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In Vitro Approaches for Inhaled Materials Testing and
Research

* In vitro models are required for testing the thousands of inhalable materials

* The lung is a complex organ with over 40 cell types, but nearly all in vitro models
include only a single cell type

* Individual inhaled materials impact distinct cell types and physiological functions
differently

* These effects cannot be represented by current systems

* There is a lack of consensus on methods, parameters, thresholds, and reporting
standards for models, assays, and exposures

 Fit-for-purpose models and assays are needed for accurate, reliable, and
defensible inhalation toxicity testing

* In vivo human data from environmental inhaled materials (e.g., ozone, acrolein,
particulate matter) are invaluable in guiding the development of lung models
and allowing validation for acceptance



wEPA Case Study Using A Data-Rich Inhaled Material

Fine Particulate Matter (PM, ;)

B e 3

e |n vitro assessment at 24hr
* Not cytotoxic

* No change in bronchial epithelial barrier
permeability

* Marginal changes in stress-responsive
gene expression (RNA) at 24 hours

* In vivo human exposures

e Acute and chronic lung disease
e Airway inflammation
» Susceptibility to infection
* Asthma
* COPD
e Cardiovascular morbidity and mortality
* Ml/stroke/arrythmia

e Attributed to 4-10 million deaths per year
worldwide ® o @0 ® o ©4o®

WWW.Nnasa.gov



wEPA So, Why Didn’t It Work?

* Traditional in vitro inhalation models do
not represent in vivo biology and
dosimetry

. Models/’(’endpoints are often not “fit-for-
purpose

* e.g., bronchial epithelial cells are not
representative of lung microvascular
endothelial cells, et cetera ,» THIS IS WHERE YOU

LOST YOUR WALLET?
* Lack of time course data and limited
scope of endpoints resulted in failure to | e s
identify adverse effects =7 i ie WHERE THE LIGHT 15,
* Looking in the wrong place at the wrong i
time
* Few in vitro inhalation models are
representative of individuals most likely
to experience adverse effects (i.e.,
susceptible populations)

www.first-the-trousers.com



wEPA \ Lung Structure and Function
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. Bronchial Airway Tissue and Dosimetry
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Adapted from Lab Chip, 2014, 14, 3349-3358



SEPA ° Trans-Epithelial Exposure Model
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wEPA Trans-Epithelial Exposure Model (TEEM)

TEEM-Mark 2
0|%e(0|02|00|q o
® (o o @|\® ©

Research/testing use

Effects on bronchial epithelium

Effects on bronchial microenvironment
Parallel analysis

Suitable for many endpoints

Hybrid primary/cell line-based model

Mark 1 (cell lines)

Very low cost (~S4 per well)
Set-up to assay time = 2 days

Mark 2 (primary cells)

Low cost (<510 per well)
Set-up to assay time = 24+ days

Key findings:

Trans-epithelial exposure effects on fibroblasts are similar
between Mark 1 and Mark 2 models

Bronchial epithelial cells are minimally responsive to
exposures and may not be the primary targets/mediators of
exposure effects

Mark 1 model is representative of bronchial epithelial barrier
function
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Exposure Effects Beyond the Epithelial Barrier:
Transepithelial Induction of Oxidative Stress by Diesel
Exhaust Particulates in Lung Fibroblasts in an
Organotypic Human Airway Model

Samantha C. Faber,* Nicole A. McNabb, ! Pablo Ariel,* Emily R. Aungst,’ and
Shaun D. McCullough @'

*Curriculum in Toxicology and Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina 27599
TPublic Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment,
US Environmental Protection Agency, Chapel Hill, North Carolina 27599 and *Microscopy Services Laboratory,
Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill,
North Carolina 27599

Disclaimer: The contents of this article have been reviewed by the U S. Environmental Protection Agency and approved for publication and do not neces-
sarily represent Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendations for use.

‘o whom d should be add d at Public Health and icol Division, US Envir 1 ion Agency, EPA Human
Studies Facility, 104 Mason Farm Road, CB #7315, Chapel Hill, NC 27599, Fax: 919-966-6271. E-mail: mccullough.shaun@epa.gov.

ABSTRACT

Invitro bronchial epithelial monoculture models have been pivotal in defining the adverse effects of inhaled toxicant
exposures; however, they are only representative of one cellular compartment and may not accurately reflect the effects of
exposures on other cell types. Lung fibroblasts exist immediately beneath the bronchial epithelial barrier and play a central
role in lung structure and function, as well as disease development and progression. We tested the hypothesis that in vitro
exposure of a human bronchial epithelial cell barrier to the model oxidant diesel exhaust particulates caused
transepithelial oxidative stress in the underlying lung fibroblasts using a human bronchial epithelial cell and lung fibroblast
coculture model. We observed that diesel exhaust particulates caused transepithelial oxidative stress in underlying lung
fibroblasts as indicated by intracellular accumulation of the reactive oxygen species hydrogen peroxide, oxidation of the
cellular antioxidant glutathione, activation of NRF2, and induction of oxidative stress-responsive genes. Further, targeted
antioxidant treatment of lung fibroblasts partially mitigated the oxidative stress response gene expression in adjacent
human bronchial epithelial cells during diesel exhaust particulate exposure. This indicates that exposure-induced oxidative
stress in the airway extends beyond the bronchial epithelial barrier and that lung fibroblasts are both a targetand a
mediator of the adverse effects of inhaled chemical exposures despite beingseparated from the inhaled material by an
epithelial barrier. These findings illustrate the value of coculture models and suggest that transepithelial exposure effects
should be considered in inhalation toxicology research and testing.

Key words: in vitro; coculture; oxidative stress; lung; fibroblast; transepithelial; epithelial.

Published by Oxford University Press on behalf of the Society of Texicology 2020.
This work is written by US Government employees and is in the public domain in the US.
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wEPA Moving Forward

e TEEM Mark 2 model

* Assess culture longevity, key parameter
values, and expected variability over time
(differentiated + up to 90 days) for
subsequent sub-chronic exposures

* Barrier permeability

» Histology/immunofluorescent staining
* Viability

* Redox potential

» Ciliary beat frequency

* Marker gene expression

e Mucus production

* Metabolism

* Inter-donor and inter-experimental variability
using a group of donors

* Power calculations to strengthen future studies




wEPA \ Lung Structure and Function in /n Vitro Testing
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~ Alveolar Capillary Region Exposure (ACRE) Model —
< EPA Mark 1

* Indirect co-culture model
* Submerged — completed
* Air-liquid interface — in progress
* Incorporation of immune cells — under
development
* Research/testing use
» Effects on alveolar compartment
e Effects on lung microvasculature

* Cell line or hybrid model
« NCI-H441
@ g @@ @0 ® « IMR90/pHLF
 HULEC/pLMVEC
 Cost per sample: ~$4 (cell lines)
000 000 0 0 * Set-up to assay = 5 days

* Key findings to date:

* Trans-alveolar exposures to diesel exhaust
articulates cause effects that reflect in vivo
uman outcomes
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o Alveolar Capillary Region Exposure (ACRE) Model —
EPA Mark 2

e Currently under development
* Submerged and air-liquid interface
* Planned incorporation of immune cells

* Research/testing use
» Effects exposure on pulmonary barrier

* Release of mediators/metabolites into the
circulation

* Bioavailability of inhaled materials

* Acute or repeated/sub-chronic/chronic
exposure scenarios

* Cell line or hybrid model
* NCI-H441
 IMR90/pHLF
* HULEC/pLMVEC

* Cost per sample: ~S5
» Set-up to assay = 4-5 days (expected)




Summary

Bronchial epithelial cell models provide valuable information but are not representative
of other aspects of the structure and function of a complex tissue

Fit-for-purpose multi-cellular models are necessary for accurate, reliable, and
defensible inhalation toxicity testing and computational model development

Human data from environmental inhaled materials is invaluable in lung model
development and validation

