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Research Drivers

• There are many chemicals in U.S. commerce with the potential to enter the environment that are poorly 
characterized in terms of human health hazards.

• Traditional toxicity testing approaches in laboratory animals are expensive and time-consuming and therefore 
cannot be used to efficiently address this large data gap.

• Animal-free New Approach Methods (NAMs) provide a means for accelerating the pace of chemical hazard 
assessment using models anchored in human biology.

• EPA has been tasked with and is committed to reducing the use of animals in toxicity testing and expanding 
the use of NAMs in chemical risk assessment

• (June ‘16) Frank R. Lautenberg Chemical Safety for the 21st Century Act (15 U.S.C. §2601)
• (June ‘18) US EPA Strategic Plan to Promote the Development and Implementation of Alternative Test 

Methods within the TSCA Program (EPA-740-R1-8004).
• (Sept ‘19) Administrator’s Directive to Prioritize Efforts to Reduce Animal Testing (Wheeler 2019)
• (June ‘20) US EPA New Approach Methods Work Plan (EPA 615B2000) 3



NAMs-Based, Tiered Hazard Evaluation Strategy

• New Approach Methodologies (NAMs) are any
technology, methodology, approach or combination
thereof that can be used to provide information on
chemical hazard and risk that avoids the use of
intact animals.

• US EPA CompTox Blueprint advocates the use of
high throughput profiling (HTP) assays as the first
tier in a NAMs-based hazard evaluation strategy.

• HTP assay criteria:
1. Yield bioactivity profiles that can be used for

potency estimation, mechanistic prediction
and evaluation of chemical similarity.

2. Compatible with multiple human-derived
culture models.

3. Concentration-response screening mode.

The NexGen Blueprint of CompTox at USEPA, Tox. Sci. 2019; 169(2):317-322 4



• A high-throughput testing strategy where rich information present in biological images is reduced to 
multidimensional numeric profiles and mined for information characteristic to a chemical’s biological activity.

• Originated in the pharmaceutical sector and has been used in drug development to understand disease 
mechanisms and predict chemical activity, toxicity and/or mechanism-of-action

Imaging-Based High-Throughput Phenotypic Profiling 
(HTPP)

Chandrasekaran et al. Nat Rev Drug Discov. 2020 Dec 22:1–15
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HTPP with the Cell Painting Assay

Golgi + membrane 
+ actin skeleton DNA RNA + ER Mitochondria

1300 features

Cell Painting is a profiling method that
measures a large variety of phenotypic
features in fluoroprobe labeled cells in vitro.

• High-throughput

• Cost-effective (¢ / well)

• Scalable

• Reproducible

• Amenable to lab automation

• Deployable across multiple human-
derived cell types.

• Infrastructure investment

• High volume data management

Laboratory & bioinformatics workflows for
conduct of this assay have been established
at CCTE.
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Imaging & Phenotypic Feature Extraction

1300 features / cell

With illustrations from Perkin Elmer
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Examples of Chemical Induced Phenotypes

Adapted from Nyffeler et al. Toxicol Appl Pharmacol. 2020 Jan 15;389:114876

• Strong phenotypes are observed qualitatively and produce distinct profiles when measured quantitatively.

Mitochondrial Compactness Golgi Texture Cell Swelling Cell Compaction
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HTPP Data Analysis Pipeline

Data reduction

cell-level data

normalized
cell-level data

well-level data

cell value – medianDMSO

1.4826 MADDMSO

Concentration Response Modeling

Fit Multiple Curve 
Shapes

Best Model 
Selection

BMC

scaled 
well-level data

Cell Count Info
Conc. > 50% cell loss

Berberine chloride
Mito_Cells_Morph_STAR

Normalization
MAD normalization

Aggregation
median

Standardization
Z transformation

clipped 
well-level data

See Nyffeler et al. SLAS Discov. 2020 Aug 
29: doi: 10.1177/2472555220950245

Calculate Response 
Metrics
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Phenotype Altering Concentration (PACs)

Mahalanobis Distance (DM): 

• A multivariate distance metric that measures the distance between a point (vector) and a distribution. 

• Accounts for unpredictable changes in cell states across test concentrations and inherent correlations in profiling data.

1300 features

group them in 
49 categories

derive a Mahalanobis distance
(relative to control wells)

derive a Mahalanobis distance
(relative to control wells)

1 BMC

49 BMCs

BPAC

Global Mahalanobis

Category-level Mahalanobis

Feature-level 
fitting

• Chemicals where a BMC can be determined using either the global or category DM approach are considered active.

• The minimum of the global or most sensitive category BMC is the Phenotype Altering Concentration (PAC)
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Concentration-Response Modeling Example

• Phenotypic effects can be observed below the threshold for cytotoxicity and in the absence of cytostatic effects.

• Category and feature-level modeling can reveal which organelles exhibit treatment-related changes in morphology. 11



ToxCast Chemical Screen – Experimental Design (1)

Parameter Multiplier Notes

Cell Type(s) 1 U-2 OS

Culture Condition 1 DMEM + 10% HI-FBS

Chemicals 1,202

Selected from US EPA ToxCast chemical collection

Includes 179 chemicals with annotated molecular targets

Includes 462 APCRA case study chemicals

Time Points: 1 24 hours

Assay Formats: 2
High Throughput Phenotypic Profiling (Cell Painting)

High Throughput Transcriptomics (TempO-Seq)

Concentrations: 8 3.5 log10 units; ~half-log10 spacing

Biological Replicates: 4 --

Kavlock et al. (2018)
Chem. Res. Tox; 31(5): 287-290

International collaboration of regulatory scientists focused on next generation chemical risk 
assessment including deriving quantitative estimates of risk based on NAM-derived potency 
information and computational exposure estimates.

APCRA Chemicals
PK parameters necessary for in vitro to in vivo extrapolation (IVIVE) 
in vivo toxicity data   12



ToxCast Chemical Screen – Experimental Design (2)

Label Reference Chemicals: Molecular Mechanism-of-Action Test Concentrations

A Etoposide DNA topoisomerase inhibitor 0.03 - 10 µM

B all-trans-Retinoic Acid Retinoic acid receptor agonist 0.0003 – 1 µM

C Dexamethasone Glucocorticoid receptor agonist 0.001 – 3 µM

D Trichostatin A Histone deacetylase inhibitor 1 µM

E Staurosporine Cytotoxicity control 1 µM

F DMSO Vehicle control 0.5 %

Treatment 
Randomization

13



Assay Performance / Reproducibility

• Reference chemicals produce reproducible and distinct profiles.

• Reference chemicals produce reproducible potency estimates (PACs).
14



ToxCast Chemical Screening Results

Preliminary results. Do not cite or quote.

• Chemicals active in HTPP are more often ‘promiscuous’ in ToxCast.

• Chemicals active in HTPP produce less potency PACs compared to ToxCast. 
15



In Vitro to In Vivo Extrapolation (IVIVE)

HTPP BPAC 
(µM)

In vitro-to-in vivo 
extrapolation (IVIVE)

high-throughput toxicokinetics (httk)

HTPP AED 
(mg/kg bw/day)

in vivo  point-of-departure

Database of in vivo effect values (EPA 
– ToxValDB)
• Mammalian species
• oral exposures
• Various study types
• NOEL, LOEL, NOAEL, LOAEL
• mg/kg/day

Toxcast BPAC 
(µM)

Toxcast AED 
(mg/kg bw/day)

Toxicological 
threshold of 

concern 
(TTC)

Exposure predictions
(EPA ExpoCast)
• Systematic Empirical Evaluation 

of Models (SEEM) version 3
• Inferred from human 

biomonitoring data, production 
volume and use categories 
(industrial / consumer use)

Predicted exposure New approach methodologies (NAMs)

POD: point-of-departure
AED: administered equivalent dose
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Bioactivity to Exposure Ratio (BER) Analysis

𝐁𝐢𝐨𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲 𝐞𝐱𝐩𝐨𝐬𝐮𝐫𝐞 𝐫𝐚𝐭𝐢𝐨 (𝐁𝐄𝐑) =
lower bound of HTPP bioactivity

upper bound of exposure estimate
= 𝐥𝐨𝐠𝟏𝟎

HTPP AED 5th

SEEM3 95th

For some chemicals, the BER was negative, indicating a potential for humans to be exposed to bioactive concentrations of 
these chemicals

Preliminary results. Do not cite or quote.
17



Contextual Response of Nuclear Receptor Modulators

Gene expression in U-2 OSProfile SimilarityComparison to ToxCast potencies

n = 52 chemicals

• For three receptor systems that are expressed in U-2 OS cells (GR, RAR/RXR, VDR) potencies were comparable with ToxCast.

• Phenotypic profiles for chemicals that affect these receptor systems are similar.
18



Structurally Similar Environmental Chemicals Can 
Produce Similar HTPP Profiles

Preliminary results. Do not cite or quote.
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HTPP is Compatible with Biologically Diverse Cell Lines

• HTPP is compatible with 
many human-derived cell 
culture models.

• Enables characterization 
of chemical effects across 
different domains of 
human biology.

TIMEKer-CT

ASC52Telo RPTEC/TERT1

HME-1

Keratinocyte Microvascular Endothelium Mammary Epithelium

Mesenchymal Stem Cell Renal Epithelium Neuroprogenitor

hNP1

Preliminary results. Do not cite or quote.
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Summary

• Assay Reproducibility: Demonstrated high assay reproducibility through the use of phenotypic 
reference chemicals and developed experimental designs that allow for evaluation of assay 
performance throughout large-scale screening campaigns.

• Potency Estimation: Developed a concentration-response modeling workflow to identify 
concentration thresholds for perturbation of cell morphology (e.g. phenotypic altering 
concentration, PAC).

• Mechanistic Prediction:  Chemicals with strong and specific target mode associations can 
produce similar phenotypic profiles in U-2 OS cells. Strength of similarity varies according to 
baseline target expression.

• Chemical Similarity: Chemicals with similar chemical structures can also produce similar 
phenotypic profiles in U-2 OS cells.

• Bioactivity to Exposure Ratio: Phenotype altering concentrations (PACs) can be converted to 
administered equivalent doses (AEDs) and compared to human exposure predictions for 
chemical ranking and prioritization.

• Biologically Diverse Cell Lines: Compatibility of HTPP with many human-derived cell models 
permits characterization of chemical bioactivity across different domains of human biology.

21
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Tiered Chemical Safety Testing Strategy 

Thomas, et al. 
Toxicol Sci 2019

Tier 1 Primary Goals:

• Prioritize chemicals by 
bioactivity & potency

• Predict biological targets 
for chemicals

HTTr Key Challenges:

• Curve-fitting on 
count-based data

• Summarization at 
pathway/chemical level

Flexible & Cost-Efficient
HTTr = ~20k genes
x 1,000s of chems

Regulatory Drivers: TSCA/Admin Memo Sep 2019; FY18-22 US EPA Strategic Plan, Obj 3.3
3



Automated in vitro Chemical Screening

Joshua Harrill

Standardized Expansion Protocol

Cell ExpansionCryopreserved 
Cell Stocks

Cell Plating

BioTek
MultiFlo TM FX

Dispensing Test 
Chemicals

LabCyte Echo® 550 
Liquid Handler

Generating Cell Lysates

Reagent Dispensing

TempO-Seq WT

High Content 
Imaging

Perkin Elmer 
Opera PhenixTM

High Content Screening System

Track 1: Targeted RNA-Seq

Track 2:  Apoptosis / Cell Viability

4



High-Throughput Transcriptomics Assay

• Targeted RNA-seq enables 
high-throughput profiling of 
cell lysates or purified RNA

• Probe set for whole human 
transcriptome targets ~21,000 
human genes

• Captures majority of signal 
with much lower sequencing 
depth 
(~3M reads with attenuation)

• Barcoding and pooling allows 
multiplexing of hundreds of 
samples

Yeakley, et al. PLoS ONE 2017
5



HTTr Study Design

• High-throughput in vitro screens 
performed on 384 well plates

• Standardized dilution series for every 
test sample

• Multiple QC and reference chemicals 
included on every plate to track assay 
performance

• Triplicate Test Plates:

Cryopreserved 

Cell Stocks

Chemical Dose Plate

Treatments Randomized to Test Plate

13-day Cell Expansion

& Plating

Ref Chemicals:

▪ Untreated

▪ DMSO

▪ Genistein

▪ Sirolimus

▪ Tricostatin A

QC Samples:

▪ UHRR

▪ HBRR

▪ BL DMSO

▪ BL TSA

▪ Lysis Buffer

Test Samples:

▪ 8 Concentrations

▪ ½ Log10 Spacing
▪ Triplicate Plates

x3

➢ Randomized 
independently

➢ Separate cell 
culture batches

Harrill, et al. Toxicol Sci in press
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HTTr Bioinformatics Pipeline

• Rapid processing for large 
screens

• Many data steps performed 
independently for each test 
chemical:
• Removal of low signal probes

• Normalization

• DESeq2 analysis

• Exploring multiple analysis 
strategies for curve-fitting 
and signature & chemical-
level summarization

Raw Reads 

(FASTQ)

Probe Manifest

Alignment

(HISAT2)

Sample QC

P
ro

b
e
s

Samples

Database Layer

R
a
w

 D
a
ta

 P
ro

c
e
s
s
in

g

P
ro

b
e
s

Veh

Ctrls

Incr

Dose

DESeq2

BMD

Express

Signature 

Conc-Response

Signature PODs

S
in

g
le

 C
h

e
m

ic
a
l 
A

n
a
ly

s
is

Signature 

Aggregation

Count matrix

Harrill, et al. Toxicol Sci in press
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HTTr Quality Control

Acoustic dispenser logs identify 
problems with chemical handling

Apoptosis/cell viability assays identify 
cytotoxic concentrations

Bioinformatic QC checks remove:
• Low read depth samples
• High rate of alignment failure
• Samples with low gene coverage
• Samples with irregular count 

distributions• 44 Chemical Pilot Study
• Screened 1,577 ToxCast 

chemicals

• Screened 1,201 ToxCast 
chemicals

• Screened 137 PFAS 8



Global View of Bioactivity 

• Each boxplot shows distribution of DEG count 
per chemical

• Primarily interested in transcriptional 
changes that:

• Are coordinated across known 
pathways/gene sets

• Fit standard curve-models across all 
concentrations

P
ro

b
e
s

Veh

Ctrls

Incr

Dose

DESeq2

Count data for single chemical 

(vehicle controls + 8 concs x 3 reps)

• Statistical model tailored to *-seq data

• Remove plate-level effects

• Smooths noise across depth & 

expression levels

(Love, et al. Genome Biol 2014)
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Signature Scoring

P
ro

b
e
s

Veh

Ctrls

Incr

Dose

DESeq2

Count data 

per chemical

ssGSEA

Single-Sample Gene Set Enrichment Analysis 

(ssGSEA) (Barbie, et al. Nature 2009)

• Score coordinated responses at each concentration

• Use moderated log2 FC values from DESeq2 as input 

(no thresholds)

• Null distributions constructed by resampling log2 FC 

values from whole screen

• Alternate scoring function: 

mean(gene set log2FC) – mean(background log2FC)

➢ Bioplanet (Huang, et al. Front Pharmacol 2019)

➢ CMap (Subramanian, et al. Cell 2017)

➢ DisGeNET (Pinero, et al. Database 2015)

➢ MSigDB (Liberzon, et al. Cell Syst 2015)

Catalog of signatures with toxicological relevance, 

annotated for known molecular targets
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Genistein (Weak) Sirolimus (Medium) Trichostatin A (Strong)

Reference Chemical (Effect Size)

Signature Scoring

P
ro

b
e
s

Veh

Ctrls

Incr

Dose

DESeq2

Count data 

per chemical

ssGSEA • Differential expression analysis of 3 reference chemicals replicated 37 times (MCF-7 large screen)

• Computed distribution of correlations between each replicate analysis 11



Signature Scoring

P
ro

b
e
s

Veh

Ctrls

Incr

Dose

DESeq2

Count data 

per chemical

Concentration-Response 

Curve Fitting (tcplFit2)

ssGSEA

➢ Bioplanet (Huang, et al. Front Pharmacol 2019)

➢ CMap (Subramanian, et al. Cell 2017)

➢ DisGeNET (Pinero, et al. Database 2015)

➢ MSigDB (Liberzon, et al. Cell Syst 2015)

Catalog of signatures with toxicological relevance, 

annotated for known molecular targets
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HTTr MCF-7 Pilot Analysis
• Pilot study of 44 well-characterized 

chemicals (Harrill, et al. Toxicol Sci, In Press)

• Compared HTTr-derived PODs from 
MCF-7 cells to previous ToxCast HTS 
assay results 
(Paul-Friedman, et al. Toxicol Sci 2020)

• Signature-based POD are highly 
concordant with ToxCast results for the 
majority of test chemicals in pilot study
• 6 chemicals with targets that have 

low/absent expression in MCF-7 cells
• 5 chemicals show off-target hit as most 

potent assay in ToxCast
• Cladribine is a non-specific DNA synthesis 

inhibitor

Cladribine
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ML Models for MIE Classification

RefChemDB

LINCS CMAP

Exemplar Data

ChemReg

Match LINCS chemicals 
with DTXSIDs

Partition Data for Each 
MIE Classifier

CARET

Training data

External Validation
Data

Exemplar 
Chemical 
Profiles

Classifier 
Training

Accuracy 
Assessment

Permutation Testing

CARET

× 1000

Train and Evaluate 
Classifiers

Integrated Data
Training 

Eligible Data

Data Aggregation Integrate Datasets Identify and Exclude 
Exemplar Chemicals

Evaluate Candidate High 
Performance Classifiers 

with Exemplar Chemicals

High Performance 
Classifiers

Joseph Bundy
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Stress Response Gene Signatures

Goal: Develop NAMs to characterize 
non-specific environmental 
chemicals that activate stress 
response pathways (SRPs)

Approach: Characterize chemical 
hazards using HTTr data to assess SRP 
gene signature activity

Challenges: Cross-talk in signaling 
networks makes it difficult to find 
gene signatures of SRPs

Results: We have developed 
consensus SRP signatures for 
accurately classifying known stressors

Future: Use signatures to identify 
cellular states involved in adaptive 
stress responses and “tipping points” 
that lead to adversity 
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Use crowd-sourcing strategy to build consensus 

signatures from published data

signatures
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published signatures for SRP activity scoring
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Conclusions

• CCTE has developed reliable and cost-efficient workflow for generating 
HTTr data from thousands of chemicals across multiple cell lines

• Preliminary/pilot analysis demonstrates that overall results are concordant 
with previous assays (ToxCast/HTS) and known chemical targets

• Upcoming research efforts will focus on:
• Data generation in complementary cell models
• Validation by orthogonal assays
• Methods to summarize signature-level/overall PODs from high-dimensional data
• Predictive models of MIEs/pathways relevant to toxicity
• Coupling HTTr-derived PODs with HTTK/IVIVE work to predict in vivo safety levels
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Assay Reproducibility

• Analyzed differential expression response to 3 
reference chemicals replicated 37 times 
throughout large screen (MCF-7)

• GEN = Genistein (10uM)

• SIRO = Sirolimus/Rapamycin (0.1uM)

• TSA = Trichostatin A (1uM)

• NULL = Signature scores derived from re-sampled log2 FC 
values

• Signatures were annotated for associated 
molecular targets

• Random = Randomly selected gene sets with similar size 
to known signature gene sets

• Each reference chemical was enriched for higher 
scores from signature associated with correct 
molecular target

• Similar analysis and result found in MCF-7 pilot 
study (Harrill, et al. Toxicol Sci in press)

