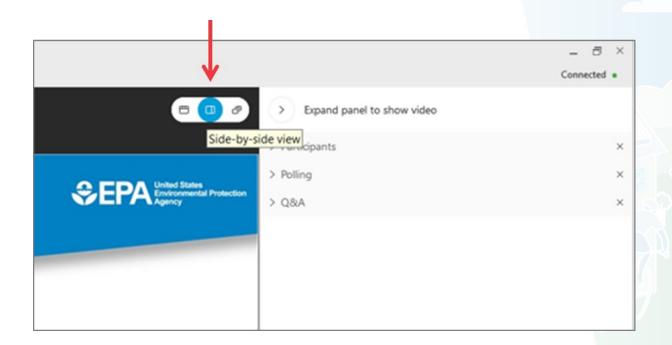
## U.S. EPA's State and Local Energy and Environment Webinar Series



# An Introduction to Electric Vehicle-Ready Buildings

March 24, 2021 3:00 – 4:00 PM Eastern

Two audio options:


- 1. Listen via computer
- 2. Dial 1-415-655-0002 or 1-855-797-9485 Event number: 185 520 3131



#### Screen View

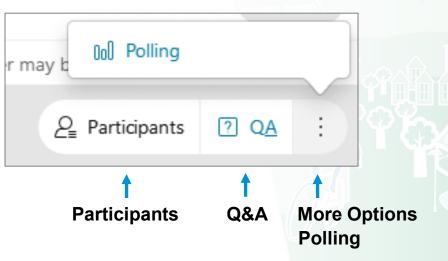


- There are several layout options
- We recommend the side-by-side view



#### Webinar Panels




#### We'll use three panels

- Participants, Polling, and Question & Answer (Q&A)
- Use the arrow to expand or collapse the panels

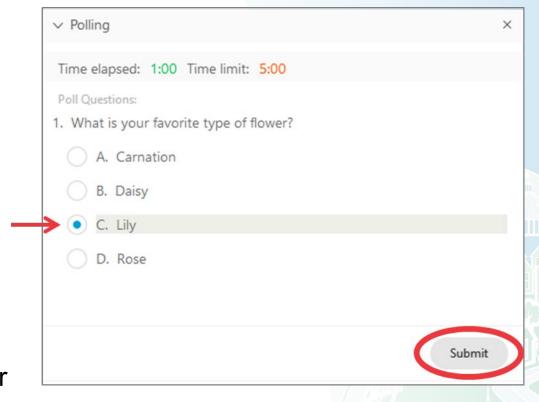
#### Adding Panels

- If some panels don't appear, hover over the bottom of the screen and select the desired panels
- Select More Options (...) for additional panels
- Blue icons indicate active panels





### Polling and Feedback




#### **Polling**

- We'll ask several poll questions during the webinar
- The polling panel will appear when we open the first poll
- Select your desired response and hit "Submit"

#### Webinar Feedback

 A feedback form will pop-up when you exit today's webinar



#### Q&A



- Participants are muted
- Questions will be moderated at the end
- To ask a question:
  - 1. Select "All Panelists" from the drop-down menu
  - 2. Enter your question in the Q&A box
  - 3. Hit "Send"



 EPA will post final webinar materials on the Webinar Series page: www.epa.gov/statelocalenergy/state-local-and-tribal-webinar-series

### Today's Agenda



- Andrea Denny and Peter Banwell, Office of Atmospheric Programs, U.S. Environmental Protection Agency (EPA)
   Jessica Daniels, Office of Transportation and Air Quality (OTAQ), EPA
- Matt Frommer, Southwest Energy Efficiency Project (SWEEP)
- Michael Salisbury, City and County of Denver, Colorado
- Question and Answer Session

#### Introduction



### **Andrea Denny**

Lead Environmental Policy Analyst

Peter Banwell
Senior Manager, ENERGY STAR

### Jessica Daniels

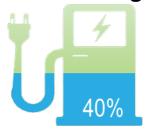
**Environmental Protection Specialist** 

U.S. Environmental Protection Agency





# U.S. EPA's State and Local Energy and Environment Program




- We offer free tools, data and technical expertise about energy strategies, including energy efficiency, renewable energy and other emerging technologies, to help state, local and tribal governments achieve their environmental, energy and economic objectives
- Access these resources at: <u>www.epa.gov/statelocalenergy</u>
- Electrification Webinar Series
  - Upcoming topics: Equity & Access, Education & Engagement
  - Get notifications by subscribing to our newsletter:
    - www.epa.gov/statelocalenergy/state-and-local-energy-newsletters
  - Past Webinars:
    - www.epa.gov/statelocalenergy/state-local-and-tribal-webinar-series