Bronchial eﬁithelial/stromal co-culture model indicates that trans-epithelial exposure
effects on the stroma may exceed direct effects in the epithelium

Outcomes in ACRE-Mark 1 model align with in vivo human data

ACRE-Mark 2 model for alveolar-vascular permeability and trans-alveolar bioavailability
IS in progress

Incorporation of immune cells into all models is in development

Protocols/methods are des(ifned to be accessible, cost-effective, and compatible with
high throughput assays, and will be made publicly available
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EPA " Challenges to traditional in vitro exposure methodology

Problem: VOCs and Aerosols are e
incompatible with traditional in vitro

testing methods. Non-
Soluble

O

Aerosols

* Over 30% of the TSCA chemical
inventory are volatile or insoluble

* Require biologically relevant air-liquid
interface (ALI) exposures to mimic
human exposures

* Currently lack information on these
compounds to support risk assessment




Eligible Compounds
Dosing Methods

Realistic Exposure?

Dosimetry

Conditions

Eligible Endpoints

Repeated Dosing
Possible?

In vivo vs. in vitro Inhalation Studies

In vivo Inhalation
Studies

Aerosols and VOCs

Known concentration
over a certain time (C*t)

Yes, whole animal with
intact airway

Lacks analytical animal
dosimetry

Control temp and RH for
animal

Portal-of-entry and
systemic effects

Yes

Traditional in vitro
studies

Soluble compounds only

Direct dosing

No, submerged culture

Known concentration
applied to media

Submerged culture in
incubator

Only assesses cellular
effects

Limited

NAMs for in vitro
Inhalation Studies

Aerosols and VOCs

Known concentration
over a certain time (C*t)

Yes, airway cells cultured
at ALl

Lacks analytical cell
dosimetry

Control temp and RH for
ALl cultures

Portal-of-entry and
cellular effects

Limited



EPA Cell Culture Exposure System (CCES)

To address this need, we developed a novel system: the EPA’s Cell Culture
Exposure Systems (CCES) permits the exposure of mammalian lung cells at air-
liquid interface (ALlI).

Humidified

1™ T T T T T 1 | Delivers VOCs to advanced AL
H|B|H|C|I_I|D|I_I|E|HIF! airway models to produce a
N LIJ| biologically realistic inhalation
| exposure

 Medium-throughput testing strategy

* Unlike other ALI exposure
technologies, the CCES maintains
ideal temperature and humidity

=

Heated

s e ure at AL . conditions for cells at ALI

37°C |_ Ct. Air Exposure




TEER (Ohms/cm?2)

< EPA CCES Provides Superior Exposure Conditions

Post-Exposure TEER comparison Cell Viability (ATP Generation)
1500 == 16HBE 4000000
Em HPBE mm 16HBE
1 © T
I =31 Submerged 16HBE % 3000000 L mm HPBE
1000~ N =3 Submerged HPBE O =3 Submerged 16HBE
= € 50000004 =3 Submerged HPBE
. =
500 = 3
2 1000000
’ il
0- | p— p— 0- | p— p—
S o S S S o N S S S o S o N
S ¢ FF S S ¢ FF ¢
NN N N N NN NN N NN
ALl Submerged ALl Submerged

Immortalized and human primary bronchial epithelial cells do not experience any negative
impacts during a 2h exposure to clean, humidified air (Sham)

TEER, the most sensitive endpoint, shows significant differences between controls during
submerged exposures



<EPA Pilot and Proof-of-Concept Studies

Pilot Study Overview Proof-of-Concept Study Overview
Cell Types Primary Human Bronchial Epithelial Cells* Cell Types Primary Human Bronchial Epithelial Cells
at ALl BEAS-2B cells at ALI 16HBE cells

Mattek Epi-Airway cells

Chemicals 1,3-Butadiene Acetaldehyde Carbon Tetrachloride* Chemicals Naphthalene 1,3-Dichloropropene Chloropicrin

