Draft Minutes Executive Sponsor Briefing Technical Working Group on Hazard Assessment March 30, 2005 1 PM to 2 PM, Hall of States, Washington, DC

Attendees:

Executive Sponsor Group:

Pat Meehan, DOD Jim Woolford, EPA Terry Gray, ASTSWMO John Aquino, TASWER Willy Taylor, DOI

Technical Working Group:

Dick Wright, Mitretek Vic Weiszek, Department of Defense Dwight Hempel, Bureau of Land Management Clarence Smith, State of Illinois Jennifer Roberts, State of Alaska Bill Veith, USACE, Huntsville Syed Rizvi, TASWER Kevin Oates, EPA Doug Maddox, EPA

Other Attendees

Tom Canaday, ASTSWMO Jim Ortiz, DOI Dania Rodriguez, ASTSWMO

Versar Staff:

Holly Riester Norrell Lantzer Laura Wrench

Kevin Oates presented a briefing to the Executive Sponsor Group (attached) explaining the MEC HA in its current form and how the group arrived at the form and elements of the framework.

A series of questions and answers followed.

Regarding table 4, how did you come up with those numbers/scores? (Woolford)

Kevin explained that the group felt it was important to have a scoring range different than the munitions response site prioritization protocol so that the results would not be confused. Once that was determined, Laura spent a lot of time running through hundreds of sensitivity runs,

which were presented to and discussed by the workgroup. The group addressed the issue of how do we want to relatively rank the results? We also ran through some exercises to compare the results with expectations of scoring related to certain site conditions, and then adjusting the weights and scores accordingly to reflect those things that make a site more hazardous.

Did the work group agree with that? Yes, it was a winnowing process. We would review a proposal, discuss how items were weighted, and then go through a long process and various iterations and sensitivity runs to come to the final score.

We also recognized that certain factors will always be scored the same no matter what the remediation or the land use activity. For example, a location with a specific type of MEC (e.g., high explosive) will always be scored based on the presence of that type of MEC. This reflects the uncertainty associated with whether all MEC items can be located and remediated. There are other factors such as clean up and accessibility in which the score will be affected by remediation and land use activity decisions. Scoring decisions reflect our understanding of this interaction.

Regarding the Potential Contact Hours categories—do you have any sort of numbers there behind the categories? (Meehan)

Yes, we do have numbers. The categories are based on an order of magnitude shift in the number of people times the number of hours that is estimated for the particular activities.

The executive sponsors replied that there seems to be a reasonable balance for contact hours between remote areas and more highly used areas.

Did you get into how often or when this (the hazard assessment) would need to be done?

We have discussed that to some extent, but that is really more a matter that will come up in the guidance document. This is on the list of issues for us to address in the guidance document.

There are several reasons the work group has discussed that would likely result in doing the hazard assessment again. For example, if the land use activities change, then the hazard assessment should be run again. