EPA HF Study Technical Workshop: Chemical and Analytical Methods

Crosslinked and Linear Gel Composition

Richard Hodge
Fracturing Fluid Composition

Fluid Types

- **Water-based Fluids**
 - Linear Polymer Solution
 - Crosslinked Gel
 - Viscoelastic Surfactants

- **Oil-based Fluids**

- **Acid-based Fluids**

- **Multiphase Fluids**
 - Emulsions
 - Foams
 - Energized

Additives

- **Gelling Agents**
- **Crosslinkers**
- **Breakers**
- **Fluid Loss Additives**
- **Biocides**
- **Thermal Stabilizers**
- **Surfactants**
- **Clay Control Additives**
Gelling Agents

• Increase Fluid Viscosity for Improved Proppant Transport
 – Into perforations
 – Along fracture

• Reduce Fluid Loss to Reservoir
 – Deposit filtercake
 – Viscous resistance in porous media

• Create/Maintain Desired Fracture Geometry

• Reduce Friction Pressure Loss in Wellbore
 – Slick Water applications
Common Frac Fluid Gelling Agents

- **Guar**
- **Guar Derivatives**
 - Hydroxypropyl Guar (HPG)
 - Carboxymethyl Guar (CMG)
 - Carboxymethyl Hydroxypropyl Guar (CMHPG)
- **Cellulose**
 - Hydroxyethyl Cellulose (HEC)
 - Carboxymethyl Hydroxyethyl Cellulose (CMHEC)
- **Synthetic Polymers**
 - Polyacrylic Acid (PAc)
 - Polyacrylamide (PAm)
 - Partially Hydrolyzed Polyacrylamide (PHPA)
 - Acrylamido-methyl-propane sulfonate (AMPS)
- **Viscoelastic Surfactants**
 - Cationic
 - Anionic
 - Amphoteric
Typical Usage Rate of Frac Fluid Gelling Agents

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Concentration (by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guar</td>
<td>< 1%</td>
</tr>
<tr>
<td>HPG</td>
<td>< 1%</td>
</tr>
<tr>
<td>CMHPG</td>
<td>< 1%</td>
</tr>
<tr>
<td>HEC</td>
<td>< 1%</td>
</tr>
<tr>
<td>CMHEC</td>
<td>< 1%</td>
</tr>
<tr>
<td>Synthetic Polymers</td>
<td>< 0.05%</td>
</tr>
<tr>
<td>Viscoelastic Surfactants</td>
<td>< 2%</td>
</tr>
</tbody>
</table>
Crosslinkers

- Increase Effective Molecular Weight by Chemically Linking Polymer Chains
- Create 3D Structure – Increases Elasticity and Suspension Properties
- React w/ Specific Sites (Functional Units) on Polymers
- Each Crosslinker Has Unique Reaction Requirements and Behavior
Common Crosslinker Compounds

Metallic (Ti & Zr)
- Chelated Compounds
 - Retard Oxide Formation
- Crosslinking Rate Controlled by Complex Stability and Ligand Concentration
- Non-reversible
- Shear Degraded

Borate
- Simple Salt (H_3BO_3 & Borax)
- Slowly Soluble Salts (Ca and Mg Salts)
- Borate Esters
- Polyborates
Typical Usage Rate of Common Crosslinker Compounds

<table>
<thead>
<tr>
<th>General Class</th>
<th>Concentration Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borate</td>
<td>< 150 ppm as Boron</td>
</tr>
<tr>
<td>Titanate</td>
<td>< 150 ppm as Titanium</td>
</tr>
<tr>
<td>Zirconate</td>
<td>< 100 ppm as Zirconium</td>
</tr>
</tbody>
</table>
Breakers

• **Purpose**
 - Improve Flowback & Maximize Conductivity

• **Mechanism**
 - Reduce Polymer Molecular Weight
 - React with Specific Sites in Polymer Chain
 - Reverse Crosslinking (Borate Only)

• **Common Types**
 - Oxidizers
 - Persulfate
 - Perborate
 - Hypochlorite
 - Mg & Ca Peroxide
 - Enzymes
 - Acids
 - Esters of hydroxycarboxylic acids
References

Questions ?