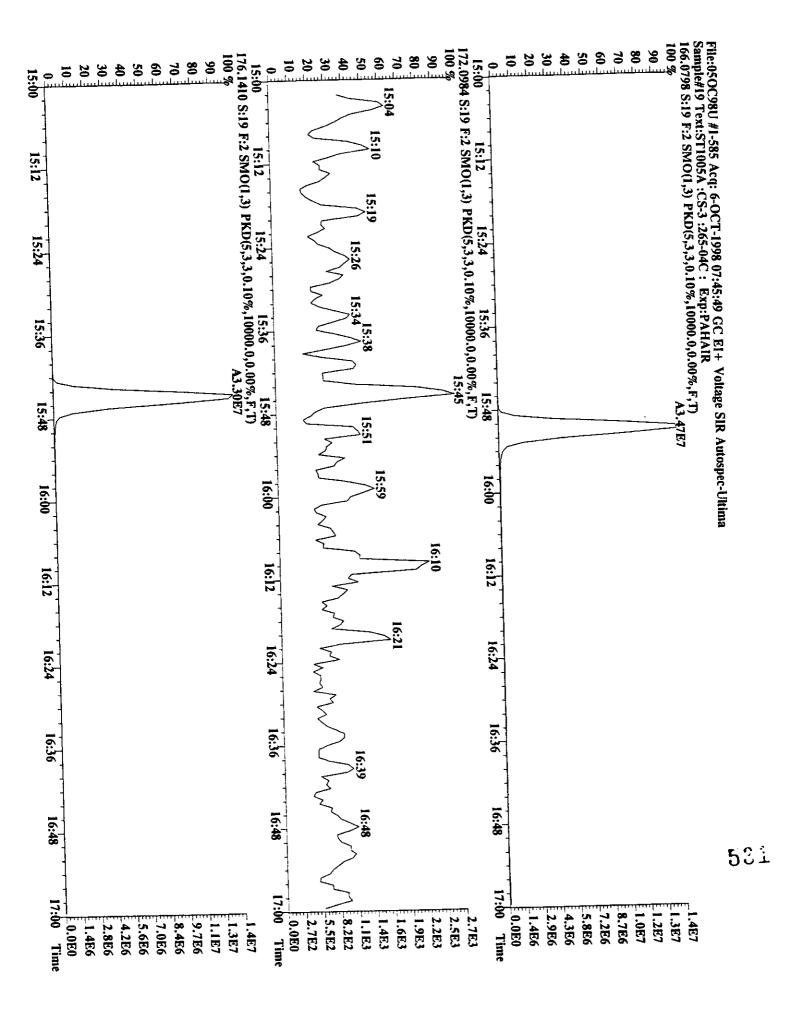
File name : PAHAIR100198U.RRF

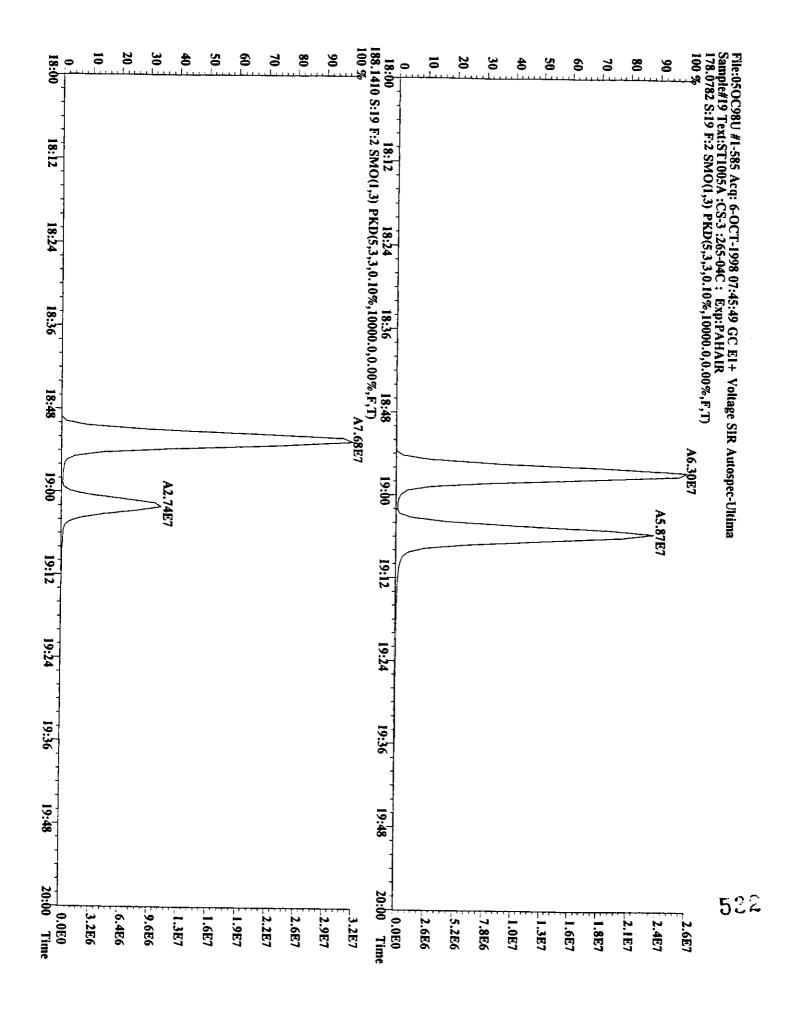
œ

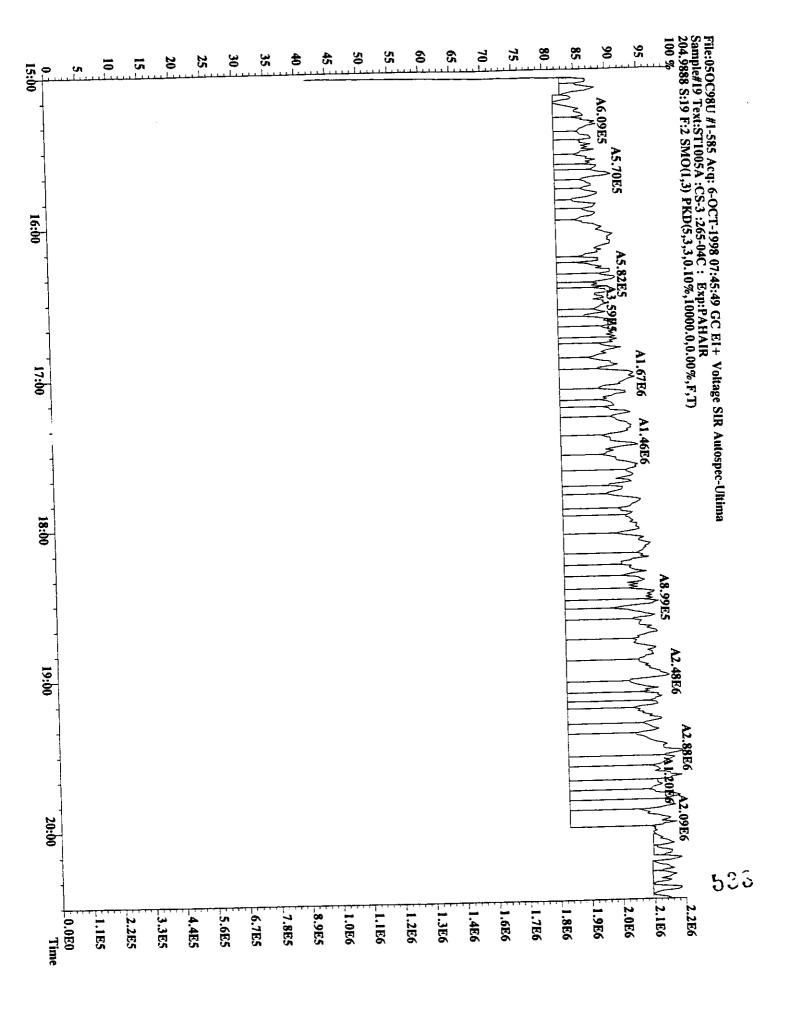

5

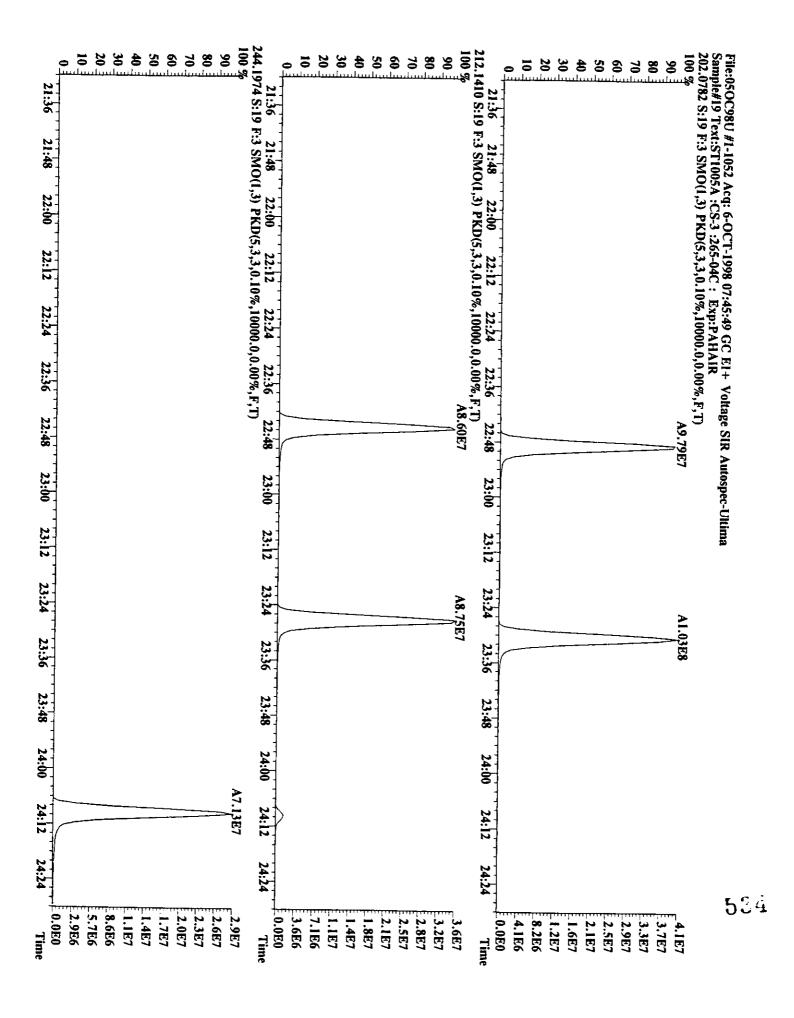

INITIAL CALIBRATION CURVE	Date analyzed: 01-0CT-98

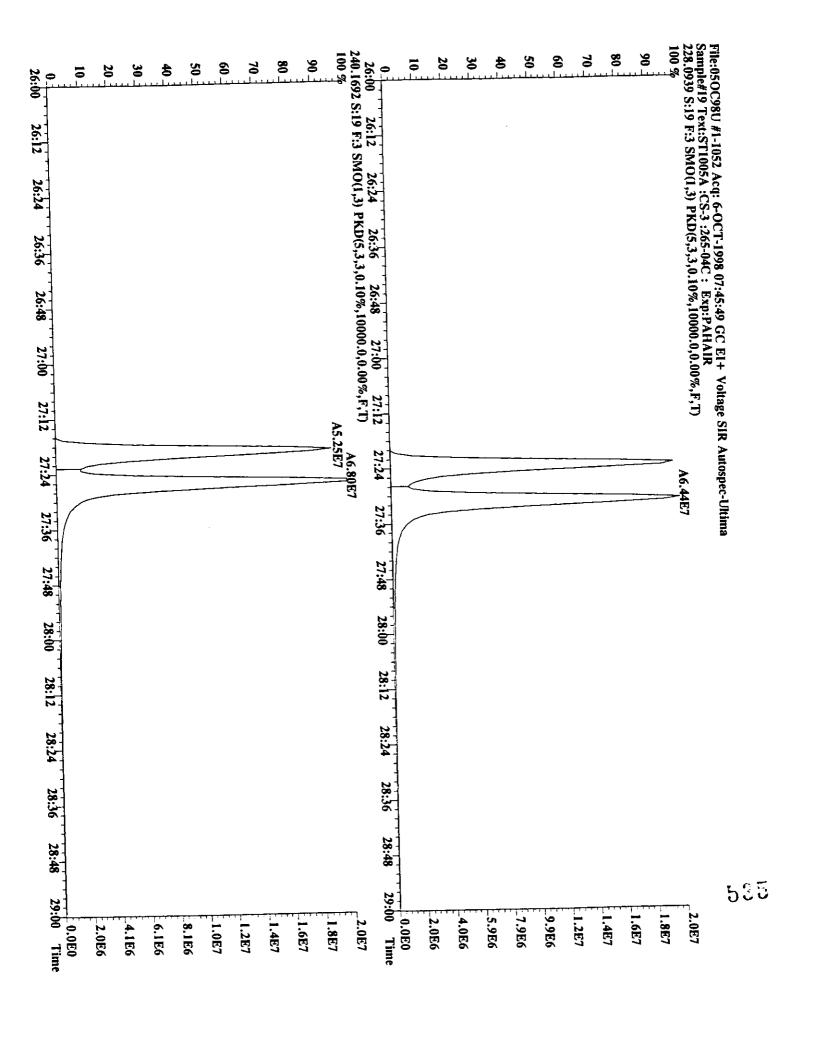

		:) •	:	,					
d12-Benzo(a)anthracene	Amount	mean	s.D.	XX SD	100.00	16. 18.	100.00	100.00	100.50 100.00	
Benzo(a)anthracene	RRF Amount	0.81	0.051	6.243	0.82 10.00	73.87 0.74 50.00		82.24 0.82 200 ₋ 00	500.88 0.88	
d12·Chrysene	RRF Amount	1.28	0.069	5.356	12.57 1.26 100.00	100 100 100 100 100 100 100 100 100 100		260.77 1.30 100.00	680.79 1.36 100.00	
Chrysene	RRF Amount	1.17	0.075	6.438	10.15	50.00	1.12	1.23	1.26	
d12-Benzo(b)fluoranthene	RRF Amount RF	1.16	0.057	4.881	100.00	10.25 20.25		1.11	100.00 53.00	
Benzo(b)fluoranthene	RRF Amount	0.48	0.026	5.475	10.00	50.06		0 47 200 00	0.53 500.00	
d12-Benzo(k)fluoranthene	RRF Amount	1.30	0.085	6.540	13.55 100.00 23.55		117.89 1.18 100.00	249.84 1.25 100.00	695.00 1.39 100.00	
Benzo(k)fluoranthene	RRF Amount	0.99	0.022	2.196	10.8 10.8 10.8			1.01	1.01	
d12-Benzo(a)pyrene	RRF Amount RF	1.20	0.061	5.111	1.27 100.00				1.15	
Benzo(e)pyrene	RRF Amount RF	0.74	0.023	3.065	0.71 10.00	26.58 26.68		200.00 200.00	500.07 100.77	
Benzo(a)pyrene	RRF Amount RF	1.62	0.085	5.216					1.65 500.00	
d12-Perylene	RRF Amount RF	: :1	0.084	7.550					101.03 700.03 700.03	
Perylene	RRF Amount RF	0.65	0.029	4.558					500.00	
d12-Indeno(123-cd)pyrene	RRF Amount	1.74	0.145	8.315					1.86	
Indeno(123-cd)pyrene	RRF Amount	0.37	0.040	10.705				0.38	0.44 500.00	
d14-Dibenz(ah)anthracene	RRF Amount RF	0.60	0.031	5.150	0.58 100.00	100.05 17.65	100.00 18.57		0.62 100.00	
	R.	0.20	0.031	15.283					0.26	

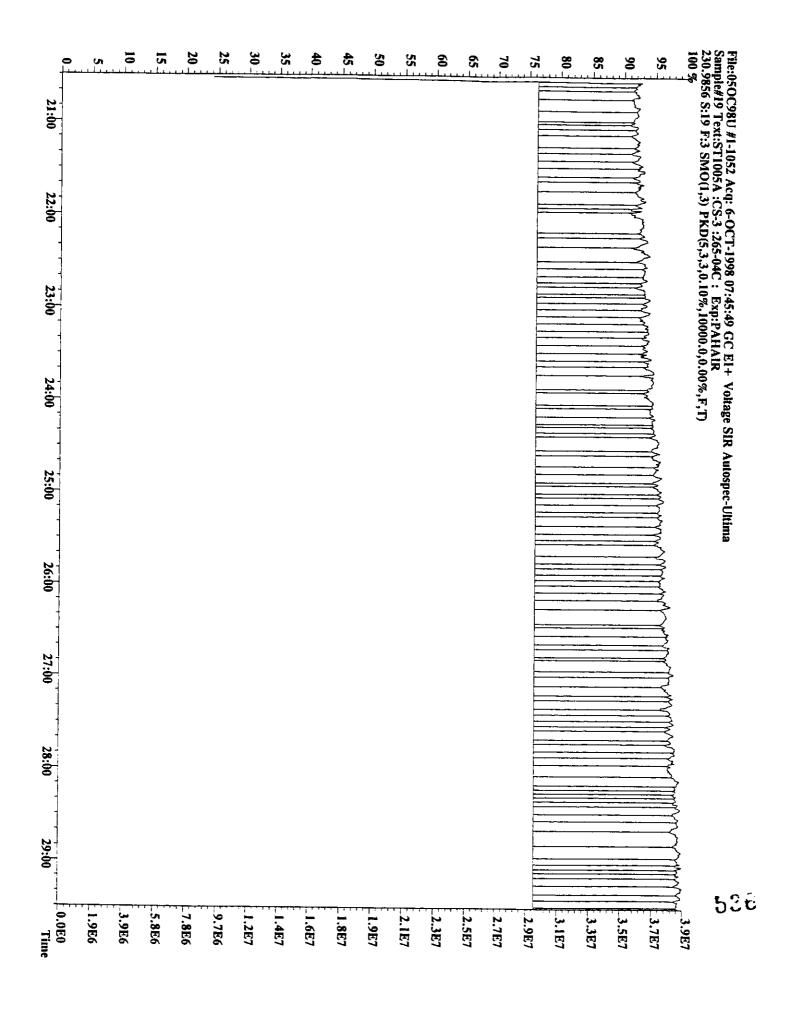

				1.12	1.14	1.07			2.671	0.030	1.11	2 P	
				500.00 559.79	0.39 200.00 227.28	0.38 100.00			8.601	0.41 0.035	0.41	RF RRF Amount	Renzolahi)pervlene
				1.30 100.00 44.20	1.34 100.00 39.49	1.29 100.00 38.08	1.20 100.00 37.67	1.26	3.957	0.051	1.28	RRF Amount	d12-Benzo(ghi)perylene
<	Œ	7	о -	500.00 651.39	4 200.00 268.11	3 100.00 129.39			%RSD	s.D.	Mean	Amount	Dibenz(ah)anthracene
,	,	1				N CURVE	LIBRATIO	INITIAL CALIBRATION CURVE	=		9 260V.	tiplier i	265-04A> 265-04E; Mul
				98U_RRF	: PAHAIR100198U.RRF ed : 01-0CT-98	: PA zed : 01	File name : PAHAIR100 Date analyzed : 01-0CT-98	Fil Dat					Mass Spec : ULTIMA
					_ 	TION TAB	CALIBRA	Dioxin Furan CALIBRATION FABLE	Diox				06-0CT-1998 11:38:26 AM

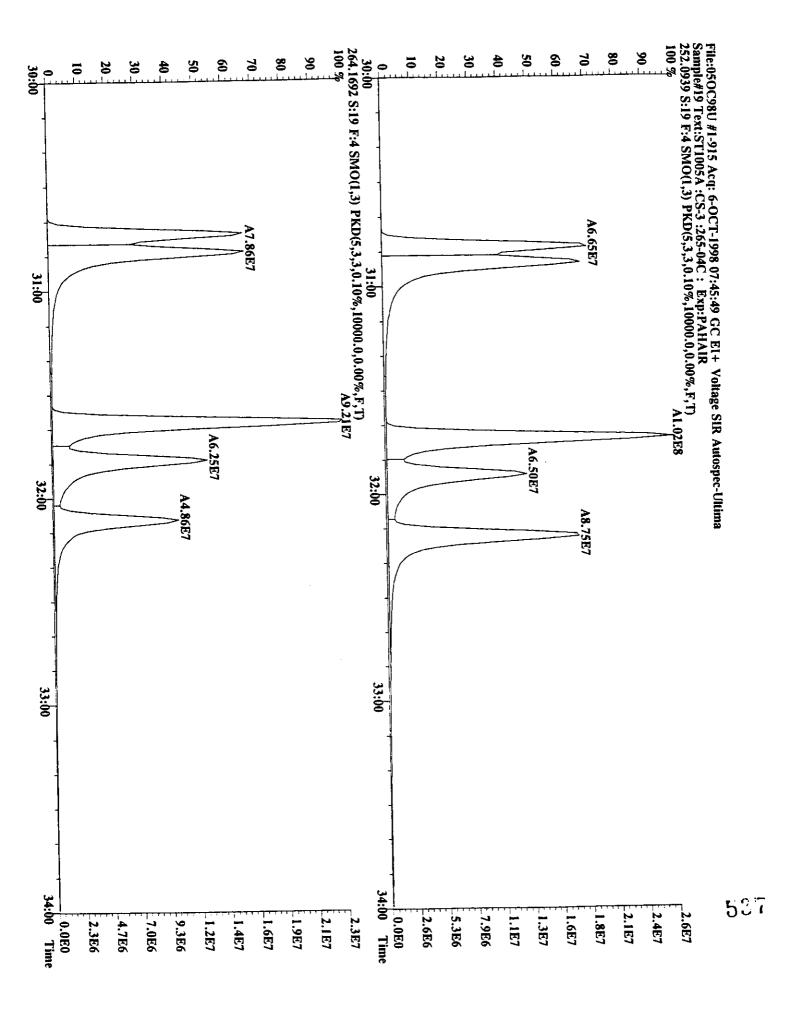

Dioxin Furan CALIBRATION TABLE

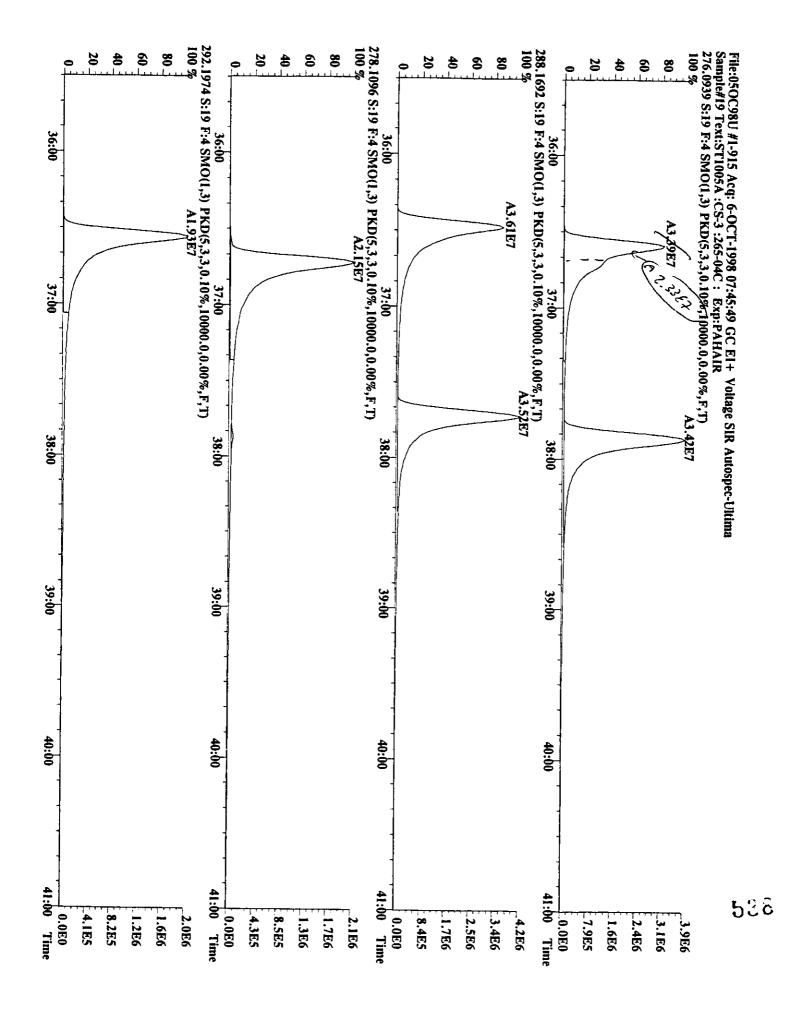


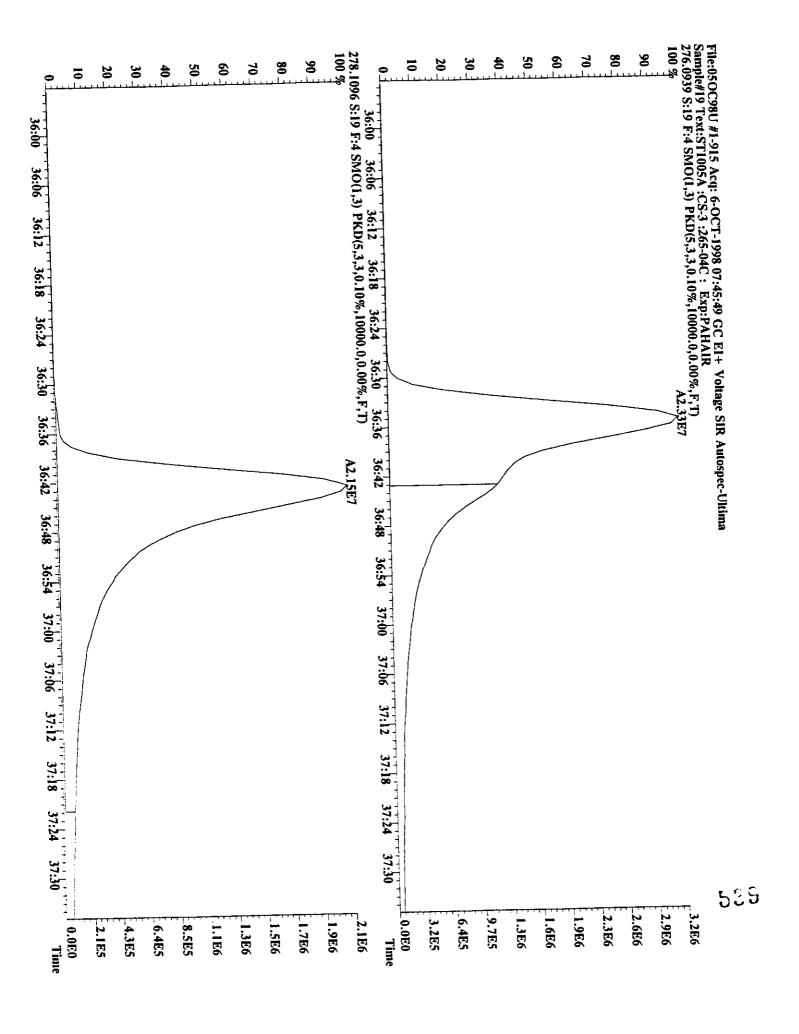


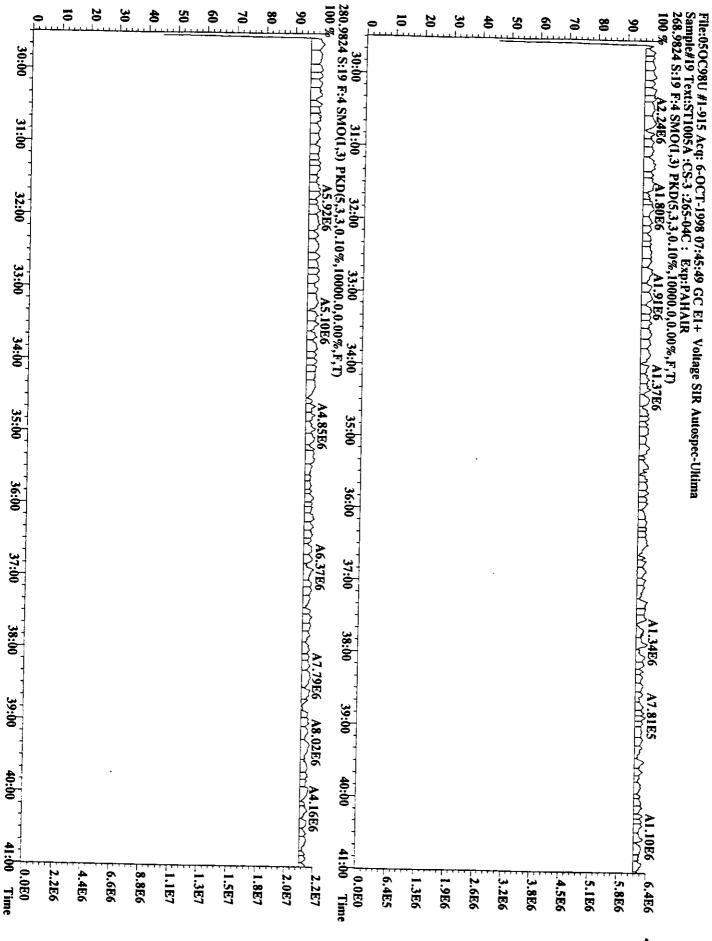


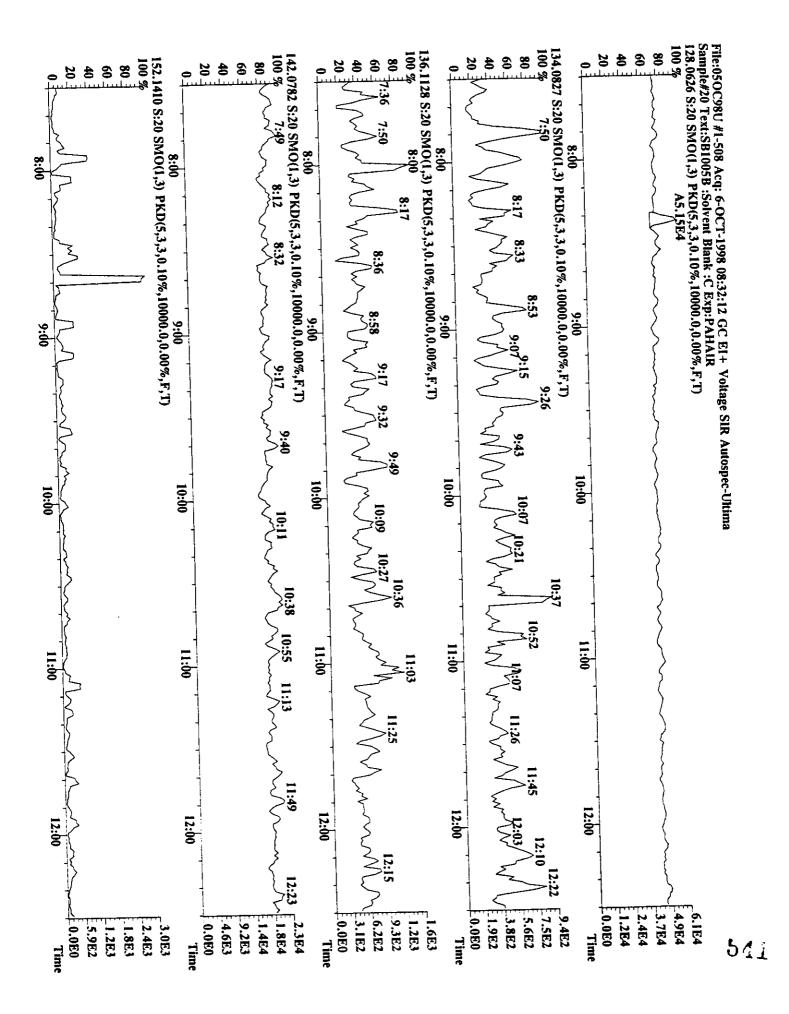


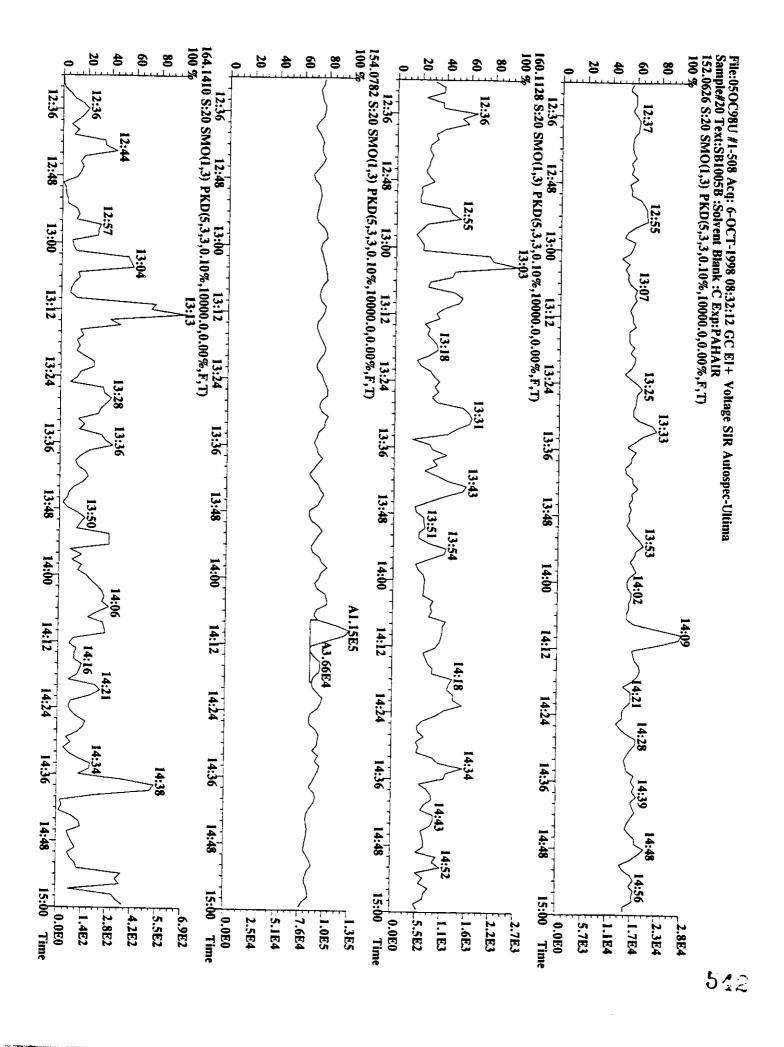


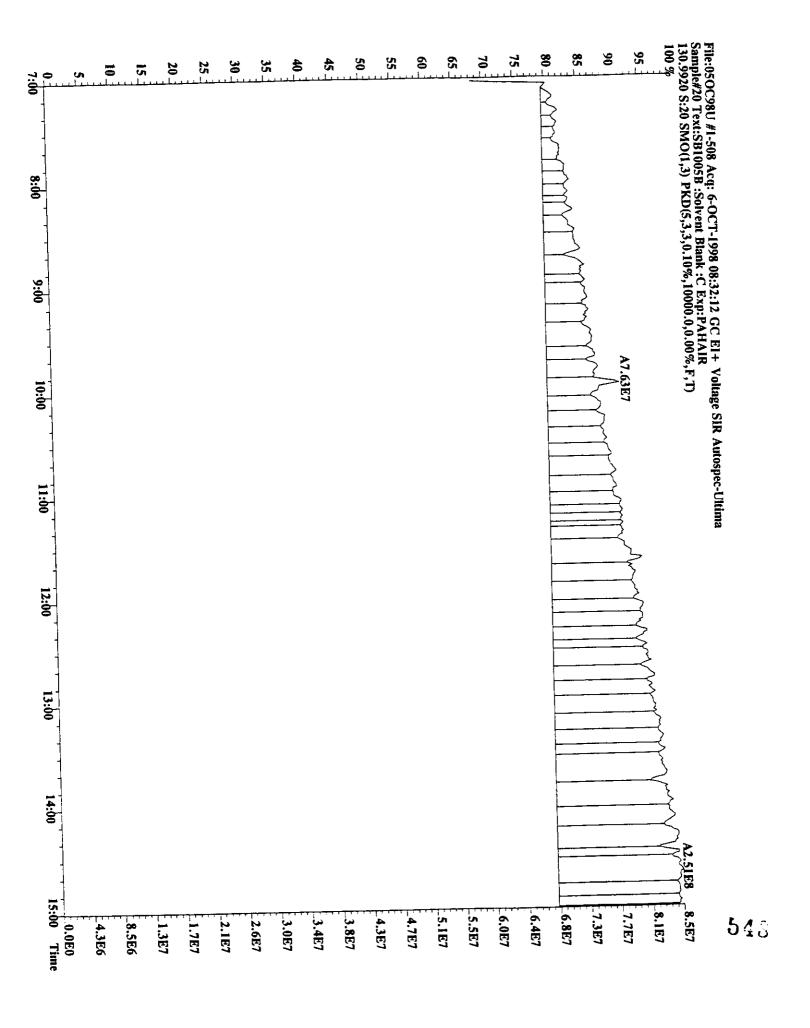


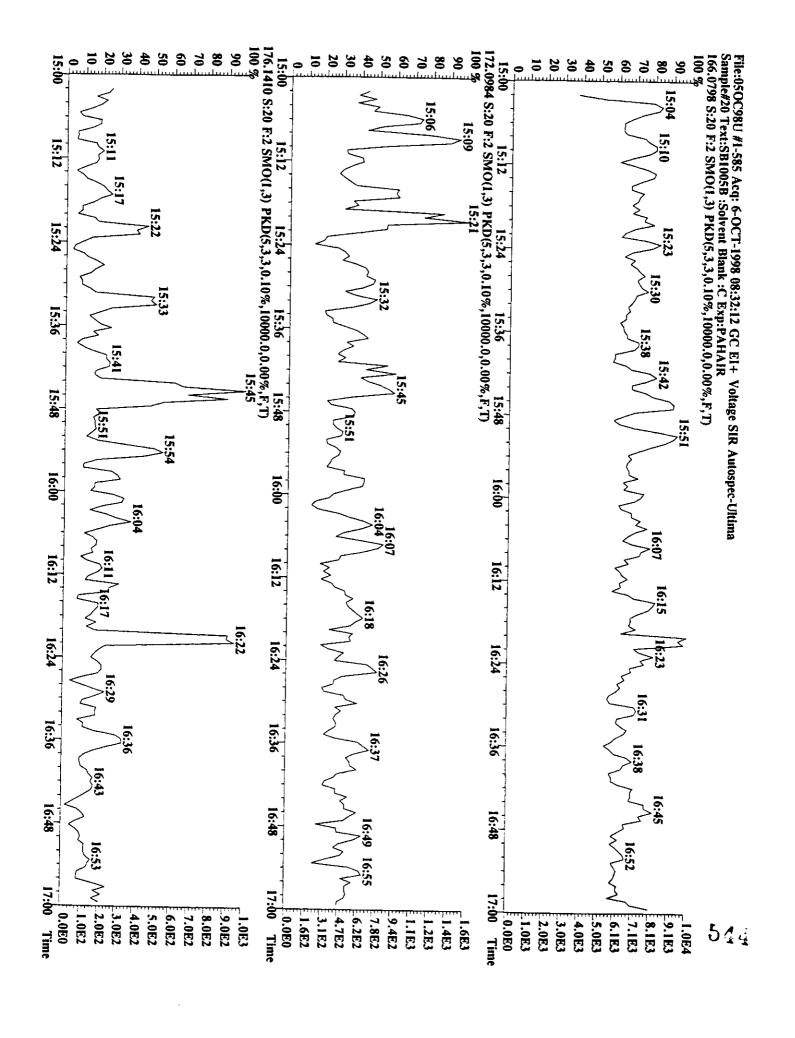


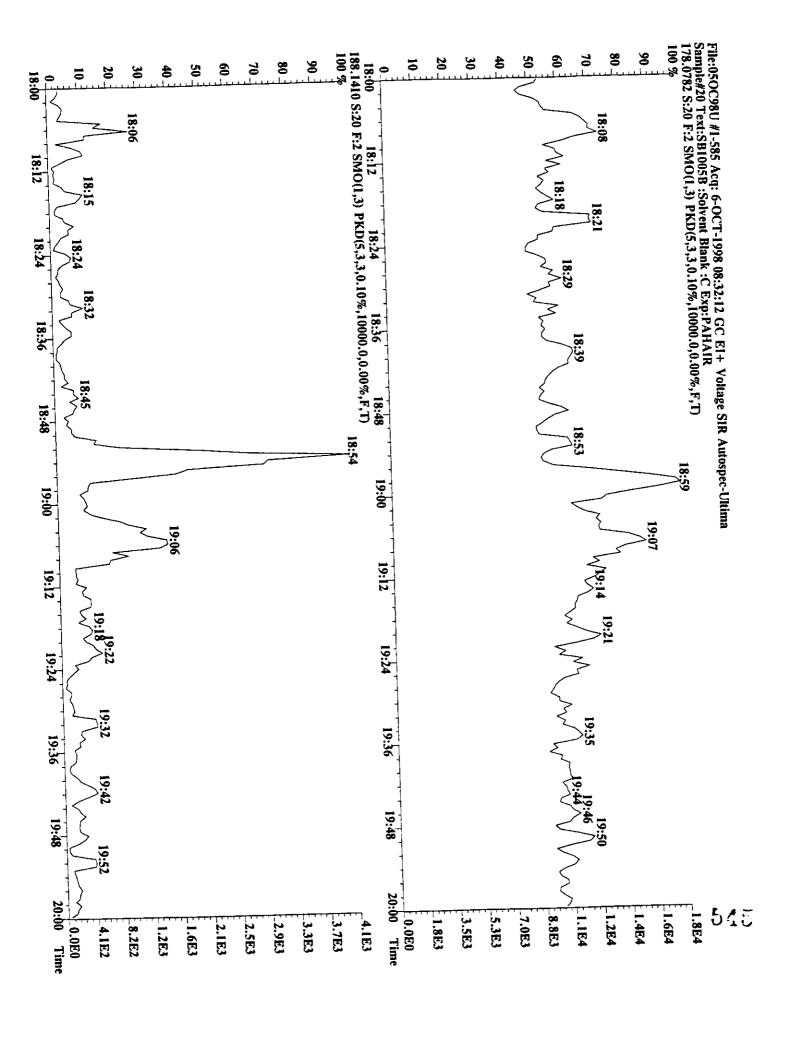


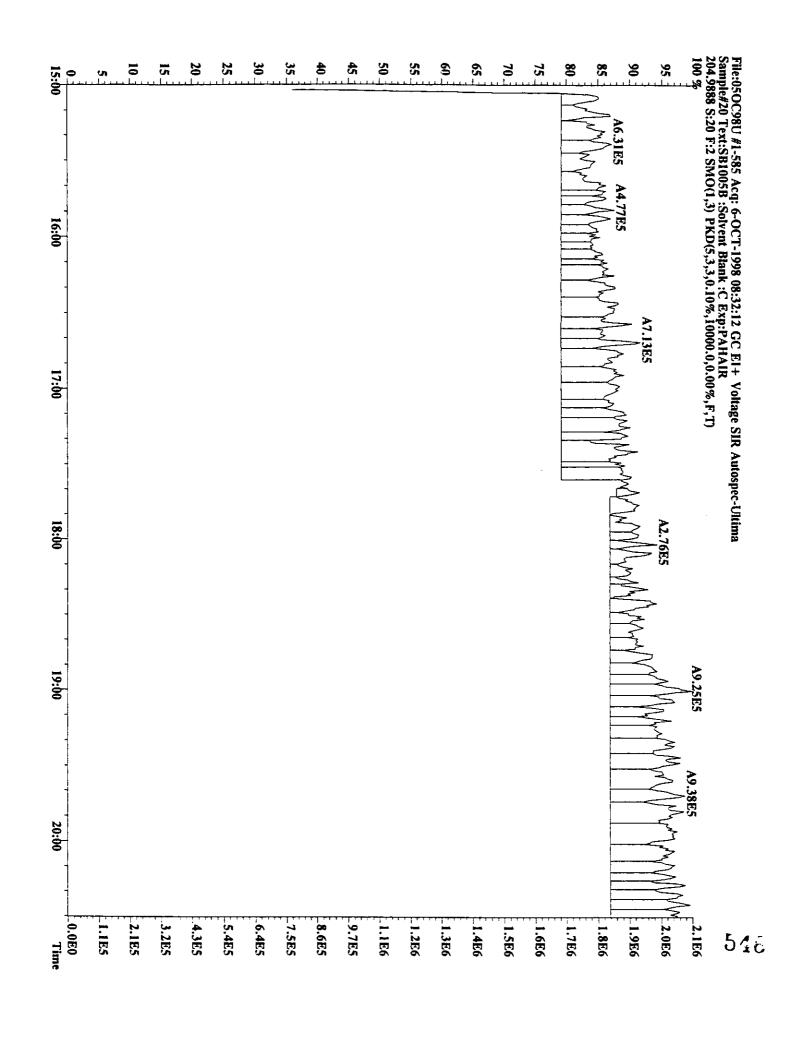


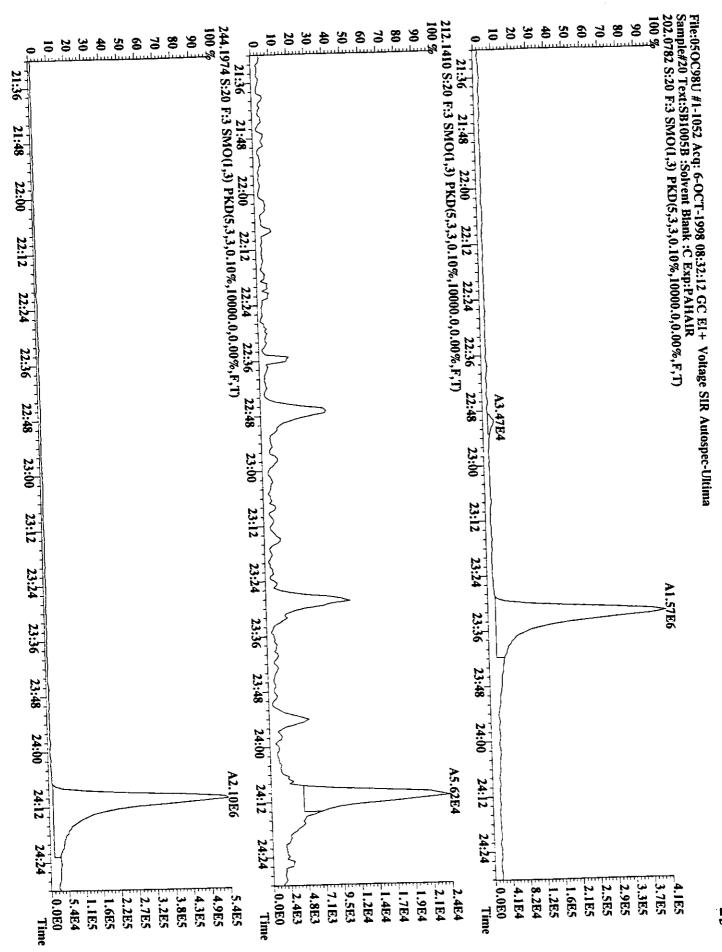


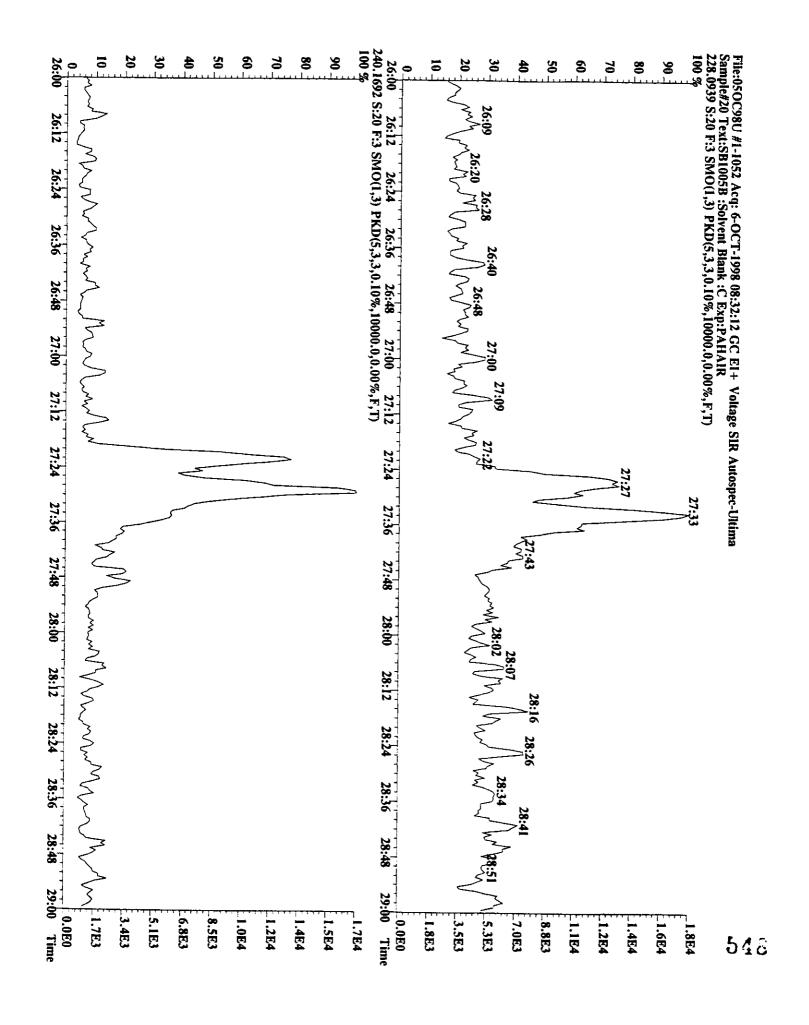


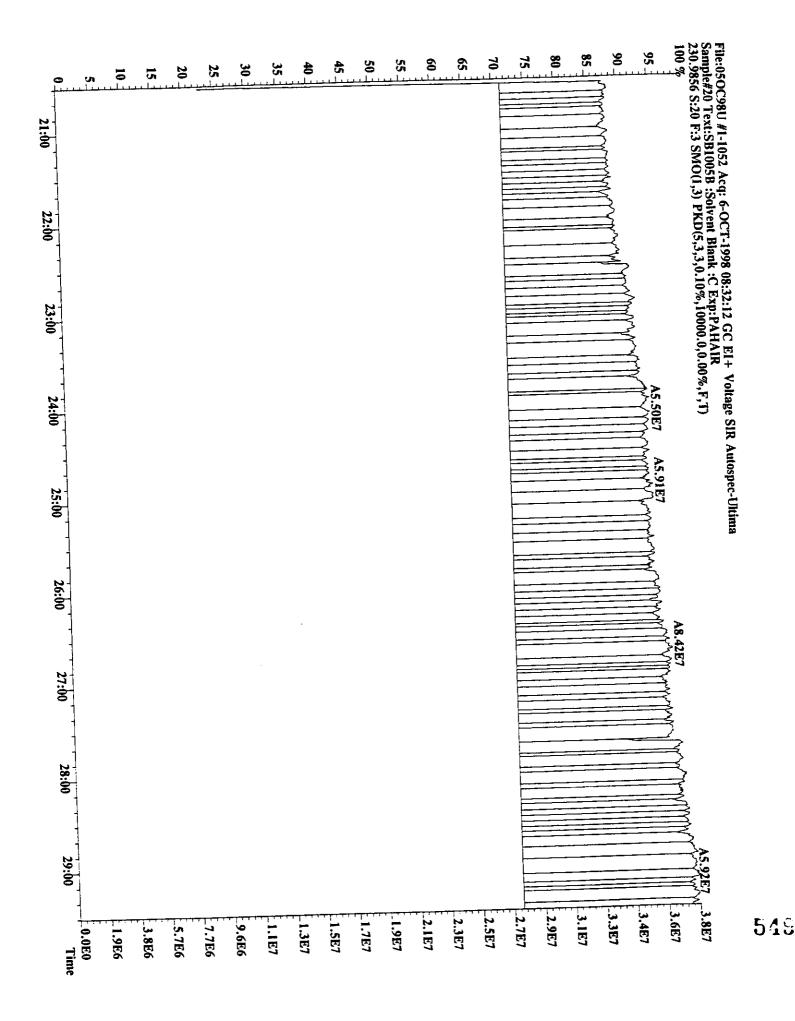


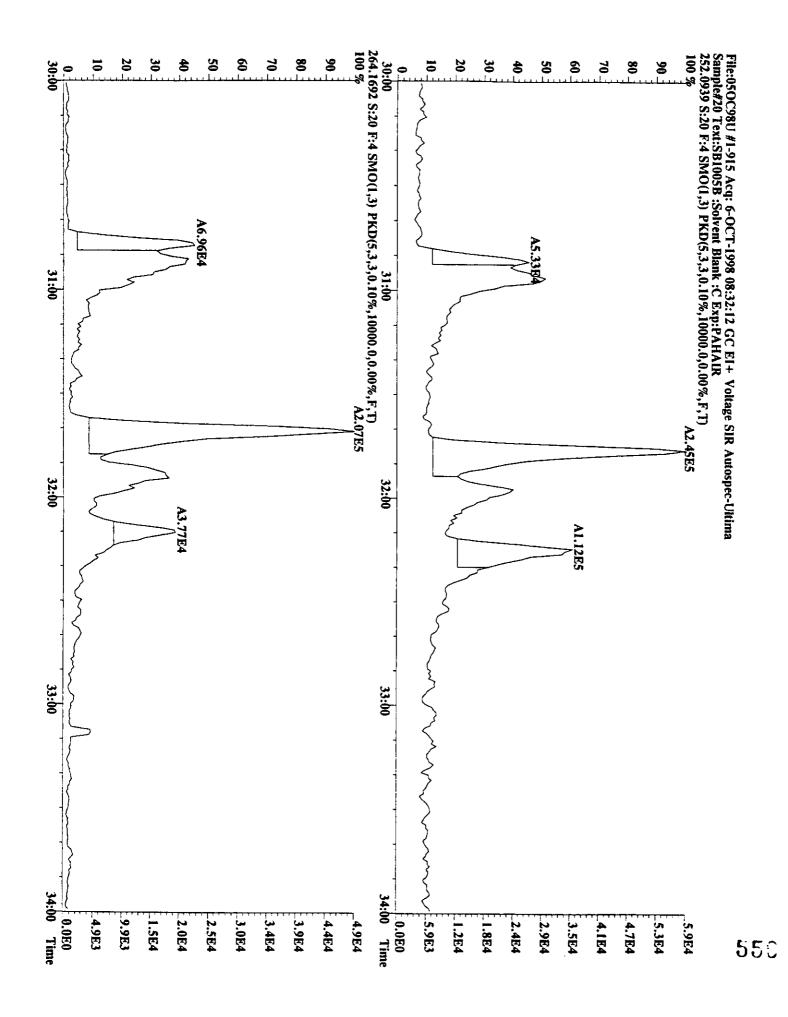


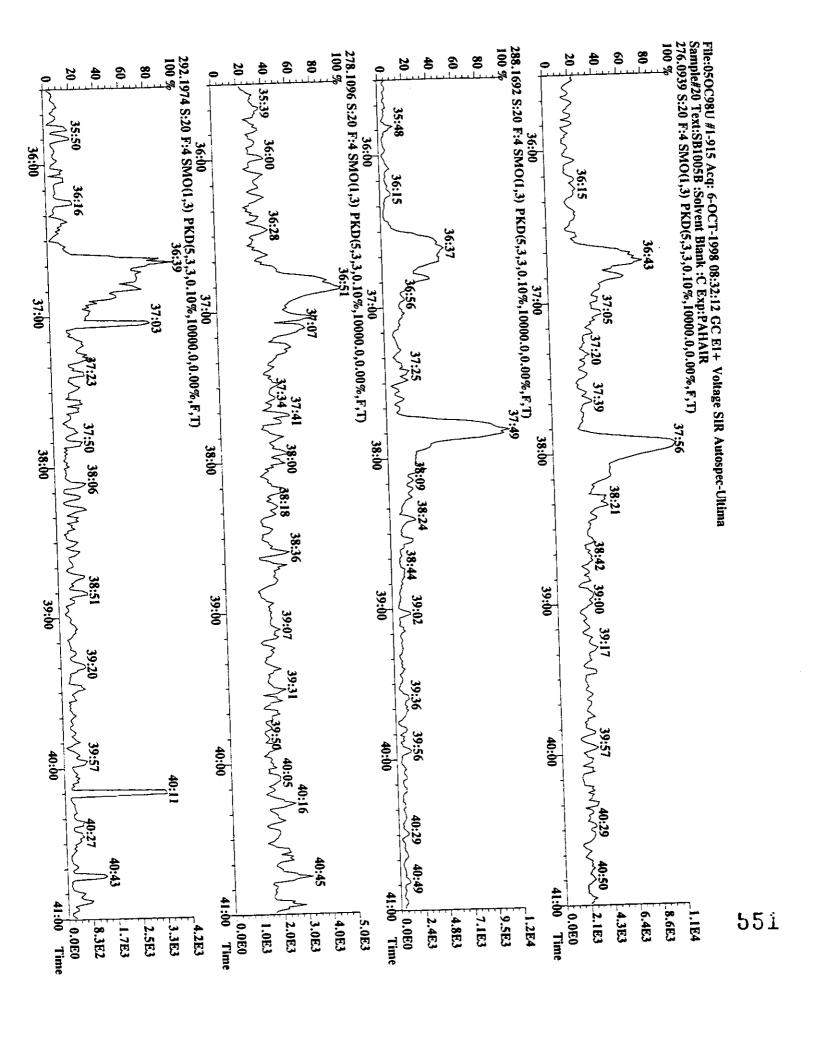


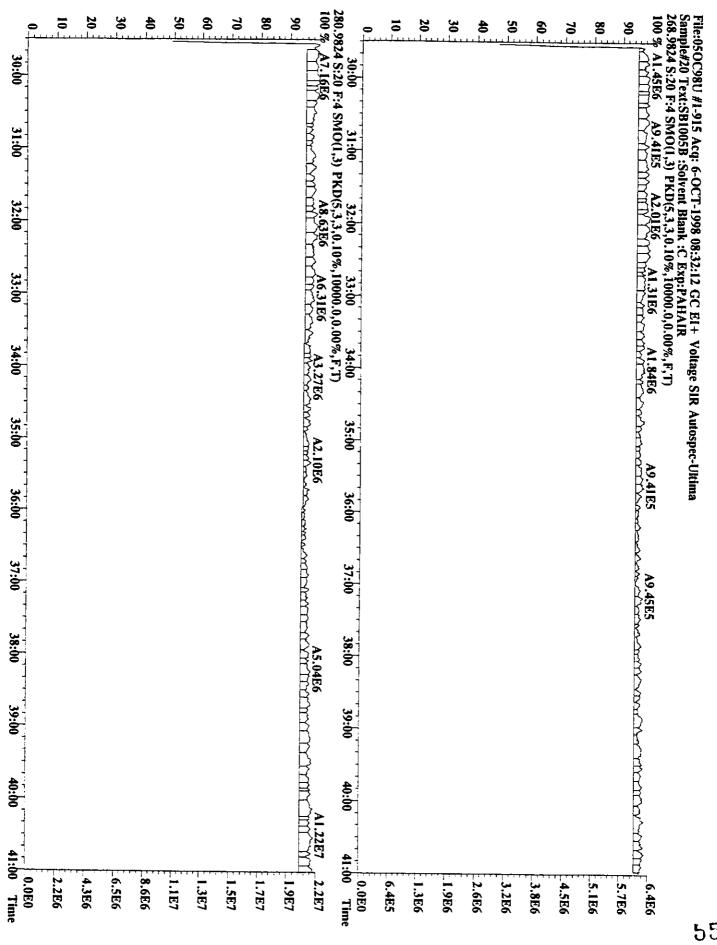












QUANTERRA INCORPORATED

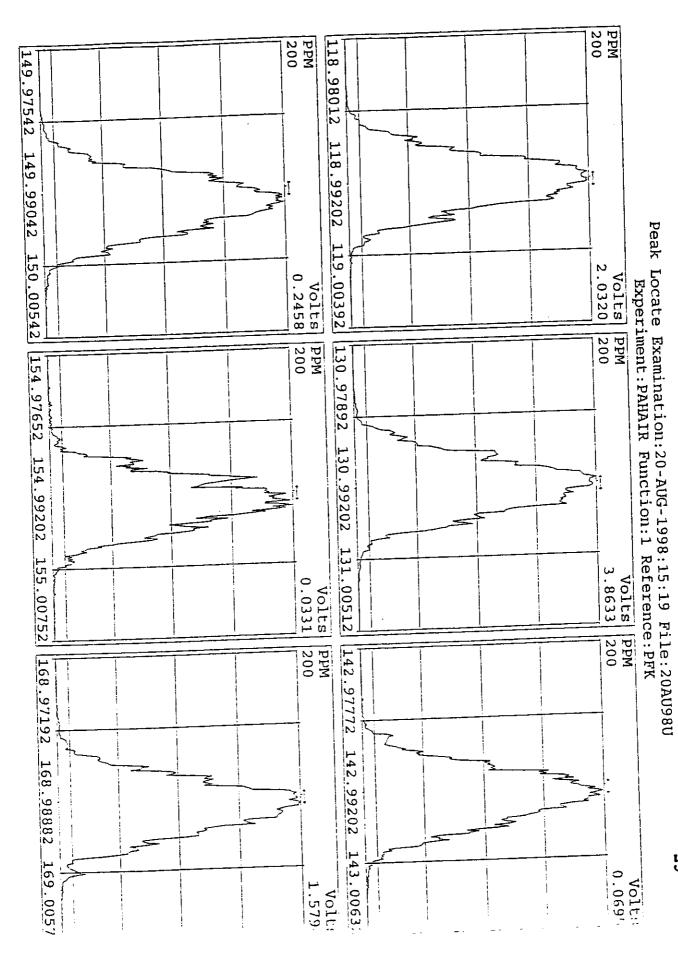
West Sacramento

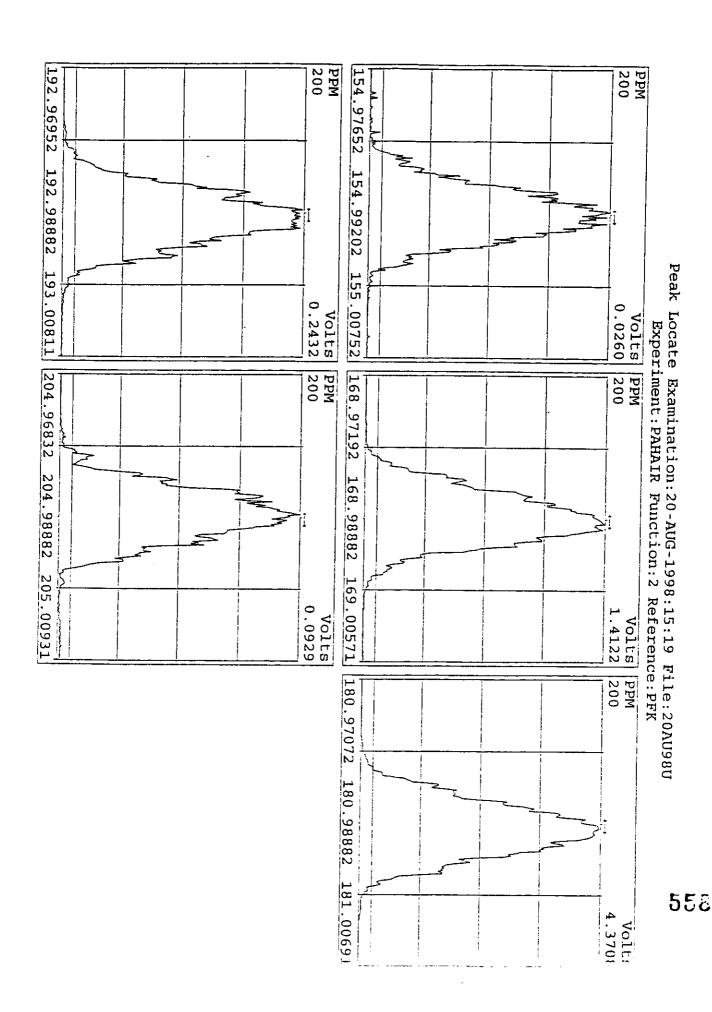
Daily Standard Checklist Dioxin/Furan High Res

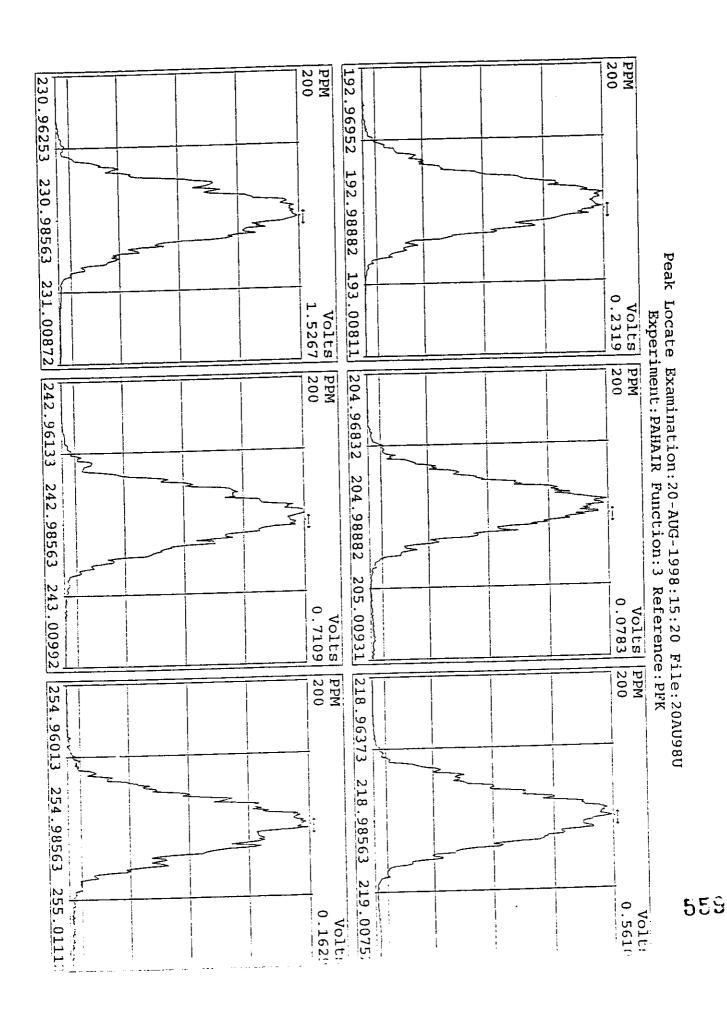
Dioxin/Furan High Res	•	11/1
STD ID 5 TO 820B Method ID PAHX Co	olumn ID_DG-S_Instr	10 01+1MG ate 8/24/98
Premared by		
Analyzed By O Clave Date Analyzed 8/20	2 63	
Reviewed By Columbia	7-4	
	PARTARES.	REVIEWED
- ANALYSIS OF DAILY STANDARD	10	√ (Ú)
Standard, CPSM, and solvent blank present?		√
Copy of Instrument logfile present?	NAD/	NG(U/V
CPSM blow up and peak profile present?		
Curve summary present?	NA	NA
Summary of 1613A criteria present?	(2)	<u> </u>
Daily standard within method specified limits*?	NA	NA
Daily ion abundance ratios within limits?	NAW	NAW
CPSM valley < 25%?	NAO	MA (I) V
CPSM window correct? Samples analyzed within 12 hrs of daily standard?		
Samples analyzed Within 12 the		
COMMENTS:		
1) NO PAN (PSM) 13 DEC.	doy from ICI	A <u></u>
(2) Meeds PAH DQO limits: +/2 40%		

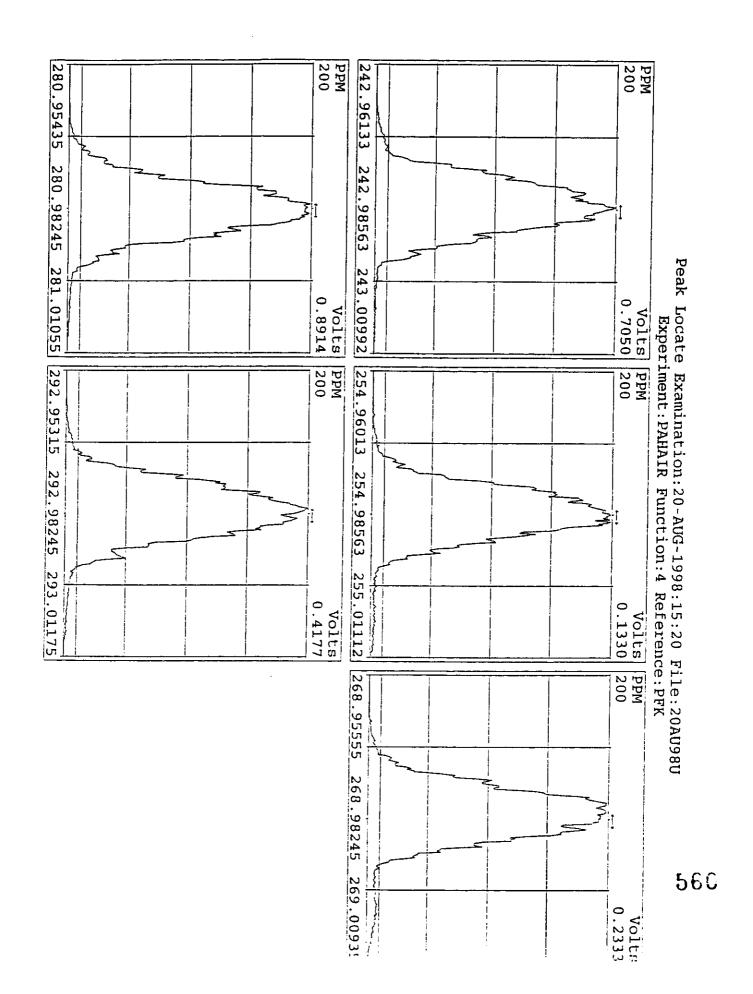
For Method 1813A, see 3rd Revision to Method 1810 Partitions Specifications, Table 7.

For NCASi 551, Control Limit (CL) = +/- 20% from curve RRFs for all analytes. For Method 8290, CL = \pm /- 20% from curve RRFs for native analytes, CL = \pm /- 30% from curve RRFs for native analytes.


Mass Spec : ULTIMA Results : 20AU98U031A.RES : PAHXCAL3.TRG GC Column : DB-5 Date analyzed: 20-AUG-98 Data file : 20AU98U ST0820B :PAH CS-3 :265-4C Ex Weight : 1 Total Isotope R. T. RRF 왕 nq Name Response Ratio mm:ss Dev d10-2-Methylnaphthalene 11: 9 Y 178181200 1.00 Y 0.00 100.00 d8-Naphthalene 304808000 1.00 Y 8: 58 Y 100.00 1.71 37 Naphthalene 310530000 1.00 Y 9: 2 Y 1.02 100.00 -3 2-Methylnaphthalene 176051400 1.00 Y 11: 15 Y 0.58 100.00 -25 229314000 1.00 Y d8-Acenaphthylene 14: 13 Y 1.29 100.00 -17 Acenaphthylene 188234200 1.00 Y 14: 15 Y 0.82 100.00 -5 d10-Acenaphthene 138806400 1.00 Y 14: 46 Y 0.78 100.00 -11 Acenaphthene 124705000 1.00 Y 14: 52 Y 0.90 100.00 -3 d10-Anthracene 106282600 1.00 Y 19: 47 Y 0.00 100.00 d10-Fluorene 125946600 1.00 Y 16: 28 Y 1.19 5 100.00 Fluorene 170098800 1.00 Y 16: 34 Y 1.35 100.00 29 271414000 1.00 Y d10-Phenanthrene 19: 37 Y 2.55 100.00 -3 Phenanthrene 208010000 1.00 Y 19: 42 Y 0.77 100.00 -9 Anthracene 205610000 1.00 Y 19: 51 Y 0.76 100.00 -9 d12-Benzo(e)pyrene 354976000 1.00 Y 32: 37 Y 0.00 100.00 d10-Fluoranthene 277606000 1.00 Y 23: 31 Y 0.78 100.00 -3 Fluoranthene 251926000 1.00 Y 23: 35 Y 0.91 100.00 -13 d10-Pyrene 257016000 1.00 Y 24: 14 Y 0.72 100.00 -11 Pyrene 273526000 1.00 Y 24: 17 Y 1.06 100.00 -4 d12-Benzo(a) anthracene 193234800 1.00 Y 28: 5 Y 0.54 100.00 -16 Benzo(a) anthracene 194037400 1.00 Y 28: 10 Y 100.00 1.00 -5 d12-Chrysene 275306000 1.00 Y 28: 12 Y 0.78 -9 100.00 Chrysene 243904000 1.00 Y 28: 17 Y 0.89 100.00 -9 354976000 1.00 Y d12-Benzo(e)pyrene 32: 37 Y 0.00 100.00 d12-Benzo(b) fluoranthene 205540000 1.00 Y 31: 38 Y 100.00 0.58 -8 Benzo(b) fluoranthene 220732000 1.00 Y 31: 44 Y 1.07 100.00 0 d12-Benzo(k) fluoranthene 315650000 1.00 Y 31: 44 Y 0.89 100.00 - 1 Benzo(k) fluoranthene 316406000 1.00 Y 31: 48 Y 1.00 100.00 -13 d12-Benzo(a)pyrene 250392000 1.00 Y 32: 50 Y 0.71 100.00 -6 Benzo (e) pyrene 357770000 1.00 Y 32: 43 Y 1.43 100.00 - 2 Benzo(a) pyrene 230158000 1.00 Y 32: 55 Y 0.92 100.00 -10 d12-Perylene 213958000 1.00 Y 33: 8 Y 0.60 100.00 - 2 Perylene 33: 15 Y 325562000 1.00 Y 1.52 100.00 -6 d12-Indeno(123-cd)pyrene 255206000 1.00 Y 37: 58 Y 0.72 2 100.00 Indeno (123-cd) pyrene 131800000 1.00 Y 38: 0.52 100.00 -16 d14-Dibenz (ah) anthracene 156165400 1.00 Y 38: 0 Y 0.44 100.00 0 Dibenz (ah) anthracene 164497000 1.00 Y 38: 10 Y 1.05 100.00 -5 d12-Benzo(ghi)perylene 100.0055412 251268000 1.00 Y 39: 23 Y 0.71 Benzo(ghi)perylene 217510000 1.00 Y 39: 32 Y 0.87 100.00 -13 d8-Naphthalene 314000000 1.00 Y 16: 28 Y -1.00 100.00 13C-Naphthalene 316000000 1.00 Y 16: 33 Y


1.01


100.00


136600000 1.00 Y 16: 29 Y -1.00 100.00 116000000 1.00 Y 16: 34 Y 0.85 100.00 d10-Fluorene 0 13C-Fluorene

FILE	SAMP No.	LAB. SAMP No	CUSTOMER ID	CLEAN UP 1	CLEAN UP 2	TYPE	CONCn.
	(1)			(SDS)	(D2)	(1)	
20AU98U 20AU98U 20AU98U 20AU98U	1 2 3 4	ST0820 ST0820A : ST0820B SB0820	PAH CS-3 Prespike Cal Std PAH CS-3 Solvent Blank	651-21 265-4C C8			1 1 1
20AU98U 20AU98U 20AU98U 20AU98U	5 6 7 8	300681-1MF 300681-1LF 300681-1MS 300681-1LS	Method Blank LCS Method Blank LCS	Train Train Train Train	PAH PAH PAH PAH	VSE-23	0.333 0.333 0.333 0.333
20AU98U 20AU98U 20AU98U 20AU98U 20AU98U	9 10 11 12 13	300569-6 300569-7 300569-8 300569-9 300664-1	ARF-001-10 ARR-001-01 ARR-001-02 ARR-001-03 ARH-001-01	Soil Soil Soil	PAH PAH PAH PAH	VSE-23	5.05 5.02 5.03 4.99
20AU98U 20AU98U 20AU98U 20AU98U 20AU98U	14 15 16 17 18	300664-2 300681-1DL 300681-2DL 300681-3	ARH-001-02 S-MM5-2-F 10x S-MM5-1B-F 10x T-MM5-2-F	Soil Soil Train Train Train	PAH PAH PAH PAH PAH	VSE-23	5.02 5.03 0.333 0.333 0.333
20AU98U 20AU98U 20AU98U 20AU98U	19 20 21 22	SB0820A QC0820 SB0820B	Solvent Blank 081998PAHQC Solvent Blank	C8 Native C8	PAH	ect/	1 1 1
20AU98U 20AU98U 20AU98U 20AU98U 20AU98U	23 24 25 26 27				•	/	
20AU98U 20AU98U 20AU98U 20AU98U 20AU98U	28 29 30 31 32						
20AU98U 20AU98U 20AU98U 20AU98U	33 34 35 36						
20AU98U 20AU98U 20AU98U 20AU98U	37 38 39 40		AMA 08/20/98				
20AU98U 20AU98U 20AU98U 20AU98U	41 42 43 44						
20AU98U 20AU98U 20AU98U 20AU98U 20AU98U	45 46 47 48 49						556

Mass Spec : ULTIMA GC Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier @ 260V.

