HVAC Innovation

Brian Kammers Regional Manager AAON, Inc.

Drivers of Technology

- Increasing government standards
- Changes in standards
 - □ ASHRAE 90.1
 - □ ASHRAE 189.1
- Industry drivers
 - LEED
 - CEE rebate levels
- Requirements for better control of temperature and humidity
- Desire to reduce energy costs

Key Technologies

- Variable Capacity Compressors
- Modulating reheat for humidity control
- Higher efficiency fans
- Direct drive fans
- Construction improvements

Hilton

 System types: Dual Path vs. Package Return Air Bypass

> Minneapolis, MN September 19-22, 2010

 $F + cd^{2010}$

Energy & Store Development Conference

Government Standards

Department of Energy (DOE) mandated all states must use ASHRAE 90.1-2004 as their state energy code, or a code more stringent.

 $F + sd^{2010}$

Energy & Store Development Conference

ASHRAE 90.1-2004
 EER – Energy efficiency ratio
 Package equipment EER 9.0 – 10.3

Hilton Minneapolis, MN September 19-22, 2010 FOOD MARKETING INSTITUTE

ASHRAE 90.1

2004 Package equipment EER 9.0 – 10.3 2010 Package equipment EER 9.5 – 11.2

ASHRAE 189.1

- Standard for the Design of High-Performance, Green Buildings, is the first code-intended commercial green building standard in the United States.
 - Illuminating Engineering Society of North America (IES)

 $F + sd^{2010}$

Energy & Store Development Conference

□ U.S. Green Building Council (USGBC)

Minneapolis, MN September 19-22, 2010

Hilton

FOOD MARKETING INSTITUTE

LEED

U.S. Green Building Council (USGBC)

- Leadership in Energy and Environmental Design
- Holistic approach
- Efficient products contribute to the effort

Key Technologies - Variable Capacity Compressors

- Scroll Compressor
- Modulates mass flow of refrigerant from 10% to 100%
- Never a problem with oil return
- □ Increase part load efficiencies
- Keeps the coil cold for longer periods of time improving humidity control

 $+ < d^{2010}$

Eliminates hot gas bypass

Energy & Store Development Conference

Variable Capacity Compressors

Variable "Pumping" Diagram

Pulse-Width Modulation

Appropriateness of EER

ARKETING INSTITUTE

Appropriateness of EER

Hot Gas Bypass

Hot gas bypass has been appropriate for cooling applications that demand tight, continuous, thermal control—particularly if large amounts of outdoor air, widely varying loads, or excessive compressor on/off delays are involved.
 HGBP prevents excessive compressor cycling
 HGBP can help match system capacity to load
 HGBP can allow the system to operate at safe balance points during low loads

 $+ < d^{2010}$

Energy & Store Development Conference

Hilton Minneapolis, MN September 19-22, 2010

Energy Penalty

1 Martin

Savings Example

Variable Capacity Compressor (VCC) vs On-Off or HGB Controlled Compressor Control

Equivalent Rated ARIEER to Equal VCC Rated EER Based on an Annual Analysis

-	UnitMod	el\$= RM	-015	EvaporatorRows\$= Standard			Operation\$= 12 Hour				DaysPerWeek\$	= Seven
Location	MINNEAPOLIS_MN			Nominal Tons = 15			Supply Fan Control Type = CAV				1	
OADB (°F)	97.0	92.0	87.0	82.0	77.0	72.0	67.0	62.0	57.0	52.0	Total	1
Load Hours (hrs)	0	53	145	222	288	359	273	256	275	197	2068 [hrs]	
Load (tons)	15.0	13.5	12.0	10.5	9.0	7.5	6.0	4.5	3.0	1.5	13981 [ton-hrs]]
Base hit												
Base Unit Compressor	Le	ad	Lag									
Base Unit Compressor Control Type	HGB	S	tandard	Base Un	it Condense	er Fan Cor	trol Type	Cycling				
EER Total Unit Base Unit (Btu/(W-hr))	10.6	10.4	10.1	9.6	8.8	11.7	10.2	8.4	6.1	3.3	ARI Unit EER	10.60
Power Base Unit (kW)	17.0	15.5	14.3	13.2	12.3	7.7	7.1	6.5	5.9	5.5		
Energy Base Unit (kWh)	0	823	2067	2922	3533	2766	1928	1655	1634	1087	Annual (kWh)	18414
			1	/ariable Ca	apacity Co	mpressor	Unit					
VCC Unit Compressor	Le	ad	Lag									
VCC Unit Compressor Control Type	Digital Standard			VCC Unit Condenser Fan Control Type)	Cycling	3		
EER Total Unit VCC (Btu/(W-hr))	10.4	11.1	11.5	11.7	11.3	11.6	11.6	10.8	8.9	5.4	ARI Unit EER	10.40
Power VCC (kW)	17.3	14.6	12.5	10.8	9.6	7.8	6.2	5.0	4.0	3.3		
Energy VCC (kWh)	0	773	1810	2398	2751	2793	1699	1286	1111	655	Annual (kWh)	15275