#### **ENERGY STAR Electric Vehicle (EV) Charging Specification**

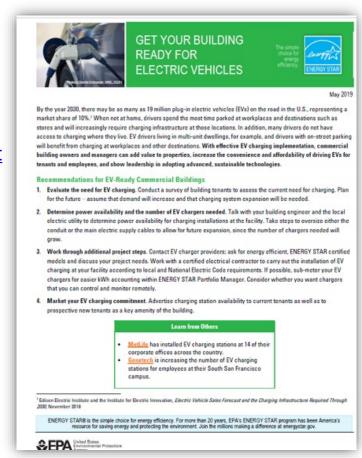
Level 1 (110V) and Level 2 (240V) alternating current (AC) chargers

- Safety certified by recognized third-party entities
- Energy savings of 40% in standby mode





## New scope includes direct current (DC) electric vehicle supply equipment (EVSE)/ charging station up to 350 kilowatt (kW)


- Approximate savings per charger worth 500-kilowatt hour/year with every 1% increase in efficiency\*
- Fleet aggregate savings of megawatt/year
- Requires the capability to enable an open access connection, allow demand-response capability for both AC and DC EVSE
- Additional saving opportunities with connected, smart chargers exist through Vehicle to Grid Integration (VGI), including Vehicle to Building (V2B).



#### **Tools and Resources**

#### **ENERGY STAR EV Chargers Website**

- Consumer Buying Guidance
- **Online Tools:** 
  - Product Finder and Qualified Products List
  - Incentives List for Electric and Plug-in Hybrid Vehicles
  - Locator Tool for Public EV Charging Stations
- One-pagers for EV-ready Commercial **Buildings**, Homes, and Charging EVs with **Green Power**
- Available Research of Electric Models
- **Procurement Language** for Fleet Managers







# U.S. EPA's State, Local, and Tribal Transportation Resources

- EPA's OTAQ protects human health and the environment by reducing air pollution and greenhouse gases from mobile sources and the fuels that power them, advancing clean fuels and technology, and encouraging business practices and travel choices that minimize emissions
- We help state, local, and tribal governments achieve their environmental and other objectives by providing expertise on:
  - State Implementation Plans
  - Transportation Conformity
  - Vehicle Emissions Inspection & Maintenance and state fuel programs
  - Travel Efficiency and Greenhouse Gas (GHG) Planning
  - MOtor Vehicle Emission Simulator (MOVES), Calculators, and Tools
- Access these resources at the State and Local Transportation Resources page: <u>www.epa.gov/state-and-local-transportation</u>



# OTAQ's Voluntary Programs and Initiatives

- EPA's OTAQ also has several voluntary programs and initiatives for state, local, and tribal governments as well as other stakeholders
- Clean Diesel Program To reduce diesel emissions that impact public health
  - Includes grants and rebates under the Diesel Emissions Reduction Act (DERA)
  - www.epa.gov/cleandiesel
- Ports Initiative To improve environmental performance near ports
  - www.epa.gov/ports-initiative
- SmartWay To advance sustainable transportation supply chains
  - www.epa.gov/smartway

### **Transportation Trends**



- EPA Automotive Trends Report
  - Public information about new lightduty vehicle greenhouse gas emissions, fuel economy data, technology data, and auto manufacturers' performance in meeting the agency's GHG emissions standards
  - www.epa.gov/automotive-trends
- EPA Green Vehicle Guide
  - Learn more about emerging options in transportation like zero emission vehicles (ZEVs), shared mobility, and self-driving cars
  - www.epa.gov/greenvehicles



Greenhouse Gas Emissions, Fuel Economy, and Technology since 1975

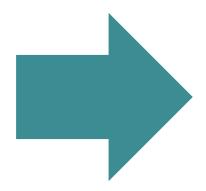




#### **Contact Information**



Andrea Denny
<a href="mailto:denny.andrea@epa.gov">denny.andrea@epa.gov</a>
Peter Banwell
<a href="mailto:banwell.peter@epa.gov">banwell.peter@epa.gov</a>
Jessica Daniels
<a href="mailto:daniels.jessica@epa.gov">daniels.jessica@epa.gov</a>