File name : PAHAIROB1998U.RRF Date analyzed : 19-AUG-98

Pyrene		d10-Pyrene	Fluoranthene		d10-Fluoranthene		Anthracene		Phenanthrene		d10-Phenanthrene		fluorene		d10-fluorene		Acenaphthene		d10-Acenaphthene		Acenaphthylene		d8-Acenaphthylene		2-Methylnaphthalene		Naphthalene		d8-Naphthalene	
RRF RRF	RRF	RRF Amount	Amount	22 Z	Amount	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Amount	22 7 27 7	Amount	RRF	Amount	R.F.	Amount	- R	Amount RF	RRT	Amount	R.	Amount	RRF	Amount	RR X	Amount	공 ^주	Amount	R.	Amount	R R	Amount	
1_11	1.01	1.04		1.01	;	0.83		0.84		2.63		1.05		1.13		0.93		0.88		0.86		1,55		0.77		1.05		1.25	Mean	
1 0.052	1 0.047	¢ 0.067		0.073		0.053		0.064		0.051		0.105		0.098		0.097		0.037		0.057		0.092		0.112		0.181		0.094	S.D.	
4.71	4.66	6.39/		7.268		6_428		7.599		1.934		10.040		8.636		10.478		4.178		6.560		5.934		14.514		17.228		7.579	%RS0	1
11.5	10.00	10.1 10.9 10.9	10.95		100.00	0.87	10.00	0.90	0.00	2.62	262.09	1.12	11.18	1.30	129.53	100 100 100 100 100 100 100 100 100 100	10.16	10.86	86.37	0.86	8.55	1.69	1 66	0.93	9.29	1.36	10.00	1.25	100.00	:
55.0 1.1	50.0	100.0	51.5		100.0	0.8	50.00	0 8/	20.00	2.61	260.96	0.88	43.83	50.00	105.98	100.95 00.95	47.71	50,98	89.70	10.89 10.89	44.41	1.45	145.20	0.68	33.88	5.08	20.00	1.38	700 700 700	I
117.0 1.1	100.0	100 1 97 5	111.9		98.0	0.8	88.7	0.90	90.20	2.66	265.51	100 1 100 15	114.84	100.00	113.84	100.00	101.30	100.85 100.85	82.92	10.35 25.55	94.74	1.48	148.35	30 38	84.95	9.96	96.37	1.12	10.00 61	ı
212.1 1.0	1.0	100.0	199.6	30.1	90	0.7	149.9	20.75	150.57	2.70 2.70	269.74	100.5 100.5 100.5	210.00	1.08	108.38	100.00	157.44	200.93	92.67	0.81 100.00	162.62	.58	158.01	3.0 3.70	39 99	3.0 3.23	86.59	2.23	24.00 24.70	•
1 527.05 5 1.05	500.00	0 100.00 0 100.00 6 98.62	479.64	500.99	99.18	0.82	410.83	0.81	405,42	500.00	256.17	100.00	528.30	500.00	107.00	100.00	439.22	500.00	87.02	100.00	406.40	500 00	154.72	100.70	3/9 03	500 0.93	464.77	1.23	100.00 123.18	æ
2. 2.																													o	

1ass Spec : ULTIMA 3C Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier a 260V.

INITIAL CALIBRATION CURVE

70

File name : PAHAIRO81998U.RRF Date analyzed : 19-AUG-98

d14-Dibenz(ah)anthracene	Indeno(123-cd)pyrene	d12-Indeno(123-cd)pyrene	Perylene	d12-Perylene	Benzo(a)byrene	Benzo(e)pyrene	d12-Benzo(a)pyrene	Benzo(k)fluoranthene	d12-Benzo(k)fluoranthene	Benzo(b)fluoranthene	d12-Benzo(b)fluoranthene	Chrysene	d12-Chrysene	Benzo(a)anthracene	d12-Benzo(a)anthracene
RRF Amount RF RRF	RF RRF Amount	RRF RRF Amount	RRF Amount	RRF RRF	RRF	RRF Amount	RRF Amount	RRF Amount	RRF Amount	RRF Amount	RRF Amount	RF RRF Amount	RRF Amount	RF RRF Amount	Amount
0.61	0.71	1.62	0.61	1.02	1.46	0.75	1.16	0.90	1.07	0.63	0.97	1.06	1.06	0.82	Mean
0.046	0.061	0.110	0.013	0.066	0.077	0.010	0.105	0.048	0.029	0.036	0.086	0.100	0.030	0.069	s.D.
7.531 10.143	8.681	6.792	2.048	6.478	5.243	1.385	9.104	5.393	2.735	5.785	8.856	9.360	2.804	8.507	ZRSD
0.63 100.00 43.73 0.44															
0.67 100.00 43.81 0.44	35 o 73 36 o 73 36 o 73	80.54 1.61	60.89 0.61 50.00	51.55 1.05 1.05 1.05	74.22 1.48	0.74 50.00	100.00	50.00 50.00	100.00	50.00	50.08 1.00 1.00	115.07 1.15 50.00	52.92 1.06 100.00	89.67 0.90 50.00	2 100.00
0.63 100.00 44.28 0.44	69.80 0.70 100.00	145.64 100.66	60.17 0.60	105.82 106.82	153.41	0.74 100.00	100.00	100.90 61.00	30.1.	100.00 100.00	103.60 1.04	91.74 0.92 100.00	110.29 1.10 100.00	71.73 0.72 100.00	3 100.00
0.57 100.00 38.06 0.38	62.67 0.63 200.00	332.88 1.66 100.00	61.91 0.62 200.00	197.36 0.99	287.46	0.75 200.00	100.00	200.93 200.93	100.00 1.06 200.00	20.63 20.08	175.51 0.88 100.00	107.75 1.08 200.00	207.09 1.04 100.00	77.77 0.78 200.00	100.00
0.56 100.00 50.69 0.51	79.43 0.79 500.00	800.43 1.60	63.41 0.63 500.00	100.00	672.30 1.34	500.00 500.00	100.00	200.00 20.00 20.04	100.05 100.05	56.40 500.00	441.04 0.88 100.00	115.66 1.16 500.00	513.26 1.03 100-00	83.24 0.83 500.00	100-00
															٥

PAH CALIBRATION TABLE

13C et raoi en e	470 El 1000	13C-Naphthalene	Benzo(ghi)perylene	d12-Benzo(ghi)perylene)ibenz(ah)anthracene		265-04A,-04B, 651-21, 26	dass Spec : ULTINA
RR R	RRF Cont	RRF Amount	RRF	Amount	Amount		5-04D,-04E	
1.00	1.00	0.99	0.63			Mean	; Multipl	
0.000	0.000	0.03	0.060		0 036	S.D.	ier al 20	
0.000	0.000	4 3.467	9.532		₹ 270	%RSD		
		100.00	10.61 881	00.00 60.66	10.79 88.79		INITIAL CALIBRATION CURVE	Da Fi
		100 100 1.00					LIBRATIO	le name te analy
		1.03 100.00 1.00					N CURVE	File name : PAHAIROBIS Date analyzed : 19-AUG-98
1.00	101.00	100.95 1.00	200.00 190.98	56.21 56.21	225.91	26 4		PAHAIR081998U.RRF 19-AUG-98
1.00		100.96 1.00	500.00 478.29	72.26	535.81	5 5 8		98U.RRF
						6		
						7		
						æ		
						9		

10

Mass Spec : ULTIMA GC Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier a 260V.

File name : PAHX081998U.RRF Date analyzed : 19-AUG-98

œ

₽

	יין ייוטן ייור	, חמננוף	peren e	1 A007	INITIAL CALIBRATION CURVE	ALIBRATI	ON CURVE			
d8-Naphthalene	Amount	Me an	s.D.	%RSD	100.00	2 100.00	3 100.00	100.00	100.00	٥.
Naphthalene	RRF Amount	1.25	0.094	7.579	10.25 10.25 10.25	50.00	1.12	1.25	1.23	
2-Methylnaphthalene	RRF Amount	1.05	0.181	17.228	10.33 10.33 10.33	50.08 70.08	100.00	0.93 200.00	500.00	
d8-Acenaphthylene	RRF Amount	0.77	0.112	14.514		10.68 20.68	10.9 10.8 10.8 10.8	100.00 150.00	100.70 100.70	
Acenaphthylene	RRF Amount	1.55	0.092	5.934	10.00	50.00	1.48	1.58	1.55	
d10-Acenaphthene	RRF Amount	0.86	0.057	6.560	100.00 2.86	100.05 100.09	100.05 100.05 100.05	0.81 100.00	0.81 100.00	
Acenaphthene	RRF Amount	0.88	0.037	4.178	0.86 10.00	0.90 50.00	82.92 100.00	92.67 0.93 200.00	87.02 0.87 500.00	
d10-fluorene	RRF Amount	0.93	0.097	10.478	100.00 100.00	70.5 20.5 20.5	1.01	100.75	0.88	
Fluorene	RRF Amount	1.13	0.098	8.636	10.00	55.06 10.06	100.00	1.08	1.07	
d10-Phenanthrene	RRF Amount	1.05	0.105	10.040	100.12	100.00 200.00	1.15	100.00	1.06	
Phenanthrene	RRF Amount	2.63	0.051	1.934	10.00	50.00	100.06	200.00	2.56	
Anthracene	RRF Amount RF	0.84	0.064	7.599	8000 8000	50.00 50.00	80.90 700.90	200.00 1200.00	0.81 500.00	
d10-fluoranthene	RRF Amount RF	0.83	0.053	6,428	0.87 100.00 80.50	7.00 7.00 7.00 7.00 7.00	3000 3000 3000 3000	780 787	700 00 780 00 780 00 780 00 780 00	
Fluoranthene	RRF Amount	0.80	0.059	7.315	0.81 200	50.00	0.90	0.79	0.78	
d10-Pyrene	RRF Amount	1.04	0.067	6.394			1.12	1.00	100.96 100.00	
Pyrene	RRF Amount RF	0.81	0.074	9.179		55.0.73 20.73	100.91	0.82	500.00 500.00	
	RRF	1.11	0.052	4.714			1.17	1.06	1.05	

PAH CALIBRATION TABLE

Hass Spec : ULTIMA GC Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier @ 260V.

File name : PAHXOB199BU.RRF Date analyzed : 19-AUG-98

9

6

d14-Dibenz(ah)anthracene Amount RF RRF		Indeno(123-cd)pyrene	d12-Indeno(123-cd)pyrene		Perylene		d12-Perylene		Benzo(a)pyrene		Benzo(e)pyrene		d12-Benzo(a)pyrene		Benzo(k)fluoranthene		d12-Benzo(k)fluoranthene		Benzo(b)fluoranthene		d12-Benzo(b)fluoranthene		Chrysene		d12-Chrysene		Benzo(a)anthracene		d12-Benzo(a)anthracene	
RF RRF	R.F.	RRF Amount		죾	Amount	RRF	Amount	RR T	Amount	RRF	Amount Rf	RRF	RF	RRF	Amount Rf	RRF	Amount RF	RRF	Amount	R	Amount	RRT T	Amount	중직	Amount	R.	Amount	RRT	Amount	
0.44	0.61	0.71		1.62		0.61		1.02		1.46		0.75		1.16		0.90		1.07		0.63		0.97		0.85		1.06		0.65		Mean
4 0.045	0.046	0.061		0.110		0.013		0.066		0.077		0.010		0.105		0.048		0.029		0.036		0.086		0.062		0.030		0.052		S.D.
10.143	7.531	8,681		6.792		2.048		6.478		5,243		1.385		9.104		5.393		2.735		5.785		8.856		7.259		2,804		8.032		%RSD
	0.63	70.05 70.05 70.05	68.59	1.76	17.58	0.61	60.89	1.11	11.13	1 52	15.21	5 0 8 78	75.48	1.27 100-00	12.74	10.88	88.20	3. 3. 8.	10.81	6.65	64.51	1.06	10.00	0.86	86.29	3.05	10.53	0.72	72.00 72.00	-
43.81 0.44	100.67	35.0 50.73	72.80	1.61	80.54	50.61	60.89	1.02	51.09	50.48	74.22	50.00	74.11	100.20	59.99	50.82	82.16	10 10 10 10 10 10 10 10 10 10 10 10 10 1	52.02	50.66	65.70	3. 3. 3. 3. 3.	50.08	50.75	74.68	3.1	52.92	0.58	100.00 58.19	2
0.4	100.6	0.7 100.0 62.7	69.8		145.64	10.0 10.0 10.0	60.13	3. 3.	105.82	100.00	153.41	100.04	74.28	100.00	120.61	100.90	90.16	100,00	111.29	100.63	63.39	1.04	103.60	0.86	85.64	100	110.29	0.67	100.00 66.97	W
38.0 0.3	100.0	200.0 113.2	62.6	100 1.6	332-8	200.6	61.9	100.9	197.30	200-00	287.46	200.00	75.01 26.01	100.00	217.66	200.00	93.02	100.00	212.98	200 00	63.02	100.88	175.51	200.86	85.99	100 P	207.09	20.62 20.62	62.07	4
50.69 3 0.51	100.00	3 500.00 0 500.00 3 281.17	79.43	100 00	800.43	500,00	63.41	100.00	469.69	500.00	672.30	500.00	76.69 77	100.00	504.85	500.00	94.50	100.00	523.15	500.00	56.40	100.88	441.04	500.91	91.50	100. 100. 100.	513.26	500.0 86	65.85	3
-																														6

PAH CALIBRATION TABLE

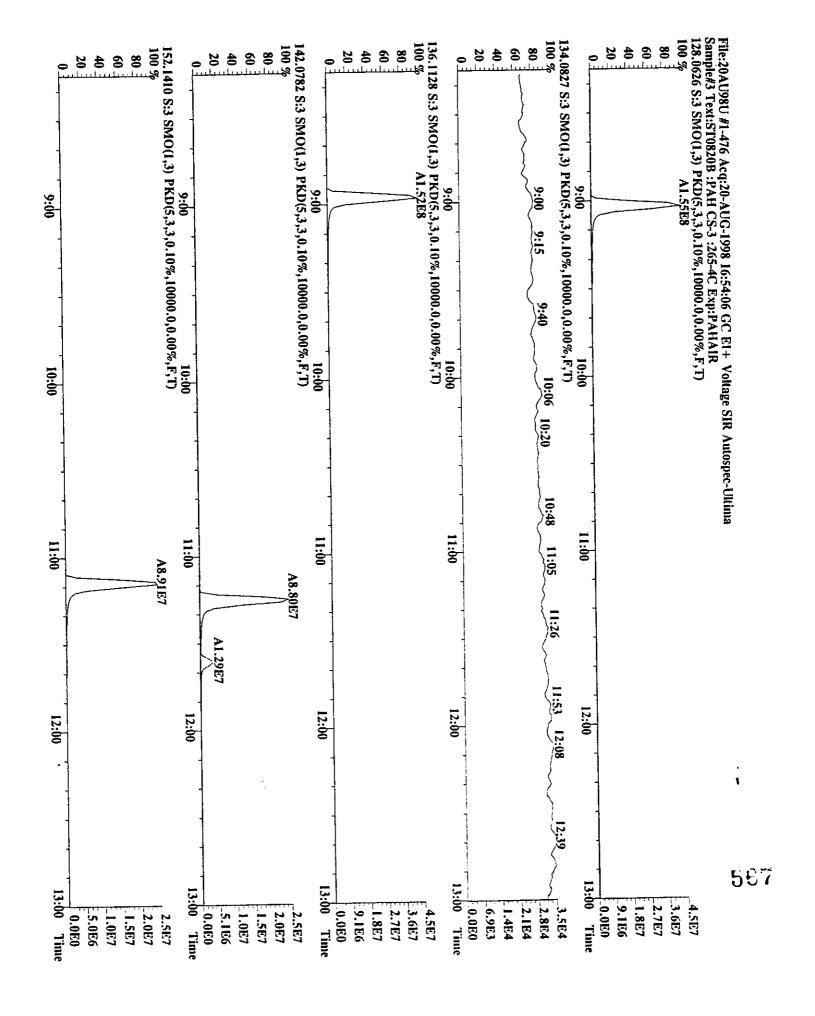
265-04A,-04B, 651-21, 265-04D,-04E; Multiplier a 260V.	Mass Spec : ULTIMA GC Column : DB-5
4D,-04E;	
Multiplier	
a 260V.	

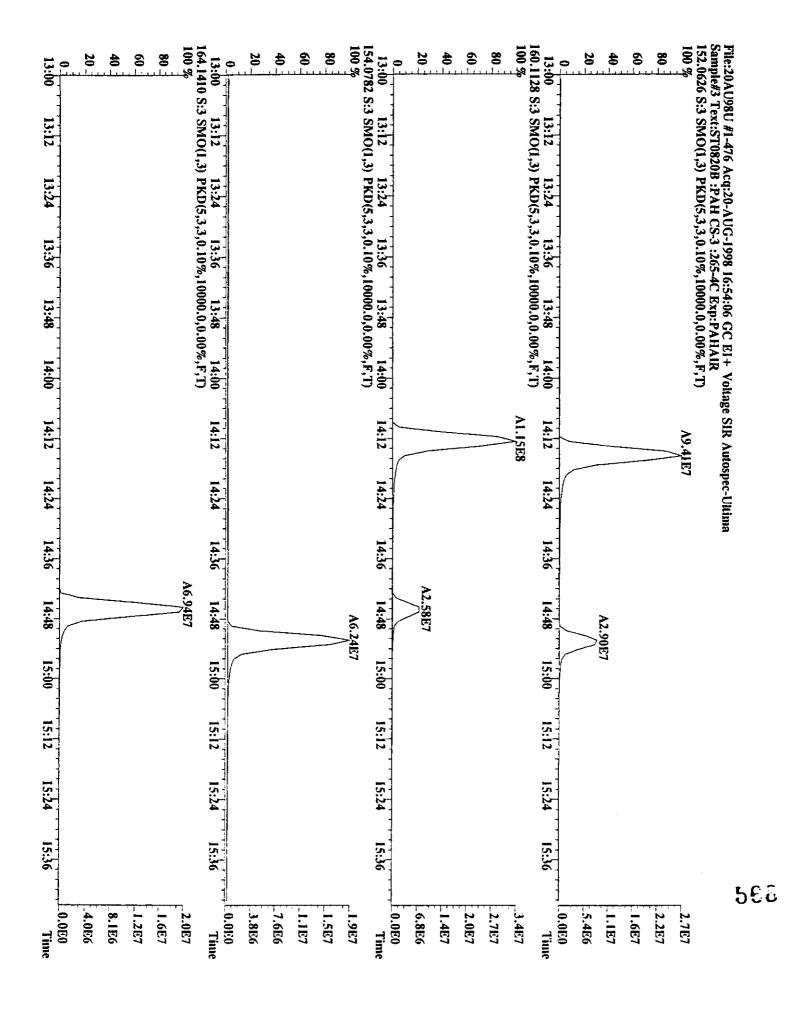
Dibenz(ah)anthracene

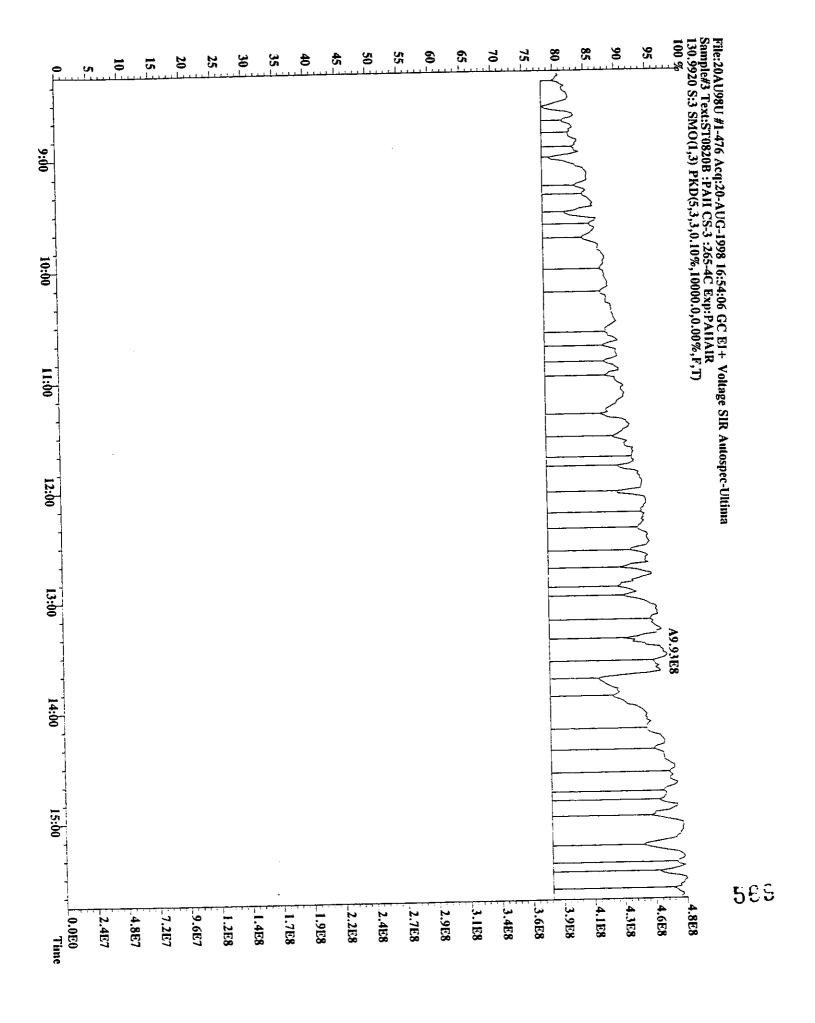
d12-Benzo(ghi)perylene

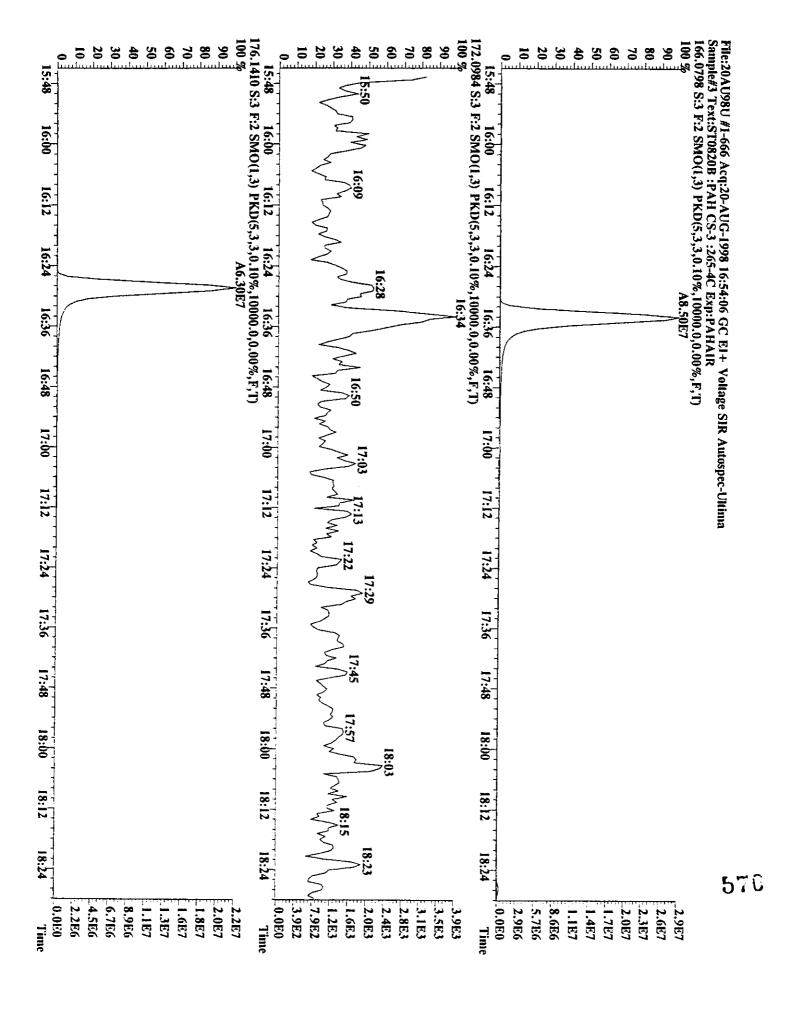
Benzo(ghi)perylene

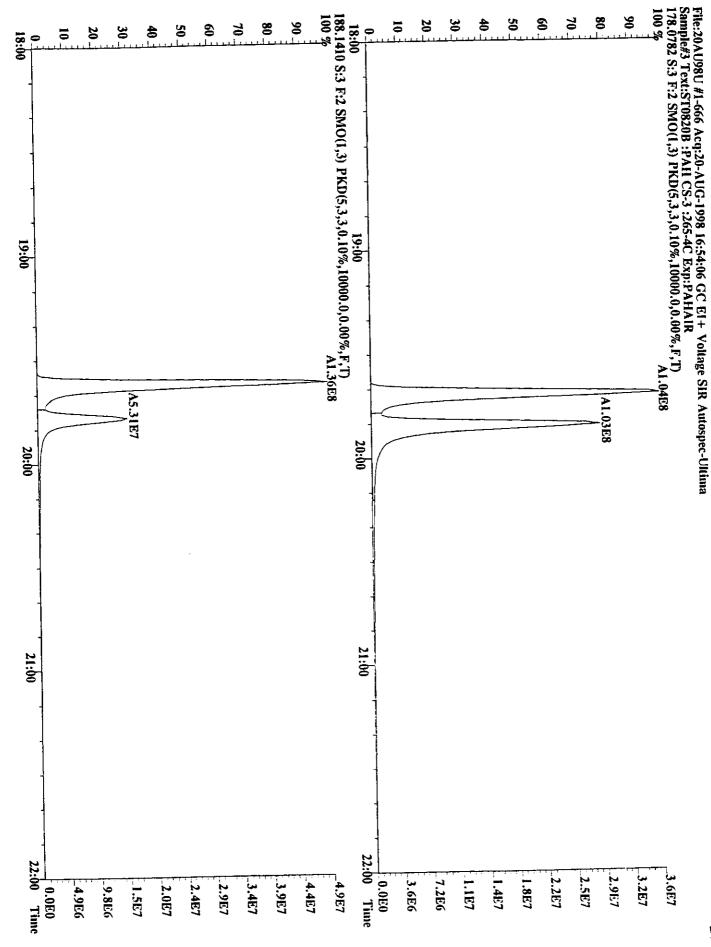
Amount
RF
RRF
Amount
RRF
RRF
RRF
Amount
RF
RRF
RRF

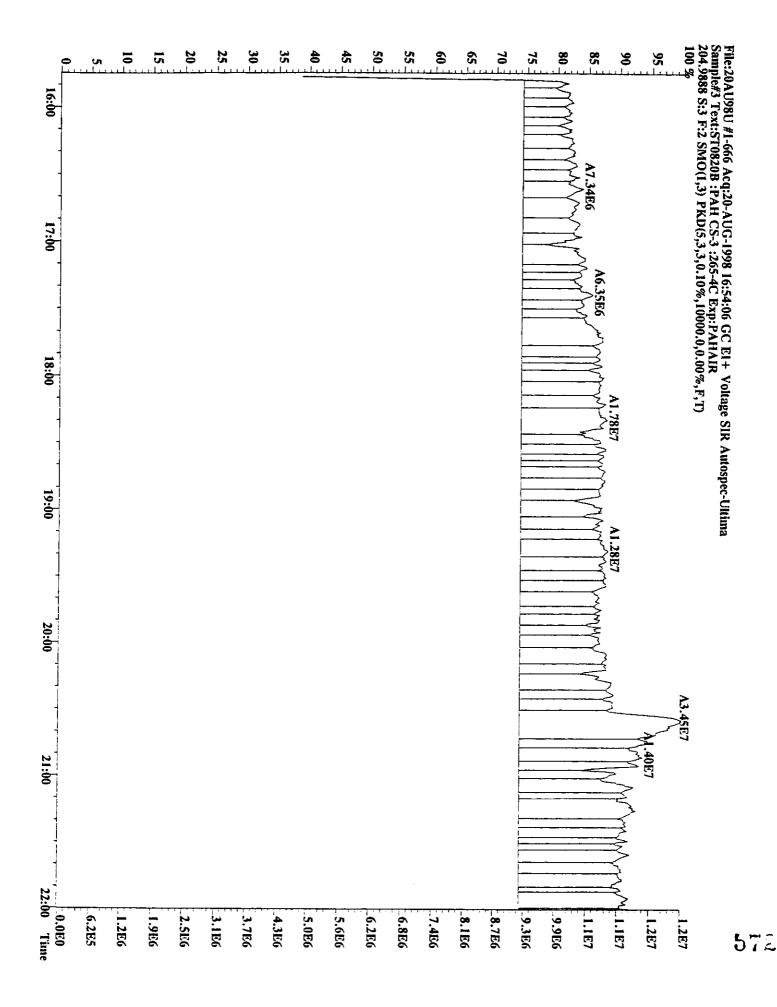

13C-Fluorene

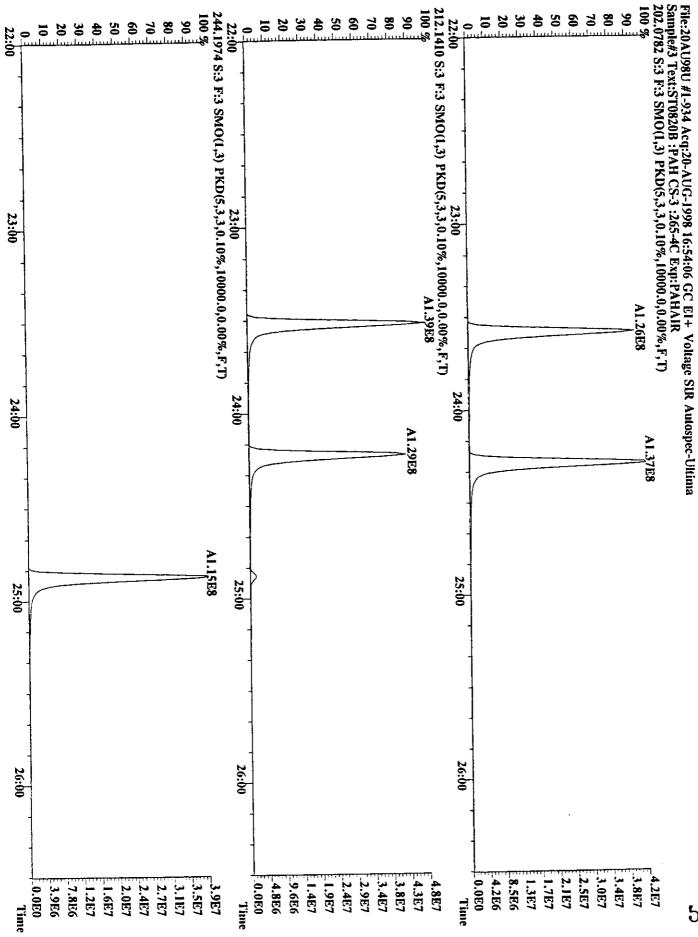

INITIAL CALIBRATION CURVE

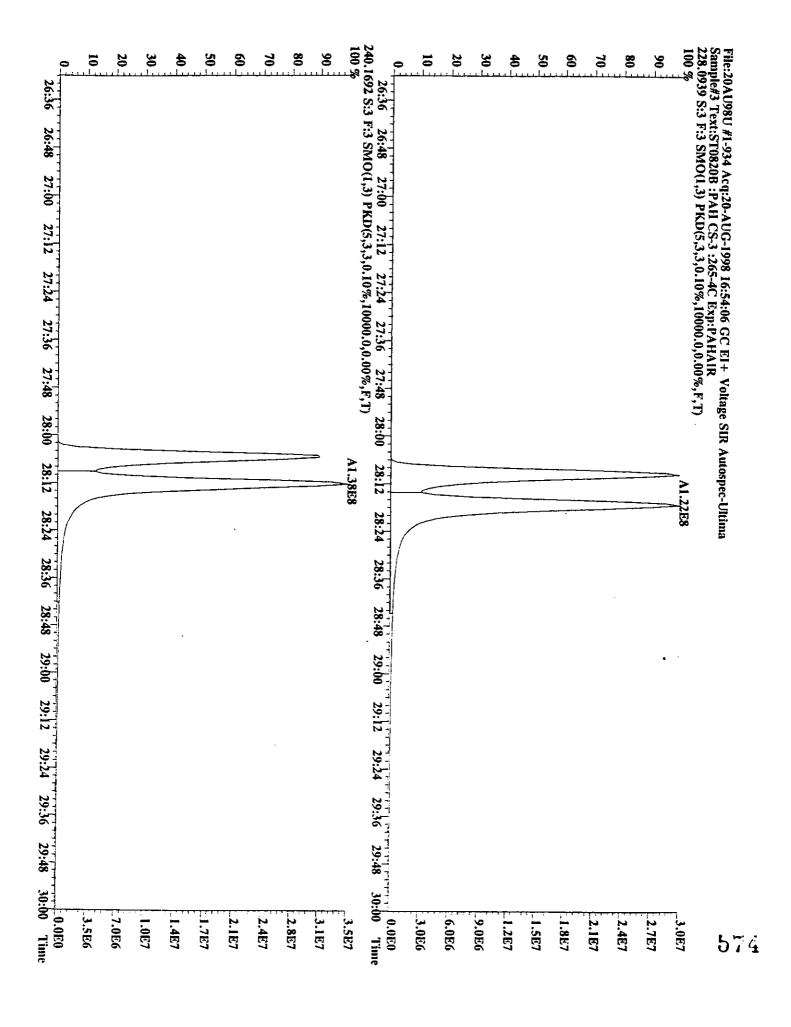

File name : PAHXO81998U.RRF Date analyzed : 19-AUG-98

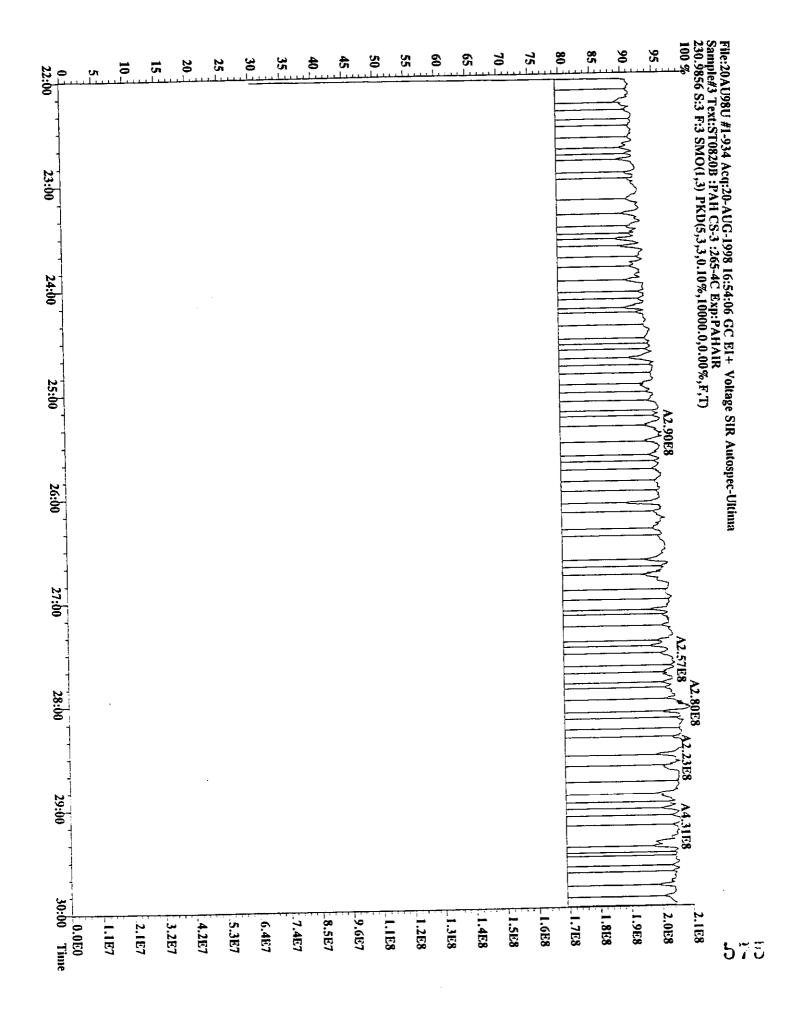

0.00		0.99)		0.63	ì		1.11			Mean
0.000		0.034			0.060	1		0.036	• •		S.D.
0.000	=	3.467	 - -		9.532			3.270	1		XR SD
	00	1.00	10.00	10.00	0.61	60.66	100.00	1.08	10.79	10.00	-
	00						100.00				
	00	1.03	103.43	100.00	0.61	61.14	100.00	1.16	115.84	100.00	W
	00	0.95 95	190.98	200.00	0.56	56.21	100.00	1.13	225.91	200.00	4
0.03	100.00	0.96	478.29	500,00	0.72	72.26	100.00	1.07	535.81	500.00	ر.
											6

