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Chemical exposure scenarios and pathways: 

Chemical evaluations require information to estimate 
exposure via a variety of high-priority pathways, including 
scenario-specific data and models particular to consumer 
products and materials in the indoor environment, as well 
as occupational, ambient and ecological pathways.  

Stakeholder Need 

as stated in research plan
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Properties of High-Throughput Exposure Models

1) Capable of handling many chemicals with minimal 

descriptive information

2) Cover one or more relevant exposure routes 

3) Allow for integration with models for other pathways

4) Scientifically plausible

5) Allow for the assessment of interindividual and intraindividual variation in exposure

6) Amenable to integration within statistical frameworks that quantify uncertainty

7) No more complicated than necessary
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Existing HT Models for Key Pathways
Consumer (Near-Field) Pathways

SHEDS-HT (Isaacs et al., 2014)

Ambient (Far-Field) Pathways

RAIDAR-ICE (Li et al., 2018)

FINE (Shin et al., 2015)

UseTox (Rosenbaum et al., 2008)

RAIDAR (Arnot et al., 2006, 
2008)

Dietary Pathways

UseTox (Rosenbaum et al. (2008)

SHEDS-HT (Biryol et al., 2017)

Figure from Kristin Isaacs
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Consensus Exposure Predictions with 

the SEEM Framework
• Different exposure models 

incorporate knowledge, 
assumptions, and data
(MacLeod et al., 2010)

• We incorporate multiple models 
(including SHEDS-HT, USEtox, 
RAIDAR) into consensus 
predictions for 1000s of 
chemicals within the Systematic 
Empirical Evaluation of Models 
(SEEM) (Wambaugh et al., 2013, 2014, Ring 

et al., 2019)

• Evaluation is like a sensitivity 
analysis: What models are 
working? What data are most 
needed? 
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Ensemble Predictions
▪ We can use ensemble methods to make more stable models and characterize 

uncertainty

▪ “Ensemble methods are learning algorithms that construct a set of classifiers and 
then classify new data points by taking a (weighted) vote of their predictions.” 
Dietterich (2000)

Hurricane Path Prediction is an 
Example of Integrating Multiple Models

▪ Ensemble systems have proven themselves to be very 
effective and extremely versatile in a broad spectrum 
of problem domains and real-world applications 
(Polikar, 2012)

▪ Ensemble learning techniques in the machine learning 
paradigm can be used to integrate predictions from 
multiple tools. Pradeep (2016)
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SEEM3 Collaboration
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-

Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 

Predicted Pathway(s)
EPA Inventory Update Reporting and Chemical Data 

Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 

Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and 

Pesticide

EPA Pesticide Reregistration Eligibility Documents 

(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society for 

Environmental Toxicology and Chemistry toxicity model 

(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 

Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 

Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017) 7511 Far-Field Industrial and 

Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 

(2016,2017)
615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 

Ernstoff et al. (2017)
8167 DietaryRing et al. (2018)
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SEEM3 Considers Pathway of Exposure

We organize models by the 
exposure pathways they cover

We calibrate predictors based 
on ability to explain median 
NHANES exposure rates

Ring et al. (2018)
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(mg/kg BW/day)

Residential

Dietary

Far-Field
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Industrial

Pathway

Yes/No

Chemical-
Specific
Pathway

Relevancy
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Yes/No

Yes/No

Unknown Average Unexplained Overall

Average Unexplained Residential
SHEDS-HT Direct Residential
SHEDS-HT Indirect Residential
USETox
FINE
RAIDAR-ICE
Production Volume

Average Unexplained Dietary
SHEDS-HT Dietary
Production Volume
USETox

Average Unexplained Pesticide
Pesticide REDs
USETox
Stockholm Convention 
Production Volume

Average Unexplained Industrial
USEtox
RAIDAR
Stockholm Convention 
Production Volume

Predictors
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Consensus Modeling of Median Chemical Intake 

Of 687,359 chemicals 
evaluated, 30% have 
less than a 50% 
probability for exposure 
via any of the four 
pathways and are 
considered outside the 
“domain of 
applicability”

Ring et al. (2018)

Intake Rate
> 0.1 mg/kg BW/day

1976 chemicals
Intake Rate
< 0.1 mg/kg BW/day

685,383 chemicals

< 1 µg/kg BW/day

681,574 chemicals
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ExpoCast SEEM Models: Required Building 

Blocks for the Output

Supporting Models 
Exposure Factor Datasets

Machine-learning models for filling gaps from 
structure when no data are available

Composition and use/release data

Slide from Kristin Isaacs
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Individual HT Pathway Models

Model1 Model 2 Model 3 Model 4 Model 5
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ExpoCast SEEM Models: Required Building 

Blocks for the Output

Supporting Models 
Exposure Factor Datasets

Machine-learning models for filling gaps from 
structure when no data are available

Composition and use/release data

for example, SHEDS-HT, HT ChemSteer, 
external models

Individual HT Pathway Models

Monitoring Data for Evaluating and Calibrating 
the Predictors

Including NHANES biomonitoring and 
USGS water datasets

Model1 Model 2 Model 3 Model 4 Model 5

Consensus SEEM Predictions 
for Receptor

Slide from Kristin Isaacs
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Supporting Models* 

Individual HT Pathway Models*

Monitoring Data for Evaluating and Calibrating 
the Predictors

Model1 Model 2 Model 3 Model 4 Model 5

*New Approach 
Methodologies for Exposure:

Application to Real Decision Contexts

Consensus SEEM Predictions* 

Machine-learning models for filling gaps from 
structure when no data are available

Composition and use/release data

for example, SHEDS-HT, HT ChemSteer, 
external models

Including NHANES biomonitoring and 
USGS water datasets

ExpoCast SEEM Models: Required Building 

Blocks for the Output

Slide from Kristin Isaacs

for Receptor

Exposure Factor Datasets
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Formatting Occupational Exposure Models for HT Use

Dermal Models

Inhalation Models

Concentrations were varied from 0.1 to 1

Slide from Katherine Phillips

• We have developed consensus models for consumer 
and some ambient pathways, but ecological and 
occupational consensus models are ongoing

• Many predictors for these pathways exist, but they are 
not typically oriented for high throughput capacity, for 
example EPA’s ChemSTEER (Chemical Screening Tool 
for Exposures and Environmental Releases)

• Command Line Occupational Exposure Tool (CLOET) a 
command line tool that allows use of ChemSTEER v3.0 
in a high throughput manner

• Multiple scenarios for each model have been run and 
tested against ChemSTEER GUI to test for model 
fidelity.
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OPERA Property
Predictions

Air Concentration 
Model

Non-detects

Minucci et al, 
in preparation

Detects

Detect / 
Non-detect Model

• OSHA’s chemical exposure health data set for air samples was used to build a two-stage 
model that predicts 1) if a chemical is likely to be detected in air and 2) what the likely 
concentration would be

• OPERA physicochemical property distributions across NAICS sector and subsectors are 
included as input distributions to the models in addition to the OSHA data

Two-Stage Occupational Exposure Model

Slide from Katherine Phillips

• Bayesian Hierarchical Regression allows 
us to organize our predictions (either 
detect/non-detect or concentration) by 
NAICS Sector and/or Subsector
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EcoSEEM Metamodel for Surface 

Water Chemical Concentrations

Sayre et al, 
in preparation

Slide from Risa Sayre

(m)                                          (y)                        

EcoSEEM
metamodel

USGS/EPA water 
monitoring data

Chemical-
specific

information

Release (loading) and
fate predictors

(l)                                                      (p)                         
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EcoSEEM Evaluating Predictive Ability of 

HT Surface Water Models

• The strength of the correlation 
between each combination of 
release and fate model 
predictions and the observed 
water concentrations allows 
model calibration

• The most informative pair for 
bulk concentrations was USEtox 
freshwater model using loadings 
from NPV

Sayre et al, 
in preparation
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Outlook
• SEEM metamodels have been developed for consumer and some 

ambient pathways (Ring et al., 2018) and ecological and 
occupational consensus models are in development

Exposure 
Forecasts 

from SEEM 
Consensus 

Meta-Models

mg/kg BW/day

Potential 
Hazard from 
in vitro HTS 

and HTTK

Lower
Risk

Medium 
Risk

Higher
Risk

EPA’s
ExpoCast

Project

• Estimates of exposure, with 
appropriately estimated 
uncertainty, allow quantitative 
prioritization of potential 
chemical risk (Wetmore et al., 
2015; Ring et al., 2017)

Exposure

Hazard

Chemical Risk 

Dose-Response
(Toxicokinetics 

/Toxicodynamics)
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Many in vitro systems:
• lack consideration of biotransformation capabilities

• Overestimation of hazard for chemicals rapidly cleared in vivo
• Underestimation of hazard for chemicals bioactivated in vivo

• lack consideration of exposure route
• lack consideration of susceptible populations / life stages
• In vitro potency estimates are often not adjusted for chemical availability 

in the in vitro system (ie, in vitro disposition)

Recent Agency Case Study Finding:
→ TK data availability rate limiting factor in TSCA screening for 
chemical prioritization

NAMs for Exposure

Toxicokinetics

Risk

Toxico-
kinetics Exposure

Hazard

Acceptance and use of in vitro data for hazard identification is limited 

by uncertainties associated with exposure characterization and metabolism

*“A Proof-of-Concept Case Study Integrating Publicly Available 
Information to Screen Candidates for Chemical Prioritization under TSCA”
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In Vitro-In Vivo Extrapolation (IVIVE)

I. In VitroToxicokinetic Assays

Rotroff et al., Tox Sci., 2010

Wetmore et al., Tox Sci., 2012

Wetmore et al., Tox Sci., 2014

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150

Ln
 C

o
n

c 
(u

M
)

Time (min)

Nifedipine

1 uM initial

10 uM initial

Hepatic Clearance (Clint)Hepatocytes

Plasma

Plasma Protein 

Binding (fu)

IVIVE
Internal Concentration 

Predictions Given a Set 
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IVIVE originally used and vetted in pharma applications

HT-IVIVE approach uses 

- hepatic clearance

- plasma protein binding 

- conservative assumptions

Predictions consistently protective of human health

Caco-2 cells

Apparent 

permeability (Papp)

Apical

Basolateral

Renal clearance

Renal reuptake

Transporter assays

Isozyme-specific 

clearance 

(hepatic, renal, intestinal)

+

Ongoing efforts will:

- Incorporate additional TK inputs for better predictivity

- Assess impact of transporter involvement 

- Evaluate extent of population variability

- Employ experimental measures to develop predictive

tools

Wetmore et al., Tox Sci., 2015

Wambaugh et al.,Tox Sci., 2015

Honda et al., 2019

Wambaugh et al., 2019

Smeltz et al., in preparation

Kreutz et al., in preparation
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Evolving Capabilities
• Augmentation of PBTK models based on need
• Expanding to incorporate additional TK data 

(intestinal, renal compartments)
• Incorporating additional exposure routes
• Incorporating additional pathways (gestational)
• Incorporating demographic info to expand 

population-based info (variability)

In Vitro-In Vivo Extrapolation

II. Physiologically-based Toxicokinetic Modeling

“httk”: Open-source modeling package

Modeling Platform incorporates:

- chemical-specific inputs (TK data, physico-chemical)

- physiologic inputs (blood flow rates, tissue size)

into Simulations set up for:

- populations of interest 

- exposures of interest 

- Capturing variability (within or across populations)

Based on variations in the physiologic inputs (Monte Carlo)

Pearce et al., 2017, J Statistical Software



5 of 24 Office of Research and Development

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetic

s

Lower
Risk

Medium 
Risk

Higher
Risk

Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can be used to  
estimate doses needed to
cause bioactivity

Exposure intake rates  can 
be inferred from 
biomarkers

10

10-3

10-7

Es
ti

m
at

ed
 E

q
u

iv
al

en
t 

D
o

se
 o

r 
P

re
d

ic
te

d
 E

xp
o

su
re

 
(m

g
/k

g 
B

W
/d

ay
)

Wambaugh et al., 2014
Wetmore et al.,  2015
Ring et al. (2017)
And others…

NAMs for Prioritization
Integrating Hazard, TK, and Exposure
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Toxicokinetics and IVIVE – Stakeholder Needs

Ongoing Development of Toxicokinetic and IVIVE Tools for use in NAMs 

▪ Primary goal: to provide a human exposure-dose context for bioactive in vitro 
concentrations from NAMs for hazard testing

▪ TK Methods across TSCA landscape – including challenging chemistries, emerging contaminants

▪ Incorporating more exposure routes and pathways

▪ Tools to characterize exposures to sensitive populations and life stages 

▪ Characterize in vitro disposition across TSCA landscape

▪ Tools to identify, quantitate and/or reduce sources of uncertainty 

▪ Secondary goal: to provide open-source data and models for evaluation and use by the 
broader scientific community

▪ Concomitant incorporation of above tools and data in HTTK package

▪ Databases with in vitro, in vivo data for use in IVIVE evaluations, in silico tool development
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TK Data Generation
in vitro:

More chemicals, chemistries
Species expansion (rat, human)

TK assay expansion (intestinal, renal) 
in vivo:

Rat (cross-species extrapolation)

Refinement
IVIVE / IVIVC efforts
In Vitro Disposition

Best Practices

Uncertainty / Variability 
Assessments

Bayesian approaches
Experimental uncertainty

Biologic variability
Population Variability
NHANES; physiology

Toxicokinetic variability

Predictive Tools
Plasma protein binding

Hepatic clearance
Transporter Involvement

Isozyme Involvement

Databases
in vitro TK data

In vivo TK data (CvTdb)

HTTK: Open-Source
Platform

Model Expansion
Multi-compartment; PBTK

Exposure routes
Gestational pathway

Incorporating new TK data streams

Rapid Exposure Modeling and Dosimetry
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8

- In Vitro Toxicokinetic Data Generation -
PFAS: Using NAMs to Fill Information Gaps

“… the EPA plans to use new approaches such 
as high throughput and computational 

approaches to explore different chemical 
categories of PFAS… to inform hazard 

characterization, and to promote prioritization 
of chemicals …”

Goals:

• Generate data to support development and 

refinement of categories and read-across 

evaluation

• Incorporate substances of interest to Agency

• Characterize mechanistic and toxicokinetic 

properties of the broader PFAS landscape

8
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Preliminary set: Plasma protein 

binding data across 50+ PFAS

- In Vitro Toxicokinetic Data Generation -
Category-Based Analyses of Toxicokinetic Data

Hepatic Clearance Data

PFAS TK data: ~150 PFAS

- Hepatic clearance

- Plasma protein binding

- Renal transporter activity

→ IVIVE, modeling, TK NAMs

Category-Based Analysis of

Plasma Protein Binding Data
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- Predictive Tool Development -

▪ In vitro TK measurements are being employed in model development and evaluation. 

▪ Plasma protein binding (fu); hepatic clearance (Clint) underway; others to follow. 

Dawson et al. submitted 
Pradeep et al., 2020
Tornero-Velez et al., underway
Sipes et al., 2017

This method 
uses nearest 
neighbors, and 
many evaluation 
chemicals are in 
training set

In silico predictions for fu (plasma protein binding)
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11

- Model Expansion -
Gestational Pathway

Kapraun et al., 2019 PLOS One

11
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▪ EPA has developed a public database of concentration 
vs. time data across several species for building, 
calibrating, and evaluating TK models

▪ Effort ongoing, but to date includes:

▪ 198 analytes (EPA, National Toxicology Program, 
literature)

▪ Routes: Intravenous, dermal, oral, sub-cutaneous, 
and inhalation exposure

▪ Standardized, open-source curve fitting software 
invivoPKfit used to calibrate models to all data

13

CvTdb Link: https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Sayre et al. (2020)

- Database Development -

CvTdb:  An In Vivo TK Database

https://github.com/USEPA/CompTox-PK-CvTdb
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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- HTTK Platform -

Open-Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017a)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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- HTTK Platform -

Modules within R Package “httk”

Feature Description Reference

Chemical Specific In Vitro 
Measurements

Metabolism and protein binding for ~1000 
chemicals in human and ~200 in rat 

Wetmore et al. (2012, 
2013, 2015), plus 
others

Chemical-Specific In Silico 
Predictions

Metabolism and protein binding for ~8000 
Tox21 chemicals

Sipes et al. (2017)

Generic toxicokinetic models
One compartment, three compartment, 
physiologically-based oral, intravenous, and 
inhalation (PBTK)

Pearce et al. (2017a), 
Linakis et al. (2020)

Tissue partition coefficient 
predictors

Modified Schmitt (2008) method Pearce et al. (2017b)

Variability Simulator Based on NHANES biometrics Ring et al. (2017)

In Vitro Disposition Armitage et al. (2014) model Honda et al. (2019)

Uncertainty Propagation
Model parameters can be described by 
distributions reflecting uncertainty

Wambaugh et al. 
(2019)
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Diagram of in vitro compartments

Armitage et al. 2014 PMID 25014875

- In Vitro Disposition –
A Tox21 Cross Partner Project (EPA, NTP, FDA) 