Visit Our Website | <a href="https://www.epa.gov/statelocalenergy">www.epa.gov/statelocalenergy</a>
Sign Up for Our Newsletter | <a href="https://www.epa.gov/statelocalenergy/state-and-local-energy-newsletters">www.epa.gov/statelocalenergy/state-and-local-energy-newsletters</a>
Join Our LinkedIn Group | <a href="https://www.linkedin.com/groups/12129811/">www.linkedin.com/groups/12129811/</a>



# Which best describes your organization's experience with EV building codes or ordinances?

- We have a code or ordinance in place
- We are developing a code or ordinance



- We are considering a code or ordinance in the future
- We have no plans to create a code or ordinance

#### Poll 1

### **EV Infrastructure Building Codes**



### **Matt Frommer**

Senior Transportation Associate Southwest Energy Efficiency Project





# **EV Infrastructure Building Codes**

Matt Frommer
Southwest Energy Efficiency Project
<a href="mailto:mfrommer@swenergy.org">mfrommer@swenergy.org</a>
March 24, 2021





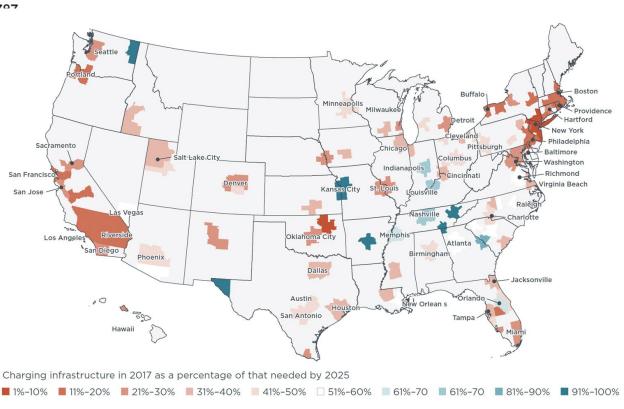
#### **Why Adopt EV Infrastructure Building Codes?**







#### The Scale of the EV Infrastructure Challenge




#### PEV Population - Units in Operation

Percentage of Total Population

| Scenario | 2020   | 2025    | 2030  |  |  |
|----------|--------|---------|-------|--|--|
| DALL     | 43,346 | 249,683 | 718,7 |  |  |
| BAU      | 0.8%   | 4.1%    | 10    |  |  |
| 751/1    | 45,701 | 295,223 | 838   |  |  |
| ZEV+     | 0.8%   | 4.8%    | 11    |  |  |
| Lligh    | 45,701 | 363,692 | 1,037 |  |  |
| High     | 0.8%   | 5.9%    | 14    |  |  |

**Source:** 2020-2030 Colorado Plug-in Electric Vehicle (PEV) sales by policy scenario (Navigant, 2019)



Public & workplace charging as a percentage of chargers needed by 2025 by metro-area. Source: International Council for Clean Transportation: Quantifying EV charging Gap (2019)

BAU: Business as usual





1-Help overcome a critical barrier to EV adoption by facilitating EV charging infrastructure

2-Avoid EV charging infrastructure retrofit costs including:



Electrical system retrofits



Breakage and repair of hardscapes



Soft Costs: permitting, inspection, HOA or landlord approvals, etc.

HOA: Homeowner association

#### **Colorado Needs More EV Charging Stations to Accelerate** the EV Market



- Lack of EV charging is one of the biggest barriers to purchasing an EV
- "6 in 10 Americans are unlikely to buy an EV because there are not enough places to charge (58%) or they are concerned they will run out of charge while driving (57%)" AAA survey (2019)
- Colorado needs 15 times as many charging stations in the next 10 years to support our EV targets
- In the U.S, only 6% of homes were built in the last 10 years

|              | 30,000 EVs | <b>→</b> | 450,000 EVs |
|--------------|------------|----------|-------------|
| EVSE type    | 2020       | 2025     | 2030        |
| Home L2      | 13,399     | 74,638   | 199,314     |
| Public L2    | 648        | 3,619    | 9,638       |
| Workplace L2 | 923        | 5,154    | 13,727      |
| DCFC         | 132        | 650      | 2,250       |
| Total        | 15,101     | 84,061   | 224,929     |

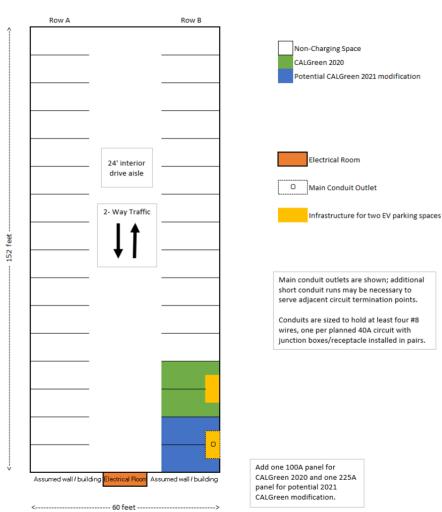
Source: Colorado's Xcel Energy Transportation Electrification Plan EV charging projections (2020)

AAA: American Automobile Association

L2: Level 2

DCFC: Direct current fast charging




#### **Global Automaker Commitments**

| Automaker                 | Electrification Commitment                                                         |  |
|---------------------------|------------------------------------------------------------------------------------|--|
| Audi                      | 20 new EV models by 2025                                                           |  |
| BMW                       | 12 EVs by 2025                                                                     |  |
| Volvo                     | 50% of sales are electric by 2025 [5 new battery electric vehicles (BEVs) by 2021] |  |
| General Motors (GM)       | 100% EV sales by 2035                                                              |  |
| Jeep                      | 10 plug-in hybrid electric vehicles (PHEVs) and 4 BEVs by 2022                     |  |
| Renault-Nissan-Mitsubishi | Sell 1 million EVs per year by 2022 (12 new BEVs)                                  |  |
| Ford                      | 40 EV models by 2022: 16 BEVs, 24 PHEVs                                            |  |
| Honda                     | 2/3 of all sales to be electric by 2030                                            |  |
| Hyundai-Kia               | 8 new EVs by 2022                                                                  |  |
| Jaguar - Land Rover       | Pledge to manufacturer only EVs and hybrids after 2020                             |  |
| Toyota                    | 10 BEVs by early 2020s                                                             |  |

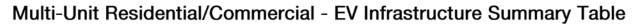


SWEEP
SOUTHWEST ENERGY
EFFICIENCY PROJECT

- Home-charging: 92% of chargers, 77% of electricity delivered to EVs. Rest split between workplace, public Level 2, and DC Fast-chargers
- 50% of Americans do not have access to a dedicated off-street parking space at their residence
- Logistical barriers of installation:
  - Homeowner association rules
  - Shared or non-deeded parking spaces
  - Split incentive for renters








"Installing EV capable parking spaces in stand-alone retrofits is typically 4 to 6 times more expensive compared to installing EV capable parking spaces during new construction. If EV capable parking spaces are installed during new construction, \$2,040 - \$4,635 per parking space is saved over the retrofit scenario."

Energy Solutions (2019)



Costs modeled for the City of Oakland





|                                                                                    | CORE                                                                                     | PROGRESSIVE                                                                              |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ELECTRICAL CAPACITY                                                                | 208/240V capacity, 40A breaker per port                                                  | 208/240V capacity, minimum of 40A breaker per port                                       |
| PANELS                                                                             | Space to accommodate one 40A breaker, per port, for 20% of spaces                        | Space to accommodate one 40A breaker at least, per port, for 50% of spaces               |
| PARKING SPACES & EV<br>CAPABILITY (DEEDED)                                         | EV-ready Infrastructure for 20% of total spaces. Subpanels within 100ft of each EV stall | EV-ready Infrastructure for 50% of total spaces. Subpanels within 100ft of each EV stall |
| PARKING SPACES & EV<br>CAPABILITY (NON-DEEDED)                                     | EV-ready Infrastructure for 20% of total spaces                                          | EV-ready Infrastructure for 50% of total spaces                                          |
| AUTOMATIC LOAD<br>MANAGEMENT                                                       | No difference                                                                            | No difference                                                                            |
| ESTIMATED COST AS A PERCENTAGE OF TOTAL CONSTRUCTION COST (RESIDENTIAL/COMMERCIAL) | 0.27 % - 0.35 %                                                                          | 0.67 % - 0.87 %                                                                          |