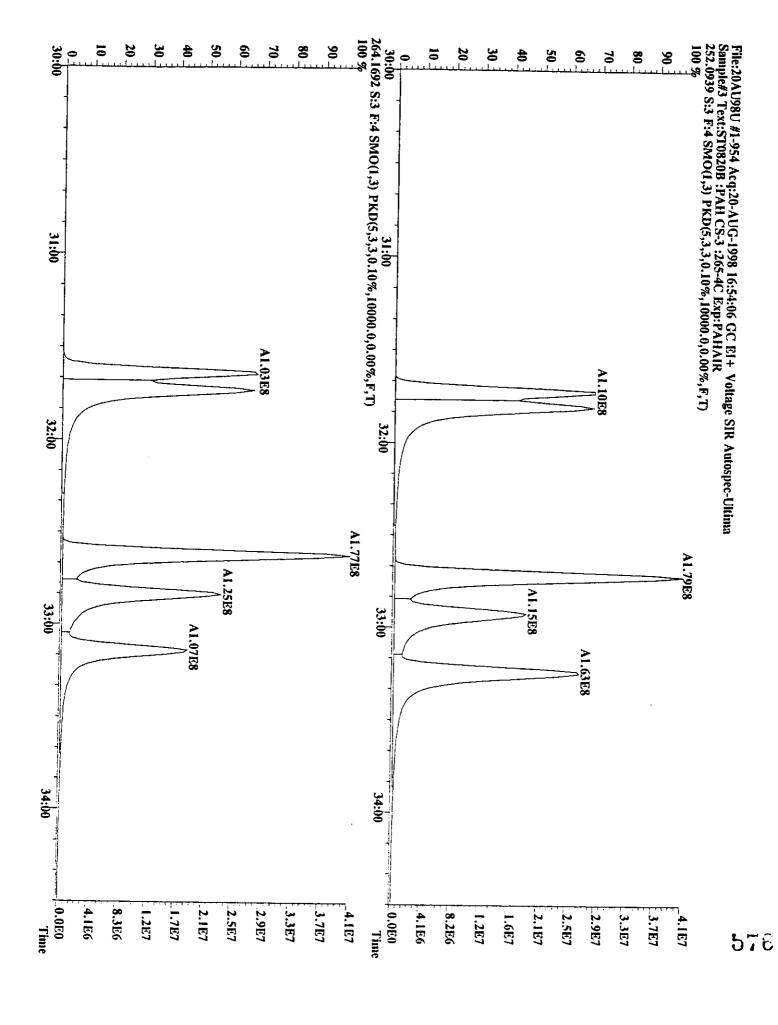

5

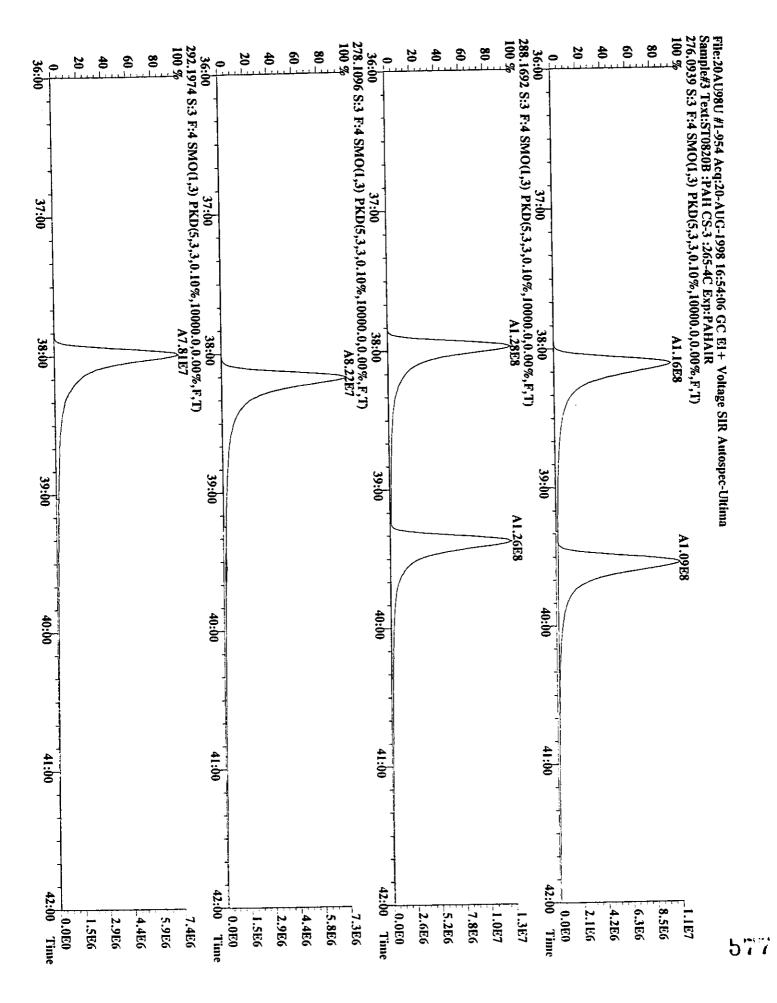


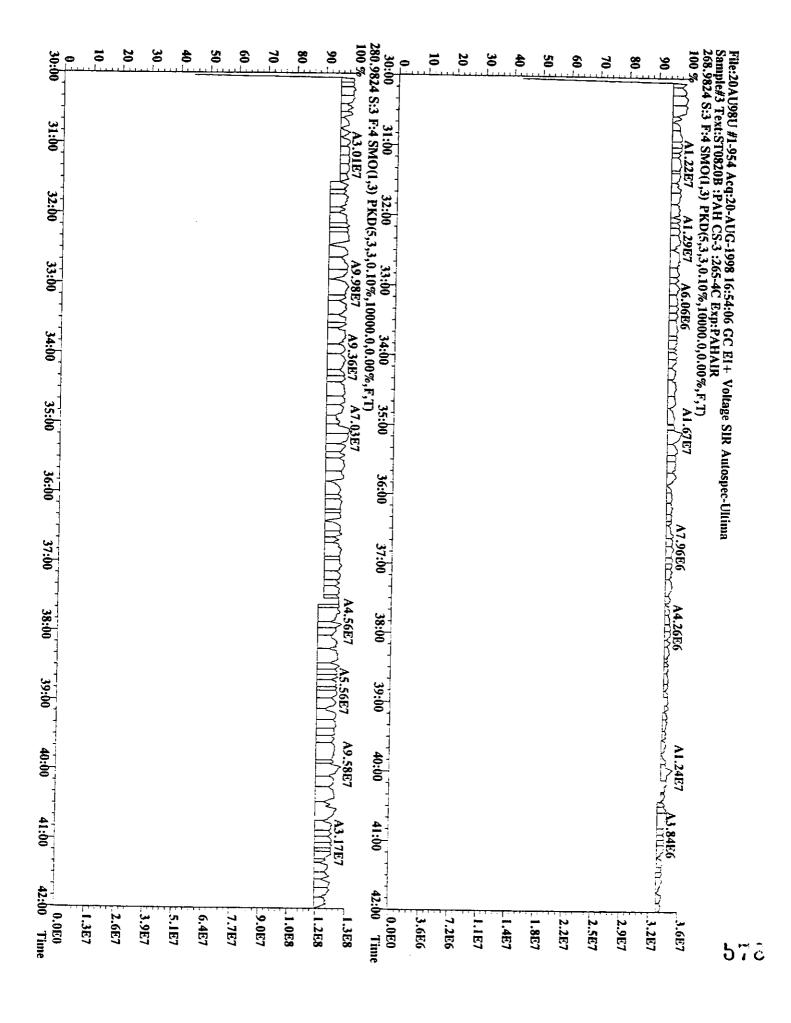


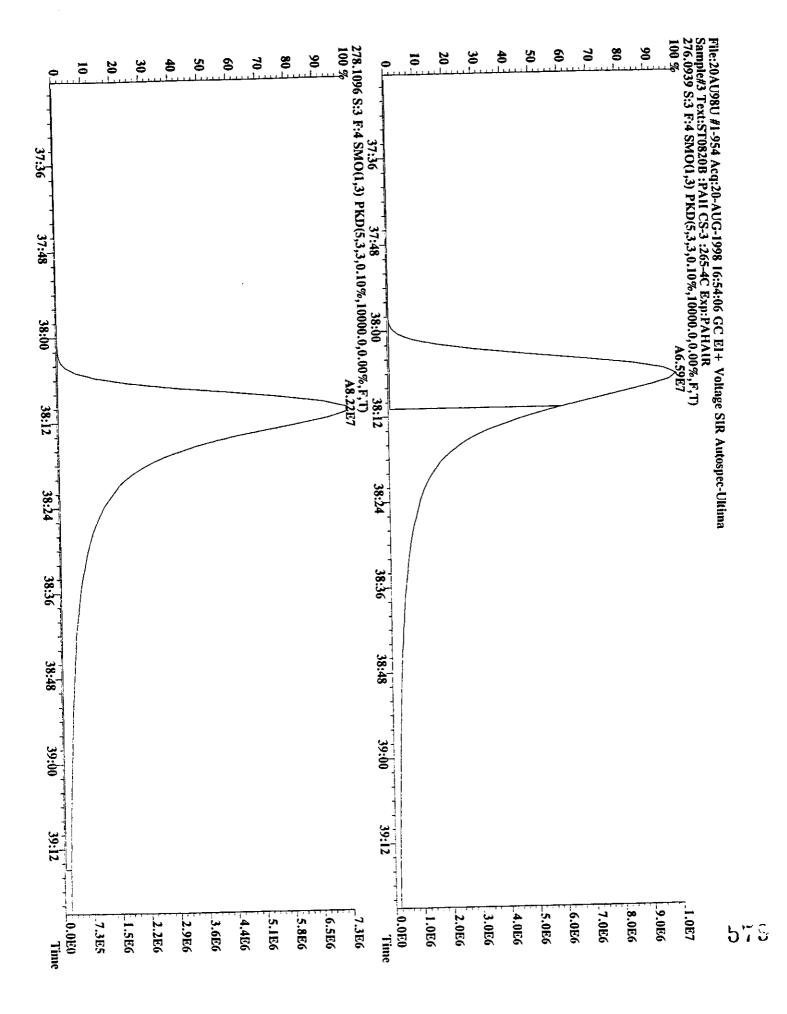


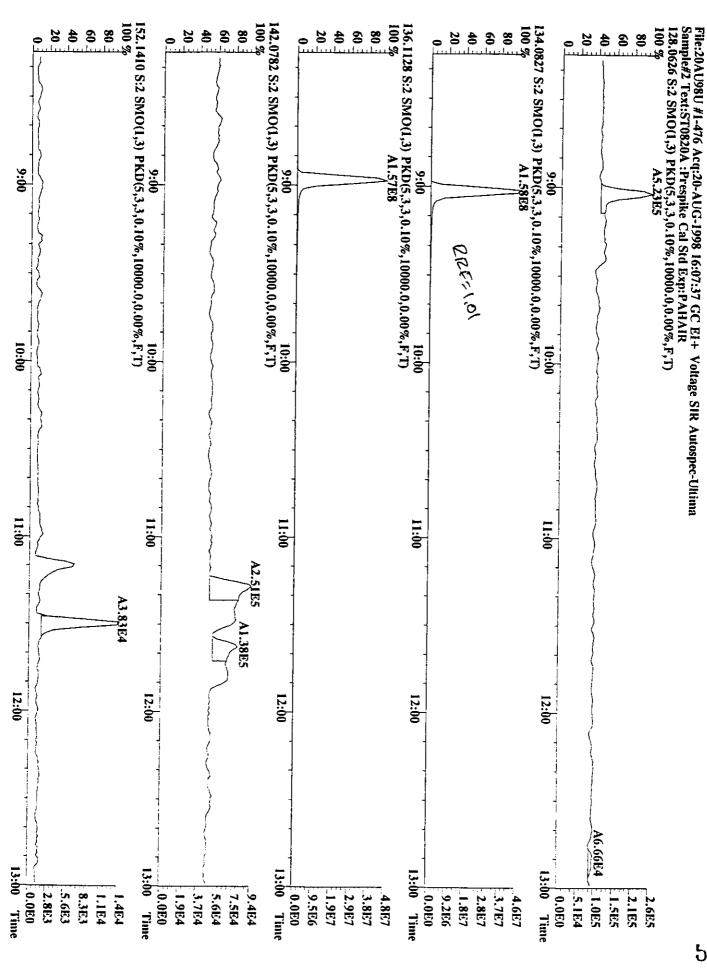


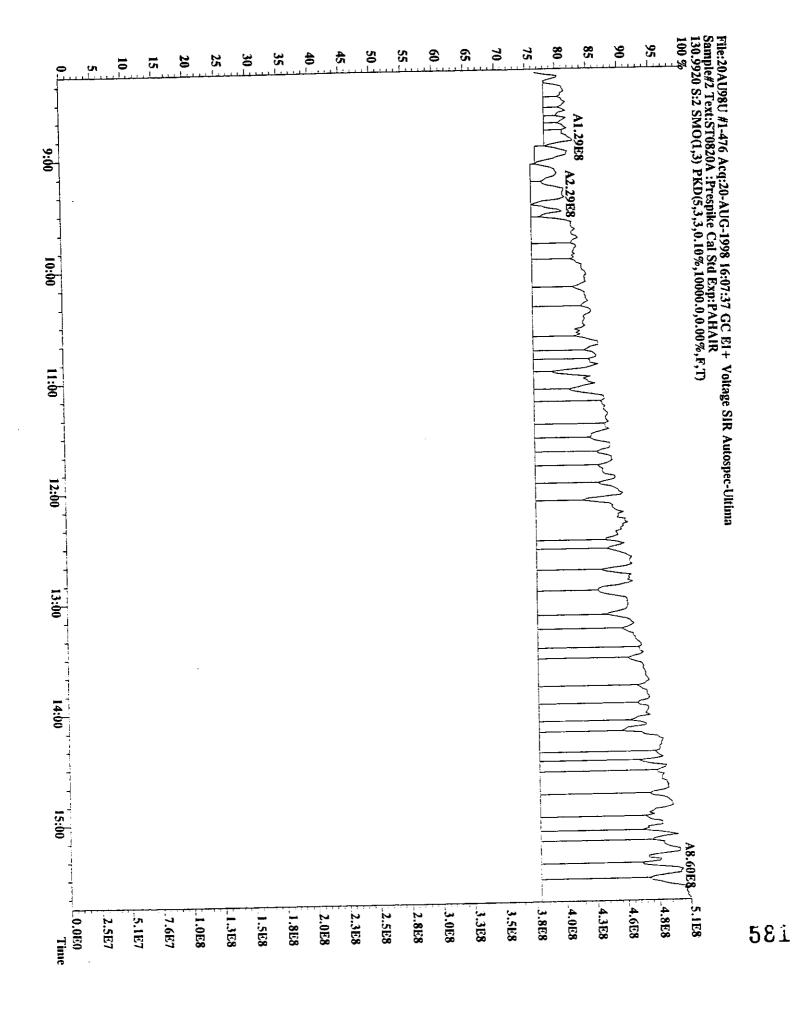


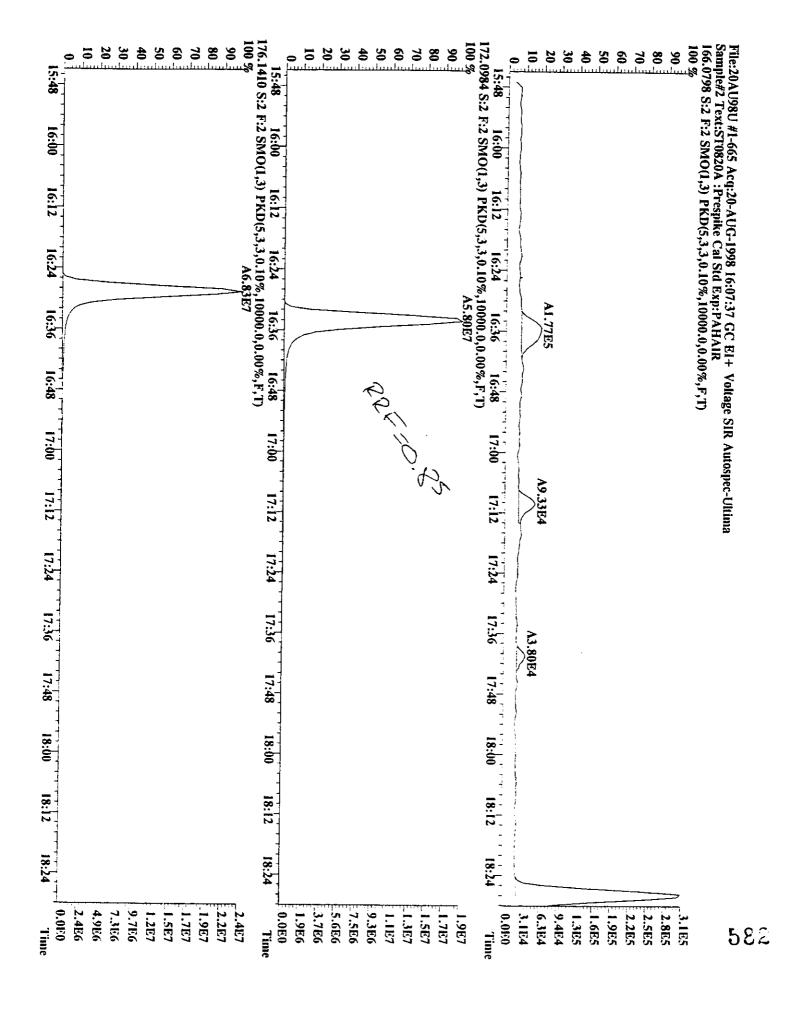


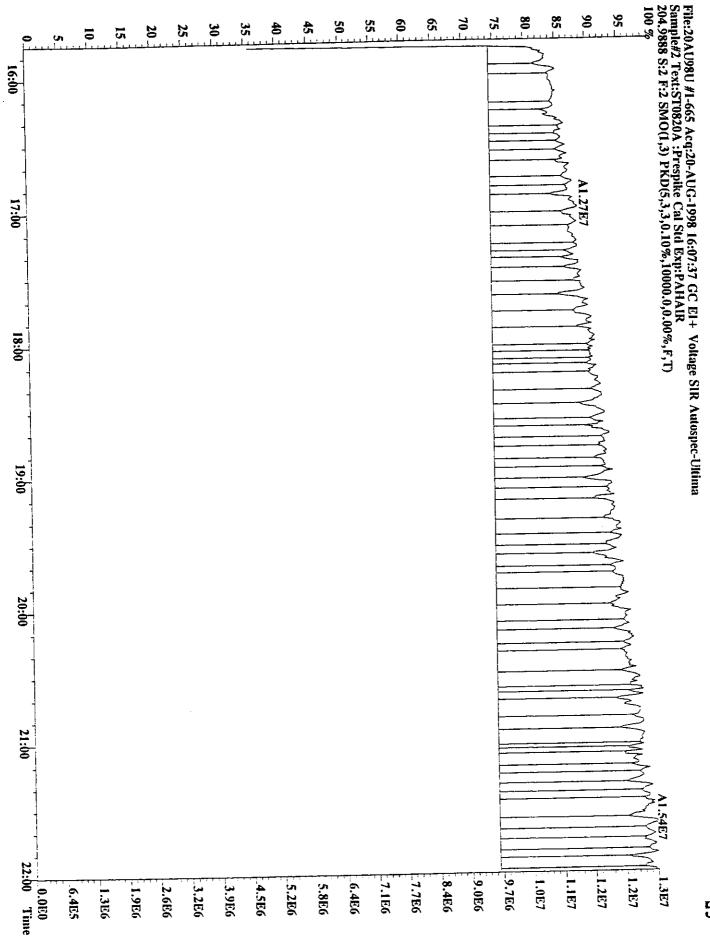


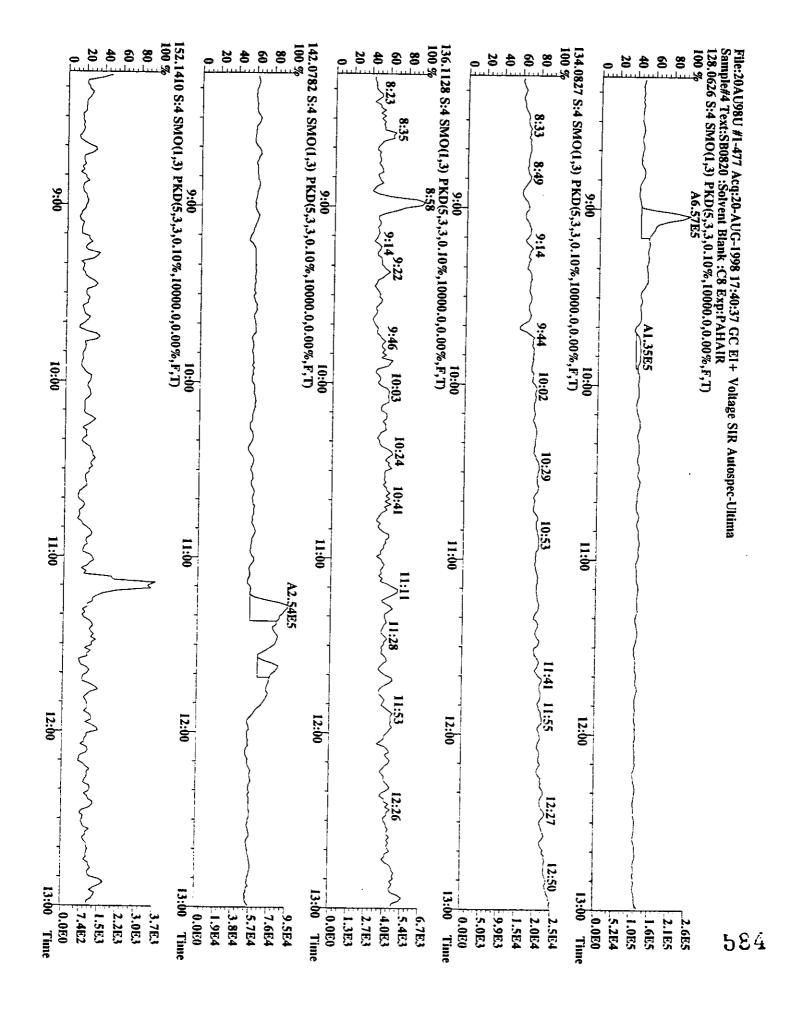


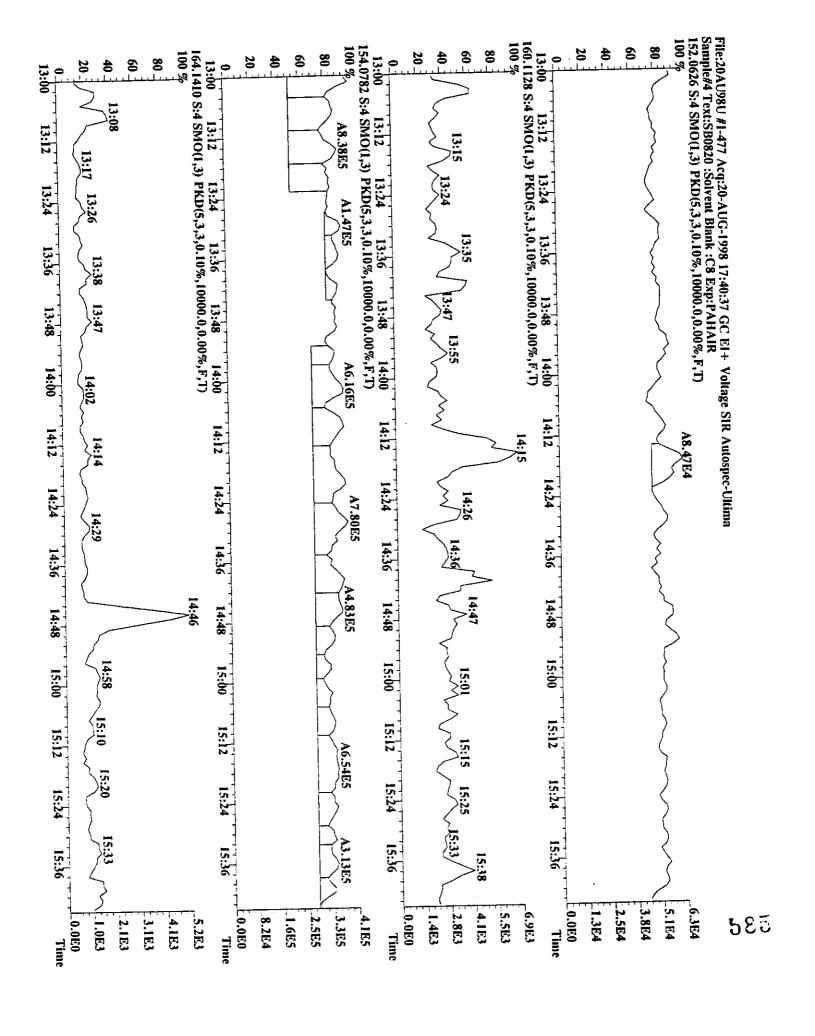


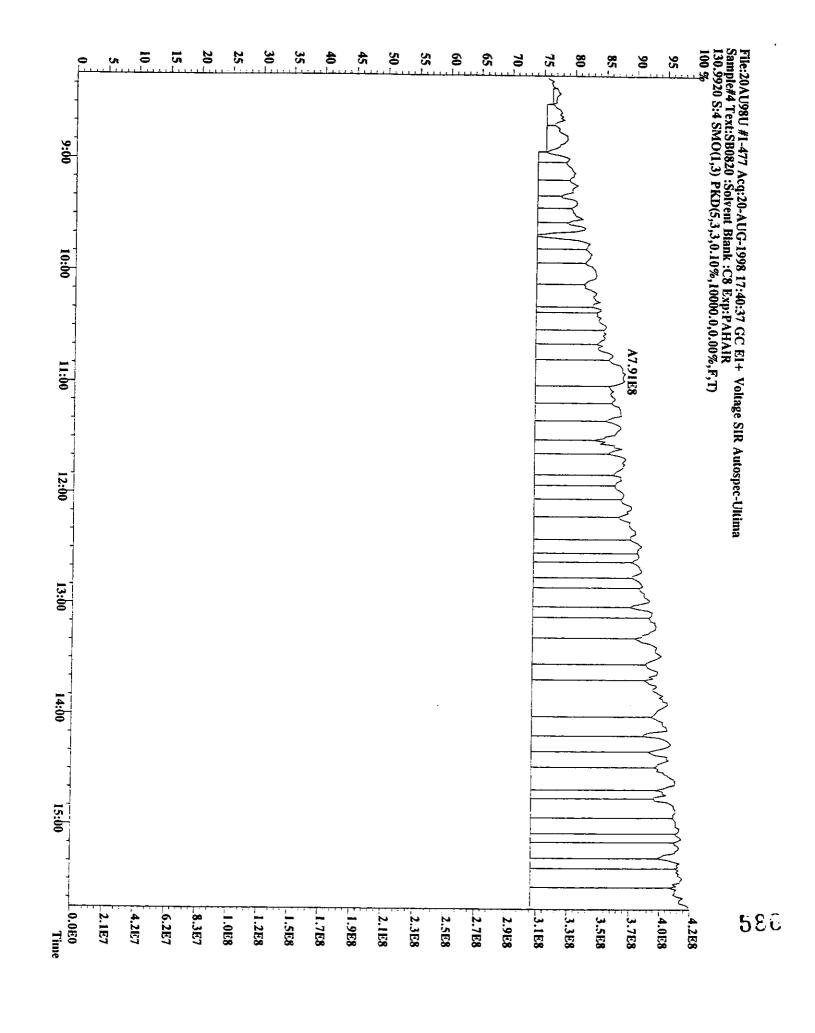


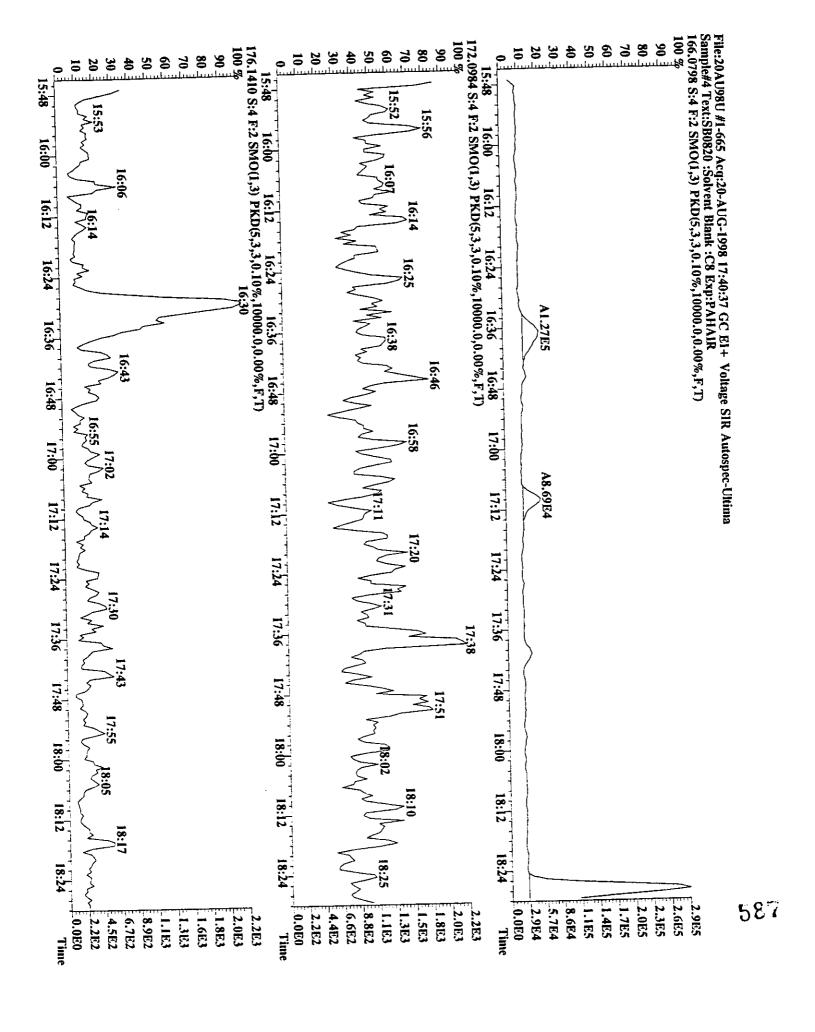


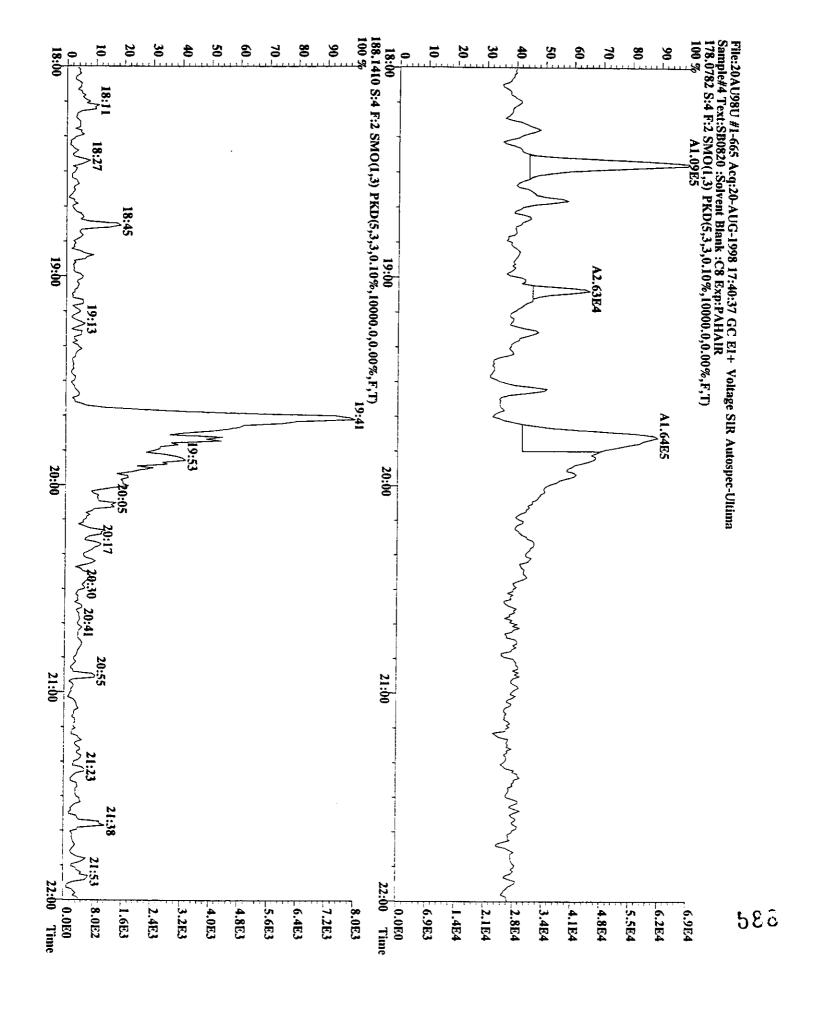


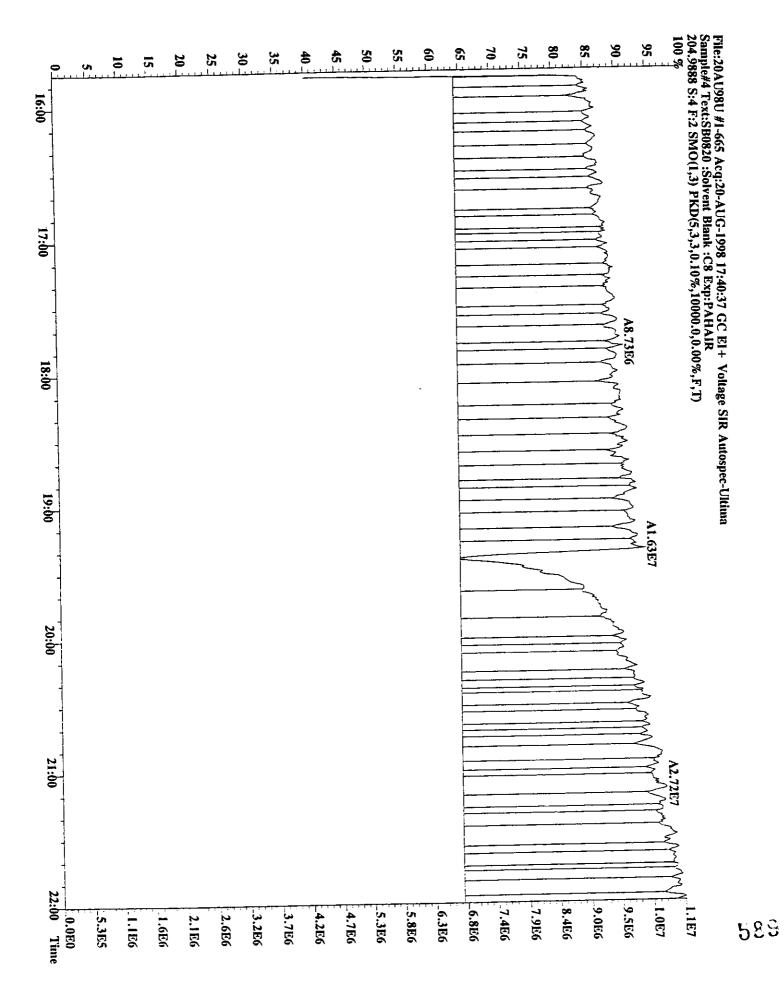


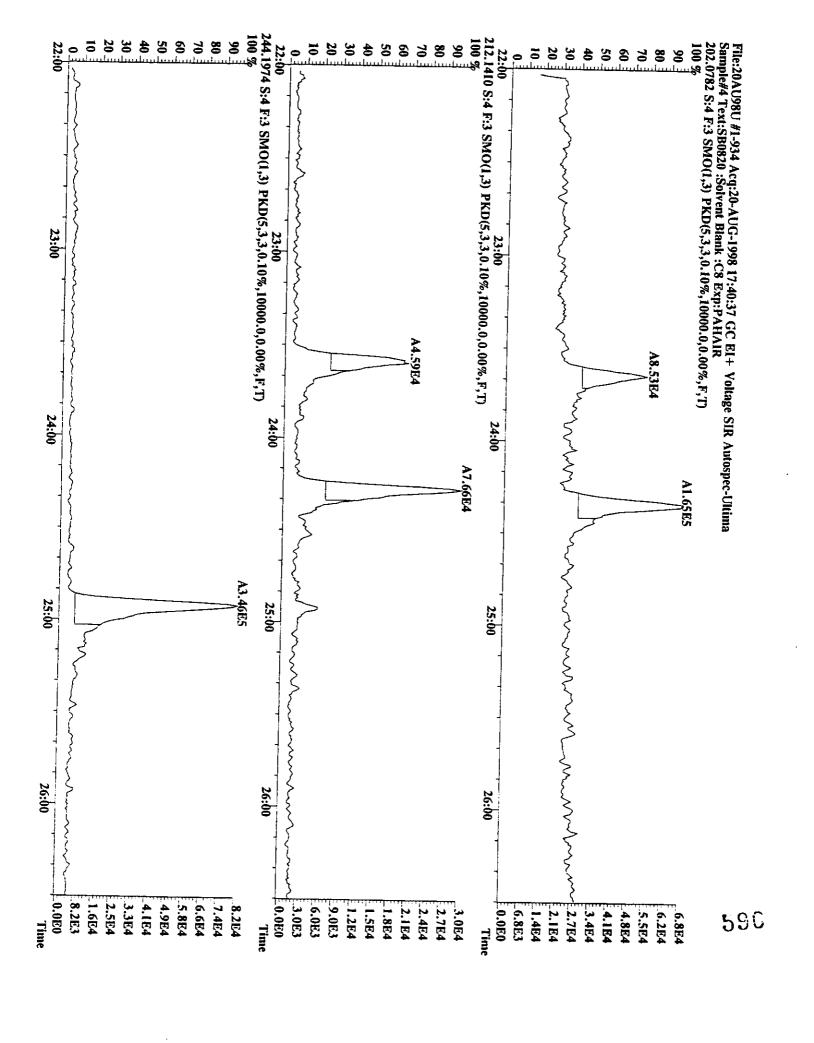


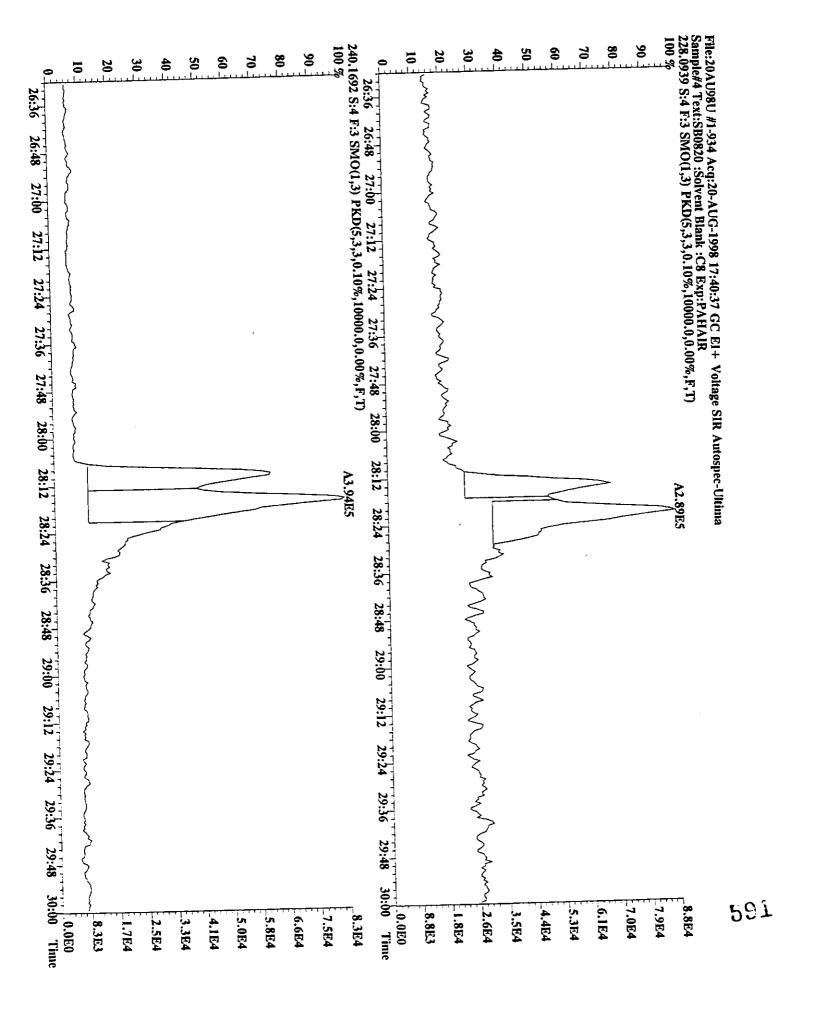


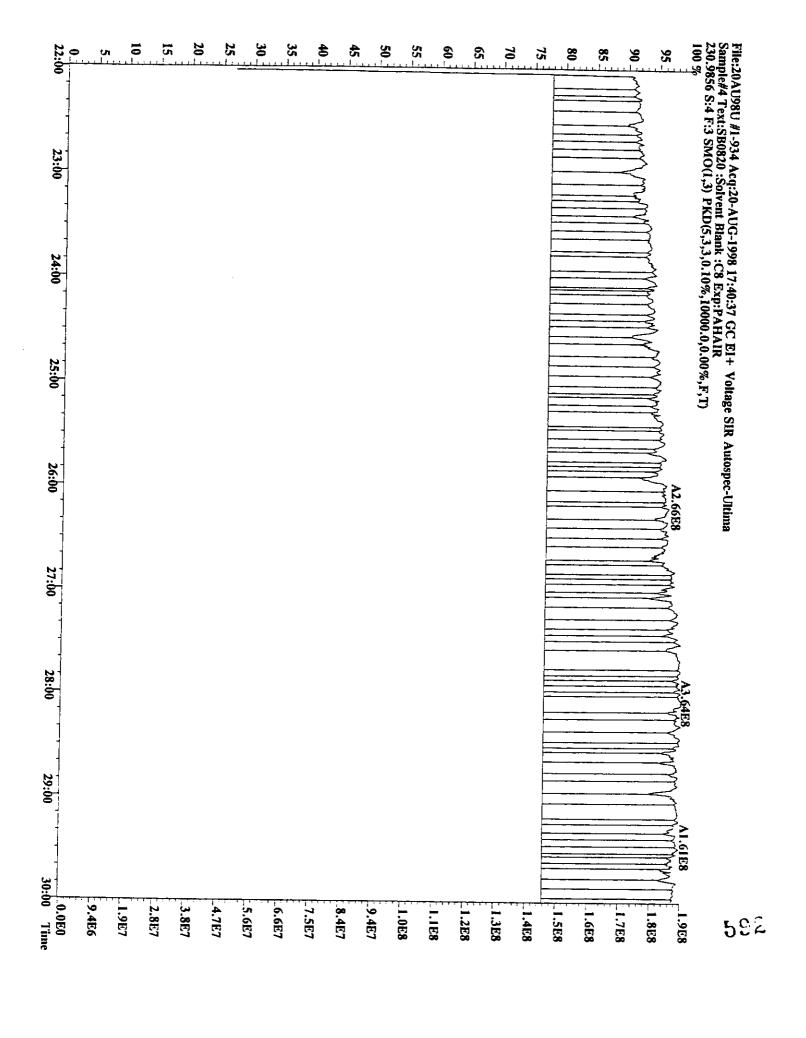


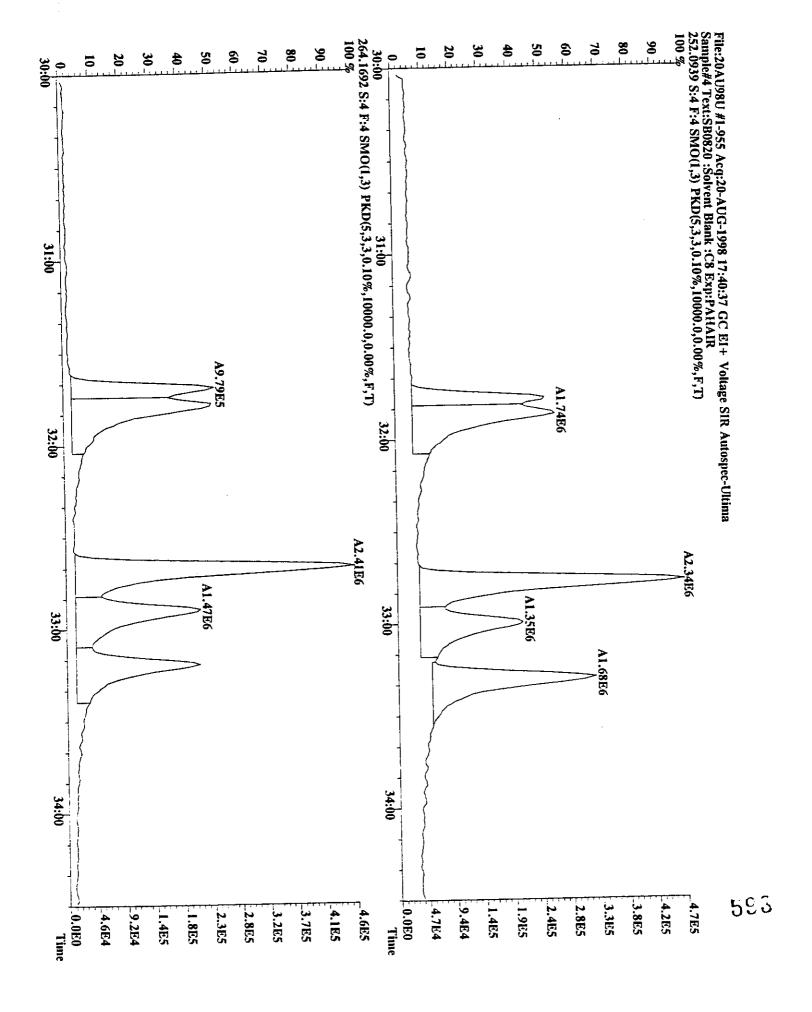


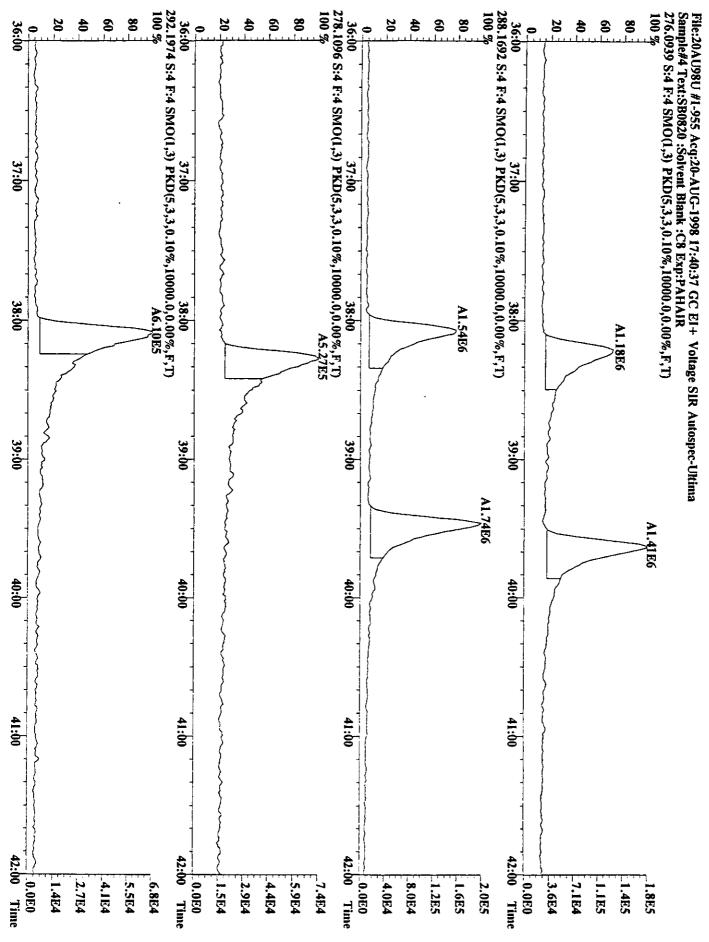


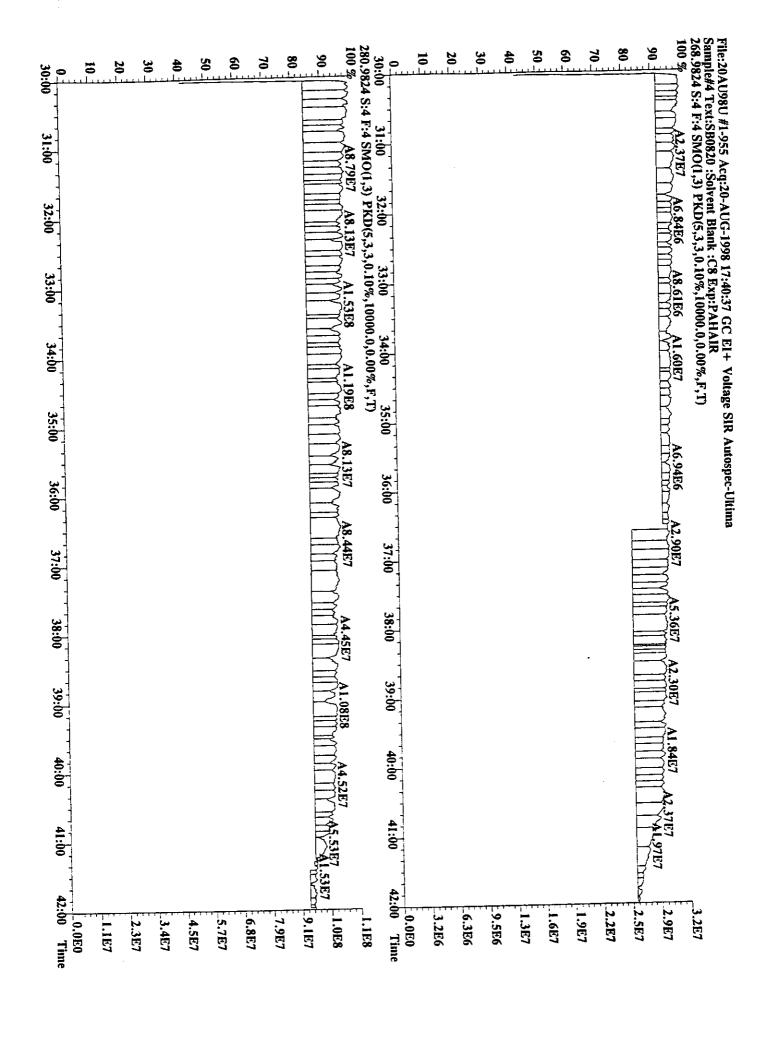










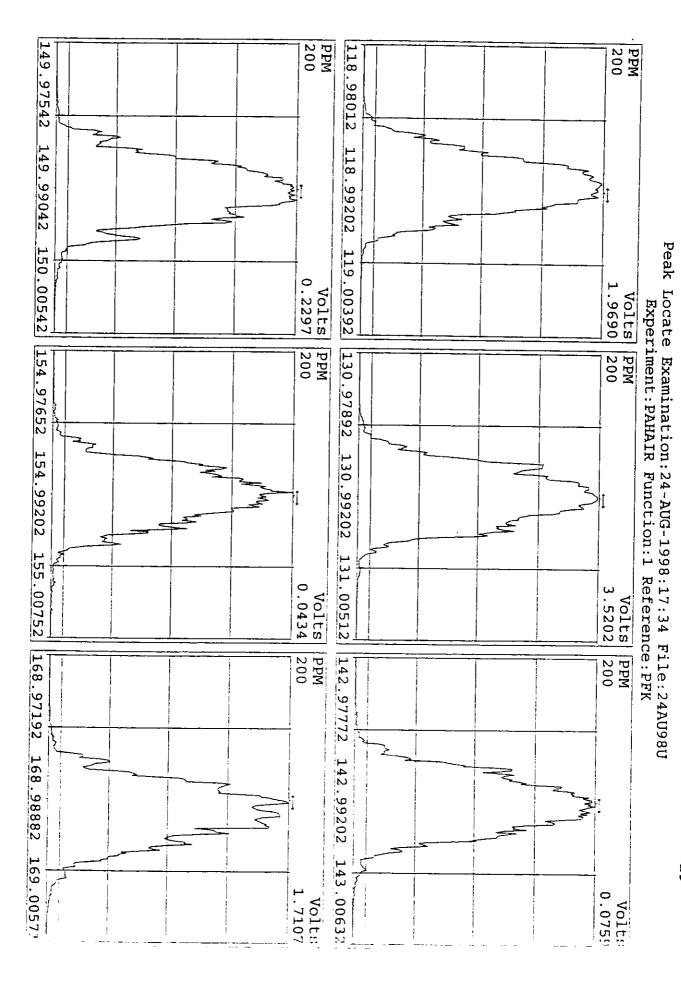


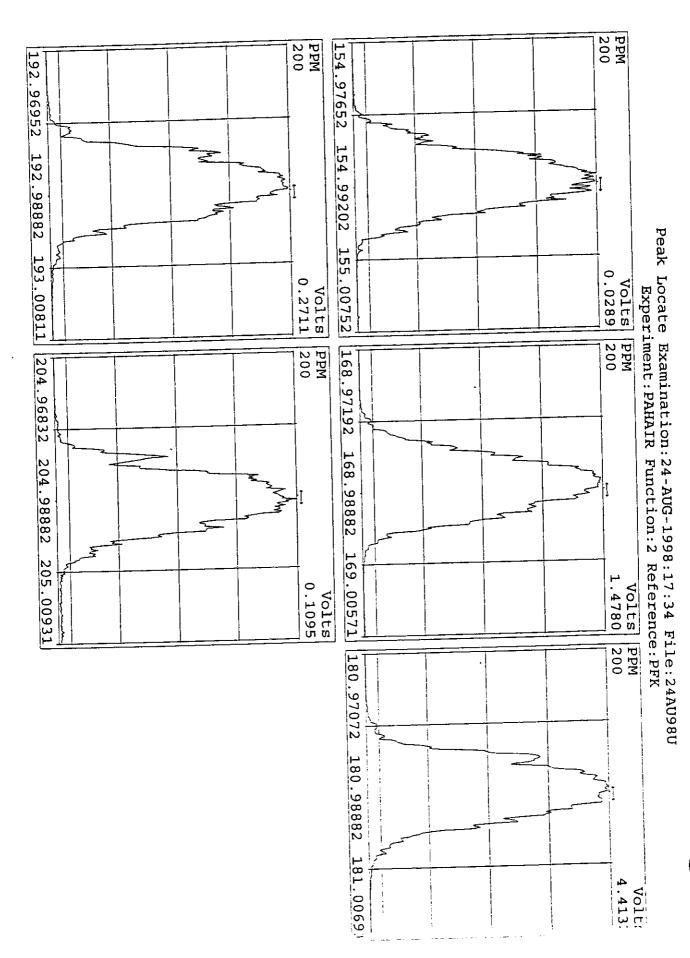
QUANTERRA INCORPORATED West Sacremento

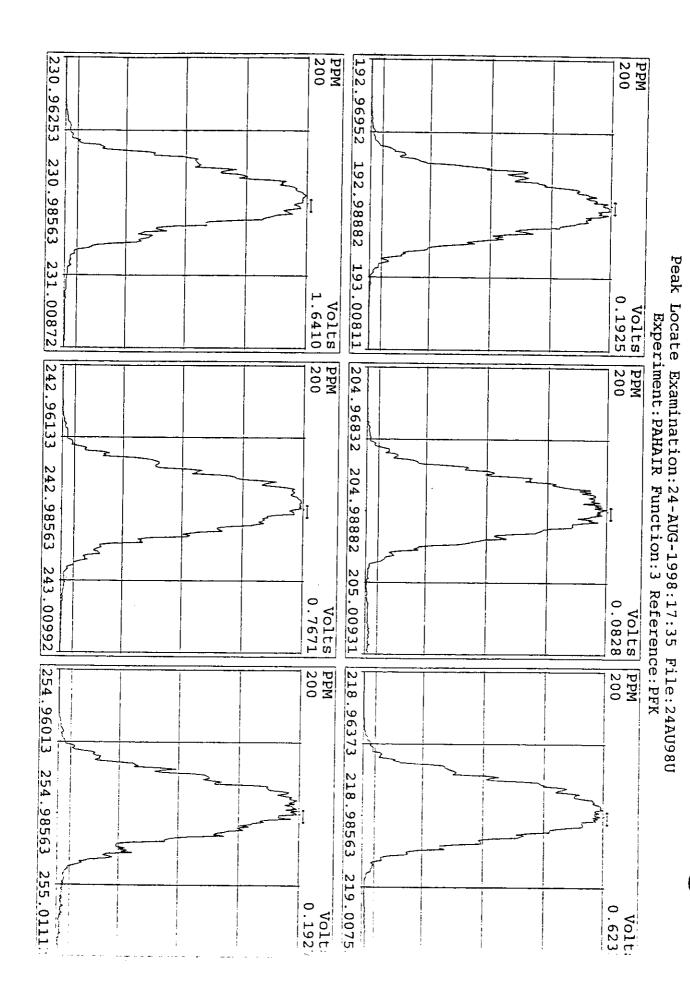
Daily Standard Checklist Dioxin/Furan High Res

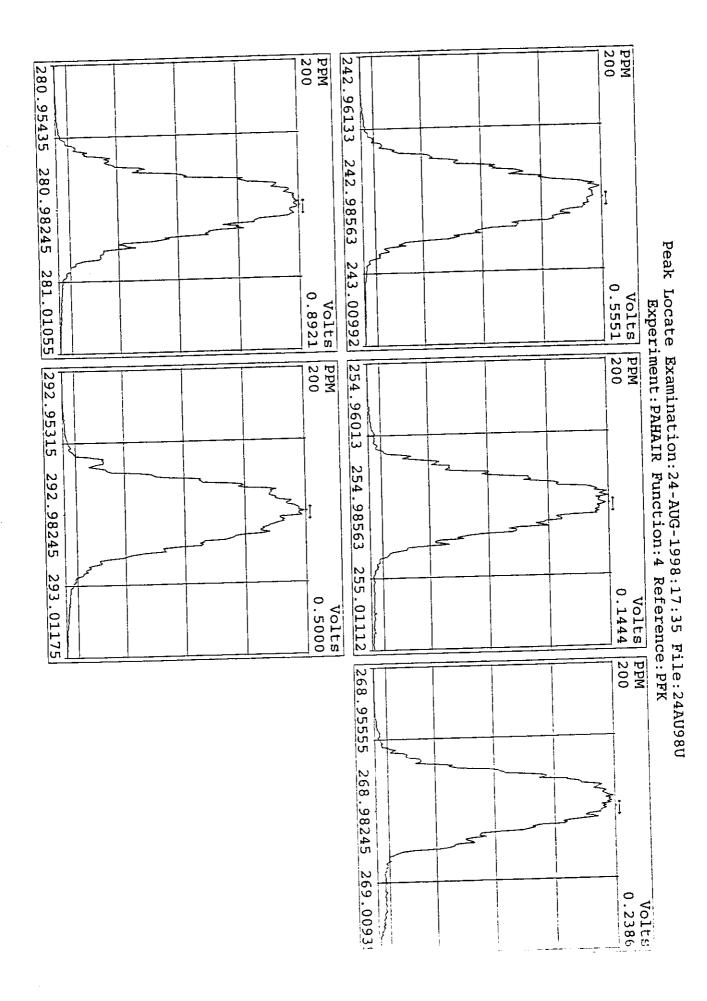
Dioxin/Furan High Res		-						
STD ID STO824/STOR24A Method ID PAHX C	Column ID_D3-5 In	sti ID <u>Ultima</u>						
Standard Solution 265-04 C . Prepared By Q. Ugo.	Prepared	Date 8/25/98						
Analyzed By a. Olapara Date Analyzed 8/24	48							
Reviewed By Slu Stone Date Reviewed 08/25	198							
- ANALYSINOEDAILY STANDARD	INERGREDE	REVENED						
Standard, CPSM, and solvent blank present?	✓ 0(3)	103						
Copy of Instrument logfile present?		V						
CPSM blow up and peak profile present?	NAO/	NAD/V -						
Curve summary present?		V						
Summary of 1613A criteria present? NA NA								
Daily standard within method specified limits*?		<u> </u>						
Daily ion abundance ratios within limits?	NA	NA						
CPSM valley < 25%?	NAO	NAO						
CPSM window correct?	Au	NA						
Samples analyzed within 12 hrs of daily standard?	(2)	②						
OMMENTS: ONO PAH CPSM-15 used.								
2 Sample -17(300753-1) was analyzed more	than 12 hrs af	ter daily						
standard - needs RT								
D Package includes single point cal stand	land for two	prespike						
compounds: 13C-Naphthalene and BC-Fluo	reue.	1						
<u> </u>								

For Method 1616A, sou d.u.T., U.S. and the second s


For NCAS: 551, Control Limit (CL) = +/- 20% from curve RRFs for all analytes.


For Method 8290, CL = ÷/- 20% from curve RRFs for native analytes, CL = +/- 30% from curve RRFs for labeled compounds.


Mass Spec : ULTIMA GC Column : DB-5	Results :		Da	ite a	ınaıy	zed		XCAL3.TRG AUG-98	
GC Column : DB-5 Data file : 24AU98U Weight : 1 Name	ST0824 : PAH Total Response	CS-3 : Isotop Ratio	e R	4C . T. nm:ss		RRF		ng	% Dev
d10-2-Methylnaphthalene d8-Naphthalene Naphthalene 2-Methylnaphthalene	19333960 23255400 21142600 15584280	0 1.00 0 1.00	Y Y	8: 5 9:	10 Y 58 Y 2 Y 15 Y		1.00 1.20 0.91 0.67	100.00 100.00 100.00 100.00	-3 -14 -13
d8-Acenaphthylene Acenaphthylene	24168200	0 1.00	Y :	14: I 14: I			1.25 0.84	100.00 100.00	-19 -3
d10-Acenaphthene Acenaphthene	16396320 14096740	0 1.00 0 1.00		14: 4 14: !	47 Y 53 Y		0.85 0.86	100.00 100.00	-3 -8
d10-Anthracene d10-Fluorene Fluorene	11941620	0 1.00	Y	19: 4 16: 1	29 Y	•	0.00 1.18 1.00	100.00 100.00 100.00	4 ~5
d10-Phenanthrene Phenanthrene Anthracene	21143200	0 1.00	Y	19: 19: 19:	42 Y	7	2.70 0.77 0.71	100.00 100.00 100.00	3 -8 -14
d12-Benzo(e)pyrene d10-Fluoranthene Fluoranthene	23779800	0 1.00	Y	32: 23: 23:	32 Y		2.00 1.05 0.85	100.00 100.00 100.00	30 -19
d10-Pyrene Pyrene		00 1.00 00 1.00	Y Y	24: 24:	15 \\ 18 \\	Z Z	0.93 0.97	100.00 100.00	14 -13
d12-Benzo(a)anthracene Benzo(a)anthracene	= 17927300 = 17148380	00 1.00 00 1.00	Y Y	28: 28:	7 1		0.79 0.96	100.00 100.00	22 -9
d12-Chrysene Chrysene	e 2504200	00 1.00 00 1.00	Y Y		13 \ 18 \		1.10 0.85	100.00 100.00	30 -12
d12-Benzo(e)pyrend d12-Benzo(b)fluoranthend Benzo(b)fluoranthend	e 1249388	00 1.00	Y	31:	39 40 45	Y	2.00 0.55 1.02		-12 -5
d12-Benzo(k)fluoranthen Benzo(k)fluoranthen	e 1902764 e 1764028	00 1.00 00 1.00	Y Y	31: 31:	45 50	Y Y	0.84 0.93		-6 -20
d12-Benzo(a)pyren Benzo(e)pyren Benzo(a)pyren	e 2061100	00 1.00	Y	32: 32: 32:		Y	0.68 1.33 0.86	100.00	-9 -9 -16
d12-Perylen Perylen	e 1274016 e 1799520	00 1.00 00 1.00	Y	33: 33:	11 17	Y Y	0.56 1.41		-9 -13
d12-Indeno(123-cd)pyren Indeno(123-cd)pyren	e 1739960 e 952000	00 1.00	Y	38: 38:	1 9		0.77 0.55		9 -11
d14-Dibenz(ah)anthracen Dibenz(ah)anthracen	le 1073700	000 1.00	Y (38: 38:	2 13		0.47		7 -16
d12-Benzo(ghi)peryler Benzo(ghi)peryler	ne 1906230	000 1.00	Y	39: 39:	25 35	Y Y	0.84 0.89		
d8-Naphthaler 13C-Naphthaler	ne 1918000	000 1.00	Y C		58 2		0.00		


d10-Fluorene 92400000 1.00 Y 16: 29 Y 0.00 100.00 13C-Fluorene 70000000 1.00 Y 16: 34 Y 0.76 100.00 0

FILE	SAMP No. (1)	LAB. SAMP No	CUSTOMER ID	CLEAN UP 1 (SDS)	CLEAN UP 2 (D2)	TYPE (1)	CONCn.
24AU98U 24AU98U	44 45 46 47 48	SB0824 300413-1BX 300753-1MB 300753-1LC 300681-4 300681-5 300681-7 300681-7 300681-10 300681-11 300413-1RX 300753-1 SB0824A QC0824	PAH CS-3 Prespike Cal Std Solvent Blank LCS Method Blank LCS T-MM5-FB-F T-MM5-3-F T-MM5-3-F T-MM5-RB-F T-MM5-RB-F T-MM5-5-F BAK-101 ARJ-001-01 Solvent Blank QC081998	C8 Soil Soil Train Train Train Train Train Train C8 DCM	РАН РАН РАН РАН РАН РАН РАН РАН РАН	VSE-23 VSE-23	1 1 5.0 5.0 5.0 0.333 0.333 0.333 0.333 0.333 0.333 1.96 5.0 1

Mass Spec : ULTIMA GC Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier @ 260V.

File name : PAHX081998U.RRF Date analyzed : 19-AUG-98

INITIAL CALIBRATION CURVE

d8-Naphthalene	Amount	Mean	s.D.	%RSD				100.00	100.00	6
	RRF	1.25	0.094	7.579				124.70 1.25	123.18 1.23	
אפלאיניומנינות	RF RF	<u>.</u> 7	1	17 110	13.58	54.09	100.00 96.37	200.00 186.59	500.00 464.77	
2-Methylnaphthalene	Amount	7.03	9.181	17.228				200.00	500.00	
d8-Acenaphthylene	RRF Amount	0.77	0.112	14.514				100.75 20.75	100.70	
	2 R	<u>.</u> Л	993	7				158.01	154.72	
Acenaphthylene	Amount	1.00	2,042	5.934				1.58	1.55 500.00	
	22 75 71	⊃ 28.	0 057	, t				162.62	04.60	
d10-Acenaphthene	Amount		0.00					100.00	100.00	
	유주	0.88	0.037	4_178				92.67	87.02	
Acenaphthene	Amount			;				200.00	500.00	
d10-Fluorene	RRF	0.93	0.097	10.478				0.79	0.88	
	RF							100.00	100.00	
Fluorene	Amount	1.13	0.098	8.636				1.08	1.07	
!	R							210.00	500.00 528.30	
d10-Phenanthrene	ARRE	1.05	0.105	10.040				1.05	1.06	
	RF							269.74	100.00 256.17	
Phenanthrene	RRF	2.63	0.051	1.934				2.70	2.56	
	RF COL							150.00	204	
nthronon a	RRF	0.84	0.064	7.599				0.75	0.81	
מינות מכפוק	RF							200.00 149.97	500.00 410.83	
d10-Fluoranthene	AMOUNT	0.83	0.053	6.428				0.75	0.82	
	유	·						79.47	78.46	
fluoranthene	Amount	0.80	0.059	7.315				0.79	0.78	
	7	2	2	i i				199.62	479.64	
d10-Pyrene	Amount	1.04	0.067	6,594				100 100 100	0.96	
	묶	·						81.61	78.02	
Pyrene	Amount	0.81	0.074	9.179	10.83 10.00			0.82 0.82	0.78 500.00	
	F 주	<u>.</u>	0 053	. 71.				212.11	527.05	
		:	•	4					.93	

PAH CALIBRATION TABLE

Mass Spec : ULTIMA GC Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier a 260V.

File name : PAHXOB1998U.RRF Date analyzed : 19-AUG-98

00

d14-Dibenz(ah)anthracene Amount RF RRF	Indianovata cases, and	indepo/12%-od)pyrene	d12-Indeno(123-cd)pyrene		Perylene	!!	d12-Perylene		Benzo(a)pyrene		Benzo(e)pyrene		d12-Benzo(B)pyi erie			Renzo(k)fluoranthene		d12-Benzo(k)fluoranthene		Benzo(b)fluoranthene		d12-Benzo(b)fluoranthene		Chrysene		d12-Chrysene		Benzo(a)anthracene		d12-Benzo(a)anthracene		265-04A, -04B, 651-21, 265-04D, -04E; Multiplier a 200v.
ne Amount RF RRF	R 주	RRF Amount	e Amount	쭑쪾	Amount	2	Amount	공 주	Amount	RRF.	RF	RRF	RF C	ARCUIT		Amount	R 주		RY.	Amount	R	Amount	R.	Amount	RRF	Amount	R.	Amount	R.F	Amount		-04D,-04E
0.44	0.61	0.71		1.62	9	0_61		1.02		1.46		0.75		:	<u>.</u>		0.90		1.07		0.63		0.97		0.85		1.06		0.65		Mean	; Multipl
0.045	0.046	0.061		0.110		0.013		0.066		0.077		0.010			0.105		0.048		0.029		0.036		0.086		0.062		0.030		0.052		S.D. X	1er a 260
10.143	7.531	8.681		6.792		2.048		6.478		5.243		1.383			9_104		5.393		2.735		5.785		8.856		7.259		2.804		8.032		%RSD	
43.73 0.44	100.00	10.69 10.00	100.00 68.59	1.76	10.00 17.58	0.61	60.00 80.00	1. 1. 1.	11.13	10.52	15.21	10.00	ι. 31:	100.00	1.27	70.00	0.88	88.20	6.08	10.81	0.65	64.51	6. 6. 8.	10.59	0.86	86.29	5. 9. 9. 9.	10.53	10.72	72.04	3 - 3	INITIAL CALIBRATION CURVE
		50.03 50.00		2.6	80.00 50.00	0.61	60.85	1.02	51.09	50 00	74.22	50.00	0 74	100.00	1.20	85	5 0 82	82.16	1.04	52.02	50.66 00.66	65.70	6 6 8 8	50.08	50.75	74.68		52.92			2	, IBRATIO
	_	0.70 100.00		1.46	165.64	0.60	60.17	100.00	105.82	100.00	153.41	100.00	0.74	100.00	1.21	120.61	0.90	90.16	100-00	111.29	100.65 100.65	63.39	100,00	103.60	100,86 100,98	85.64	3 3 3	110.29	100.00		100 00	CURVE
38.C	100.5	200.0 113.2	62.6	100.0	332.8	0.6	61.9	1 2 2	197.3	200.00	287.46	200.00	0.75	100.00	1.09	217.66	200 E. 50	93.02	100.00	212.98	200.00	63.02	100.00	175.51	200.00 200.00	85 99	100.00	207.09	200.00	62.07	100.00	
8 50.6 0.5	7 0.5	3 0.79 0 500.00 3 281.17	79.43	100 00	800.43	0.63	63.41	100_00	469.69	500.00	672.50	500.00	0.77	76.00 00.00	1.01	504.85	500-00	94.50	100.00	523.15	500.00	56.40	100.00	441.04	500.00	91.50	10.00 00.00	513.26	500.00	65.85	00. 00.	
→ v	, _ , ~	700																													٥	

PAH CALIBRATION TABLE

Mass Spec : ULTIMA 3C Column : DB-5 265-04A,-04B, 651-21, 265-04D,-04E; Multiplier @ 260V.

Mean

S.D.

%RSD

Benzo(ghi)perylene

Amount
RF
RRF
Amount
RF
RRF
Amount
RF
Amount
RF
RRF
Amount

0.63

0.060

9.532

10.00 10.79 1.08 100.00 60.66 0.61 10.00

2 50.00 56.20 1.12 100.00 64.91 0.65 50.00 50.38

3 100.00 115.84 1.16 100.00 61.14 0.61 100.00 103.43

200.00 225.91 1.13 100.00 56.21 0.56 200.00 190.98

500.00 535.80 1.07 1.07 100.00 72.26 0.72 500.00 478.20 0.96 100.00

<u>-1</u>

0.036

3.270

0.99

0.034

3.467

6

100

100

0.00

0.000

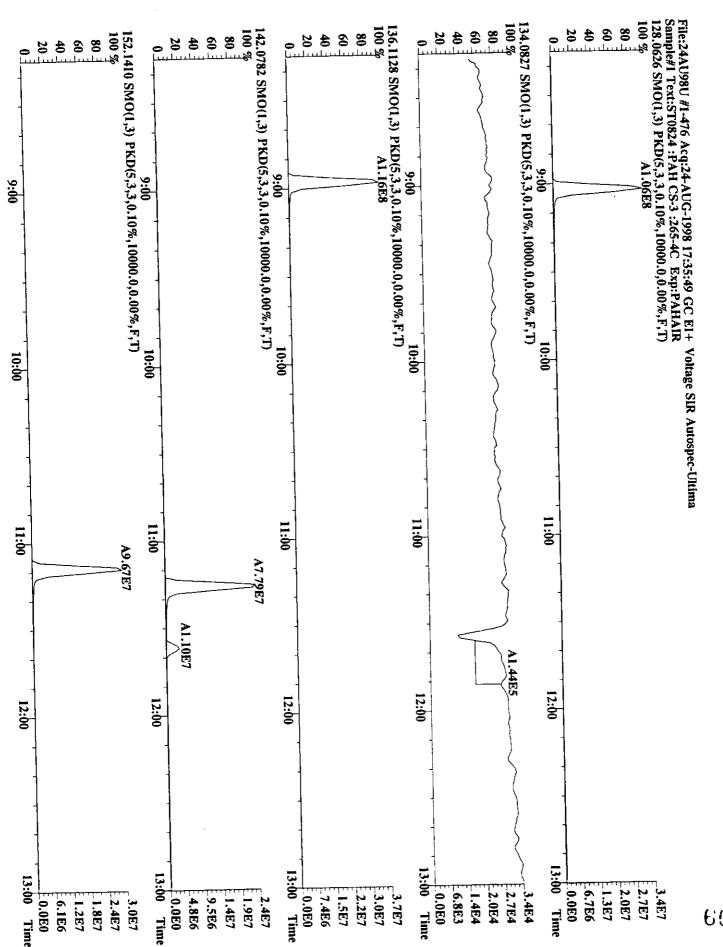
0.000

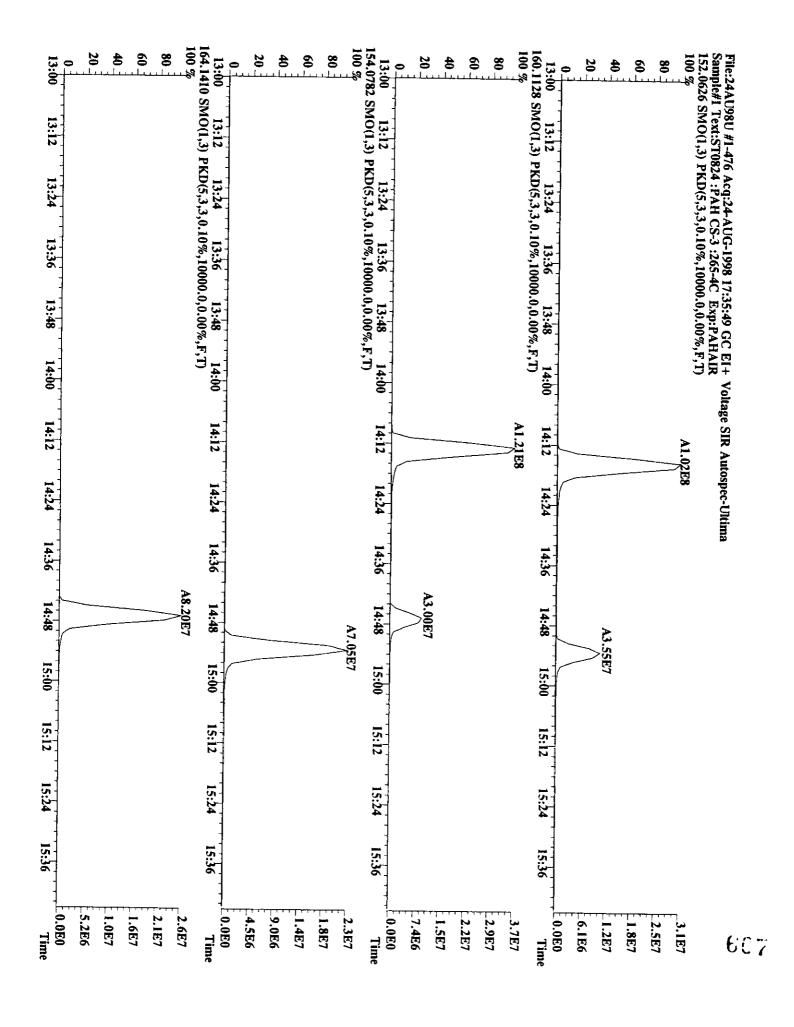
13C-Fluorene

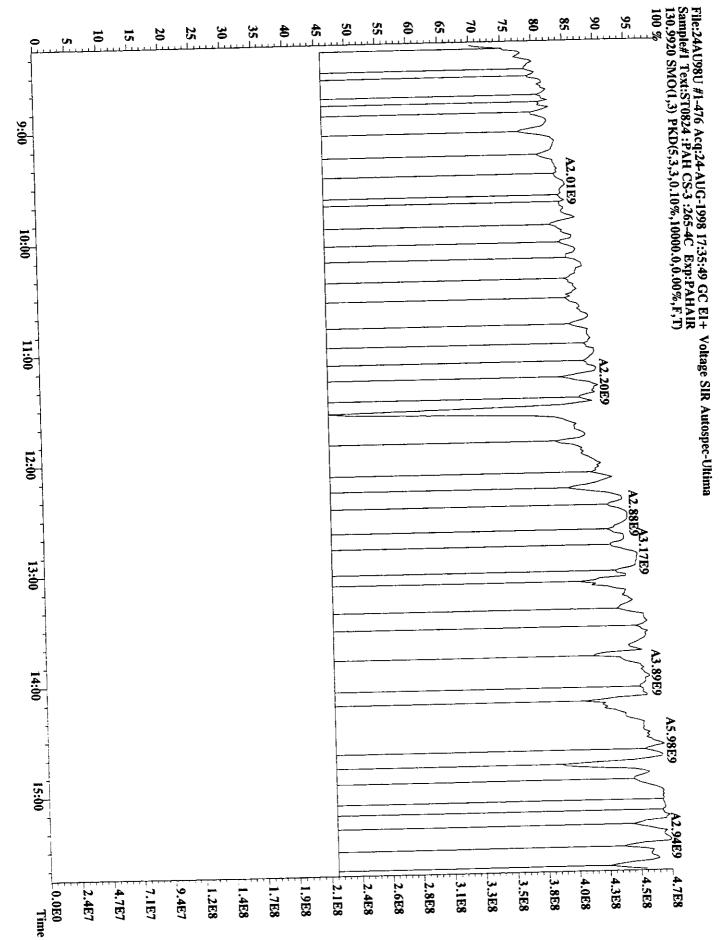
d12-Benzo(ghi)perylene

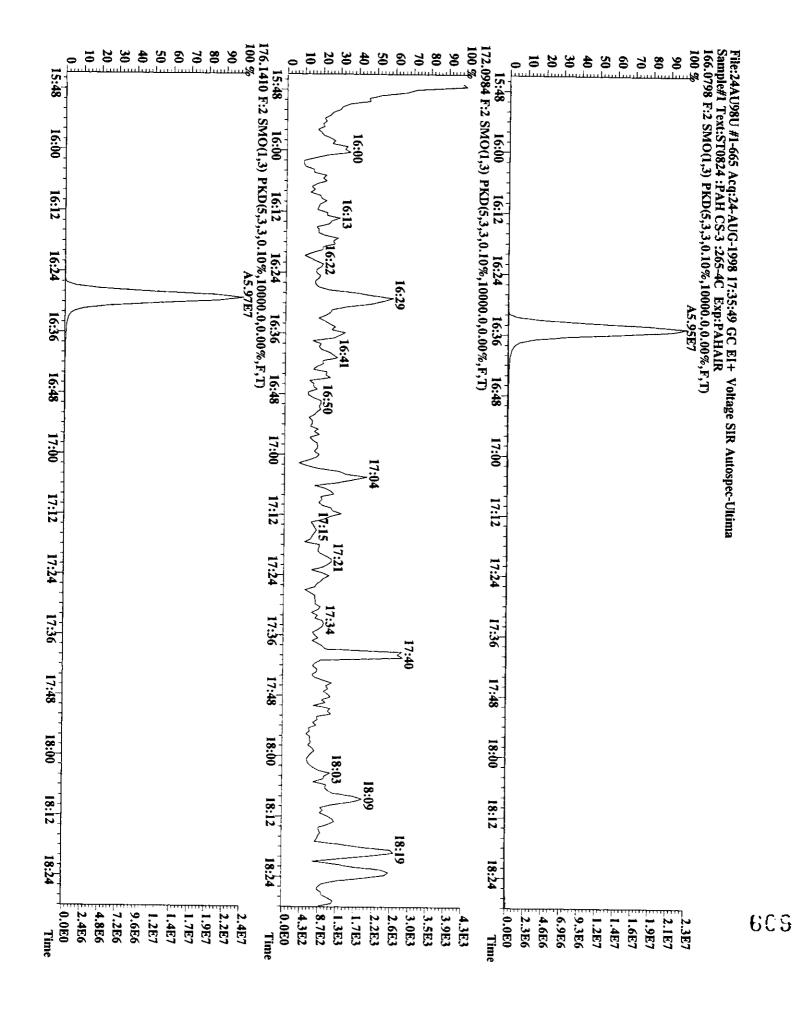
Dibenz(ah)anthracene

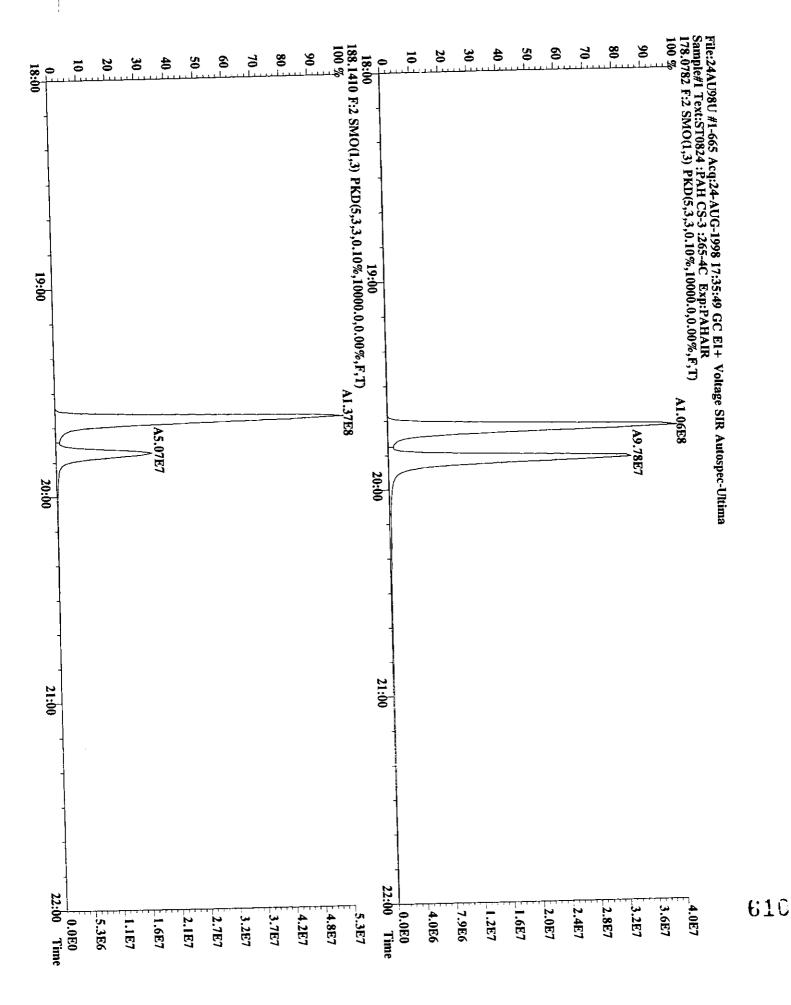
INITIAL CALIBRATION CURVE

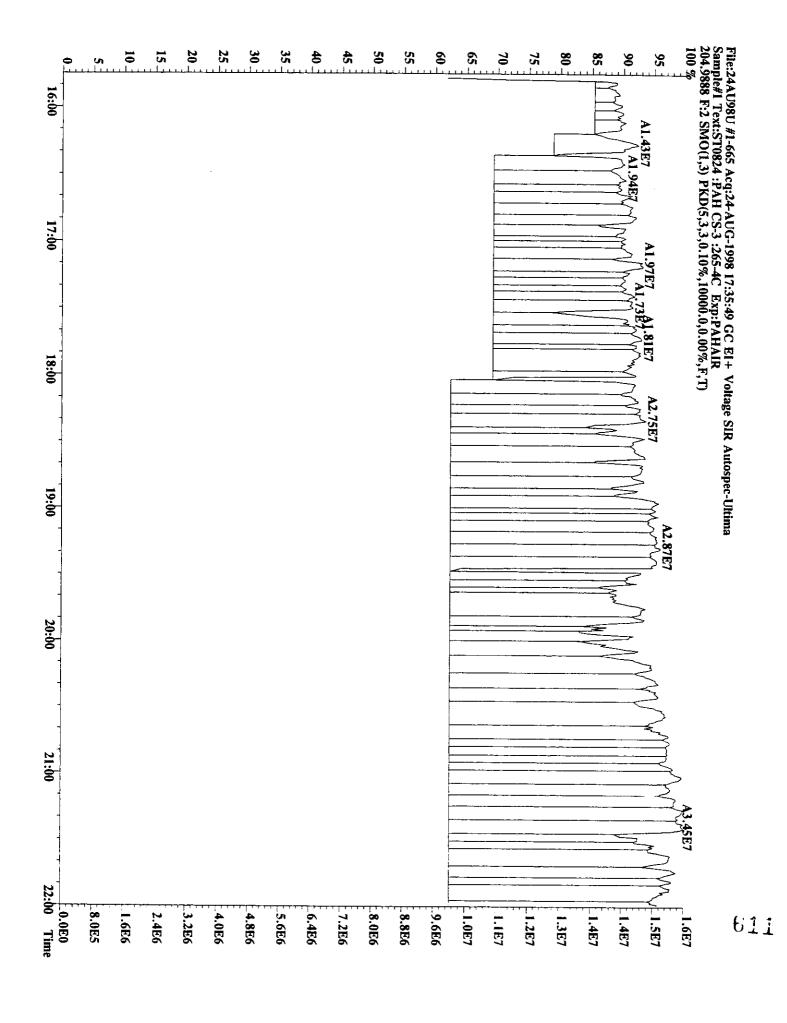

٥

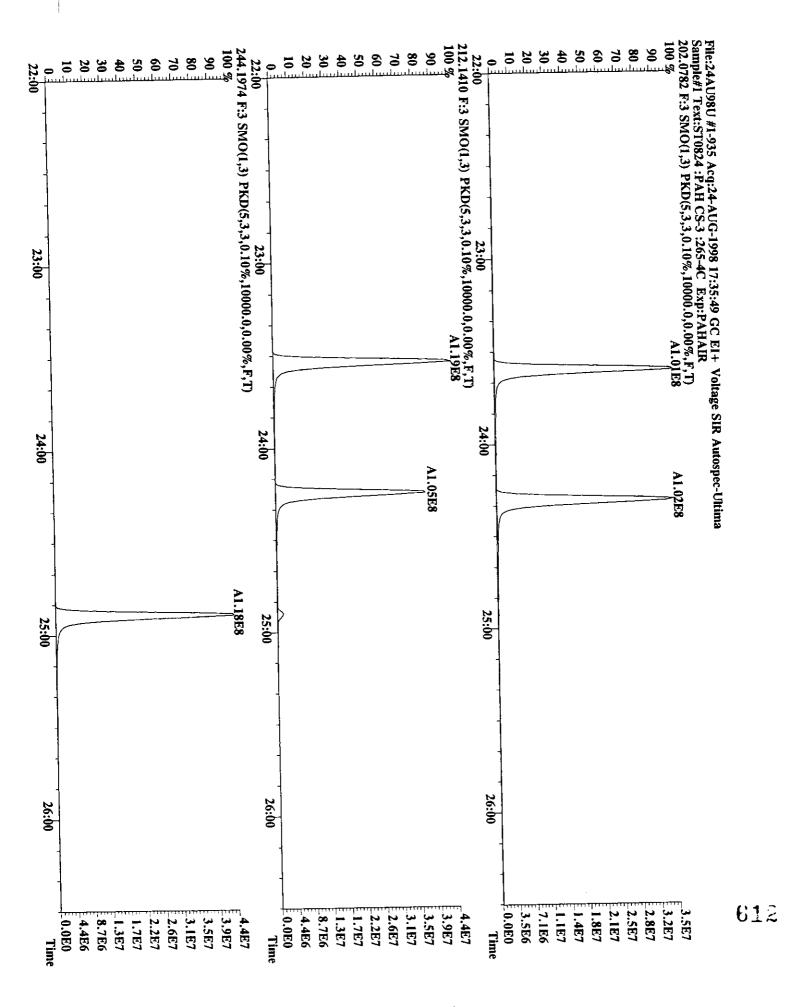

œ

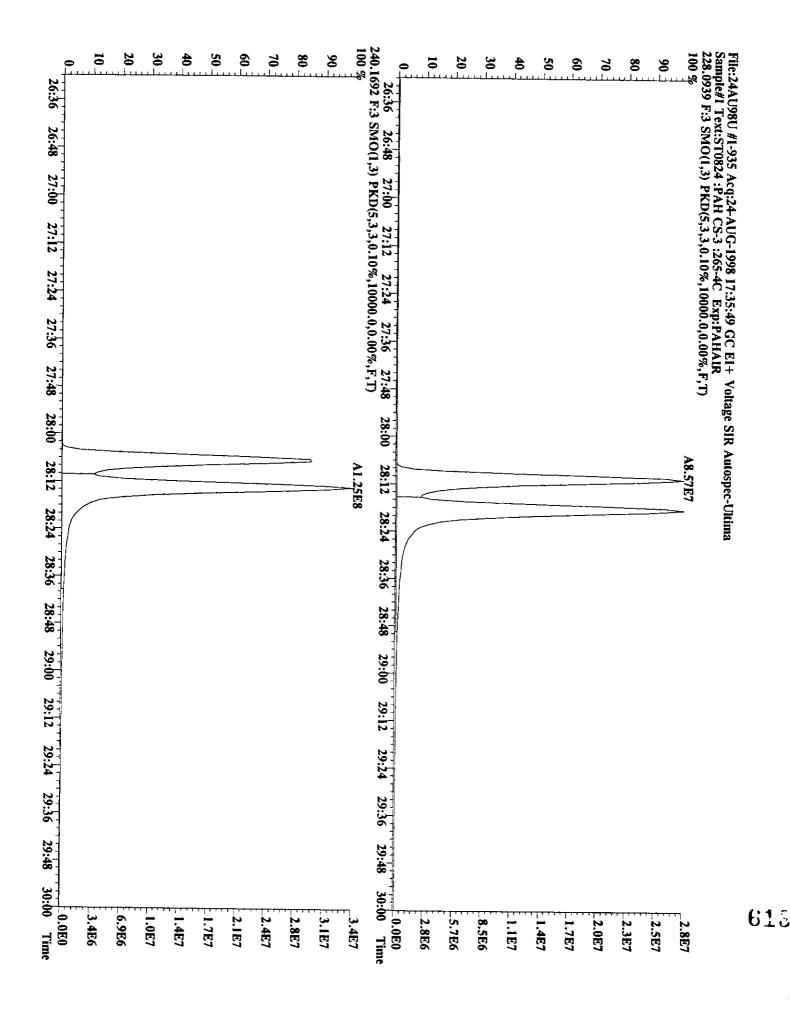

ø

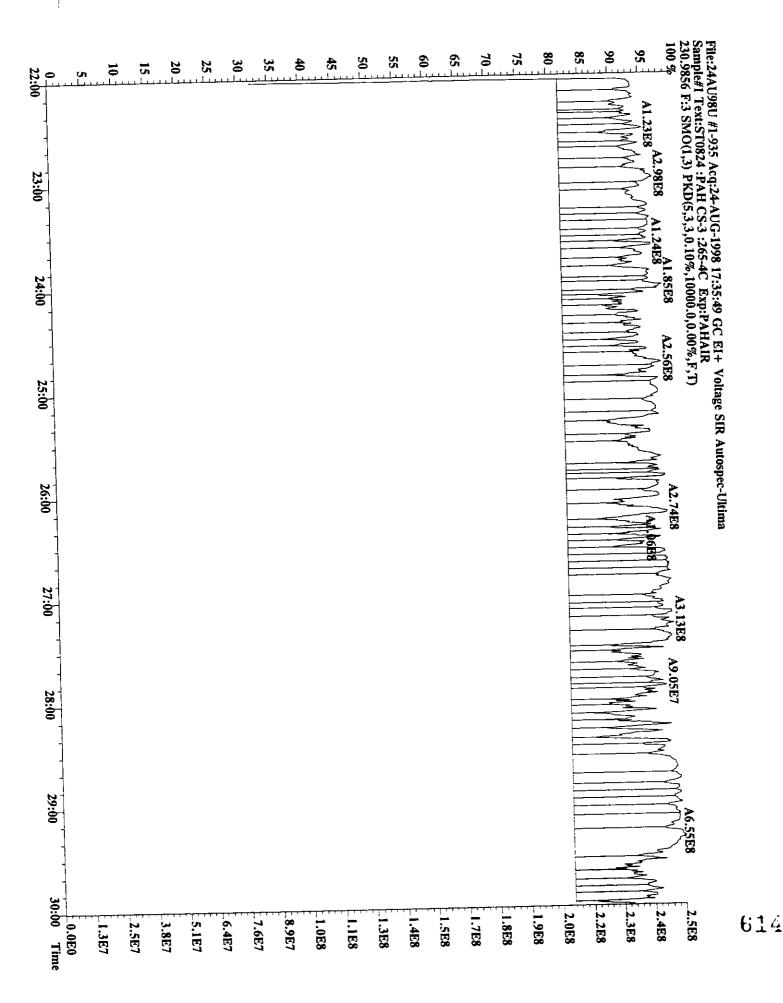

ö

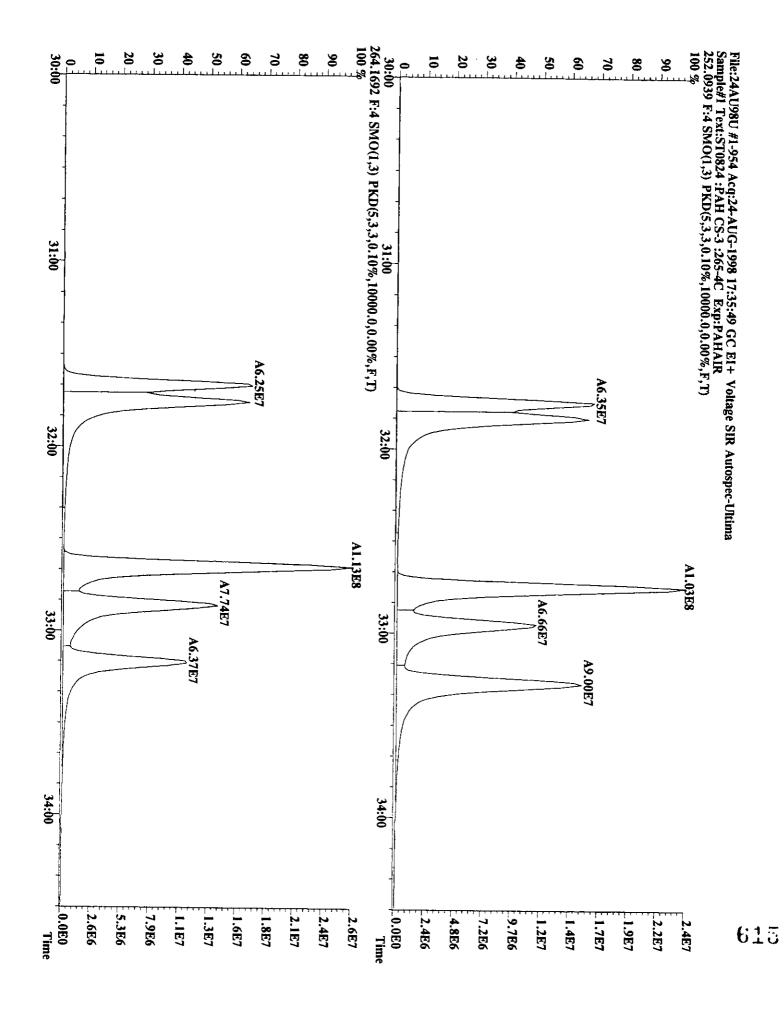

File name : PAHX081998U.RRF Date analyzed : 19-AUG-98

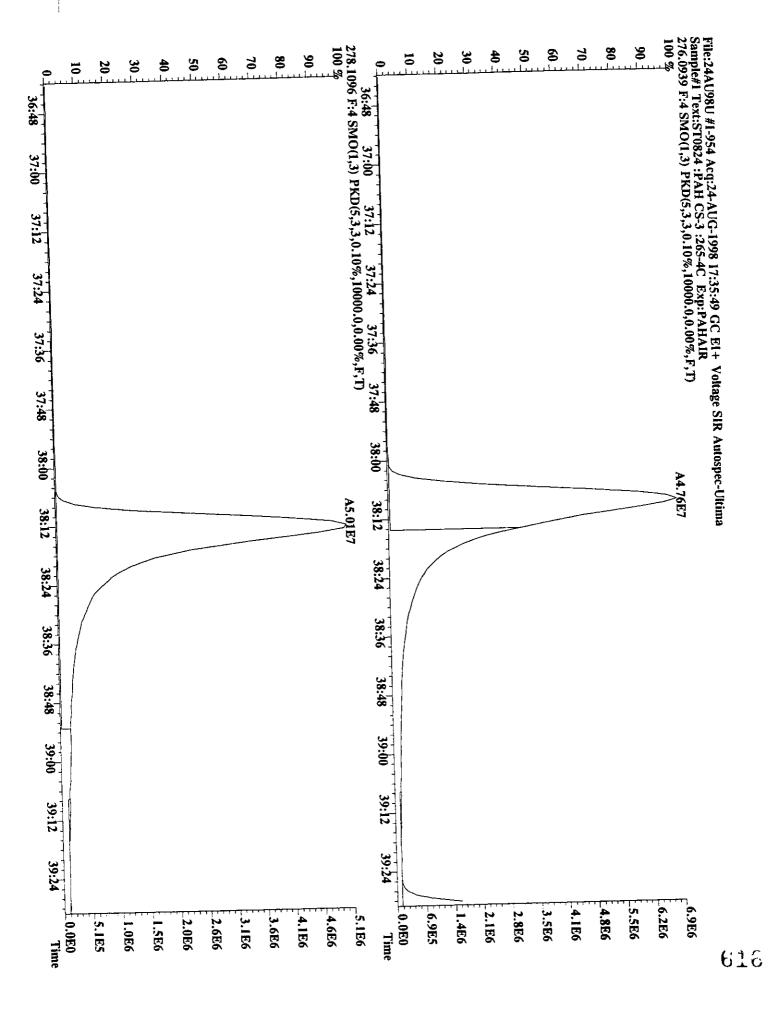


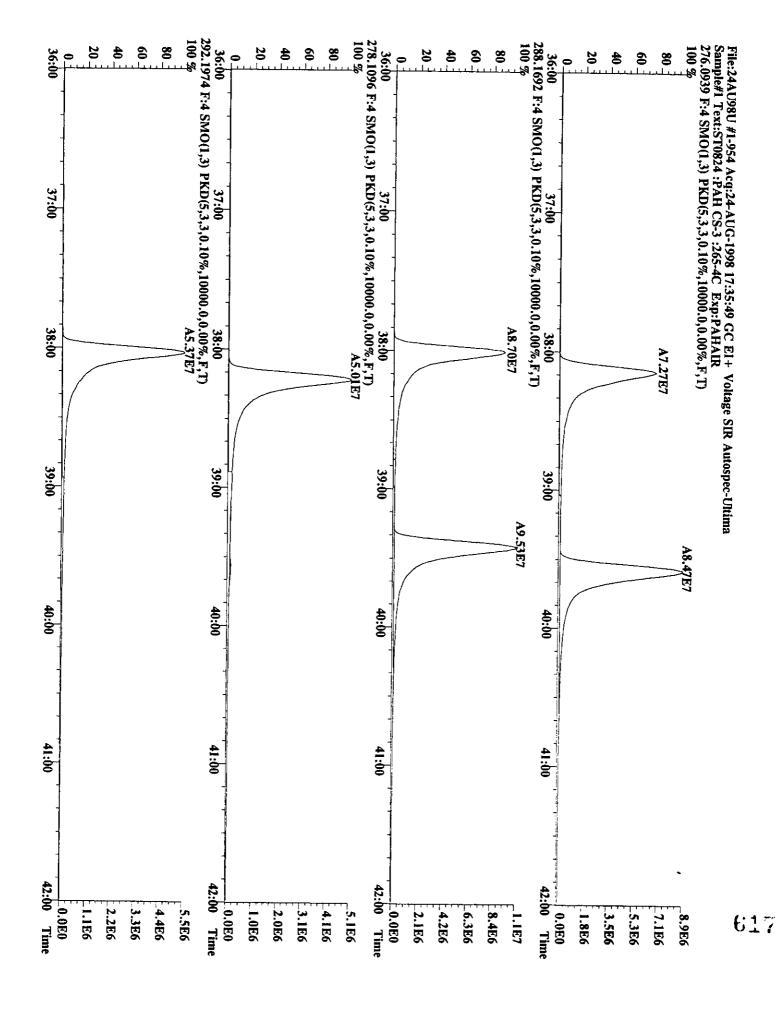


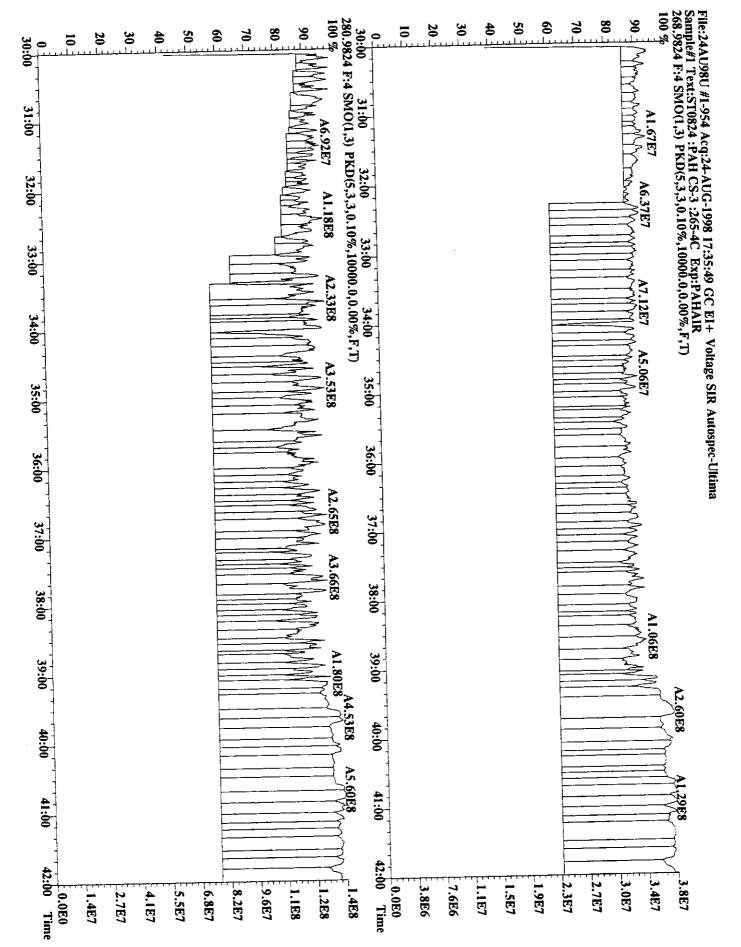


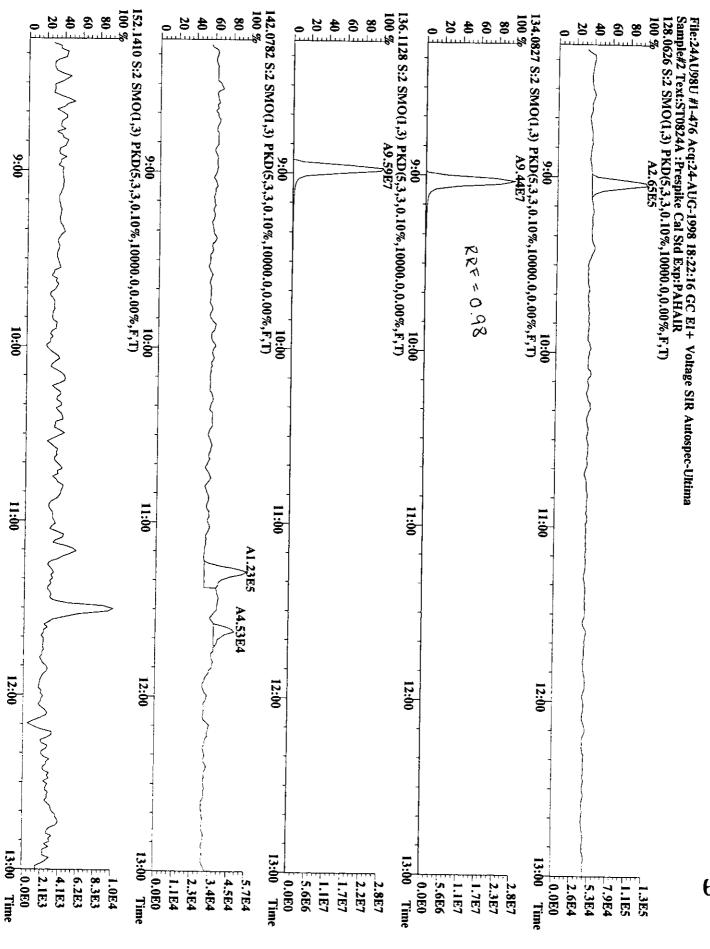


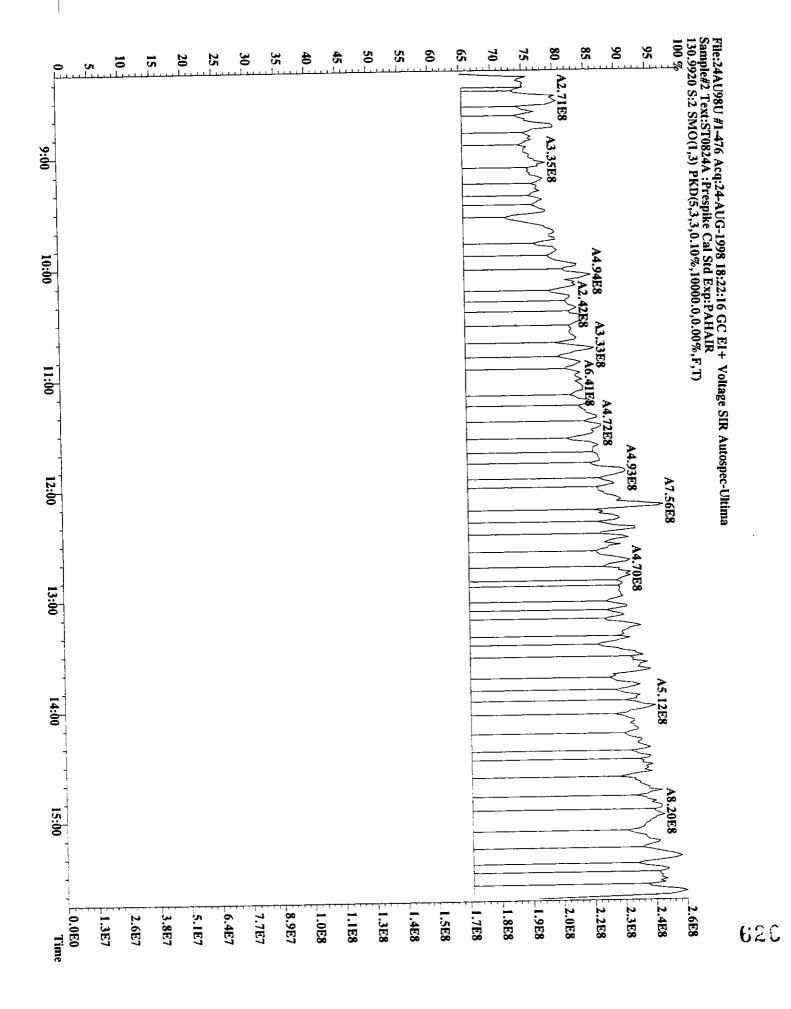


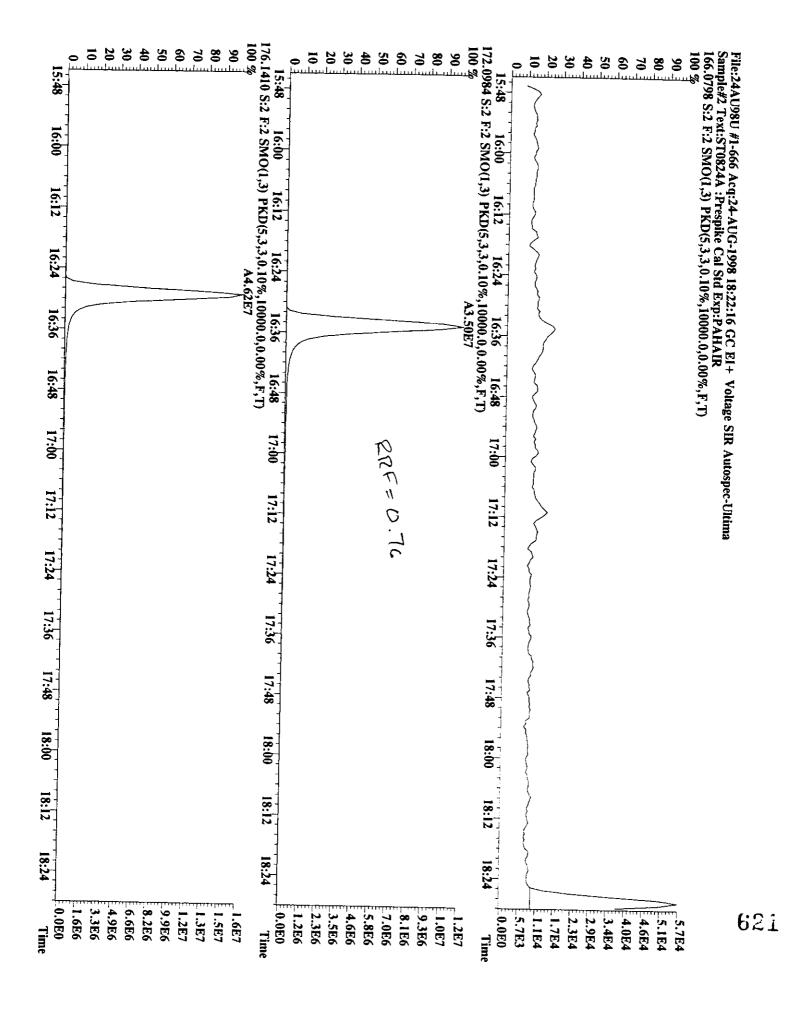


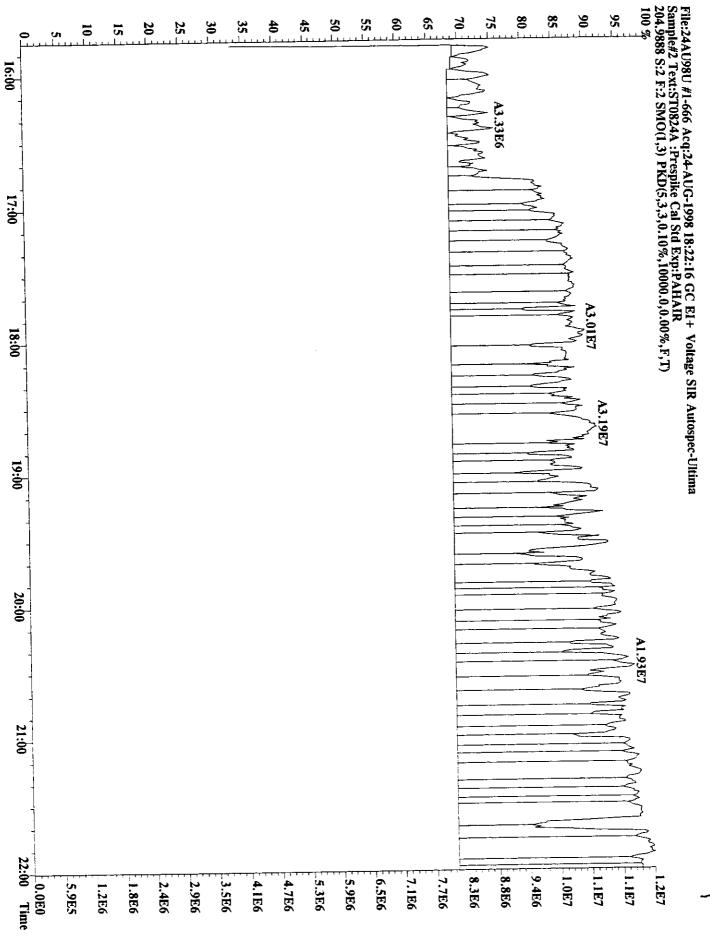




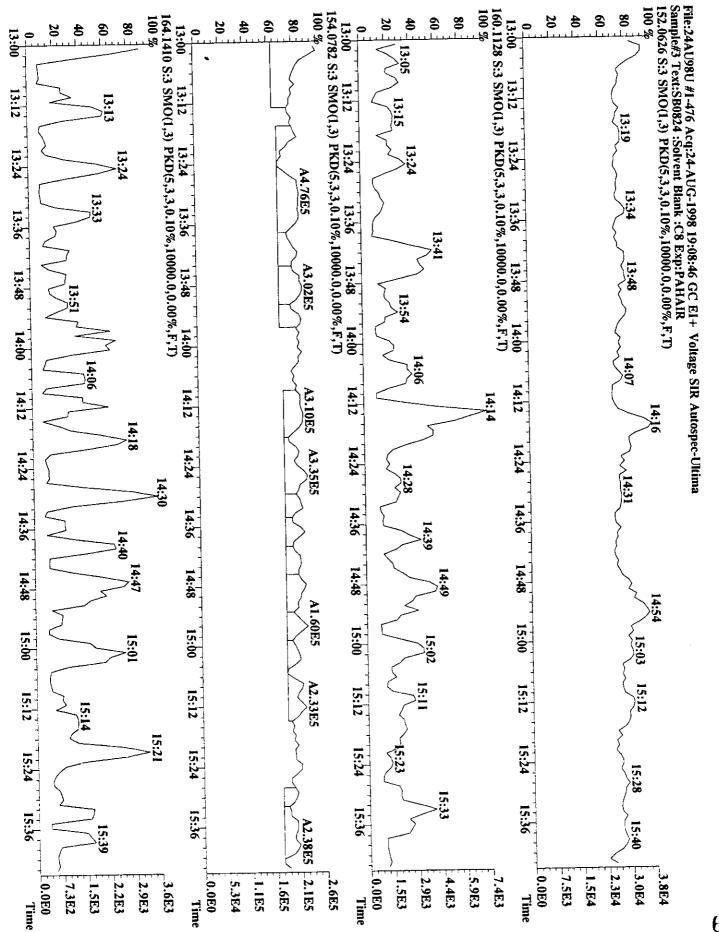


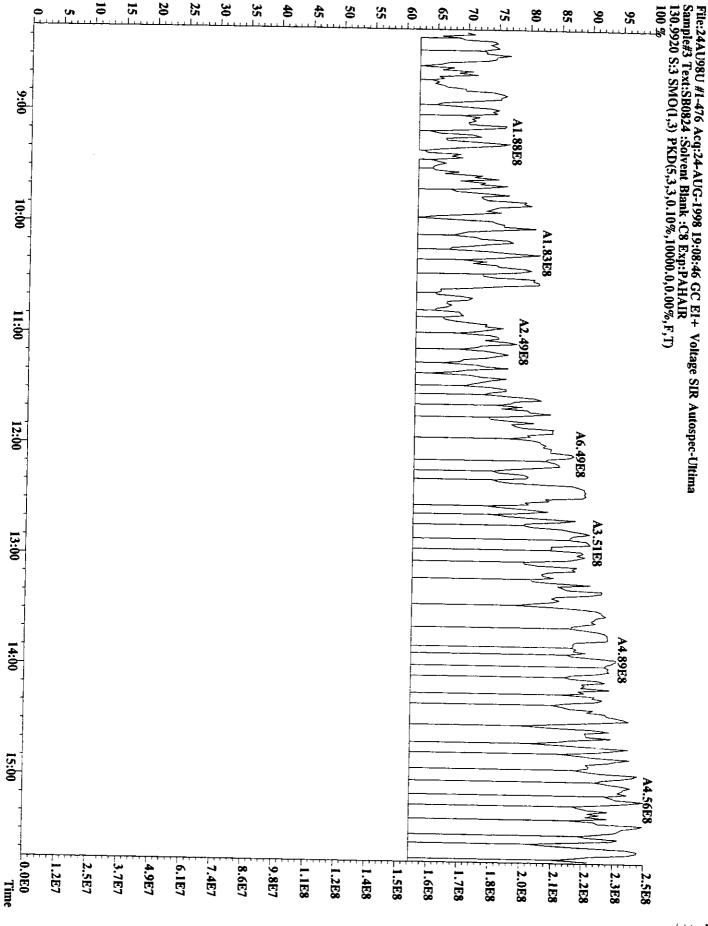


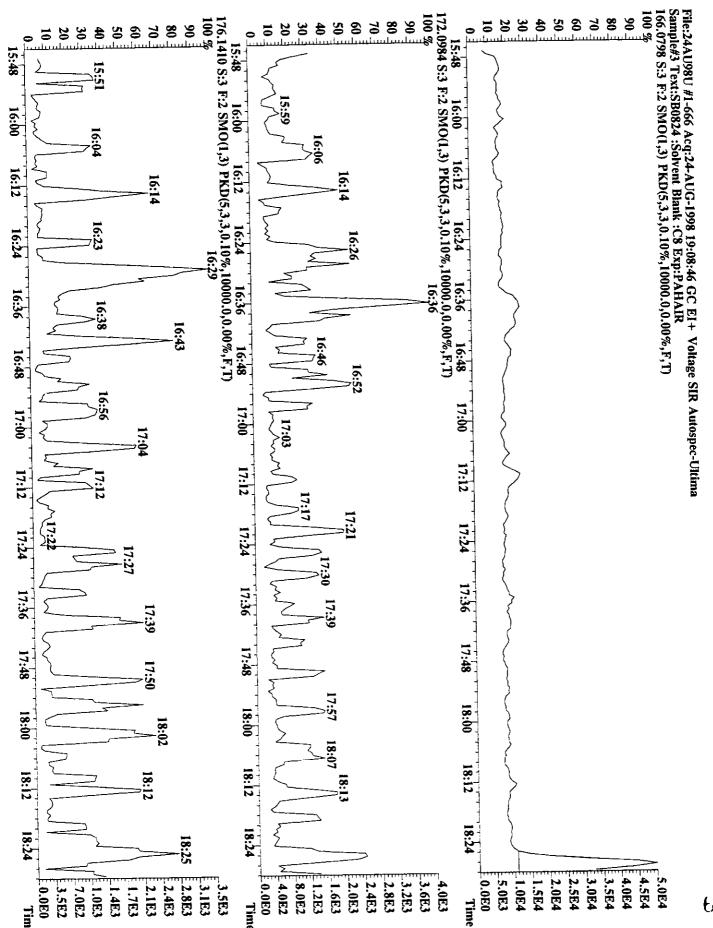


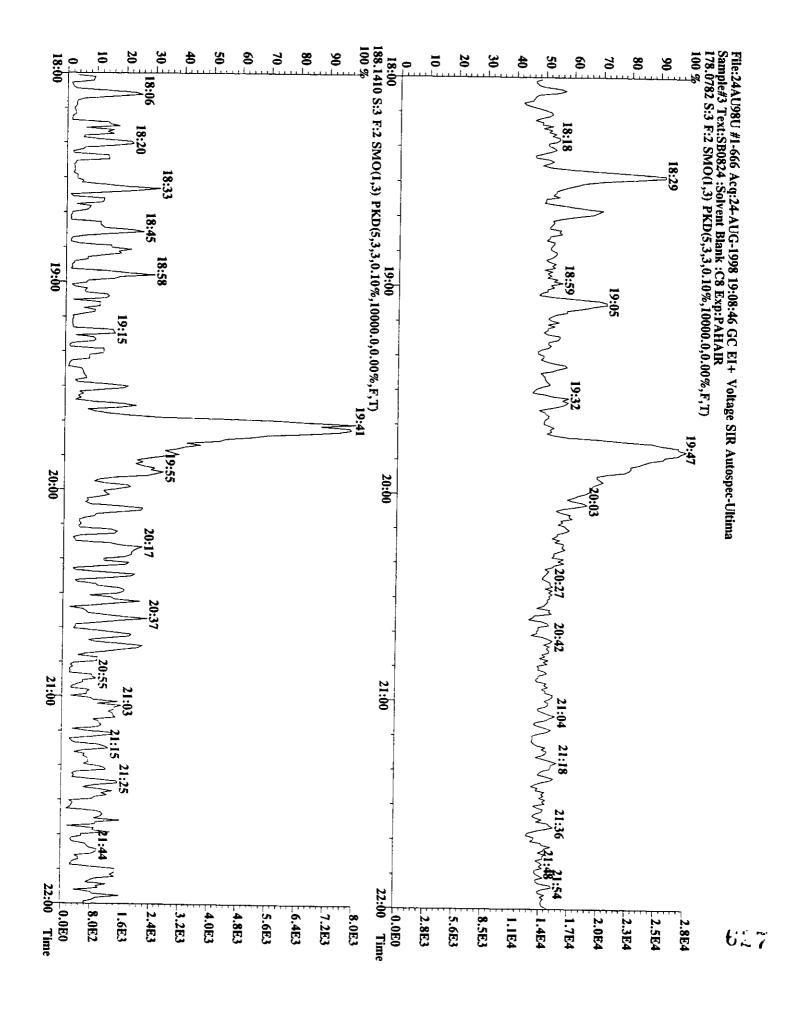


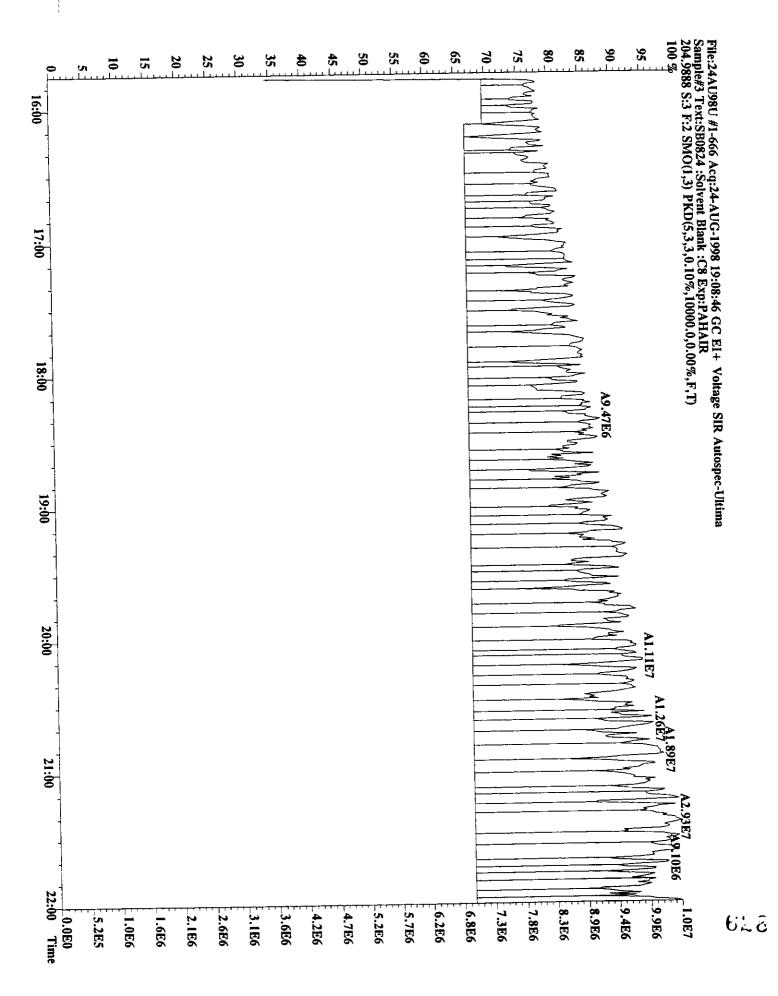


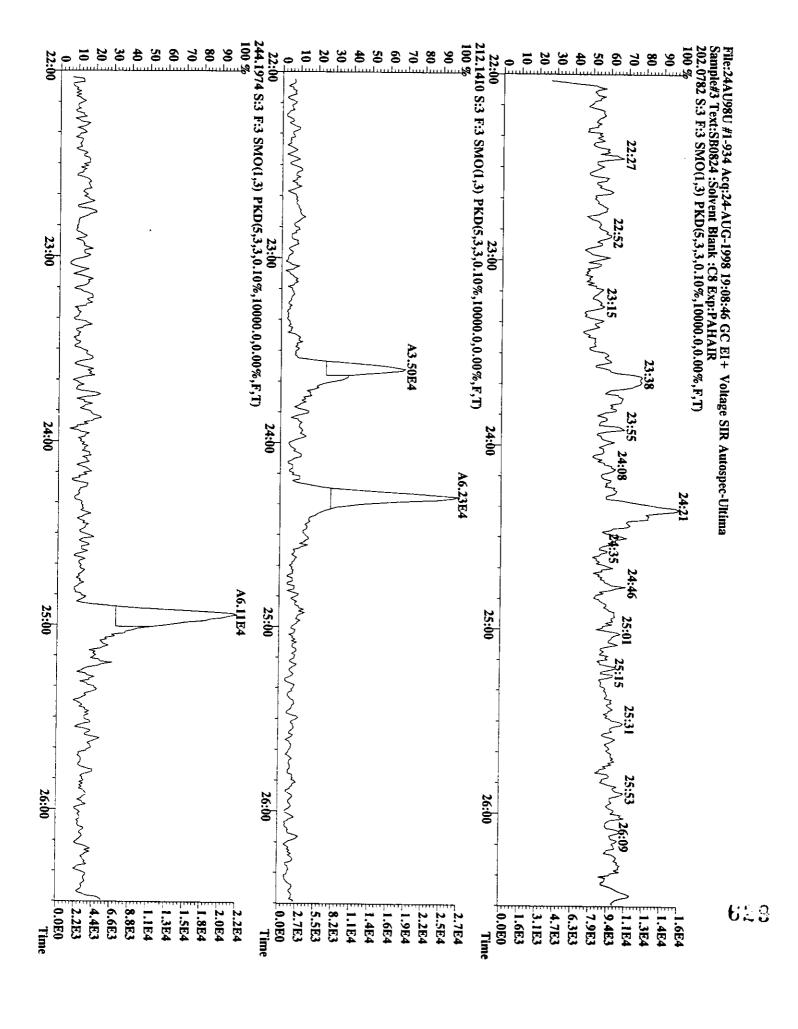


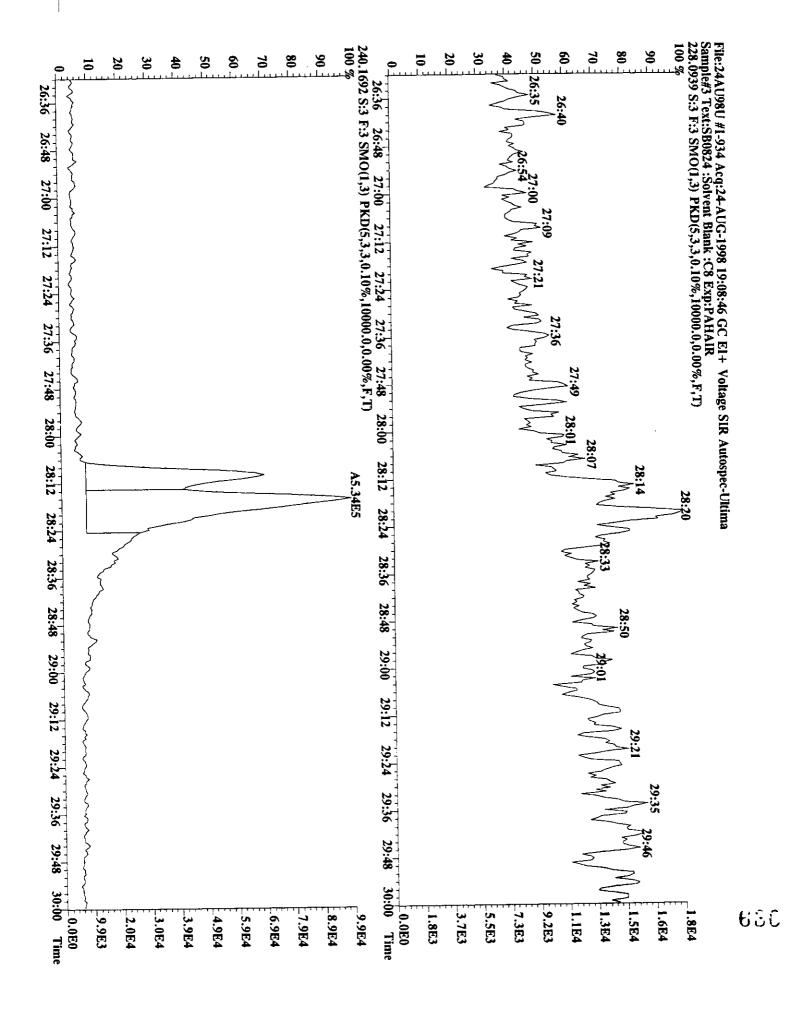


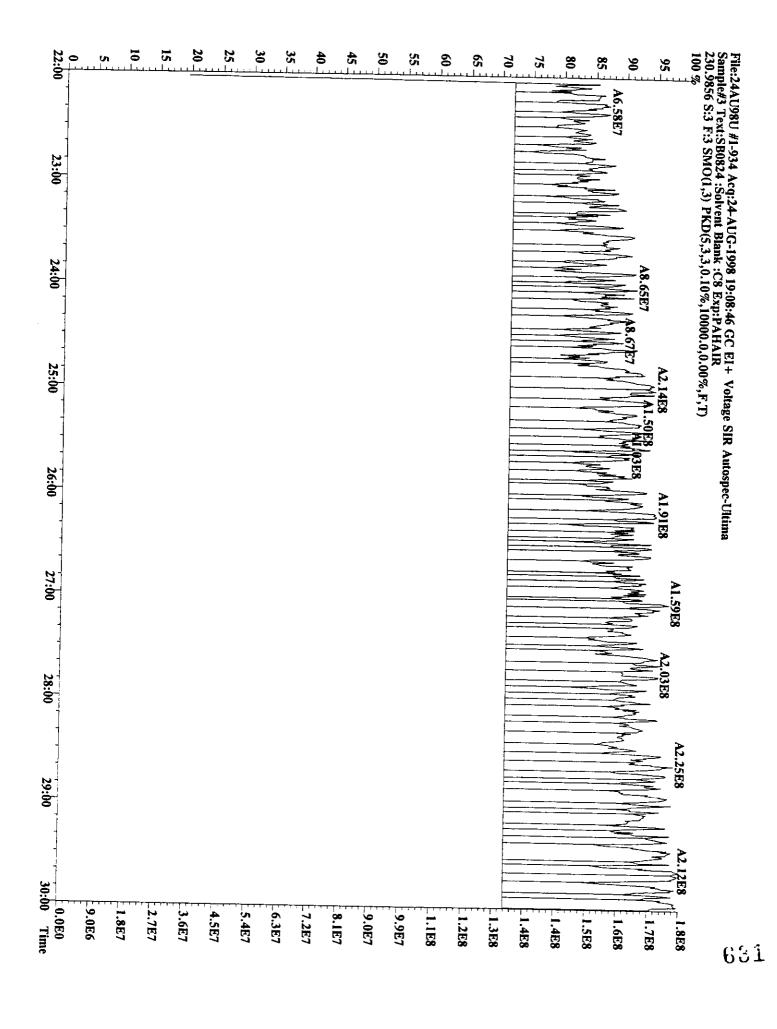











ULE

!		

Sample Extraction/ Preparation Log Copies

QUANTERRA INCORPORATED

West Sacramento

ADVANCED TECHNOLOGY HIGH RESOLUTION ANALYSIS

X58/35/48 EDUS

CLIENT NAME: Pacific Env. Svcs.

PROJECT #: 3065 ANALYSIS: Method 439

DATE RECEIVED: 7-30-95 DATE TO SUBBING: 80398 DATE IN PREP: 8.0498

LOCATION: WILL ABT D MATRIX: ATTRIBUTE TAT: 300045

INITIALS: GAW PAGE _____ OF ____

HOLD TIME UP ON: OPS DUE DATE: 81098 DUE DATE: 8.1998

HOLD	TIME UP ON: OP	S DUE DAT	E: <u> </u>				
SAMPLE LD.'S	EXTRACTION	1 (QC	13 C-INTER	RNAL STD.	AMT. (ng)	Factor
	SOXHLET AT TRAIN	MB	*		1613 / 8290	2.0 / 4.0	
_	WW/EE DILUTION	LCS	*		TCDD/F	2.0	
1-11		DCS			MET 23	10.0	
	SOLVENT QC 613	DU		*	MET 429	50.0	2×
	SEE BELOW	MS			MET 428	2.0 / 4.0	
%H2O GRA	MS VOLUME	SD			MET 1668	2.0	
70H2O GIGA	1 02012	DILLET	ON		DBD/F	25.0	
		DILUTI	ON	ľ	MATRIX SP	IKE	Factor
%LIPIDS		<u> </u>		CL ₄ (tetra)		200 pg	h
CDI PT		ALIQUOT		CL5 - CL7 (penta-hepta)	1000 pg	7
SPLIT	12 J		ļ	CL ₈ (octa)		2000 pg	
ARCHIVE	LIQUOT			PCB		2.0 ng	
<u>, </u>				PAH		50.0 ng	ЭX
	CRS NO CR	S		DBD/F		25.0 ng	
				SA	MPLE PRE	PREP	1
	OPT C				CEIVED		1
					ORY		1
	<u> </u>				RIND		1
FULL		SILICA GEL		COM	POSITE		1
IFB	IFB	GEL	ı		GCC	COLUMN	-
					DB-5	*	7
	/	/	. \	<i>y</i>	DB-225	If needed]
D2	ACID	BASIC AL ³⁺			COMMENT	rs:	· · · · · ·
	AL ³⁺	AL		.	ا ا	1,400	P
			$\Box x$	400C	120		۷,
			1 Fron	N Yns	P1-4' 24	10 8 /3 W	.73
		/	77	ECV 7	1,3/0 2	(0)	96
	ng RECOVERY STAN	TDARD	10ng M		14	ושבל שריינ	l
	PCB F.V. = 50 +4 SQ DILUTION	ON:	25ng DB 50ng PA		42 DI	W 21	
2ng	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(C ₈)		-	# * *	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6 15
			_ _ '	<u> </u>	man		— U € (
			1	,2,7,10	,11 need	QA-361	I-MF 11/97
			16	حديدة المراج مريد	و الحج جون	respike in 1	T. ; & &
			~1 to	JUN DOLLOW	10 /2 . mode 6	-71	

Quanterra Environmental Services, Sacramento -880 Riverside Parkway

West Sacramento, California 95605 (916) 373-5600

Date Received : 30 JUL 98 10:50

Mr. Frank Phoenix

Pacific Environmental Services

Suite 300

Research Triangle Park, North Carolina

277092077

Project ID,

EPA Case, RMA Lot: PAH/8270

P.O. Number

: 104-98-0239

Delivered By

Storage Location : W16ABD

Logged in by

: MDYAS

(919) 941-0333

Fax: (919) 941-0234

Airtrain(11) samples received under Chain-of-Custody in good condition. Delivered by client.

Sample ID	Client's label info	Date/Time Samp.	Containers
300681-0001-MB 300681-0002-SA 300681-0004-SA 300681-0005-SA 300681-0006-SA 300681-0007-SA 300681-0008-SA 300681-0009-SA 300681-0010-SA	S-MM5-2-F,FH,XAD,COND,BH S-MM5-2-F,FH,XAD,COND,BH S-MM5-1B-F,FH,XAD,COND,BH T-MM5-2-F,FH,XAD,COND,BH T-MM5-FB-F,FH,XAD,COND,BH T-MM5-3-F,FH,XAD,COND,BH S-MM5-3-F,FH,XAD,COND,BH S-MM5-RB-F,FH,XAD,COND,BH S-MM5-FB-F,FH,XAD,COND,BH S-MM5-RB-F,FH,XAD,COND,BH	25 JUL 98 25 JUL 98 25 JUL 98 25 JUL 98 25 JUL 98 26 JUL 98 27 JUL 98 27 JUL 98 26 JUL 98 25 JUL 98 25 JUL 98 28 JUL 98	AGJ 3-500AGJ XAD AGJ 3-500AGJ XAD AGJ 3-250AGJ XAD 2-500AGJ 2-250AGJ XAD 500AGJ 3-250AGJ XAD 500AGJ 3-250AGJ XAD 500AGJ 3-250AGJ XAD 3-AGJ 3-250AGJ XAD AGJ 3-250AGJ XAD 4-250AGJ XAD 3-500AGJ 3-250AGJ XAD 3-500AGJ 3-250AGJ XAD

Samples not destroyed in testing are retained a maximum of thirty (30) days unless otherwise requested.

Project Manager: Robert Weidenfeld

QUANTERRA INCORPORATED

West Sacramento

ADVANCED TECHNOLOGY HIGH RESOLUTION PREP

Methods 23, 428, 429, 1668, and T-O IX BENCHSHEET FOR EYTRACTION OF AIR MEDIA

							_		
	pR	ојест#: <u>3</u>	00681	AN	IALYSIS:	PAI	<u> </u>		
		MATRIX:			TAT:_				
		ED:	ח	ATE IN PREF) :		DUE DAT	Ē:	<u></u>
DA	TE RECEIV	GCMS LOCAT	\ \ic	F 27	DATE TO	GCMS: 8	-19-9	8	
		GCMS LOCAT	TION:V.5	S F Z C				THER:	
EXTRACTION CONTRACTION CONTRAC	ON TYPE:	SOXHLET	6	13		LUTION		THER:	
SOLVENT	TYPE:	TOLUENE	H	EXANE	DCM				
SAMPLE ID	Sample Size	613 Date/Int.	Soxhlet Date/Int.	Silica Gel Date/Int.	Upper IFB Date/Int.	Lower IFB Date/Int.	IFB Date/Int.	Special D2 Date/Int.)
-1.	BDH 8-12			8-18-98 BOH			···		
- 2	BDH 8-12								hold or
-7									1 W/UP
-10									pendina
-11	1								Joonsult
-IMBG	44								H_{Δ}
- IMBS	×							1	}?
- ILCS	fun							<u> </u>	1
- ILCS	50×				<u> </u>				 →
- 3				 				<u></u>	-
7	<u> </u>			-	<u> </u>	1		 	-
-5		<u> </u>		Ψ			L		ال
(All Sample I.S. Added:				by:	Wi	tness:		Date:	
(LCS/MS/S	D) (dded:			by:	Wi	mess:		Date: _	
(MB Only)				by:	Wi	mess:		Date:	
Surrogate A (All Sample	es) ca	ul/ 265-0	 Z		804 w	itness: W	160	Date: 🛭	119/98
R.S. Added	: <u>30.</u>	my cos		Associated	· · ·				
Associated	QC:							6-18-98	Mus
Dilution @ Split of Ext	Extraction?	•		10 10	Yes de	escribe)	•	БОН С₃ С₁о С	1/16 12 Cu
Dilution @	Final Volu	me?	N	чo	Yes	1:5	1:10	C2 C10 C	114

QUANTERRA INCORPORATED

West Sacramento

ADVANCED TECHNOLOGY HIGH RESOLUTION PREP

Methods 23, 428, 429, 1668, and T-O IX
BENCHSHEET FOR EXTRACTION OF AIR MEDIA

				<i>D</i> 2.70,10	ILL: I OK L	211101011011	OF AIR ML	DIA		
	Pl	ROJECT#:	300681	A	NALYSIS: _	PAL	1	<u> </u>		
		MATRIX	:		TAT:_					
DA	ATE RECEIV	/ED:		DATE IN PRE	P:		DUE DAT	JE DATE:		
		GCMS LOCA	TION:							
EXTRACTI	ON TYPE:	SOXHLET	ć	513	Di	LUTION	0	THER:		
SOLVENT	TYPE:	TOLUENE	Ŧ	EXANE	De	CM	0	THER:		
SAMPLE ID	Sample Size	613 Date/Int.	Soxhiet Date/Int.	Silica Gel Date Int.	Upper IFB Date Int.	Lower IFB Date Int.	IFB Date/Int.	Special D2 Date/Int.		
-6				8-18-98 80A						
-8										
- 9				Y						
			<u> </u>							
•										
			· · · · · · · · · · · · · · · · · · ·							
			_					<u></u>		
(All Samples) I.S. Added:				by:	Witn	ess:		Date:		
(LCS/MS/SD PAR/Nat. Add)			by:		ess:				
(MB Only) Surrogate Add										
(All Samples)		U 265-03		by:		ess:				
R.S. Added:		1		by:				Date:		
Associated Q(J:			Associated Pr	ojects:		*		ننز	
Dilution @ Ex Split of Extra			No No		Yes (desci Yes (desci	-				
Dilution \hat{a} Fi			No				1:10 Ca	C10 C12 C14		

Page___0T___

Quanterra - Sacramento Data Checklist High Resolution Analyses

Environmental Services

CAL ID: 300681	<u>-</u> ,		Method II	o: met	nod 429	_	
CAL ID	DD 5		DB-	-2 <u>25</u>			
Data Analyst:mm(DB-5 (*3,4,5,6,8,9) / (1,	<u>10,11) </u>		<u> </u>		<u>.</u>	
Date initiated: 9.2 98		<u> -14-92</u> _					
Reviewer: 0 0 Date reviewed: 9/08/9	lace o	रेप यह					
	1	T	intad		Reviewed		
QA/QC verification:			<u>iated</u>	DB-5	✓ 225		
-Daily standard package		DB-5 DB-5		DB-5	225_		
-Method Blank present?		DB-5		DB-5_	225_		
-LCS copy present? -Internal standard reco	veries		\-a=	DR E	(JE225		
within limits?*		DB-5 <u>() (5</u>	1225	DB-5_			
-Ion ratios within \pm 15	% of	DB-5 <u> NA</u>	225	DB-5_	NA 225_		
theoretical values? -Other QC (Dup,MS,SD) w	ithin specs?**	DB-5	225	DB-5_			
