THE CASE FOR CASE CONTROLLERS – YET AGAIN!

Steve Hagen, Director, Fresh & Easy Abtar Singh, VP Business Development, Verisae Inc. Tom Hutchinson, CEO, Enreps LLC.

> Hilton Minneapolis, MN September 19-22, 2010

E+sd²⁰¹⁰

Energy & Store Development Conference

AGENDA

- CASE CONTROLLER BACKGROUND
- WHY CASE-CONTROLLERS NOW ?
- FRESH & EASY BACKGROUND
- BENEFITS OF CASE-CONTROLLERS
- FRESH & EASY CASE STUDY
- CONCLUSIONS

CASE CONTROLLER BACKGROUND

- Was first introduced in 1986 by many US vendors.
- Never picked up in US due to many challenges:
 - Energy was lower priority
 - Cost of case controllers was high
 - Case controller technology was new and had many problems
 - Electronic valves were not reliable
 - Not enough trained technician available
- However, Europe has 95% of stores with case controller working reliably today.

TRADITIONAL CONTROL

WHAT IS CASE CONTROL?

WHY CASE-CONTROLLERS NOW?

AGENDA

- CASE CONTROLLER BACKGROUND
- WHY CASE-CONTROLLERS NOW ?
- FRESH & EASY BACKGROUND
- BENEFITS OF CASE-CONTROLLERS
- FRESH & EASY CASE STUDY
- CONCLUSIONS

FRESH & EASY BACKGROUND

- 168 stores in California, Arizona and Nevada.
- First store opened November 2007.
- 1400 square foot prototype store.
- All stores successfully using Case-Control technology

Typical Store

Case Control Module – Multi-deck cases

"Lowboy" Case Control Module

9

WHY F&E SELECTED CASE CONTROLLER?

• Our goal was to build the most energy efficient prototype store in the country.

AGENDA

- CASE CONTROLLER BACKGROUND
- WHY CASE-CONTROLLERS NOW ?
- FRESH & EASY BACKGROUND
- BENEFITS OF CASE-CONTROLLERS
- FRESH & EASY CASE STUDY
- CONCLUSIONS

BENEFITS OF "CASE-CONTROLLERS"

- Low Installation Cost
- Lower Energy Consumption
- Lower On-going Maintenance
- Improved Food Quality/Safety
- Environmental Benefits

BENEFITS – INSTALLATION COST

- Electro-Mechanical Infrastructure Savings:
 - Less Copper Pipes
 - Less Piping Insulations
 - Less 120/208V electrical cables
 - Fewer electrical panels
 - Less temperature sensor cables
 - Less refrigerant charge
- Startup/Commissioning Savings:
 - Less joints/pipe soldering
 - Less electrical cables to run
 - Less temperature sensors to run
 - No TXV to tune

STARTING A CASE-CONTROL STORE CAN TAKE HALF THE TIME COMPARED TO CIRCUIT CONTROL

BENEFITS – ENERGY COST

- Lower Condensing Pressure
 - Condensing Pressure can be lowered to 60F as compared to typical 90F
 - Every 1 psig saves roughly 0.5% compressor power
- Tighter Superheat Control throughout the life
 - Typically TXV gets off-tuned after 1-2 years
 - Compressors needs to run at lower suction to meet temperature for inefficient TXV operations
- No pressure drops at EPR
- Use of Product probe can let suction float higher.
- Auto Night-Blind Detection
- Suction Pressure Float based on Valve%

CONDENSER TEMP/PRESSURE FLOAT

Compressor Discharge Pressure Floated Down to 65 F

SUCTION PRESSURE FLOAT USING VALVE%

EXAMPLE OF "NIGHT BLINDS USED"

Blinds used (temp comes closer)

EXAMPLE OF "NIGHT BLINDS NOT-USED"

Blinds not- used (temp does not come closer)

ENERGY IMPACT OF NOT USING BLINDS

Blinds Used

Blinds Not-Used

BENEFITS – IMPROVED ON-GOING MAINTENANCE COST

- No periodic tuning of expansion valves required.
- Four temperature sensors (coil in-out, discharge-return) per case gives improved visibility and remote diagnostics.
- If temperature control failure detected in a case (due to power fail or defrost problem), the case fans can be shut-off to give maintenance engineer valuable 2-3 hrs extra time and not harm the food products
- Enable EEV shut-off during evaporative condenser maintenance reducing flood back upon re-start.
- Changes to case operating temperature due to merchandising needs, can be done remotely versus generating a service call.
- Case lighting control time of day schedules can easily be adjusted on a per case, or per line-up basis, to accommodate special merchandising needs.
- Use evaporator sensor to detect coil "iced" conditions, without pulling product and deck pans to diagnose.

BENEFITS – IMPROVED FOOD QUALITY/SAFETY

- Tighter temperature control
- Case temperature displayed digitally creates better awareness
- Product temperature probe tracks product temperature
- If temperature control failure detected in a case (due to fan or defrost problem), the case can be shut to not warm the products and possibly save the product.