Derik Haggard
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HTTr MCF-7 Pilot Analysis
• 6 chemicals with targets that have low/absent 

expression in MCF-7 cells
• 3,5,3’-triiodothyronine (Thyroid Receptor)
• Cyproconazole (pan-CYP inhibitor)
• Butafenacil (pan-CYP inhibitor)
• Prochloraz (pan-CYP inhibitor)
• Imazalil (pan-CYP inhibitor)
• Propiconazole (pan-CYP inhibitor)

• 5 chemicals show off-target hit as most 
potent assay in ToxCast
• Lovastatin
• Clofibrate
• Maneb
• Lactofen
• Vinclozolin

• Cladribine is a non-specific DNA synthesis 
inhibitor

(Harrill, et al. Toxicol Sci, In Press)

Cladribine
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EPA New Approach Methods Work Plan: Reducing Use of Animals in Chemical Testing

Examples of information gaps

• Inadequate coverage of biological targets.

• Limited capability to address tissue- and 

organ-level effects.

• Lack of robust integrated approaches to 

testing and assessment (IATAs).

• Minimal capability for addressing xenobiotic 

metabolism in in vitro test systems. 

https://www.epa.gov/sites/production/files/2020-06/documents/epa_nam_work_plan.pdf 2



Outline

CSS.1.5.1: Application of the Alginate Immobilization of Metabolic Enzymes (AIME) method to incorporate 

hepatic metabolism into an Estrogen Receptor transactivation assay.

CSS.1.5.2: Development of a bioprinting approach to adapt the Alginate Immobilization of Metabolic Enzymes 

metabolism method for high-throughput screening applications.

Danica DeGroot

Steve Simmons

Todd Zurlinden

Andrew Eicher

James McCord

Kristen Hopperstad

Woody Setzer

Katie Paul-Friedman

Madison Feshuk

Rusty Thomas

Paul Carmichael

Mi-Young Lee

CSS.1.5 (High Throughput Toxicology):  Develop 

and apply methods to incorporate endogenous and 

exogenous xenobiotic metabolism into high-throughput 

in vitro assays.
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Toxicity Testing in the 21st Century

National Research Council 2007 report calling for a genuine commitment to the 

reduction, refinement, and replacement of animal testing.

Key Questions for Implementation – Addressing Xenobiotic Metabolism

• “One of the challenges of developing an in vitro test system to evaluate toxicity 

is the current inability of cell assays to mirror metabolism in the integrated 

whole animal...”

• Methods to Predict Metabolism - How can adequate testing for metabolites in 

the high-throughput assays be ensured?

• Recommendations  

• Screening using computational approaches possible.

• Limited animal studies that focus on mechanism and specific metabolites.

http://nap.edu/11970. DOI 10.17226/11970 4



OECD Detailed Review Paper (DRP 97) (2008) - In Vitro Metabolism Systems for 
Endocrine Disruptors 

The Validation Management Group for Non-animal Testing (VMG-NA) 

meeting (2003)

• “…it was necessary to consider and preferably incorporate metabolism of 

compounds when considering the development of in vitro tests for 

endocrine active substances, to reflect the real in vivo situation, and so 

reduce the risks of false positives and false negatives.”

• “Tests to detect EAS and tests that can predict the influence of chemicals 

on metabolism of endogenous or exogenous substances, or the influence 

metabolism of a chemical on its ultimate effect, are still being developed.”

• “…the eventual need to combine the outcome of these developments will 

be an important component of the development of each field.”

5



Identify innovative solutions to retrofit high-throughput assays with metabolic competence

(2016-2017) EPA, NTP, NCATS
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The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency
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Intracellular Approach: Xenobiotic Metabolism by mRNA Transfection

• Traditional DNA-based gene delivery methods use viral gene promoters to drive mRNA transcription.

• mRNA transfection is a novel approach that bypasses cellular DNA transcription.

• Rapid expression of metabolizing enzymes (steady state within 8-16 hours).

• User-defined composition and ratios of multiple input mRNAs.
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CYP2C9 Metabolism of DCF

Steve Simmons (EPA)

J Pharmacol Toxicol Methods. Jul-Aug 2018. DOI: 10.1016/j.vascn.2018.03.002 8



• Liver Metabolism: Phenobarbital/β-naphthoflavone-induced male Sprague Dawley rat 

hepatic S9.