An Experimental Evaluation of Mass Balance Models

describing in vitro partitioning and disposition

- Pilot study completed 

- 20 chemical case study underway

- Chemical levels quantitated across 5 in vitro compartments

Preliminary Design and Data
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High-Throughput

Risk

Toxicokinetics Exposure

Hazard

ToxCast

HTTK 
Oral 

Route

Dermal 
Route 

Needed

Consumers

Evaluation Data:
NHANES

Many Exposure 
Predictors

Human
ExpoCast/SEEM

ToxCast

HTTK 
Oral 

Route

Aerosol 
Route 

Needed

General Population

Evaluation Data:
NHANES

Many Exposure 
Predictors

Informing TSCA

Providing the Pieces for Prioritization

Pathways

Covered

Target

Population

Human
ExpoCast/SEEM

Consumer Ambient
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Highly Exposed and 
Sensitive Populations

High-Throughput

Risk

Toxicokinetics Exposure

Hazard

ToxCast

HTTK 
Oral 

Route

Dermal 
Route 

Needed

Consumers

Evaluation Data:
NHANES

Many Exposure 
Predictors

Human
ExpoCast/SEEM

ToxCast

HTTK 
Oral 

Route

Aerosol 
Route 

Needed

General Population

Evaluation Data:
NHANES

Many Exposure 
Predictors

ToxCast

Aerosol 
Route 

Needed

Workers

Evaluation Data:
OSHA

HT ChemSTEER, 
others

Occupational 
ExpoCast/SEEM

ToxCast

Gestational 
Model 

Needed

Gestational

Evaluation Data:
NHANES

Many Exposure 
Predictors

Informing TSCA

Providing the Pieces for Prioritization

Pathways

Covered

Target

Population

Human
ExpoCast/SEEM

Demographic Human
ExpoCast / SEEM

Consumer Ambient Occupational Multiple
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Highly Exposed and 
Sensitive Populations

High-Throughput

Risk

Toxicokinetics Exposure

Hazard

ToxCast

HTTK 
Oral 

Route

Dermal 
Route 

Needed

Consumers

Evaluation Data:
NHANES

Many Exposure 
Predictors

Human
ExpoCast/SEEM

ToxCast

HTTK 
Oral 

Route

Aerosol 
Route 

Needed

General Population

Evaluation Data:
NHANES

Many Exposure 
Predictors

ToxCast

Aerosol 
Route 

Needed

Workers

Evaluation Data:
OSHA

HT ChemSTEER, 
others

Occupational 
ExpoCast/SEEM

ToxCast

Gestational 
Model 

Needed

Gestational

Evaluation Data:
NHANES

Many Exposure 
Predictors

ToxCast + 
SeqaPass /

LC50 Models

EPI 
Suite
BCF*

HTTK 
Fish 

Needed

Evaluation Data:
USGS Surface Water

3 HT Models

Ecological
ExpoCast/SEEM

Ecological (Fish)

Informing TSCA Informing EDSP

Providing the Pieces for Prioritization

Pathways

Covered

Target

Population

Human
ExpoCast/SEEM

Demographic Human
ExpoCast / SEEM

Consumer Ambient Occupational AmbientMultiple
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CSS Products Outputs Applications

TK and IVIVE Projects and Relationships

2.6.4: New Methods/Data

2.6.5: Exposure Routes

2.6.6: Life-stage and Sens. Pop.

2.6.7: QSAR Models

2.6.8: In Vitro Distribution

2.6.9: Uncertainty Experiments

2.6.10: Parent-Metabolite

2.6.11: HTTK Fish

2.6.12: HTTK-AOP Model

New R Package 
“httk” Release

IVIVE for Gen. Pop. 
Risk Workflows 

(OPPT, OLEM, MN)

Occupational Risk 
IVIVE

Ecological Risk IVIVE

Address 
Uncertainty

Challenging 
Chemistries

Sensitive Pop’s 
and Lifestages

New Exposure 
Routes

New Chemicals 

Generic Dermal Model

Generic Aerosol Model

Generic Parent-Metabolite 
Model

Generic Human 
Gestational

Generic Aquatic 
Species Model

TK/TD Model

Supporting Models/Data
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In Vitro Bioactivity, HTTK, and In Vivo Toxic Doses
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For ~89% of the 
chemicals, 

PODNAM was 
conservative.