Annual Energy Savings VCC vs Base =	3139 [kWh]		
	17.0 [%]		

Required Base Unit Rated EER to Equal VCC	12.5 [Btu///// br)]
Rated EER For Equal Annual Energy Usage	12.5 [Btu/(W-nr)]

Values shown are estimates, actutal performance may differ due to ambient conditions, load, air flow, and control methods.

Modulating Hot Gas Reheat

- Using heat of refrigerant for temperature control
- Hot gas reheat is not new but modulating reheat is

 $F + sd^{2010}$

Energy & Store Development Conference

- Precisely match requirements for temp and humidity control
- On-off reheat is like a broken clock

DX On-Off Compressor Control

Modulating Reheat & On-Off Compressor

Variable Compressor Modulating Reheat

Higher Efficiency Fans

Forward curve fans

Inexpensive

- □ Most Common type in packaged equipment
- For low static pressure applications that are typical in comfort HVAC
- □ Peak air moving efficiency ranges from 65% to 70%
- Backward incline fans
 - □ Can produce greater static pressures
 - □ Peak air moving efficiency ranges from 75% to 80%

Minneapolis, MN September 19-22, 2010

Hilton

Energy & Store Development Conference

Backward Incline Fans

FOOD MARKETING INSTITUTE

Direct Drive Fans

- No belt service, reduced maintenance
- No belt vibration and noise
- No belt losses, higher efficiency
- Reduced bearing stress
- No belt dust, residue

Hilton Minneapolis, MN September 19-22, 2010

Energy & Store Development Conference

F+sd

2010

Direct Drive BI Fans

Calculated Application Efficiency

	Motor Efficiency		Belt Efficiency		Fan Efficiency		System Effects		Total System Efficiency
Belt-Driven, Housed, Forward Curved Total Efficiency =	(0.90)	•	(0.87)	•	(0.60)	•	(0.70)	=	33%
Belt-Driven, Housed, Backward Curved Total Efficiency =	(0.90)	•	(0.87)	•	(0.75)	•	(0.80)	=	47%
Direct Drive, Unhoused Backward Curved, Total Efficiency =	(0.90)	•	(1.00)	•	(0.70)	•	(1.00)	H	63%

• Using the same 15hp motor in each example, the direct drive, backward curved fan is 91% more efficient than the belt driven, housed forward curved fan. It is 34% more efficient than the belt driven, housed backward curved fan.

Hilton Minneapolis, MN September 19-22, 2010 Energy & Store Development Conference

Construction Choices

Typical in the industry

- □ 1 inch fiberglass has an R value of 3 typical of industry
- Upgrade to double wall to protect insulation

Truly insulated rooftop equipment

- Two inch foam panel with R value of 13
- Thermal break, yielding no thermal path through the panel
- Reduced exterior condensation
- □ No air leakage through the panel
- Improved mechanical strength and rigidity
- Enhanced energy performance and equipment life

Foam Panel Construction

System Types

- Dual path system
 - Return air and outdoor air go through separate cooling and reheat coils.
- Return air bypass reheat system
 Part of the return air is mixed with outside air
 Part of the return air is mixed with air coming off the cooling and reheat coils

 $+ < d^{2010}$

Energy & Store Development Conference

Hilton Minneapolis, MN September 19-22, 2010

Construction Choices

Dual Path Systems

- Advantages
 - Provides direct control of ventilation air quantity
 - Provides excellent humidity control at all times, including part load
 - Energy efficient while assuring an acceptable humidity level at all ventilation air volumes.
 - Can use rejected heat from refrigeration sources
- Disadvantages
 - There is a first cost premium since two coils and compressors are used.

Construction Choices

Return Air Bypass Systems

Advantages

- Typically lower first cost compared to dual path systems
- Energy efficient when combined with other technologies (variable scroll, modulating hot gas reheat)
- Can use rejected heat from refrigeration sources
- Disadvantages
 - Limits to the amount of level of bypass/ dehumidification

Humidity Ratio

Humidity Ratio

Summary

- Variable (digital) scroll compressors
- Direct drive backward incline fans
- Modulating hot gas reheat
- Insulation construction
- Return air bypass with reheat, a less expensive alternative