Tested Acrolein  Trichloroethylene*  Dichloromethane* Tested Methylisothiocyanate Zinc pyrithione* Metribuzin*
Formaldehyde 1-Bromopropane* Didecyldimethyl ammonium chloride* Tetramethrin*
*Tested in both B2B and HBECs 2-phenylphenol* Indoxacarb*  Naled*

Azoxystrobin®*  Oxamyl*
*aerosol exposure necessary

Exposure * 2hexposure, endpoints collected 4h later Exposure * 2hexposure, endpoints collected 4h later

Regimen * 6 concentrations, sham + incubator controls Regimen * 6 concentrations, sham + incubator controls
 Temp and RH monitored e Temp and RH monitored

Assay ¢ TempO-Seq Assay * TempO-Seq

Formats e Cytotoxicity [LDH Release, Cell Titer Glo] Formats e Cytotoxicity [LDH Release, Cell Titer Glo]

* Trans Epithelial Resistance (TEER)
* Inflammatory response [ELISA for IL-6 and IL-8]



EPA Proof-of-Concept: 1,3-Dichloropropene

140
4+ 20-
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Technical Replicates * Viability, n=2; Cytotoxicity, n=4

Biological Replicates e Conducted over three days, n=3

Exposure Regimen * 6 concentrations, Sham exposure control, incubator control

e Several sub-cytotoxic doses are included




VOC Benchmark Dose Modeling

E%Pessz * Data generated by High-Throughput

il Y . il 3 Transcriptomics (HTTr) shows promise for
\ ‘;ff/, guantitative human health risk assessment

 BMD analysis is the current standard for
submerged high-throughput chemical screening
* We are uniquely suited to provide missing
BMD values for VOCs
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Comparison of in vitro to in vivo exposure studies

In vitro In vivo

Crmiaitame | SAIOND | PRI | ettty
Acrolein 0.586 -- 0.4 NR 0.1ppm
1-Bromopropane 2.246 N/A 125 250 0.1ppm
Formaldehyde N/A -- 404 152 0.3ppm
1,3-Butadiene 13.979 -- 625 8000, 200 10ppm
Carbon Tetrachloride 9.563 N/A 10 5,1 10ppm
Acetaldehyde N/A -- 2 1 25ppm
Trichloroethylene 44.842 28.148 25, 2.6 50, 5.2 50ppm
Dichloromethane 142.127 226.73 500-1000 200 100ppm




o Next Steps: New Priority Compounds Must Be Generated
g EPA as Aerosols for ALl Exposures

Particle Size
... §
Lot
’. @ Inhalable aerosols woenserem
C Nasopharynx 5-10pum
§ A Trachea 3-5um d o
04 ° vp - - -
? .' .4 2 A Pulmonary aerosols mp dt =[_fric(vp - v})}'—mpg +£F(t)}
¢ = Bronchi 2-3pm
° v 0. : Bronchioles 1-2pum k Y )
.. .: :— o Ultraﬁ.ne particles 0.1-1pm aerOSOIS VOCS
. Arecliandbloodsiream Langevin Equation for Transport
= Must be generated and delivered as * Particle Acceleration (20.5 pm)
1-2 um particles; possess different * Gravitation forces (>0.5 um)
transport mechanisms than VOCs. * Diffusion (<0.5 um)




o CAD and CFD Modeling Guide Development of
<EPA Aerosol-Specific CCES

 Computer Aided Design + Computational Fluid Dynamics allow virtual testing of CCES:

Generation 1: Original VOC Manifold Generation 4: Aerosol Dilution Manifold

2020
AAAAAA
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<EPA

CAD/CFD Increase Testing Efficiency

* Time and cost-effective method to develop aerosol-specific dilution and delivery systems
* 70+ geometry and flow combinations tested in 3 months

e Each aerosol may require CFD testing to optimize flow parameters for each chemical exposure
(account for range of particle diameters and densities)

Il ”

