

Final Risk Evaluation for Asbestos Part 1: Chrysotile Asbestos

Systematic Review Supplemental File:

Data Quality Extraction of Environmental Fate and Transport Studies

December 2020

Table of Contents

Table 1. Other Fate Endpoints Study Summary for Chrysotile Asbestos	. 3
Table 2. Hydrolysis Study Summary for Chrysotile Asbestos	.4
Table 3. Aquatic Bioconcentration Study Summary for Chrysotile Asbestos	. 7
References	. 9

System	Study Type (year)	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Non guideline, experimental study; the effect of lichen colonization on chrysotile structure is investigated by analyzing the composition of both colonized and uncolonized field samples. The effect of oxalic acid exposure on chrysotile structure is also investigated at various concentrations.	Chrysotile fibers were incubated in oxalic acid solutions for 35 days to observe its effect on MgO content. Chrysotile (both uncolonized or colonized by lichens) from 3 serpentinite outcrops and one asbestos cement roof were collected.	In the three asbestos outcrops and asbestos-cement roof, MgO content (wt %) was lower by 15-20% in lichen colonized chrysotile than in uncolonized chrysotile. Incubation in 50 mM oxalic acid transformed chrysotile fibers into "an amorphous powdery material, consisting mainly of pure silica", and without fibrous nature.	The reviewer agreed with this study's overall quality level.	(<u>Favero-</u> <u>Longo et</u> <u>al., 2005,</u> <u>3520647</u>)	High
Non guideline, experimental study; oxalic acid and citric acid leaching of asbestos rich sediment	Chrysotile asbestos rich sediment and a serpentine bedrock sample underwent leaching in 0.025 M oxalic acid and 0.017 M citric acid. Total elemental analysis was performed using inductively coupled plasma spectrometry (ICPS), individual fiber analysis was done using energy dispersive x-ray analysis (EDX) and a scanning and transmission electron microscope (STEM).	ICPS results showed citric acid was slightly more effective at removing most metals from the sediment samples than oxalic acid; however, EDX analysis of individual fibers showed Mg/Si ratios were reduced from 0.68-0.69 to 0.07 by oxalic acid and only to 0.38 by citric acid.	The reviewer agreed with this study's overall quality level.	(<u>Schreier et</u> <u>al., 1987,</u> <u>1917037</u>)	High

Table 1. Other Fate Endpoints Study Summary for Chrysotile Asbestos

System	Study Type (year)	Results	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Non-guideline, experimental study; decomposition study of asbestos in 25% acid or caustic solutions	Chrysotile, crocidolite, amosite, anthophyllite, actinolite, and tremolite asbestos fibers were dissolved in 25% acid or NaOH solution	Degradation in 25% HCl, acetic acid, H ₃ PO ₄ , H ₂ SO ₄ and NaOH, respectively was reported for Chrysotile (55.69, 23.42, 55.18, 55.75 and 0.99%), Crocidolite (4.38, 0.91, 4.37, 3.69 and 1.35%), Amosite (12.84, 2.63, 11.67, 11.35 and 6.97%), Anthophyllite (2.66, 0.60, 3.16, 2.73 and 1.22%), Actinolite (20.31, 12.28, 20.19, 20.38 and 9.25%) and Tremolite (4.77, 1.99, 4.99, 4.58 and 1.80%).	Due to limited information assessing the results were challenging.	(<u>Speil and</u> <u>Leineweber,</u> <u>1969,</u> <u>5353620</u>)	Unacceptable

Table 2. Hydrolysis Study Summary for Chrysotile Asbestos

Study Type (year)	рН	Temperature	Duration	Results	Comments	Affiliated Reference	
Non-guideline, experimental study; dissolution of chrysotile and crocidolite asbestos in water at various pH and temperatures.	7, 7, 7, 9, and 4 for experiments 1-5, respectively	44, 6, 25, 25, and 25°C for experiments 1-5, respectively	170 or 1024 hours	170-hour study results evaluating Mg removal from Chrysotile (proportion of 1 layer): Experiments 1- 4: 0.32-0.94. Experiment 5 (pH 4, 25°C): 8.84 170-hour study results evaluating Si removal from Chrysotile (proportion of 1 layer): Experiments 1- 4: 0.5-0.25.	The reviewer agreed with this study's overall quality level.	(<u>Gronow,</u> <u>1987,</u> <u>5353542</u>)	High

Study Type (year)	рН	Temperature	Duration	Results	Comments	Affiliated Reference	
				Experiment 5: 5.05. 170-hour study results evaluating Mg removal from Crocidolite (proportion of 1 layer): Experiments 1- 5: 0.42-1.80. 170-hour study results evaluating Si removal from Crocidolite (proportion of 1 layer): 0.03- 0.56. 1024-hour results (proportion of 1 layer): 0.03- 0.56. 1024-hour results (proportion of on layer removed) for experiment 3 only: Chrysolite, Mg: 0.94; Si: 0.36 Crocidolite, Mg: 1.42; Si: 0.37			
Non-guideline; dissolution study; sample size, temperature and pH evaluated; pH change over time compared for asbestos minerals, amosite and crocidolite and chrysotile	5.9-6.1 (initial)	5 to 45 °C	20 min; 1000 hours	Rate of dissolution is a function of surface area and temperature. Mg ²⁺ may be continuously liberated from fibers leaving a silica skeleton. The rate- controlling step was determined to be removal of brucite layer. Smaller particles liberated more magnesium.	The reviewer agreed with this study's overall quality level.	(<u>Choi and</u> <u>Smith,</u> <u>1972,</u> <u>4140459</u>)	High
Non guideline;	Not reported	Not reported but	3-5 days	Chrysotile in	The	(Bales	High

