Well Integrity and Long-Term Well Performance Assessment (Insights from work on CO₂ Sequestration)

Bill Carey

Earth & Environmental Sciences Division Los Alamos National Laboratory Los Alamos, NM USA

How Is Wellbore Integrity Achieved?

- Operational measures
 - Adequate weight drilling mud
 - Monitoring pressure for gas intrusion ("gas kick")
 - Blowout preventers
- Design measures
 - Steel
 - Portland cement
- Guidelines: API HF1 (hydraulic fracturing),

www.theoildrum.com

Why do wells leak?

Oil and Gas

Pr Ti

Production

Field Observations: Role of Interfaces

- Evidence for CO₂ migration at cement-caprock interface (carbonate deposit)
- Evidence for CO₂ migration at casing-cement interface (orange, carbonated cement)
- Steel not corroded (but cathodic protection)
- Healed fractures in cement
- SACROC, West Texas: CO₂-EOR, 55-year old well, 30 years exposure

Carey et al. IJGGC (2007)

SACROC—Cement-CO₂ reactions Fracture Permeability

Phase	Gray Zone
Amorphous	Major
Portlandite	15-58%
Calcite	0-28%
Katoite	22-26%
Brucite	3-9%
Ettringite	3-4%
Friedel's Salt	2-4%
Halite	9-32%
Phase	Orange Zone
Calcite	44%
Aragonite	8%
Vaterite	33%
Halite	13%

Simulation of SACROC: Accurate account of cement mineralogy

Carey and Lichtner (2007)

Experimental studies: Permeability of Cement-Caprock Interfaces

- Class G fly-ash Portland cement fine grain quartz sandstone composite
- Interface of crushed sandstone (80%) and cured cement (20%): 125-250 μm
- 1500 psi pore (~10 Mpa), ~2600 psi confining (~18 Mpa), 60°C
- Brine flow (I = 0.04 M): 0.15 to 0.25 ml/min
- scCO₂ flow: 0.048 to 0.08 ml/min
- Fractional flow CO₂ = 0.24;

Permeability and pH: Self-healing

- Permeability of SS-Cement interface
 - Assumes flow only along interface
- 1461 ml brine; 460 ml CO₂ (~140 g)
- ~890 interface pore volumes
- Steady state perm: ~500 pore volumes
- In situ pH calculated (Newell et al., 2008)

Coreflood experiments: Self-Healing Behavior in Cement-Cement Interfaces

Wigand et al. (Chem. Geol. 2009)

Experimental Studies of Corrosion at the Steel-Cement Interface

- Flow-through experiments
 - 50:50 CO₂-Brine (30,000 ppm, NaCl-rich) mixture (41,000 PV)
 - 20 ml/hour for 274 hours; 10 ml/hour for 120 hours; 6200 ml total
 - 40 °C; 14 MPa inlet pressure; 28 MPa confining pressure
- ~ 10 cm Limestone against ~ 6 cm Portland Cement

Carey et al. (2010) Int. J. Greenhouse Gas Control

Extensive corrosion at inlet

Backscatter Electron Images of Cement-Casing Interface

Acc.V Spot Magn Det WD 200 µm 20.0 kV 4.0 200x BSE 15.0 NMT Casing-Cement Interface

Geomechanical Behavior of Wells

- Critical in hydraulic fracturing
- Casing expands and stresses cement
- Cement behaves plastically at elevated confining pressure (Liteanu et al. 2009)
- What does hydraulic fracture pressure do to cement bond, cement?
- Can hydraulic fracture pressures communicate with older wells?

Carey et al. (2012) GHGT-11

Short-Term Versus Long-Term Risk

Time

- Wells are an important part of project risk at early stages
- Late-stage risk is assumed to decrease
- What happens to the wellbore over long times?

Conclusions

- Wellbore systems are susceptible to flow at interfaces (cement-steel, cement-caprock, cement fractures)
- Experiments and field observations have demonstrated some degree of self-limiting permeability at interfaces (at least with CO₂; Carey, Huerta, Walsh et al.)
- Cement deforms plastically at elevated depths and its geomechanical behavior is critical to assessing potential damage
- Steel response to hydraulic pressure key to assessing damage to isolation
- Coupled mechanical and hydrologic field observations, experiments and models will help resolve threats to zonal isolation

Future Work

- What are the limits (in terms of flow-rate) of self-healing behavior?
- Does carbonated cement protect steel?
- What are the hydrologic and mechanical consequences of cement carbonation?
- Are special formulations of cement and stainless steel necessary in CO₂ sequestration projects?
- Coupled mechanical and chemical experiments and models are needed

Acknowledgements

- Department of Energy—Fossil Energy program
- CO₂ Capture Project
- Colleagues:
 - Dennis Newell, Jiabin Han, Barbara Kutchko, Walter Crow, George Guthrie, Rajesh Pawar, Peter Lichtner