123456 123456 123456 123456 123456 123456
Nozzle Position/Dose

Generation 1 - Original Flows
Generation 1 - New Flows
Generation 2

Generation 3

Generation 4

=8 Goal: Half-Log Serial Dilution

# particles

Generation 4-v2 Achieves Half-Log Dilution
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Next Steps: Quantitative Dosimetry

* Inhalation studies currently rely on [C]*t
and lack analytical dosimetry e "

* ITFB received CE-funding for High-
Resolution Hybrid Orbitrap Mass
Spectrometer

* Fg-level sensitivity with sub-ppm specificity

* High sensitivity/specificity vital to quantify
toxicant deposition, cellular uptake, and
biomarkers of internal exposure




wEPA Alignment with Program Office Needs

* ALl human airway models with appropriate
inhalation exposures aims to reduce our
reliance on animal testing In vivo Inhalation Studies

» Strategy will provide missing risk
assessment data for VOCs/aerosols that
cannot be tested with submerged methods

2D Monoculture 3I)-dbr;1fmo£;y/pic

Submerged monoculture




Conclusions and Future Research

* Novel exposure approach transects traditional in vitro submerged dosing
and in vivo inhalation exposures

e Support Program Office(s) risk assessors by providing NAMs to directly test
chemicals of interest in similar fashion to in vivo inhalation exposures

* Provide data from HTTr analysis to be used by ToxCast for SAR, IVIVE, etc

* Aim to develop NAMs for analytical dosimetry in cell cultures to translate
to in vivo inhalation studies
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Fetal Brain Barriers

The Neurovascular Unit (NVU) is a relatively recent concept describing the relationship
between neuronal and vascular compartments, particularly for two key processes:
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* main driver of functional hyperemia, matching
local blood supply to neuronal demand via
glutamate (stimulates release of vasoactive
signals from astrocytes and pericytes).

* development and regulation of the cerebral
blood-brain barrier (BBB) that is fundamental
as a selective transport barrier to maintain an
optimal environment for brain function.



BBB pathophysiology

» Evidence linking BBB dysfunction with prenatal/antenatal pathophysiological states:

defective brain transport of leptin (obesity)

reduced CNS insulin (baroreceptor deficiency in pregnancy)

microglial activation and neuroinflammation (Zika-microcephaly, FIRS)

GLUT1 deficiency syndrome (epilepsy, learning disabilities)

SL75A (LAT1) dysfunction (autism)

SL16A2 (MCT8) deficiency (altered thyroid delivery and neurological impairment)
DNT — hypoxia, metal toxicity, pesticide toxicity, ...

o 0O O O O O O

Vogel (2016) Science

 OECD Test No. 424: Neurotoxicity Study in Rodents — does not directly evaluate BBB
function but can be influenced by a breakdown in the function in the various cell types.

 We know that chemicals interact with the BBB, but to what extent do chemicals of interest
disrupt its development and function?



BBB microvasculature: /ate fetal to adult lifestages

Endothelial cells: continuous tight junctions, no
fenestrations, limited transcytosis.

Pericytes: produce a basement membrane continuous with
that produced by the endothelial microvasculature.

Astrocytes: processes (end-feet) interact directly with the
basement membrane; appear after formation of the BBB.

%’n hellum

Mmgmlcrogllf 2 Pe MBS hematopoietic origin in the early embryonic yolk sac.

Microglia: resident macrophages of the brain, are of

Researchgate.net

* Microglia orchestrate neurovascular patterning through local signaling; however,
when activated they can invoke a local neuroinflammatory response.



BBB phylogeny
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Blood-brain barrier development: Systems modeling and
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Key BBB transporters are conserved

Species GLUT1 P-gly SLC7AS5
Human 100
Chimpanzee 99.5
House mouse 87.1
Zebrafish 64.8
Australian ghostshark 65.7
Amphioxus 54.5
Waterflea 48.5
House fly 41.5
Arctic lamprey
Giant Pacific octopus ---

Saili et al. 2017, Birth Defects Res

ToxPi (v2.0 beta) and SeqAPASs (v2.0)
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Ginhoux et al 2010, Science

BBB ontogeny

E8.25-E6.5

E9.25-E9.5

Different components emerge and mature at different
stages of prenatal development.