Study Type (year)	рН	Temperature	Duration		Comments	Affiliated Reference	
experimental study; a particle electrophoresis apparatus was used to monitor absorption properties of chrysotile asbestos aging in water	but held constant	held constant		natural water acquires a negative surface charge by rapid adsorption of natural organic matter (<1 day). Positively charged >Mg- OH ²⁺ sites are removed by dissolution in the outer brucite sheet resulting in exposure of underlying >SiO ⁻ sites.	reviewer agreed with this study's overall quality level.	<u>and</u> <u>Morgan,</u> <u>1985,</u> <u>3582724</u>)	

Study Type (year)	Initial Concentration	Species	Duration	Result	Comments	Affiliated Reference	Data Quality Evaluation Results of Full Study Report
Non- guideline; experimental study; uptake monitoring of chrysotile asbestos in Coho and juvenile green sunfish	1.5×10 ⁶ and 3.0×10 ⁶ fibers/L	Coho salmon (<i>Oncorhynchus</i> <i>kisutch</i>) and juvenile green sunfish (<i>Lepomis</i> <i>cyanellus</i>)	Coho salmon: 86 and 40 days; Green sunfish: 67 and 52 days	Asbestos fibers were found in the asbestos- treated fish by transmission electron microscopy (TEM); however total body burdens were not calculated. Sunfish lost scales and had epidermal tissue erosion. Asbestos fibers were not identified in control or blank samples.	The reviewer agreed with this study's overall quality level.	(<u>Belanger</u> <u>et al.,</u> <u>1986c,</u> <u>3584231</u>)	High
Non- guideline; experimental study; uptake monitoring of chrysotile by Asiatic clams	2.5×10 ⁸ - 8.8×10 ⁹ fibers/L	Asiatic clams (<i>Corbicula</i> sp.)	96-hours and 30- days	Chrysotile asbestos was detected in clams at 69.1±17.1 fibers/mg whole body homogenate after 96 hours of exposure to 10 ⁸ fibers/L and food. Chrysotile asbestos was detected in clams after 30 days of exposure to 10 ⁸ fibers/L at 147.3±52.6 fibers/mg dry weight gill tissue and 903.7±122.9 fibers/mg dry weight visceral	The reviewer agreed with this study's overall quality level.	(<u>Belanger</u> <u>et al.,</u> <u>1986b,</u> <u>3093600</u>)	High

Table 3. Aquatic Bioconcentration Study Summary for Chrysotile Asbestos

asbestos	concentrations, quality
uptake study	fish total body level.
in Japanese	burden was
Medaka	375.7
	fibers/mg. After
	3 months of
	exposure to
	chrysotile
	asbestos at 10^8
	fibers/L
	concentrations,
	fish total body
	burden was
	486.4±47.9
	fibers/mg.

References

- Bales, RC; Morgan, JJ. (1985). Surface-charge and adsorption properties of chrysotile asbestos in naturalwaters. Environ Sci Technol 19: 1213-1219.
- Belanger, SE; Cherry, DS; Cairns, J. (1990). Functional and pathological impairment of japanese medaka (oryzias-latipes) by long-term asbestos exposure. Aquat Toxicol 17: 133-154.
- Belanger, SE; Cherry, DS; Cairns J, J. R. (1986a). Seasonal behavioral and growth changes of juvenile Corbicula-fluminea exposed to chrysotile asbestos. Water Res 20: 1243-1250.
- Belanger, SE; Cherry, DS; Cairns J, J. R. (1986b). Uptake of chrysotile asbestos fibers alters growth and reproduction of Asiatic clams. Can J Fish Aquat Sci 43: 43-52. http://dx.doi.org/10.1139/f86-006
- Belanger, SE; Cherry, DS; Cairns, J; Mcguire, MJ. (1987). Using Asiatic clams as a biomonitor for chrysotile asbestos in public water supplies. J Am Water Works Assoc 79: 69-74. http://dx.doi.org/10.1002/j.1551-8833.1987.tb02817.x
- Belanger, SE; Schurr, K; Allen, DJ; Gohara, AF. (1986c). Effects of chrysotile asbestos on coho salmon and green sunfish: evidence of behavioral and pathological stress. Environ Res 39: 74-85.
- Choi, I; Smith, RW. (1972). Kinetic study of dissolution of asbestos fibers in water. J Colloid Interface Sci 40: 253-262. <u>http://dx.doi.org/10.1016/0021-9797(72)90014-8</u>
- <u>Favero-Longo, SE; Turci, F; Tomatis, M; Castelli, D; Bonfante, P; Hochella, MF; Piervittori, R; Fubini,</u>
 <u>B.</u> (2005). Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. J Environ Monit 7: 764-766.
 <u>http://dx.doi.org/10.1039/b507569f</u>
- <u>Gronow, JR.</u> (1987). The dissolution of asbestos fibres in water. Clay Miner 22: 21-35. <u>http://dx.doi.org/10.1180/claymin.1987.022.1.03</u>
- Schreier, H; Omueti, JA; Lavkulich, LM. (1987). Weathering processes of asbestos-rich serpentinitic sediments. Soil Sci Soc Am J 51: 993-999.

http://dx.doi.org/10.2136/sssaj1987.03615995005100040032x

Speil, S; Leineweber, JP. (1969). Asbestos minerals in modern technology. Environ Res 2: 166-208. http://dx.doi.org/10.1016/0013-9351(69)90036-x