#### 1. "EV-Capable"

Electrical panel capacity + branch circuit + raceway Atlanta, GA: 20% is EV-Capable (Ordinance)



#### 2. "EV-Ready"

**EV-Capable + 240-volt outlet** 

Denver, Boulder: (1) EV-Ready Space per dwelling for single family units



#### 3. "EV-Installed"

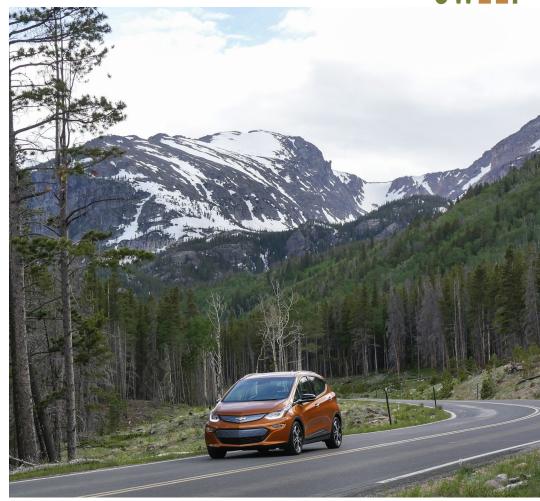
Install a minimum number of Level 2 charging stations

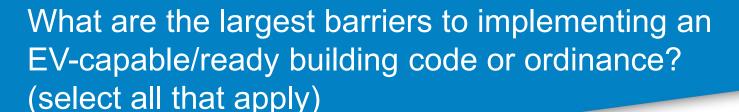
Denver: 5% EV-Installed for multifamily units & Commercial



#### **2019-21 Progress**

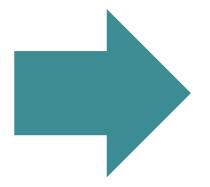



| Municipality           | State             | Year | Location                                                             | Single-family                         | Multi-family                                                      | Commercial                                                                                               |
|------------------------|-------------------|------|----------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Denver                 | СО                | 2019 | International Building Code (IBC) / International Revenue Code (IRC) | 1 EV-Ready space per<br>dwelling unit | 5% EV-Installed, 15% EV-Ready,<br>80% EV-Capable                  | 5% EV-Installed, 10% EV-Ready,<br>10% EV-Capable                                                         |
| Boulder                | СО                | 2019 | IBC / IRC                                                            | 1 EV-Ready space per<br>dwelling unit | 5% EV-Installed, 10% EV-Ready, 40% EV-Capable (25+ spaces)        | 5% EV-Installed, 10% EV-Ready, 10% EV-Capable (25+ spaces)                                               |
| Avon                   | СО                | 2021 | Ordinance                                                            | 1 EV-Ready space per<br>dwelling unit | 5% EV-Installed, 10% EV-Ready, 15% EV-Capable (7+ spaces)         | 5% EV-Installed, 10% EV-Ready, 15% EV-Capable (10+ spaces)                                               |
| Fort Collins           | СО                | 2019 | IBC / IRC                                                            | 1 EV-Capable space per dwelling unit  | 10% EV-Capable                                                    |                                                                                                          |
| Madison                | WI                | 2021 | Ordinance                                                            | 1 EV-Ready space per<br>dwelling unit | 2% EV-Installed, 10% EV-Ready<br>(increases by 10% every 5 years) | 1% EV-Installed (increases by<br>1% every 5 years), 10% EV-<br>Ready (increases by 10% every 5<br>years) |
| San Jose               | CA                | 2019 | Ordinance                                                            | 1 EV-Ready space per dwelling unit    | 10% EV-Installed, 20% EV-<br>Ready, 70% EV-Capable                | 10% EV-Installed, 40% EV-<br>Capable                                                                     |
| St Louis               | МО                | 2021 | Ordinance                                                            | 1 EV-Ready space per<br>dwelling unit | 2% EV-Installed, 5% EV-Ready<br>(increases to 10% in 2025)        | 2% EV-Installed, 5% EV-Ready                                                                             |
| 2024 IBC<br>(proposed) | Interna<br>tional | 2021 | IBC / IRC                                                            | -                                     | 2% EV-Installed, 18% EV-Ready                                     | 2% EV-Installed, 8% EV-Capable                                                                           |