Commences with angiogenic sprouting from the
perineural vascular plexus (PNVP).

ECs + PCs invade the embryonic neural epithelium on
E9-10 (mouse) and GD 26 (human).

Circulating microglia from the yolk sac colonize the
neuroepithelium - resident macrophages of the brain.

BBB properties (tight junctions, GLUT1) and barrier
function (TEER) evident by E11 and increases to birth.



Microglia are required to establish BBB/microvasculature E SlgN

e promote vascular patterning and BBB barrier development in the embryonic forebrain.
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Hypothesis: ‘microglial sensing’ is a key event in BBB developmental toxicity
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1 These e-libraries are a major component of the Virtual Tissues Knowledgebase (VTKB)
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513 records = main subject (MeSH) on BBB in an article
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115 DNT chemicals = main subject (MeSH) in an article
annotated for development/embryology AND neurological effects

- 82 chemicals 2 5 with DNT effectson BBB
BPA, 5FU, Pb, paraquat, retinoic acid

Publ

US Naton:

Int J Dev Neurosci. 2004 Feb;22(1).31-7.

Mosquito repellent (pyrethroid-based) induced dysfunction of blood-brain barrier permeability in
developing brain.

4 Author information

Abstract

Pyrethroid-based mosquito repellents (MR) are commonly used to protect humans against mosquito vector. New born babies and children are
often exposed to pyrethroids for long periods by the use of liquid vaporizers. Occupational and experimental studies indicate that pyrethroids
can cause clinical, biochemical and neurological changes, and that exposure to pyrethroids during organogenesis and early developmental
period is especially harmful. The neurotoxicity caused by MR has aroused concern among public regarding their use. In the present study, the
effect of exposure of rat pups during early developmental stages to a pyrethroid-based MR (allethrin, 3.6% w/v, 8h per day through inhalation)
on blood-brain barrier (BBB) permeability was investigated. Sodium fluororescein (SF) and Evan's blue (EB) were used as micromolecular
and macromolecular tracers, respectively. Exposure during prenatal (gestation days 1-20), postnatal (PND1-30) and perinatal (gestation days
1-20 + PND1-30) periods showed significant increase in the brain uptake index (BUI) of SF by 54% (P < 0.01), 70% (P < 0.01), 79% (P <
0.01), respectively. This increase persisted (68%, P < 0.01) even 1 week after withdrawal of exposure (as assessed on PND37). EB did not
exhibit significant change in BBB permeability in any of the group. The results suggest that MR inhalation during early
prenatal/postnatal/pennatal ife may have adverse effects on infants leading to central nervous system (CNS) abnormalities, if a mechanism
operates in humans similar to that in rat pups.

I development




HTS profiling of angiogenic-neurogenic chemical bioactivity

Reproductive Toxicology 96 (2020) 300-315

Contents lists available at ScienceDirect

Reproductive Toxicology

journal homepage: www.elsevier.com/locate/reprotox
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HTS data generated on up to 58 reference chemicals across 18
diverse cell-based angiogenic and neurogenic features.

ToxPi bioactivity signatures used to train a logistic regression
literature model to annotate clusters with PubMed MeSH.

Chemical-specific pairwise mutual information score predicts
NVU developmental hazard potential for advanced modeling.

Zurlinden et al. 2020, Reprod Toxicol
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BBB systems model for predictive toxicology

(

.