BENEFITS – LOW ENVIRONMENT IMPACT

- Loop piping and hence lower refrigerant charge
- Lower scope 1 & 2 carbon foot-print (due to lower energy consumption and refrigerant leak)
- Less copper piping/cable material and hence lower scope 3 carbon-footprint.

AGENDA

- CASE CONTROLLER BACKGROUND
- WHY CASE-CONTROLLERS NOW ?
- FRESH & EASY BACKGROUND
- BENEFITS OF CASE-CONTROLLERS
- FRESH & EASY CASE STUDY
- CONCLUSIONS

TYPICAL FRESH & EASY STORE FORMAT

FACTORY INSTALLED - BENEFITS

- Standard installation of sensors & electronics.
- Improved quality control.
- Easy change management and training
- OEM much more experienced with case electronics.

REAL BENEFITS SEEN

- 26% lower high-voltage wiring.
- 83% lower low-voltage wiring.
- 10% refrigerant leak rate.
- Improved remote diagnostics.
- Limited product loss in last 4 years

WHAT DO CASE CONTROLLERS REALLY COST – EQUIPMENT COSTS

Item	System		Deduct	Add
	Change from Case case control to conventional control			
1	Walk-in box control panels - RDM / Defrost / Sensors / EEV's	\$	(4,983.00)	
2	Lowboy control panels - RDM / Defrost / Sensors / EEV's	\$	(4,473.00)	
3	Defrost panel, fan contactors, defrost contactors, controls			\$4,412.00
4	Ship Loose Ball Valves, and EPR Valves			\$3,334.00
5	Evaporator Coils - Add Standard TXV			\$627.00
6	Rack Controller / IO boards (departure from RDM)		<u>-</u>	\$1,021.00
	Refrigerated Cases			
7	Case controller / power module / display / sensors / hubs	\$	(5,440.00)	
8	Temp Sensor / Line-up, Digital Thermometers			\$1,200.00
9	Remove Electronic Valve add TXV	\$	(1,200.00)	
		Totals \$	(16,096.00)	\$ 10,594.00

TOTAL UPFRONT COST OF CASE CONTROL EQUIPMENT = \$5,502.00

Conventional System Wiring

Reach-in Frozen Food					
Load	Volts	Amps	Wire Size	Conductors	Wire to
DEFROST HEATERS*	208	15.7	12	2	RDP Contactors
EVAP FANS	208	1.2	14	2	RDP Contactors
DOOR LIGHTS	120	1.44	14	2	PW Contactor
DOOR HEATERS*	120	3.18	14	2	Anti-sweat panel
Grocery Freezer					
Load	Volts	Amps	Wire Size	Conductors	Wire to
DEFROST HEATERS*	208	15.7	12	2	RDP Contactors
EVAP FANS	208	2.08	14	2	RDP Contactors
40Ft Line-up Multi-deck cases					
Load	Volts	Amps	Wire Size	Conductors	Wire to
CASE FANS	120	1.2	14	2	Breaker Panel
CASE LIGHTS	120	4.5	14	2	Breaker / Contactor

Traditional System Wiring

Case Control System Wiring

Reach-in Frozen Food								
Load	Volts	Amps	Wire Size	Conductors	Wire to			
DEF/FANS/LIGHTS/ASW	208	21.4	10	2	Breaker Panel			
Grocery Freezer								
Load	Volts	Amps	Wire Size	Conductors	Wire to			
DEF/FANS	208	17.8	12	2	Breaker Panel			
40Ft Line-up Multi-deck cases								
Load	Volts	Amps	Wire Size	Conductors	Wire to			
CASE FANS / LIGHTS	120	6.3	12	2	Breaker Panel			

Case Control System Wiring

•Conventional System Electrical Conductors:

- •Low Temp #12 wire = 10 conductors
- •Low Temp #14 wire = 26 conductors
- •Medium Temp cases #14 wires = 14 conductors
- •Medium Temp walk-ins # 12 = 2 conductors
- Medium Temp walk-ins # 14 = 6 conductors
- Supply air sensors (1 per case) = 22 Shielded cables
- Supply Air Sensors Low Temp = 8 Shielded Cables
- •Total Conductors = 58
- •Total Cables = 30

•Case Control System Conductors:

- •Low temp #8 = 6 conductors
- •Low temp #10 = 12 conductors
- •Medium Temp Cases #12 = 18 conductors
- •Walk-in Boxes #12 = 7 conductors
- •CAT 5 communications = 5 homeruns
- •Total Conductors = 43
- •Total cables (CAT 5) = 5

26% Less High Voltage wiring

83% Less Low voltage wiring

CONCLUSIONS

- Lower first cost
- Shorter start up time
- Improved case operation
- Lower energy costs