## **Questions?**

Matt Frommer Southwest Energy Efficiency Project <u>mfrommer@swenergy.org</u>










- Uncertainty of demand for EV infrastructure
- Concerns from building developers/property owners
- Need for coordination between government departments
- Grid/infrastructure concerns
- Other (answer in Q&A box)







### Michael Salisbury

**Transportation Energy Lead** City and County of Denver, Colorado



# EV Ready Building Codes in the City and County of Denver

Mike Salisbury
Transportation Energy Lead
Office of Climate Action, Sustainability and Resiliency
An Introduction to Electric Vehicle Ready Buildings
3/24/2021



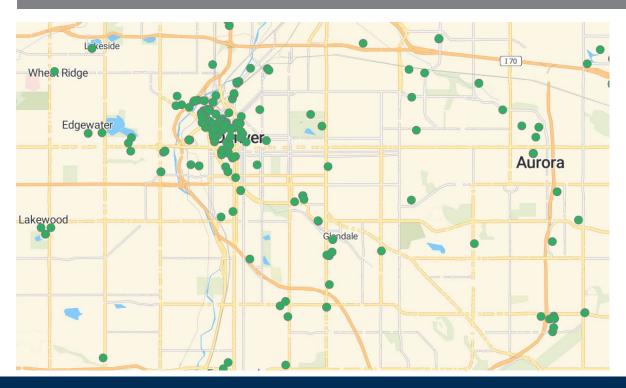
#### Denver Climate and EV Goals

Economy Wide: Electric Vehicles:

2025: 30% reduction 2025: 15% of vehicles are EVs

2030: 45% reduction 2030: 30% of vehicles are EVs

2050: 80% reduction 2050: 100% of vehicles are EVs




# Greenhouse Gas Emissions Benefits of Electric Vehicles

Comparison of 2018 Gas and Electric Vehicles' GHG **Emissions Over Time** 400 300 200 100 0 2018 2026 2030 EV grams per mile —Gasoline grams per mile



### Public Charging Today



- 600 Level 2 ports
- 28 DC fast charging ports

By 2030 we need:

- 8,000 Level 2
- 700 DC fast charging





## One and Two Family

One EV Ready
 Space

#### **Multi-Family**

- 5% EVSE Installed
- 15% EV Ready
- 80% EV Capable

#### Commercial

- 5% EVSE Installed
- 10% EV Ready
- 10% EV Capable



# Why EV Ready Building Codes?

Trenching, punching through walls

Panel upgrades

Soft costs: permitting, plans, inspections

"the International Code Committee discovered that around 85-percent of the cost of refits for EV support could be avoided, had EV-Capable infrastructure been included at the start."

www.slashgear.com/new-ev-ready-building-codes-could-be-tipping-point-for-electric-cars-in-us-10606522/



### Costs: Example 450 Unit Multi-Family Building

|             | EV Capable | EV Ready | <b>EVSE Installed</b> | \$/Space |
|-------------|------------|----------|-----------------------|----------|
| Denver      | \$300      | \$1,300  | \$4,000               | \$722    |
| Developer 1 | \$280      | \$800    | \$12,000              | \$664    |
| Developer 2 | \$850      | \$1,200  | \$6,500               | \$1,224  |

Cost of Structured Parking per Space: \$18,000-\$25,000



# Costs Context: Example 450 Unit Multi-Family Building Total Parking Structure Cost: \$11 million Total Building Cost: ~\$100 million

|             | Total EV Ready<br>Cost | % of Parking<br>Cost | % of Total Building Cost |
|-------------|------------------------|----------------------|--------------------------|
| Denver      | \$324,900              | 2.9%                 | 0.3%                     |
| Developer 1 | \$298,920              | 2.7%                 | 0.3%                     |
| Developer 2 | \$550,980              | 4.9%                 | 0.5%                     |



#### Denver 2022 Code Process

No plans for major advances

Hoping to:

- Clarify language
- Provide flexibility
- Lower Costs

while meeting spirit of providing ubiquitous EV charging infrastructure





# Question and Answer Session





# Connect with the State and Local Energy and Environment Program

#### U.S. Environmental Protection Agency

Andrea Denny

Denny.Andrea@epa.gov



#### **Guest Speakers**

Michael Salisbury Denver, Colorado

Mike.Salisbury@denvergov.org

Matt Frommer
Southwest Energy Efficiency Project
<a href="mailto:mfrommer@swenergy.org">mfrommer@swenergy.org</a>