-Other QC (Dupyna, 35) "	Tomm open				Reviewed	2	
Sample Analysis:		<u>Ini</u>	<u>tiated</u>		Reviewed	•	
	urad?	DB-5	225	DB-5_	225		
-Correct sample aliquot -All raw data present?	. Azen:	DB-5	_225	DB-5_	225_		
-Standard target DL's u	ised? (If not,	(36	Coor	DB-5	(20 D 25		
concify helow.)		DB-5 <u>& 6</u> DB-5 <u>/</u>	225	DB-5_ DB-5_	225_		
-DL's below target dete	ection limits:	DB-2		_	(A)		
-All positives reported greater than method	blank DL's?	DB-5 @ 6	_225	DB-5_	(3) (\$\frac{3}{2}\frac{5}{2}\frac{15}{2}\f		
Δnv analytes saturated	1?	DB-5 49 6		DB-5 DB-5_	225 225	 	
-correct RRF's used for	r metnoo?	DB-5	225	· <u>-</u> -			
-Internal standard amou	ints correct	DB-5	225	DB-5_	225_		
for method? -Dilution/splitting of	extract taken			DD 5	225		
into account?		DB-5		_ DB-5_ _DB-5_	225_		
-Acquisition date/time	correct?	DB-5_/	225 225	DB-5	225		
-Manual integrations c	necked?	06-3		-			
Comments: (Use other s	ide if necessar	y) į.		.1 = "	laa		
Osome pr Internal stand	and are untrick	Accessed in	mits Flass	CU C			
(2) DL = 15 ns / train/fraction	11.6 d bl/a k / 1 () ///	nd & turns	1 method b	shink /L	LS. The so	xhkt	
MB was contaminated w	ith Naphth. m-	Nuphth , A	cennouth. I	- Igorene	und Fland	mother	² ∼hth.
150x the DL of 15mg/	train struction The	finnel met	and blank we	<u> </u>	he addition	, Litre ?	7 770 Sun
above the DL. (A The of	novanthene	alurato	All sampes	uno C	, -6 **	RPD lim	<u>vits:</u>
* Recovery limits: P NCASI 551: 40-	120% (20-39% OK	if S/N=1	$\tilde{0}:1$ for IS) \		50% 20%	
Method 8290: 40-	135%	•				50%	637
Method 1613: 25-	150% 130%(C14-C16),	25_130%/0	17-81. 70-	13 0%(su	rr.)	50%	007
	130%(C14-C16), 120% (out of li	mits OK i	f S/N=10:1	for IS)	50%	
CARB 428: 40- CARB 429 50-	150% (000 01 11					50% 50%	
PCBs: 25-	150%					30/6	
DBD/DBF: 20-	150%			QA	-371,10/9	6,NE	
				•			

5 sec electronic anomaly

QUANTERRA-CALLAB LABORATORY Chromatography Assignment Sheet

SOXHLET

Project #: 300681 Analysis: P-PAH-HR-AIR Due Date: 19 AUG 98 Receipt Date: 30 JUL 98 Ver: 1

Client: Pacific Environmental Services Log Released:

PA: RWEIDENFELD Turnaround: NORMAL Delivery Accepted: MDYAS 30 JUL 98 Storage Location: W16ABD Number of Samples: 11 Earliest Holding Time: 15 AUG 98

Program: General Airtox

Project Description:

Airtrain samples to be split and analyzed for Hi res PAHs and 0010/8270.

Note there are a number of 8270 compounds that will need to be reported by library search. These compounds will be designated by -- in place of a reporting limit.

Full paginated raw data package reugired

Test Modified: N Sample Instructions: N Test Instructions: N Group Instructions: N QAS #:	
Date Delivered to PA:	

Comments:

No Problems Occurred with Analysis

See Anomaly Sheet

SUMMARY OF EXTRACTS (ALL IN PCM)

MB/LCS (SEXHLET) 31 JUL 48

MB/LCS (SEP-FURNEL) 01 AUG 98 AM 43 SA/5. DML (APLHIVES IN AIR TOX)

1 - 11 (COMBINED SOX + SEP)

QUANTERRA-CALLAB LABORATORY Bottle Descriptions

Project #: 300681 Test: P-PAH-HR-AIR

0001SA - AGJ 3-500AGJ XAD 0002SA - AGJ 3-250AGJ XAD 0003SA - 2-500AGJ 2-250AGJ XAD 0004SA - 500AGJ 3-250AGJ XAD 0005SA - 500AGJ 3-250AGJ XAD 0006SA - 500AGJ 3-250AGJ XAD 0007SA - 3-AGJ 3-250AGJ XAD 0008SA - AGJ 3-250AGJ XAD 0009SA - 4-250AGJ XAD 0010SA - 3-500AGJ 3-250AGJ XAD 0011SA - 3-500AGJ 3-250AGJ XAD

QUANTERRA-CALLAB LABORATORY Analytical Bench Sheet

Project	Number: 300	0681	Date	: 31 JUL 98	3				Page 1 of	1
Test Co	ode: P-PAH-HR	R-AIR	Test Des	cription: P	rep - Polyn	uclear Arom	atic Hydroc	arbons by H	RMS	
Turnard	ound Status:	NORMAL S	ample Matri	x: AIRTRAIN	Date Assi	gned: 7/3	/ Pre	p Completio	n Due:	
SOP - Sec	tion/Page (R	Revision):	LM-	CAL - 70	205	,				
Extract	ions: []S	Separatory Fu	unnel []	Continuous	Liquid/Liq	uid [] \$	onication	Soxhle	t [] KD	
	[] R	oto Vap	į 1	Shaker		[] 0:	ther			
Samp ID	Holding Time	Sample Size	Extractn Date/ _Initials	Adj pH Date/ Initials	 Hydrolysis Date/ Initials	Acid Ext Date/ Initials	Conc Date/ Initials	CH2N2 Date/ Initials	N2 Date/ Initials	Final Sample Concentn
0001SA	15 AUG 98	TRAIN	RNT 7/31/98			/	8/4/98		8/5/98	135H
0002SA	15 AUG 98	(XAO/FILT)					1		1	1
0003SA	15 AUG 98									
0004SA	15 AUG 98									
0005SA	16 AUG 98									
0006SA	17 AUG 98				1	1				
0007SA	17 AUG 98				0.8%	K				
0008SA	16 AUG 98									
0009SA	15 AUG 98									
0010SA	15 AUG 98									
0011SA	18 AUG 98					-				
n.C	NA	V								
25	J	NA		/			1		\downarrow	<i>y</i>
NA-	·									→
roject	Due: 19 AUG lank With Pr	98	DCS With P LCS With P	roject:	10068	7/	DCS Code	: <u>N</u> : 31 JUL : 0 U L S I	A .48	
otes/Co										

640

Date To Instruments: 8/5/98

By: DAVT Peer Approval By:

QUANTERRA-CALLAB LABORATORY Quality Assurance Sheet

Project #: 300681 Test: P-PAH-HR-AIR Quality Assurance/Quality Control: Spiking Standard Name: M429 DAILY I.S. Sample ID: __ALL Volume: 150 pl Conc: 1.0 ng/pl Spike Code ID: _245-02 Witness: Spiked By: ____________ Spiking Standard Name: PAH SURR (CI3FLVORGNE) Sample ID: MB ONLY Volume: 150 pl conc: 1.0 ng/pl
Witness: CA Spike Code ID: 956-31 Spiked By: Sample ID: LCS ONLY Spiking Standard Name: 11429 NATIVE Stock T Volume: 150pl Conc: 0.2 mg/pl Spike Code ID: AT-I-424 Witness:____ Spiked By: Spiking Standard Name:_____ Sample ID: Volume: _____ Conc: _____ Spike Code ID: Witness:_____ Spiked By: Solvent: Manufacturer And Lot Number: Extracting Solvent: Dom (BAK) M17327 Solvent Keeper: Transfer Solvent: Derivatizing Reagent:______ Final Solvent: Other:_____ Was an aliquot taken? (V)/ N If yes, how much was aliquoted? 5 mL/15 mL what was the sample concentration before aliquot? 5 J/15 mL but Why was the aliquot taken? SPLIT 4/8270 ARCHIVE

QUANTERRA-CALLAB LABORATORY Instruction Sheet

Project #: 300681 Test: P-PAH-HR-AIR

Sample Instructions:		
None.		
Test Instructions:		
None.		
Group Instructions:		
None.		

QUANTERRA-CALLAB LABORATORY Anomaly Report Form

Project #: 300681 Test: P-PAH-HR-AIR Sample(s) Affected: Anomalies: Sample broken during shipping. Limited sample volume. Matrix required a subsample to facilitate extraction. pH of sample required excess acid/base (please circle). Solvent and sample were miscible. __ Emulsion problems. Emulsion problem required centrifuging. Sample lost during preparation. Re-extraction performed? Yes/No Concentration volume went lower than specified in the SOP. Concentration time longer than normal. Extraction solvent saturated with organic material, therefore sample volume was not concentrated but adjusted based on the screening. Final concentration greater than specified in the SOP due to the screening results. Precipitate observed in the extract. 1,2,7,10,11 Other, please comment below. Comments: EXTRACTS CONTAIN ALOT OF OIL

Submitted By: Date: 8/5/97

QUANTERRA-CALLAB LABORATORY Prep (Extraction) Check List

Project #: 300681 Test: P-PAH			
Chemist:	Date: 8/5/91		
Reviewer:	Date:		
Number of samples: 11 Number	of extracts: 13		
Benchsheet: SOP section and page number Each step of extraction proc Anomalies or deviations from pH adjustments noted. Solvent manufacturer and lot Volumes and weights of sample	filled out properly. edure initial'ed and dated. SOP documented. number completed. es to two sig. figs.	Initiated Y N Y N Y N Y N Y N Y N Y N Y N	Reviewed Y
<pre>QA/QC: DCS/MS forms filled out prope Spike information correct on Spike witness? If not spiked per SOP, were</pre>	bench sheet.	Initiated Y	Reviewed
LIMS: Extraction date (complete da QC lot number present and co QC Run number present and co Prep released (date extract	rrect. rrect.	<u>Initiated</u> Y N Y N Y N Y N Y N	Reviewed Y
Extracts: Number of extracts agree with Concentrations of extract agr Testtube rack labelled with	ree with benchsheet.	Initiated Y	Reviewed

Comments:

QUANTERRA-CALLAB LABORATORY Client Descriptions

Project #: 300681 Test: P-PAH-HR-AIR

0001SA - S-MM5-2-F,FH,XAD,COND,BH 0002SA - S-MM5-1B-F,FH,XAD,COND,BH 0003SA - T-MM5-2-F,FH,XAD,COND,BH 0004SA - T-MM5-FB-F,FH,XAD,COND,BH 0005SA - T-MM5-4-F,FH,XAD,COND,BH 0006SA - T-MM5-3-F,FH,XAD,COND,BH 0007SA - S-MM5-3-F,FH,XAD,COND,BH 0008SA - S-MM5-FB-F,FH,XAD,COND,BH 0010SA - S-MM5-4-F,FH,XAD,COND,BH 0011SA - S-MM5-5-F,FH,XAD,COND,BH

QUANTERRA / W. SACRAMENTO

PROJECT OC LIMITS

Project: CALLAB-300681 Matrix: AIR

Test Code: PAH-HR-AIR PAH-HR-AIR QC Category: Version:

..........