(~100-fold on 
average), but 

less conservative 
than a TTC

ExpoCast PODNAM (PODTraditional PODEFSA PODHC)

Chemicals where 
PODNAM was not 

conservative 
enriched in 

OPs/carbamates
International case study with EPA, ASTAR, 

ECHA, Health Canada, and EFSA

International Collaborations

- Accelerating the Pace of Chemical Risk Assessment (APCRA) -

Paul-Friedman et al. 2020
21
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Additional Efforts and Outreach

Additional Efforts
• In vitro TK data generation:  Ongoing, internal (>400 TSCA, incl. 150 PFAS) and external (>215); as needed on 

program office-initiated efforts (Office of Chemical Safety and Pollution Prevention, Office of Water)
• In vivo TK: rat in vivo studies for comparative assessments and IVIVE evaluation (Hughes et al., underway) 
• Dermal Route: permeability/partitioning models completed (Evans et al.), integration with HTTK begun
• Bioavailability: incorporation of Caco-2 data in IVIVE (Honda et al., 2019; Honda et al., in preparation)
• Transporters: TK renal transporter data generation for PFAS IVIVE modeling (Smeltz et al., underway)
• Sensitive Populations/Variability: Isozyme-specific chemical evaluations to evaluate TK variability and supply in 

silico predictive efforts (Kreutz et al., underway); Correlated Monte Carlo approach to incorporate physiologic 
variability (Ring et al., 2017) 

• Parent-Metabolite HTTK: NTA data for metabolism of ToxCast chemicals generated by contractor and being 
analyzed (Boyce et al. underway)

Stakeholder Outreach and Collaborations
• CompTox Chemicals Dashboard: Contains ADME data for >1000 chemicals. 
• 2020 SOT: “New Data and Tools for Understanding Chemical Distribution In Vitro” - Nynke Kramer and John Wambaugh
• FIFRA SAP “The use of new approach methodologies (NAMs) to derive extrapolation factors and evaluate developmental 

neurotoxicity for human health risk assessment” - Incorporation of in vitro TK / HTTK
• Integration of high throughput hazard, exposure, and TK NAMs into proposed TSCA workflows (white paper, peer review)
• APCRA Collaborations – HTTK case study (underway) and NAM prospective case study (underway)
• Ongoing collaborations with Health Canada, US Geological Survey, and MN Department of Health
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Chemical safety evaluations require an improved 
understanding of chemical exposure scenarios and pathways

High-priority exposure data needs → consumer products, 
indoor environments, occupational settings, 
ambient environments, ecological pathways

Stakeholder Needs
(OCSPP; EPA Regions)
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Challenges

• High-quality exposure data are unavailable for many chemicals

• Measurement data traditionally generated using “targeted” methods

• Targeted analytical methods:

- Require a priori knowledge of chemicals of interest
- Produce data for few selected analytes (10s-100s)
- Require standards for method development & compound quantitation
- Are blind to emerging contaminants
- Can’t keep pace with the needs of 21st century chemical safety evaluations
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Rapid Exposure Modeling and Dosimetry Output 2.7: 

Develop, evaluate, and apply non-targeted analysis (NTA) 
methods, alongside targeted monitoring methods, to identify 

critical sources and pathways of human and ecological exposures

Research Objective

Key Question: 
Are NTA methods suitable to meet the needs of 

21st century chemical safety evaluations?
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General NTA Workflow Steps 
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Ongoing Research Activities

• Evaluate NTA State-of-the-Science
- EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT)

• Develop and Disseminate Guidance Materials
- Benchmarking and Publications for NTA (BP4NTA)

• Build Tools to Ensure Transparency & Reproducibility
- NTA Study Reporting Tool (NTA SRT)
- EPA NTA Web Application (NTA WebApp)

• Address Priority Data Needs with Proof-of-Concept Applications
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Evaluating NTA Science-of-the-Science

• How variable are tools and results from lab to lab?

• Are some methods/workflows better than others?

• How does sample complexity affect performance?

• What chemical space does a given method cover?

• How sensitive are specific instruments/methods?

EPA’s Non-Targeted Analysis Collaborative Trial
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ENTACT Study Design (Part 1)

• ~30 global participants, 19 results submitted to date
• 10 synthetic mixtures of ToxCast substances (n=1269)

Replication in 
substance spikes 
offers a unique 
means to assess 

NTA method 
reproducibility!