• Alginate Hydrogel: Widely used in a variety of pharmaceutical and biomedical 

applications due to high biocompatibility, low toxicity, and mild gelation by divalent 

cations.

• AIME: The Alginate Immobilization of Metabolic Enzymes (AIME) platform consists of 

custom 96-well microplate lids containing solid supports attached to encapsulated hepatic 

S9-alginate microspheres.

Extracellular Approach: Alginate Immobilization of Metabolic Enzymes (AIME)

Shimadzu Journal, 3(3), 64-68 9



Validation of Cytochrome P450 Metabolism

Substrate Human Rat

Phenacetin CYP1A2 1A1, 1A2

Bupropion CYP2B6 2B1, 2B2, 2B3

Diclofenac CYP2C9 2C6, 2C7, 2C11, 2C12, 2C13, 2C22, 2C23

Dextromethorphan CYP2D6 2D1, 2D2, 2D3, 2D4, 2D5, 2D18

Chlorzoxazone CYP2E1 2E1

Key Points

• AIME method optimized for Phase I metabolism. 

• Metabolic activity validated across a diverse profile of CYPs with 

reference chemicals.

Parent                          Metabolite

DOI:10.1007/s00338-014-1136-3 10



Retrofitting Metabolism to an Estrogen Receptor Transactivation Assay

Toxicol Sci, Sep 2020, DOI:10.1093/toxsci/kfaa147

Study Highlights

• Reprioritization of hazard based on metabolism-dependent bioactivity.

• Demonstrated utility of applying the AIME method for identification of false positive and false negative target assay effects.

• Enhanced in vivo concordance with the rodent uterotrophic bioassay.

11



Toxboot Uncertainty Quantification: Statistical Analysis for Metabolism-dependent Effects

• A focus on false-positive and false-negative target assay effects alone omits a lot of important 

biology.

• Metabolism-dependent effects prioritized on a continuous scale to discriminate from target assay-

dependent bioactivity thresholds. 

12



AIME-coupled ERTA Metabolism Positive Test Set Screening

• 29/34 (85%) of parent chemicals from the positive test set were active in the absence of metabolism according to TCPL hit calls.

• 11/34 (32%) of chemicals exhibit significant metabolism-dependent bioactivation.

13



AIME - VM7Luc ERTA Assay: Relevance to the ToxCast ER Model and Uterotrophic Bioassay Data

ToxCast ER Modela Uterotrophic Studiesb AIME - VM7Luc ERTAc Concordance with In Vivod

CASRN Chemical Name Classification AUC_Agonist GL_Neg GL_Pos GL_WoE Hitc_Met_Neg Hitc_Met_Pos ΔHitcER ΔAUC ΔAUC CI Met_Effect Met_Neg Met_Pos ΔMet

446-72-0 Genistein Reference_Agonist 0.54 0 8 POS 1 1 0 27.96 [-1.37, 57.29] NEG 1 1 0

80-05-7 Bisphenol A Reference_Agonist 0.45 4 10 POS 1 1 0 1.57 [-46.01, 49.15] NEG 1 1 0

72-43-5 Methoxychlor Metabolism_Positive 0.25 1 3 POS 1 1 0 83.56 [45.44, 121.67] POS 1 1 0

85-68-7 Benzyl butyl phthalate Metabolism_Negative 0.18 1 0 NEG 1 0 -1 -73.48 [-78.91, -68.05] POS 0 1 1

• Chemicals screened in the AIME-VM7Luc ERTA assay compared to ToxCast ER Model scores 

and Guideline-like Uterotrophic Studies (GL-UT) database.

• Comparison reveals cases of improved in vitro concordance with in vivo data. 

14



Development of a Bioprinting Approach to Adapt the AIME Method for High-throughput Screening Applications

Goal: Adapt AIME method to an automated approach using bioprinting.

Approach: Evaluate various S9/hydrogel combinations, phase I and II 

optimization, and cross-linking approaches to increase workflow efficiency for 

metabolism screening.
15
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