Pacific Environmental Services

굺

wns othwns othwns oth Matrix Spike wns othwns othwns othwns othwns oth wns othwns othwns oth Lab Control (DCS) Lab Control (LCS) 150 55 50 50 51 50 51 5 52 Surrogate/SCS CASN wns oth 85018 120127 129000 56553 218019 50328 198550 53703 191242 91576 1517222 1718532 1719035 1520963 91576 99680 83329 206440 205992 207089 81103799 1718521 1719068 1718510 86737 192972 193395 1146652 5067202 93951690 93952013 63466717 -559943396 93951974 3951985 13250981 93951667 Modified Date: 22 * Acenaphthylene-d8
23 * Acenaphthene-d10
24 * fluorene-d10
25 * Phenanthrene-d10
26 * fluoranthene-d10
27 * Pyrene-d10
28 * Benzo(a)anthracene-d12
29 * Chrysene-d12 34 * Indeno(123-cd)pyrene-d12 35 * Dibenz(a,h)anthracene-d1 30 * Benzo(b)fluoranthene-d12 31 * Benzo(k)fluoranthene-d12 36 * Benzo(g,h,i)perylene-d12 20 Naphthalene-d8 21 * 2-Methylnaphthalene-d10 Indeno(1,2,3-cd)pyrene 18 * Dibenz(a,h)anthracene 12 * Benzo(b)fluoranthene 19 * Benzo(g,h,i)perylene 13 * Benzo(k)fluoranthene 2 * 2.Methylnaphthalene 32 * Benzo(a)pyrene-d12 33 * Perylene-d12 Benzo(a)anthracene 3 * Acenaphthylene 14 * Benzo(e)pyrene 15 * Benzo(a)pyrene 37 * Anthracene-d10 38 * Terpheny T-d14 4 * Acenaphthene 6 * Phenanthrene 8 * Fluoranthene 1 * Naphthalene Component Anthracene 5 * Fluorene 11 * Chrysene 16 * Perylene 9 * Pyrene

Impinger Fraction

** NOT LOG RELEASED! **

QUANTERRA-CALLAB LABORATORY

Chromatography Assignment Sheet

Project #: 300681 Due Date: 19 AUG 98 Receipt Date: 30 JUL 98 Analysis: P-PAH-HR-AIR Ver: 1 Client: Pacific Environmental Services Log Released:

PA: RWEIDENFELD Turnaround: NORMAL Storage Location: W16ABD Delivery Accepted: MDYAS Number of Samples: 11 30 JUL 98 Earliest Holding Time: 15 AUG 98

Program: General Airtox

Project Description:

Airtrain samples to be split and analyzed for Hi res PAHs and 0010/8270.

Note there are a number of 8270 compounds that will need to be reported by library search. These compounds will be designated by -- in place of a reporting limit.

Full paginated raw data package reugired

Test Modified: N		
Sample Instructions: N Test Instructions: N		
Group Instructions: N		
QAS #:		
•		
Data Dalinawad to Di.		

Date Delivered to PA:

Comments:

No Problems Occurred with Analysis See Anomaly Sheet

QUANTERRA-CALLAB LABORATORY Bottle Descriptions

Project #: 300681 Test: P-PAH-HR-AIR

0001SA - AGJ 3-500AGJ XAD 0002SA - AGJ 3-250AGJ XAD 0003SA - 2-500AGJ 2-250AGJ XAD 0004SA - 500AGJ 3-250AGJ XAD 0005SA - 500AGJ 3-250AGJ XAD 0006SA - 500AGJ 3-250AGJ XAD 0007SA - 3-AGJ 3-250AGJ XAD 0008SA - AGJ 3-250AGJ XAD 0009SA - 4-250AGJ XAD 0010SA - 3-500AGJ 3-250AGJ XAD 0011SA - 3-500AGJ 3-250AGJ XAD

QUANTERRA-CALLAB LABORATORY Analytical Bench Sheet

Project	Number: 300	681			Date	: 31	JUL 98									Page 1 of	1
Test Co	ode: P-PAH-HR	-AIR							Polyn								
	ound Status:		L S	ample I	Matri	x: AI	RTRAIN	Dat	e Assi	gned:_	7/	31	Pre	p Cor	mpletio	on Due:	
SOP - Sec	tion/Page (R	evisi	an):	LIY	1 - (M	-70	205	<u> </u>		,						
Extract	ions: (1X/S	ерага	tory F	unnel	[]	Cont	inuous	Liqu	ıid/Liq	uid	[] S	onicat	tion	[]	Soxhi	et [] KD	
	[] R	oto Va	ap		[]	Shak	er				[]0	ther_					
				 Extra	actn	Ad	jp∦	Hydr	olysis	Acid	Ev+		nc		12N2	1	1 1
Samp ID	Holding Time	5	nple ize	Date	₽/	Da	te/ tials	Da	te/ tials	Dat Init	e/	Dat		Da	ite/ itials	N2 Date/ Initials	Final Sample
0001SA	15 AUG 98	50		6/11	60	8/1	198	8 1 K8		TU		5/5	H		Ciacs	iniciaes	Concentn
0002SA	15 AUG 98											i					-
0003SA	15 AUG 98												<u> </u>				
0004SA	15 AUG 98						-							7			
0005sa	16 AUG 98													1			
0006SA	17 AUG 98													>	Com	BINED WI	W.
0007SA	17 AUG 98													13	SoX/	flet Pr	TC/IUN-
0008SA	16 AUG 98														·		
0009SA	15 AUG 98													1			
0010SA	15 AUG 98						 									1	
0011SA	18 AUG 98	٦												T			
MB	NA	1.0	L											N	A	8/5/93	4354 500l
Lce	J		,	4		1				4			,	J	, — — 	Į.	j
NA										<u> </u>	-	-					—>
Project (Due: 19 AUG !	98		DCS Wi	th Pi	rojec	t:		NF			DCS	Code		^	/A	<u></u> 1
	Due: 19 AUG 9			LCS Wi	th Pr	rojec		300	681			LCS	Code	01	AVE	48	
Method B	lank With Pro	oject:	36	065	1		E	trac	tion In	c ludes	s Proj	ect(s): <u> </u>	300	681		
Notes/Cor									Projec								
			- 114 m/ 1/7 L	. 51125	•		nawu	#III	riojec		07		MSQC	Code	:	<u> </u>	650
Date To	HI-LES Instruments: SIEP	8/	5/93	<u> </u>	8	ly:	Dr.	,	Pe	er App	proval	Ву:_			-		

QUANTERRA-CALLAB LABORATORY Quality Assurance Sheet

Project #: 300681 Test: P-PAH-HR-AIR

Quality Assurance/Quality Control: Sample ID: ALE HB/LCS Spiking Standard Name: H419 Dank IS Volume: 150 04 Conc: Spike Code ID: 265-02 Spiked By: Witness: Spiking Standard Name: NAUG Pative State I Sample ID: LCS cnly Volume: 750 4 Conc: Spike Code ID: AT-I ALA Witness: Spiked By: Spiking Standard Name: Sample ID: Volume: ____ Conc: ____ Spike Code ID: Witness: Spiked By: _____ Spiking Standard Name:_____ Sample ID: Volume: _____ Conc: _____ Spike Code ID: Witness: Spiked By: Solvent: Manufacturer And Lot Number: Extracting Solvent: MeCh 6# MT7327 Solvent Keeper: Transfer Solvent: Derivatizing Reagent: ______ Final Solvent: Other: _____ Was an aliquot taken? (Y If yes, how much was aliquoted? What was the sample concentration before aliquot! Why was the aliquot taken? SILIT 48270 MRUINE

QUANTERRA-CALLAB LABORATORY Instruction Sheet

Project #: 300681 Test: P-PAH-HR-AIR

Sample Instructions:		
None.		
Test Instructions:		
None.		
Group Instructions:		
None.	 	·

QUANTERRA-CALLAB LABORATORY Anomaly Report Form

Project #: 300681 Test: P-PAH-HR-AIR

\noma	alies:	Sample(s)	Affected:
_	Sample broken during shipping.		<u></u>
	Limited sample volume.		
	Matrix required a subsample to facilitate extraction	on	
	pH of sample required excess acid/base (please circ	cle)	, <u>,</u>
	Solvent and sample were miscible.		
	Emulsion problems.		
	Emulsion problem required centrifuging.		
	Sample lost during preparation. Re-extraction performed? Yes/No		<u>-</u>
	Concentration volume went lower than specified in SOP.	the	
	Concentration time longer than normal.		
	Extraction solvent saturated with organic material therefore sample volume was not concentrated but adjusted based on the screening.	•	
_	Final concentration greater than specified in the due to the screening results.	SOP	
	Precipitate observed in the extract.	 -	
\leq	Other, please comment below.	4	2,7,10,11
Com	ments: EXTRACTS CONTAIN ALOT OF OIL		

Submitted By: MJ^{7} Date: 8/1/98

QUANTERRA-CALLAB LABORATORY Prep (Extraction) Check List

Project #: 300681 Test: P-PAH-HR-AIR		
Chemist: Date:		
Reviewer: Date:		
Number of samples: 11 Number of extracts: 2 (mb/lcs of comsiner with souther praction	Ni4)	
Benchsheet: SOP section and page number filled out properly. Each step of extraction procedure initial'ed and dated. Anomalies or deviations from SOP documented. pH adjustments noted. Solvent manufacturer and lot number completed. Volumes and weights of samples to two sig. figs.	Initiated Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Reviewed Y N Y N Y N Y N Y N Y N Y N
QA/QC: DCS/MS forms filled out properly. Spike information correct on bench sheet. Spike witness? If not spiked per SOP, were spike amounts verified?	Initiated Y	Reviewed Y
LIMS: Extraction date (complete date) correct. QC lot number present and correct. QC Run number present and correct. Prep released (date extract goes to Inst.).	Initiated Y N Y N Y N Y N Y N	Reviewed
Extracts: Number of extracts agree with benchsheet. Concentrations of extract agree with benchsheet. Testtube rack labelled with project id and test.	<u>Initiated</u> Y	<u>Reviewed</u> Y N Y N Y N

Comments:

QUANTERRA-CALLAB LABORATORY Client Descriptions

Project #: 300681 Test: P-PAH-HR-AIR

0001SA - S-MM5-2-F,FH,XAD,COND,BH 0002SA - S-MM5-1B-F,FH,XAD,COND,BH 0003SA - T-MM5-2-F,FH,XAD,COND,BH 0004SA - T-MM5-FB-F,FH,XAD,COND,BH 0005SA - T-MM5-4-F,FH,XAD,COND,BH 0006SA - T-MM5-3-F,FH,XAD,COND,BH 0007SA - S-MM5-3-F,FH,XAD,COND,BH 0008SA - S-MM5-FB-F,FH,XAD,COND,BH 0010SA - S-MM5-RB-F,FH,XAD,COND,BH 0011SA - S-MM5-5-F,FH,XAD,COND,BH

QUANTERRA / W. SACRAMENTO

PROJECT OC LIMITS

Project: CALLAB-300681

Test Code: PAH-HR-AIR

	Pacific Environmental	mental Services	seal		מסרנזא:	ıx: Aık	Version: QC Category:	1 PAH-HR-AIR
Component Cost wine of the color of the col	1			urrogate/SCS		Lab Control (LCS)	Lab Control (DCS)	Matrix Spike
Component CASM win orth mis others of thems o	Modifie	d Date:				•		
* Naphthalene 91203 * 2-Methylnaphthalene 91576 * Acenaphthylene 208968 * Acenaphthylene 83329 * Fluorene 85018 * Phenanthrene 85018 * Anthracene 120127 * Fluoranthene 206440 * Pyrene 120000 * Benzo(a) Junthracene 1200992 * Benzo(b) Fluoranthene 200992 * Benzo(b) Fluoranthene 200992 * Benzo(b) Fluoranthene 199252 * Benzo(b) Fluoranthene 199250 * Dibenz (a, h) anthracene 198550 * Dibenz (a, h) anthracene 198550 * Acenaphthylene-dB 198550 * Acenaphthylene-dB 198550 * Acenaphthylene-dB 198550 * Fluorene-d10 1517222 50 50 * Fluorenthene-d10 1718521 50 50 * Pyrene 1718532 50 50 * Benzo(b) Fluoranthene-d12 1718532 * Benzo(c) Fluoranthene-d12 1718532 * Benzo(c) Fluoranthene-d12 1718532 * Benzo(c) Fluoranthene-d12 1718532 * Benzo(c) Fluoranthene-d12 1718532 * Benzo(a) Pyrene-d12 1718533 * Benzo(a) Pyrene-d12 1718533 * Benzo(a) Pyrene-d12 1718533 * Benzo(a) Pyrene-d12 1718534 * Benzo(a) Pyrene-d13 1718510 * Anthracene-d10 1718510 * Anthracene-d10 1718510 * Anthracene-d10 1718510 * Fluorene-d10 1718510 * Benzo(a) Pyrene-d12 1718510 * Anthracene-d13 1718510 * Anthracene-d10 1718510	Component	CASN wns oth	SUM	othwns othwn	is oth	wns othwns othwns oth	wns othwns othwns oth	wns othwns othwns oth
# 2-Nethylnaphthalene 91576 # Acenaphthylene 208968 # Acenaphthylene 208968 # Acenaphthylene 83329 # Fluorene 85018 # Anthracene 120127 # Fluoranthene 206440 # Pyrene 120127 # Fluoranthene 206440 # Pyrene 120127 # Benzo(a) Janthracene 207089 # Benzo(a) Janthracene 207089 # Benzo(a) Janthracene 207089 # Benzo(a) Janthracene 207089 # Benzo(b) Janthracene 207089 # Benzo(a) Janthracene 207089 # Acenaphthylene-dl0 93551974 # Acenaphthylene-dl0 15067202 # Acenaphthylene-dl0 15067202 # Fluoranthene-dl0 15067202 # Fluoranthene-dl0 1718521 50 50 # Fluoranthene-dl2 1718521 50 50 # Benzo(a) Janthracene-dl2 1718532 50 50 # Benzo(a) Janthracene-dl2 1718532 50 50 # Benzo(a) Janthracene-dl2 2559643396 # Indeno(12, a) Janthracene-dl2 1719088 # Benzo(a) Janthracene-dl2 1719088 # Benzo(a) Janthracene-dl2 1719088 # Indeno(12, a) Janthracene-dl2 1719088 # Indeno(12, a) Janthracene-dl2 1719088 # Anthracene-dl0 1719068 # Ant		91203				· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	
* Acenaphthylene 208968 * Acenaphthene 83329 * Fluorene 83329 * Phenanthrene 85018 * Phreamthrene 120127 * Fluoranthene 206440 * Pyrene 120000 * Benzo(a)anthracene 120000 * Benzo(b)fluoranthene 20592 * Benzo(b)fluoranthene 20592 * Benzo(b)fluoranthene 20592 * Benzo(b)fluoranthene 20592 * Benzo(b)fluoranthene 102038 * Chrysene 1020 * Phenanthrene 1020 * Fluorene 1020 * Fluorene 1030 * Pyrene 1030 * Py	2 * 2-Methylnaphthatene	91576						
# Acenaphthene 83329 # Fluorene 86737 # Phenanthrene 86737 # Fluoranthene 120127 # Fluoranthene 120127 # Fluoranthene 1206440 # Pyrene 120000 # Benzo(a)anthracene 120000 # Benzo(a)anthracene 120000 # Benzo(b)fluoranthene 207089 # Benzo(b)fluoranthene 207089 # Benzo(b)fluoranthene 102028 # Benzo(a)pyrene 102028 # Benzo(b)fluoranthene 102028 # Pyrene 102028 # Phenanthracene 1020202 # Fluorene-d10 1517222 50 50 # Phenanthrene-d10 1517222 50 50 # Fluoranthene-d10 1517222 50 50 # Phenanthrene-d10 1718531 50 50 # Pyrene-d10 1718532 50 50 # Phenanthrene-d12 1719035 50 50 # Phenanthrene-d12 1719035 50 50 # Phenanthrene-d12 1719035 50 50 # Benzo(a)anthracene-d12 1719035 50 50 # Benzo(a)anthracene-d12 1719036 50 50 # Benzo(a)anthracene-d12 17190467 50 50 # Anthraceme-d10 1719046 50 50 # Anthraceme-d10 1719046 50 50 # Anthraceme-d10 1719046 50 50 # Anthraceme-d10 17190467 50 50 # Anthraceme-d10 1719046 50 50 # Anthraceme-d10		208968						
# Fluorene 85737 # Phenanthrene 85018 Anthracene 120127 # Prior anthene 206440 # Pyrene 129000 # Prior anthene 218019 # Benzo(a) Juriuranthene 205992 # Benzo(b) Fluoranthene 205992 # Benzo(b) Fluoranthene 205992 # Benzo(a) Juriuranthene 205992 # Acenaphthy langhthal lene -d10 91576 # Acenaphthy langhthal lene -d10 91576 # Acenaphthy lene -d10 915067202 # Fluorene -d10 1517222 50 50 # Fluoranthene -d10 1517222 50 50 # Fluoranthene -d10 1517222 50 50 # Phenanthrene -d10 1718321 50 50 # Benzo(a) Juriuranthene -d12 1719035 50 50 # Benzo(a) Juriuranthene -d12 1719035 50 50 # Benzo(a) Juriuranthene -d12 1719048 # Benzo(a) Juriuranthene -d12 1719048 # Juriuranthracene -d1 13250981 50 50 # Anthracele -d12 1719048 # Anthracele -d12 1719048 # Anthracele -d10 1719059 # Anthracele -d10 171	*	83329						
# Phenanthrene 85018 Anthracene 120127 # Fluoranthene 206440 # Pyrene 129000 # Benzo(a)anthracene 129000 # Benzo(b)tluoranthene 207089 # Benzo(c)pyrene 192972 # Benzo(c)pyrene 192972 # Benzo(c)pyrene 192972 # Benzo(c)pyrene 192972 # Benzo(a)pyrene 192972 # Benzo(a)pyrene 192972 # Benzo(a)pyrene 192972 # Benzo(a)pyrene 192972 # Acenaphthyleapthalene-d10 192974 # Acenaphthylene-d8 19395104 # Acenaphthylene-d8 193951074 # Acenaphthylene-d10 15067202 # Fluoranthene-d10 1517222 # Fluoranthene-d10 1517222 # Benzo(a)ptrene-d12 1718332 # Benzo(a)ptrene-d12 1718332 # Benzo(b)tluoranthene-d12 1719035 # Benzo(c)ptrene-d12 1520963 # Anthracene-d10 1719068 # Anthracene-d10 1719068 # Anthracene-d10 1718510 50 50 # Anthracene-d10 1718510	*	86737						
# Fluoranthene	*	85018						
# Fluoranthene 206440 * Pyrene 129000 Benzo(a)anthracene 56553 * Chrysene 218019 * Benzo(b)fluoranthene 207089 * Benzo(b)fluoranthene 207089 * Benzo(b)fluoranthene 207089 * Benzo(b)fluoranthene 207089 * Benzo(a)pyrene 192972 * Benzo(a)pyrene 192872 * Dibenz(a,h)anthracene 191242 * Acenaphthylene-d10 191242 * Acenaphthylene-d10 191242 * Acenaphthene-d10 191242 * Benzo(a)pyrene-d12 1718231 * Benzo(a)pyrene-d12 1718232 * Benzo(a)pyrene-d12 1719035 * Benzo(a)pyrene-d12 1719035 * Benzo(a)pyrene-d12 1719035 * Benzo(a)pyrene-d12 1719038 * Anthracepte-d10 1719039		120127						
# Pyrene Benzo(a)anthracene 56553 * Chrysene 218019 * Benzo(b)fluoranthene 205992 * Benzo(a)pyrene 192972 * Benzo(a)pyrene 192972 * Benzo(a)pyrene 192972 * Benzo(a)pyrene 192850 * Dibenz(a,h)anthracene 193395 * Dibenz(a,h)anthracene 191242 * Acenaphthene-d10 91574 * Acenaphthene-d10 91576 * Acenaphthene-d10 1517222 * Fluoranthene-d10 1517222 * Fluoranthene-d12 1718310 * Ferylene-d12 50 50 * Perylene-d12 539943396 * Dibenz(a,h)anthracene-d12 13250981 * Benzo(a,h)anthracene-d12 13250981 * Anthracene-d10 1718510 * Anthracene-d10 1718510 * Anthracene-d10 1718510 * Ferylene-d12 50 50 * Ferylene-d12 50 50 * Ferylene-d13 50 50 * Ferylene-d14 50 50 * Ferylene-d15 50 50 * Ferylene-d15 50 50 * Ferylene-d16 50 50 * Ferylene-d17 50 50 * Ferylene-d17 50 50 * Ferylene-d18 50 50 * Ferylene-d19 50 50 * Ferylene-d10 50 50 * F	*	206440						
## Chrysene 218019 # Benzo(b)fluoranthene 205992 # Benzo(k)fluoranthene 207089 # Benzo(s)pyrene 192972 # Benzo(a)pyrene 192972 # Benzo(a)pyrene 192972 # Benzo(a)pyrene 193295 # Dibenz(a,h)anthracene 191242 # Dibenz(a,h)anthracene 191242 # Acenaphthylene-dl0 91576 50 50 # Acenaphthylene-dl0 91576 50 50 # Acenaphthylene-dl0 1517222 50 50 # Phenanthrene-dl0 1718521 50 50 # Phenanthrene-dl2 1718332 50 50 # Benzo(a)anthracene-dl2 1718532 50 50 # Benzo(a)anthracene-dl2 1718083 50 50 # Anthracene-dl2 171808 50 50 # Anthracene-dl2 1718510 50 50 # Anthracene-dl2 1718	*	129000						
# Chrysene 218019 * Benzo(b)fluoranthene 205902 * Benzo(c)fluoranthene 192972 * Benzo(a)pyrene 50328 * Peryiene 198550 Indeno(1,2,3-cd)pyrene 53703 * Dibenz(a,h)anthracene 191242 * Dibenz(a,h)anthracene 53703 * Benzo(a,h,i)perylene 191242 * Naphthalene-dB 191242 * Acenaphthylene-dB 91576 50 50 * Acenaphthylene-dB 93951974 50 50 * Acenaphthylene-d10 1517222 50 50 * Fluorene-d10 1517222 50 50 * Phenanthrene-d10 93951690 ng 50 * Phenanthrene-d10 1718521 50 50 * Benzo(a)ptrene-d12 1719035 50 50 * Benzo(a)ptrene-d12 1719035 50 50 * Benzo(a)ptrene-d12 1719086 50 50 * Dibenz(a,h)anthracene-d1 1719068 50 50 * Anthracepte-d10 1719068 50 * Anthracepte-d10 1719068 50 50 * Anthracepte-d10 1719068 50		56553						
* Benzo(b)fluoranthene 205992 * Benzo(x)fluoranthene 192972 * Benzo(a)pyrene 192972 * Benzo(a)pyrene 198550 * Dibenz(a,h)anthracene 198550 * Dibenz(a,h)anthracene 191242 * Benzo(a,h,i)perylene 191242 * Acenaphthylene-dib 91576 * Acenaphthylene-dib 91576 * Acenaphthylene-dib 15067202 * Fluorene-dib 15165203 * Phenanthrene-dib 15165203 * Benzo(a)pyrene-dib 1526963 * Benzo(a)pyrene-dib 1526963 * Indeno(123-cd)pyrene-dib 1526963 * Benzo(a)pyrene-dib 1526963 * Benzo(a)pyrene-dib 1526963 * Herylene-dib 1526963 * Anthracepie-dib 1719068 * Terphendib 1719068	*	218019						
* Benzo(k)fluoranthene 192972 * Benzo(a)pyrene 192972 * Benzo(a)pyrene 198550 * Dibenz(a,h)anthracene 193295 * Dibenz(a,h)anthracene 191242 * Benzo(a,h,i)perylene 191242 * Acnaphthylene-dl0 91576 * Acnaphthylene-dl0 91576 * Acnaphthylene-dl0 91576 * Acnaphthylene-dl0 15067202 * Fluoranthene-dl0 1517222 * Fluoranthene-dl0 1718521 * Benzo(a)anthracene-dl2 1718522 * Benzo(a)anthracene-dl2 1718532 * Benzo(a)anthracene-dl2 1718533 * Benzo(a)anthracene-dl2 1718533 * Benzo(b)anthracene-dl2 1718510 * Benzo(a)anthracene-dl2 1718510	*	205992						
* Benzo(e)pyrene 192972 * Benzo(a)pyrene 50328 * Perylene 193395 * Dibenz(a,h)anthracene 53703 * Benzo(g,h,i)perylene 191242 * Benzo(g,h,i)perylene 191242 * Acenaphthylene-d30 91376 50 50 * Acenaphthylene-d30 91376 50 50 * Acenaphthylene-d30 1517222 50 50 * Phenanthrene-d30 1517222 50 50 * Phenanthrene-d30 1718521 50 50 * Pyrene-d30 1718521 50 50 * Benzo(a)anthracene-d32 1718532 50 50 * Benzo(a)anthracene-d32 1718530 50 50 * Benzo(a)anthracene-d32 1520963 50 50 * Benzo(a)pyrene-d32 1520963 50 50 * Dibenz(a,h)anthracene-d3 1719068 50 50 * Anthracaje-d30 1718510 50 50 * Terpheny(a)alth 1718510 50 50	*	207089						
# Benzo(a)pyrene 198550 Indeno(1,2,3-cd)pyrene 198550 Indeno(1,2,3-cd)pyrene 191242 # Dibenz(a,h)anthracene 53703 # Benzo(a,h,i)perylene 191242 # Acenaphthylene-dl0 91576 50 50 # Acenaphthylene-dl0 91576 50 50 # Acenaphthylene-dl0 91575 50 50 # Fluoranthene-dl0 151067202 # # # # Honanthrene-dl0 81103799 50 50 # Pyrene-dl0 1718521 50 50 # Benzo(a)anthracene-dl2 1719035 50 50 # Benzo(a)anthracene-dl2 93951985 50 50 # Benzo(a)pyrene-dl2 93951985 50 50 # Benzo(a)pyrene-dl2 1520963 50 50 # Benzo(a)pyrene-dl2 1520963 50 50 # Indeno(123-cd)pyrene-dl2 -559943396 50 50 # Indeno(123-cd)pyrene-dl2 -559943396 50 50 # Anthracene-dl0 1719068 50 50 # Anthracene-dl0 50 50 50 # Terphendl-dl0 50 50 50 50 50 # Terphendl-dl0 50 50 50 50 50 50 50 50 50 50 50 50 50	*	192972						
* Perylene 198550 Indeno(1,2,3-cd)pyrene 193395 * Dibenz(a,h)anthracene 53703 * Benzo(a,h,i)perylene 191242 * Benzo(a,h,i)perylene 191242 * Acenaphthylene-dl0 91576 50 50 * Acenaphthylene-dl0 91576 50 50 * Acenaphthylene-dl0 91576 50 50 * Fluoranthene-dl0 151067202 * * * * Fluoranthene-dl0 93951974 50 50 * Pyrene-dl0 81103799 50 50 * Phenanthracene-dl2 1718521 50 50 * Benzo(a)anthracene-dl2 1719035 50 50 * Benzo(a)anthracene-dl2 93951985 50 50 * Benzo(a)pyrene-dl2 93951985 50 50 * Benzo(a)pyrene-dl2 93951087 50 50 * Indeno(123-cd)pyrene-dl2 1520963 50 50 * Indeno(123-cd)pyrene-dl2 1520963 50 50 * Benzo(a,h)anthracene-dl 13250981 50 50 * Anthracene-dl0 1719068 50 50 * Terphendl-dl4 1718510 50 50	*	50328						
## Dibenz(a,h)anthracene	*	198550						
* Dibenz(a,h)anthracene 191242 * Benzo(a,h,i)perylene 191242 Naphthalene-d8 1146652 50 50 * 2-Methylnaphthalene-d10 91576 50 50 * Acenaphthylene-d8 93951974 50 50 * Acenaphthylene-d10 15067202 * * * * Fluorene-d10 1517222 50 50 * Phenanthrene-d10 93951690 ng 50 * Phranthracene-d10 1718521 50 50 * Phranthracene-d12 1719035 50 50 * Benzo(a)anthracene-d12 1719035 50 50 * Benzo(a)pyrene-d12 9395103 50 50 * Benzo(a)pyrene-d12 1520963 50 50 * Indeno(123-cd)pyrene-d12 1520963 50 50 * Indeno(123-cd)pyrene-d12 1520963 50 50 * Dibenz(a,h)anthracene-d1 13250981 50 50 * Anthracene-d10 1719068 50 50 * Terphend1-d14 1718510 50 50		193395						
* Benzo(g,h,i)perylene 191242 Naphthalene-d8 1146652 50 50 * 2-Nethylnaphthalene-d10 91576 50 50 * Acenaphthylene-d8 93951974 50 50 * Acenaphthene-d10 15067202 * * * * Fluorene-d10 1517222 50 50 * Phenanthrene-d10 1517222 50 50 * Fluoranthene-d10 93951690 ng 50 * Fluoranthene-d10 1718521 50 50 * Benzo(a)anthracene-d12 1719035 50 50 * Benzo(a)pyrene-d12 93951935 50 50 * Benzo(b)fluoranthene-d12 9395103 50 50 * Benzo(a)pyrene-d12 1520963 50 50 * Indeno(123-cd)pyrene-d12 1520963 50 50 * Dibenz(a,h)anthracene-d1 13250981 50 50 * Anthracene-d10 1719068 50 50 * Terphenti-d10 1719068 50 50	*	53703						
**Acenaphthylene-d8	*	191242						
* 2-Wethylnaphthalene-d10 91576 50 50 * Acenaphthylene-d8 93951974 50 50 * Acenaphthylene-d10 15067202 * * * * Fluorene-d10 1517222 50 50 * Phenanthrene-d10 93951690 ng 50 * Pyrene-d10 1718521 50 50 * Pyrene-d10 1718521 50 50 * Benzo(a)anthracene-d12 1718532 50 50 * Benzo(a)anthracene-d12 1719035 50 50 * Benzo(b)fluoranthene-d12 9395103 50 50 * Benzo(x)fluoranthene-d12 9395103 50 50 * Benzo(x)fluoranthene-d12 9395103 50 50 * Benzo(x)fluoranthene-d12 93951067 50 50 * Indeno(123-cd)pyrene-d12 -559943396 50 50 * Dibenz(a,h)anthracene-d1 13250981 50 50 * Anthracene-d10 1719068 50 50 * Anthracene-d10 1719068 50 50 * Anthracene-d10 1719068 50 50		1146652	20		0			
* Acenaphthylene-d8 93951974 50 50 * Acenaphthene-d10 15067202 * * * * Fluorene-d10 81103799 50 50 * Phenanthrene-d10 1517222 50 50 * Phenanthrene-d10 93951690 ng 50 * Pyrene-d10 1718521 50 50 * Benzo(a)anthracene-d12 1718532 50 50 * Benzo(b)fluoranthene-d12 93951935 50 50 * Benzo(b)fluoranthene-d12 93951935 50 50 * Benzo(c)fluoranthene-d12 93951936 50 50 * Benzo(a)pyrene-d12 559943396 50 50 * Indeno(123-cd)pyrene-d12 -559943396 50 50 * Dibenz(a,h)anthracene-d1 13250981 50 50 * Anthracene-d10 1719068 50 50 * Anthracene-d10 1719068 50 50 * Anthracene-d10 1719068 50 50 * Terphent d10 1718510 50 50	#	91576	20		0			
* Acenaphthene-d10 15067202 * * * * * * * * * * * * * * * * * *	#	93951974	20		0			
* Fluorene-d10 81103799 50 50 * Phenanthrene-d10 1517222 50 50 * Fluoranthene-d10 93951690 ng 50 * Pyrene-d10 1718521 50 50 * Benzo(a)anthracene-d12 1718532 50 50 * Benzo(b)fluoranthene-d12 93951985 50 50 * Benzo(b)fluoranthene-d12 93952013 50 50 * Benzo(c)fluoranthene-d12 93952013 50 50 * Benzo(c)fluoranthene-d12 93952013 50 50 * Indeno(123-cd)pyrene-d12 -559943396 50 50 * Dibenz(a,h)anthracene-d1 13250981 50 50 * Anthracene-d10 1719068 50 50 * Anthracene-d10 1719068 50 50 * Anthracene-d10 1719068 50 50 * Terphendi-d14 1718510 50 50	*	15067202	*					
# Phenanthrene-d10	*	81103799	20		0			
# Fluoranthene-d10 93951690 ng 50 # Pyrene-d10 1718521 50 50 # Benzo(a)anthracene-d12 1718532 50 50 # Chrysene-d12 1719035 50 50 # Benzo(b)fluoranthene-d12 93951985 50 50 # Benzo(a)pyrene-d12 93952013 50 50 # Perylene-d12 1520963 50 50 # Indeno(123-cd)pyrene-d12 -559943396 50 50 # Dibenz(a,h)anthracene-d1 13250981 50 50 # Benzo(g,h)anthracene-d1 1719068 50 50 # Anthracene-d1 1719068 50 50 # Terpheno(1-3-d14 1718510 50 50		1517222	20		0			
# Pyrene-d10 1718521 50 50	*	93951690	ğ		0			
** Benzo(a)anthracene-d12 1718532 50 50 ** Chrysene-d12 1719035 50 50 ** Benzo(b)fluoranthene-d12 93951985 50 50 ** Benzo(a)pyrene-d12 93952013 50 50 ** Perylene-d12 1520963 50 50 ** Indeno(123-cd)pyrene-d12 -559943396 50 50 ** Dibenz(a,h)anthracene-d1 13250981 50 50 ** Benzo(g,h,a)anthracene-d1 13250981 50 50 ** Anthracene-d10 1719068 50 50 ** Anthracene-d10 1719068 50 50 ** Terphenxi d14 1718510 50 50	*	1718521	20		0			
# Chrysene-d12 1719035 50 50	#	1718532	S S		0			
* Benzo(b)fluoranthene-dl2 93951985 50 50 * Benzo(k)fluoranthene-dl2 93952013 50 50 * Benzo(a)pyrene-dl2 63466717 50 50 * Perylene-dl2 1520963 50 50 * Indeno(123-cd)pyrene-dl2 -559943396 50 50 * Dibenz(a,h)anthracene-dl 13250981 50 50 * Benzo(g,h,h)anthracene-dl 1719068 50 50 * Anthracene-dl0 1719068 50 50 * Terphentel-dl4 1718510 50 50	#	1719035	20		0			
* Benzo(k)fluoranthene-d12 93952013 50 50 * Benzo(a)pyrene-d12 63466717 50 50 * Perylene-d12 1520963 50 50 * Indeno(123-cd)pyrene-d12 -559943396 50 50 * Dibenz(a,h)anthracene-d1 13250981 50 50 * Benzo(g,h,i)perylene-d12 93951667 50 50 * Anthracene-d10 1719068 50 50 * Terphendi-d14 1718510 50 50	#	93951985	20		0			
* Benzo(a)pyrene-d12 63466717 50 50 * Perylene-d12 1520963 50 50 * Indeno(123-cd)pyrene-d12 -559943396 50 50 * Dibenz(a,h)anthracene-d1 13250981 50 50 * Benzo(g,h,i)perylene-d12 93951667 50 50 * Anthracene-d10 1719068 50 50 * Terphendi-d14 1718510 50 50	*	93952013	20		0			
* Perylene-di2 1520963 50 50 * Indeno(123-cd)pyrene-di2 -559943396 50 50 * Dibenz(a,h)anthracene-di 13250981 50 50 * Benzo(g,h,i)perylene-di2 93951667 50 50 * Anthracene-di0 1719068 50 50 * Terphendid4 118510 50 50	*	63466717	20					
* Indeno(123-cd)pyrene-d12 -559943396 50 50 * Dibenz(a,h)anthracene-d1 13250981 50 50 * Benzo(g,h,i)perylene-d12 93951667 50 50 * Anthracene-d10 1719068 50 50 * Terphendi-d14 1718510 50 50	*	1520963	20		0			
* Dibenz(a,h)anthracene-d1 13250981 50 50 * Benzo(g,h,i)perylene-d12 93951667 50 50 * Anthracene-d10 1719068 50 50 * Terphened-d14 1718510 50 50	*	-559943396	20					
* Benzo(g.h.i)perylene-d12 93951667 50 50 * Anthraceme-d10 1719068 50 50 * Terphenki d14 1718510 50 50		13250981	2		_			
* Anthracepe-d10 1719068 50 50 * Terphent -d14 1718510 50 50	*	93951667	20	•	0			
* lerphent -d14 1718510 50 50	* 1	1719068	S		_			
	k	1718510	20		_			

PROJECT	300 681	Volumes	
SAMPL ID#	TH MUSE	BH RINST	JUD VOL
300681 - 1	204	78	اد
Z	81	105	950
3	154	107	500
4	59	60	200
5	٦/	106	218
6	74	62	450
7	95	71	IL 890 950 2840
E	103	73	23%
9	See B	elou	
10	(e)	96	500 500 525 (1525)
11	50	34	750 500 293 = 1543

9 Methonil = 140. ml Rengent Hanks, Metho = 123 DI Hzo = 124 Mellz/Methonil = 160

!			

TECHNICAL REPORT DAT Please read instructions on the reverse before co		
1. REPORT NO. 2. EPA-454/R-00-025D		3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE Final Report Hot Mix Asphalt Plants, Truck Loading and Silo Filling, Manual Methods Testing,	5. REPORT DATE May 2000	
Asphalt Plant C, Los Angeles, California Volume 4 of 8		6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S) Frank J. Phoenix		8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS Pacific Environmental Services, Inc. Post Office Box 12077 Research Triangle Park, North Carolina 27709-2077		10. PROGRAM ELEMENT NO.
		11. CONTRACT/GRANT NO. 68-D-98004
12. SPONSORING AGENCY NAME AND ADDRESS U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division Research Triangle Park, North Carolina 27711		13. TYPE OF REPORT AND PERIOD COVERED Final
		14. SPONSORING AGENCY CODE EPA/200/04
15. SUPPLEMENTARY NOTES		

16. ABSTRACT

The United States Environmental Protection Agency (EPA) Office of Air Quality Planning and Standards (OAQPS) is investigating hot mix asphalt plants to identify and quantify particulate matter (PM), methylene chloride extractable matter (MCEM), and organic hazardous air pollutant (IIAP) emissions during asphalt concrete loading operations. In support of this investigation, the OAQPS issued Pacific Environmental Services, Inc. (PES) a series of work assignments to conduct emissions testing at a hot mix asphalt plant during load-out operations.

The primary objective of the emissions testing was to characterize the uncontrolled emissions of PM, MCEM, polynuclear aromatic hydrocarbons (PAHs), semi-volatile organic hazardous air pollutants (SVOHAPS), and volatile organic hazardous air pollutants (VOHAPS) from a hox mix production plant during loading operations. An asphalt plant south of Los Angeles, California was selected by EPA as the host facility. Testing was performed over five consecutive days beginning on July 24, 1998. Testing was performed under two conditions. Under normal operations, testing was performed to characterize load-out emissions from the tunnel exhaust and load-in emissions from the asphalt concrete storage silo. Under background conditions, testing was performed to characterize emissions from the combustion of diesel fuel in transport trucks.

The entire report consists of eight volumes totaling 4,234 pages, Vol. I (388 pages), Vol. 2 (308 pages), Vol. 3 (573 pages), Vol. 4 (694 pages), Vol. 5 (606 pages), Vol. 6 (564 pages), Vol. 7 (570 pages), and Vol. 8 (531 pages).

17.	KEY WORDS AND DOCUMENT ANALYSIS		
a. DESCRIPTIONS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COASTI Field/Group	
Hazardous Air Pollutants Methylene Chloride Extractable Matter Particulate Matter Polynuclear Aromatic Hydrocarbons Semi-volatile Organic Hazardous Air Pollutants Volatile Organic Hazardous Air Pollutants			
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) Unclassified	21. NO. OF PAGES Vol. 4 - 694	
Unlimited	20. SECURITY CLASS (This page) Unclassified	22. PRICE	