Ulrich et al. 2019. doi: 10.1007/s00216-018-1435-6   



Office of Research and Development US EPA CSS-HERA BOSC Meeting – February 2-5, 2021 9 of 22

Bubble Size →

What % observed?

(of those spiked)

X-Axis →

What % correct?

(of those observed)

Y-Axis →

What % consistent?

(of those correct)

Metrics:

Performance Comparison Across Methods
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Take-Away Messages from ENTACT

(to date…)

• Lack of transparency in methods/results reporting

• Method procedures change over short time increments

• Biased self-reporting → highlight strengths, mask weaknesses

• Blinded ToxCast mixtures allow for NTA performance assessment

• Standard performance measures highly variable across labs/methods

• Standard performance assessment methods/benchmarks must be adopted

• Benchmarks require input/consensus from NTA community

• Community focus must be on QA/QC and guidance (and innovation)
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Developing and Disseminating 

Guidance Materials

• BP4NTA → Borne out of 2018 ENTACT workshop

• ~100 U.S. and international members
- Government, academia, and industry

• Working Group Objectives:
- Short term → define common NTA terms, concepts, and performance metrics
- Short term → provide recommendations on research & reporting best practices
- Long term → establish proficiency testing levels (ASTM/ISO)

• Products (including 3 manuscripts):
- Website with key resources and links: https://nontargetedanalysis.org/
- Guidance documents with definitions & supporting info
- “NTA Study Reporting Tool” to standardize reporting (proposals & manuscripts)

https://nontargetedanalysis.org/
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Building Tools to Ensure 

Transparency & Reproducibility

The “NTA Study Reporting Tool” (NTA SRT):
• Standardized framework for reviewing quality of NTA reporting

• Aids NTA study design and review (proposals & manuscripts)

• Follows chronology of typical NTA studies with detailed examples

• Scale-based scoring (numeric & colorimetric) for individual study attributes

• HTML interactive version via BP4NTA website (hyperlinks → supporting docs.)

• Fillable PDF version available for download (via website)

• Comment box for periodic updates/revisions (via website)

• Working with journal editors for initial testing and deployment
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NTA Study Reporting Tool (draft version)
N

T
A

 S
tu

d
y
 C

h
ro

n
o
lo

g
y

Hyperlinked 
(HTML version) 
to supporting 
information

Space for 
reviewer to 

explain 
assigned 

score

Rationale/NotesStudy Sections & 
Categories

Example Information 
to Report

Numeric & 
Colorimetric 

Scoring

3-4 bullet point examples for each of the 13 
sub-categories

Not exhaustive – intended to guide reviewers; 
relies on reviewer expertise/discretion.
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Building Tools to Ensure 

Transparency & Reproducibility

The EPA NTA WebApp:
• Queries NTA data against DSSTox DB (~900K substances)

• Aggregates metadata to aid candidate prioritization

• Calculates match metrics to aid candidate filtering 

• Provides interactive visualization of chemical candidates

• Processes data for advanced statistical analyses

• Standardizes and documents procedures for NTA data analysis

• Adheres to recommendations from BP4NTA workgroup

• Produces publication-ready output in accordance with NTA SRT
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EPA’s NTA WebApp

WebApp Input:

- Experimental data files

- Tracer (QA/QC) files

- Parameters for data cleaning

- Parameters for DB searching

WebApp Output:

- QA/QC tracer results 

- Cleaned, unannotated file for stats analysis

- Cleaned, annotated file with DSSTox chemicals

- Complete file with all chemicals & metadata
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Addressing High Priority Data Needs 

with Proof-of-Concept Applications

• Characterizing chemical contents of products (including UVCBs)

• Characterizing data-poor xenobiotics in biological tissues & fluids

• Identifying xenobiotic metabolites produced from in vitro assays

• Developing semi-quantitative (SQ) methods for risk-based interpretation

• Characterizing emerging contaminants in Brita filters (SQ proof-of-concept)

• Developing a framework for rapid response NTA
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Prediction intervals used to bound 
SQ concentration estimates.

95% prediction intervals shown; 
Can use 99%, 99.9%, etc.

Tentatively identified compounds 
ranked by upper bound estimates.

Upper bound estimates compared to 
level-of-interest to set priorities.

Priority compounds further 
examined using targeted methods. 

Groff et al. in preparation

SQ NTA Proof-of-Concept

Concentration estimates can be 
above or below true value.

Analysis of Brita filter extracts via 
GC-HRMS.
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