24 molecular targets
(99 ToxCast assays)

Produced in CellDesigner v4.4

Saili et al. 2017, Birth Defects Res
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Advanced Modeling: neovascularization of the neural tube

Tata et al. 2015, Mech Dev

Neuroepithelium

Microglia induced
anastomoses

endothelial tip cell
endothelial stalk cell
B microglial cell
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C sVegfrt D
N

%l Reduced VEGF-A/Cresponse

NICD > Threhold
Stalk Cell

Vessel migration

SVP formation QEG F-A )

( Ventricle/NPC population

CCTE, work in progress



' 0Summary plots - Representative samples only
_ Mancozeb: profile from ToxCast dashboard
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Checking the prediction: microglial integration in a synthetic microsystem ...
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Incorporating the neurogenic domain (preliminary)

Embryonic Neuroepithelium
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Neurovascular Unit-on-a-Chip Module

Rotary Planar Peristaltic
Micropumps
(RPPM) for Perfusion

Perfusion Vials
W|th Septa
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B Sd
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Membrane Opaque

NEMA17
Pump Motor

Waste
Collection

| &
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Brass Pump Driveheads

Human endothelial cells, astrocytes,
pericytes, and neurons.

Microanalyzer for real time data
(glucose, lactate, oxygen, pH, and 4
neurotransmitters).

Testing neuroinflammation (LPS) and
neurotoxicity (CPF) pathways.

EPA STAR grant (new), Vanderbilt University, D Cliffel and J Wikswo 15



Embryonic Human Neurovascular Unit (WNVU): quantitatively assess the
impact of chemical-induced disruption of neural morphogenesis and function.

A. Transwell

@ Endothelial Cells
» Pericytes
% Neurons and Astrocytes
(EZ Spheres)

Matrigel Matrix
0.4 uM membrane

o Taeie Sog b T Sy 8

B. Ibidi Microfluidic

Side View

Matrigel Matrix
0.5 uM membrane

eeeeeeeeeeee = Flow >
— = 1.5 glass coverslip
C. Experimental Timeline
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Ibidi Microfluidic

Transwell

S Hunter, work in progress

Impact of the endothelial-pericyte barrier on
developmental neurotoxicity,

Assess chemical effects on barrier function in a
human cell-based in vitro system(s).

16



Qualification of barrier function in the hNVU

96-well Transwell Ibidi Microfluidic
=% % 3 Transwell Ibidi Microfluidic
4 kDa FITC-Dextran Flux 4 kDa FITC-Dextran Flux
150 150 -
mm Empty TW mm Empty Device
DMSO Ei = DMSO E mm DMSO
v . Y-27632 % 1004 . Y-27632
e 100- s 100
p mm BCH o mm BCH
N s
g 504 E 50+
S 2
0- 0-
Day 7 Day 14 Day 7 Day 14
Y-27632
10 uM
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cw hd =t
5 ‘S 3001
e 2 E
i? 201 > 200+
2 a * =
BCH % 100
(10 mM)
0- 0
96 - well Transwell Microfluidic 96 - well Transwell Microfluidic

* Y-27632is a cell permeable rock inhibitor that cross the NVU barrier — increases proliferation and differentiation of
human ‘EZ neurosphere’ cells to neural and astrocytic phenotypes (green fluorescence) in all models.

 BCH is a LAT-1 transporter inhibitor that does not cross the barrier; with BCH there are few NPCs cells, little

differentiation (bright green neural structure) and almost no red astrocytes. In the MPS devices, proliferation and

differentiation are similar to control cultures. 17



Embryo-fetal NVU Barrier: application to developmental neurotoxicity

T Shafer, S Hunter - work in progress

Microelectrode array (MEA) assay
platform developed in Tim Shafer’s lab.

Monitors rat cortical neuronal network
formation and electrochemical activity.

Used to profile ToxCast chemicals for
direct effects on neuronal networks.

Rat cortical MEA system has been
integrated with the transwell hNVU.

18



Summary

NVU composed of multiple cells types and >400 genes, at least 86 of which play
important roles in BBB development and function.

BBB becomes functional soon after it forms during organogenesis (6-14 weeks in
human gestation).

Development and function is perturbed by multiple pathophysiological conditions
and may underlie neurodevelopmental disorders linked to chemical exposure.

Dynamics of the system modeled in silico and in vivo focusing on microglial sensing
as potential roles in neurodevelopmental toxicity linked to their activation.

19
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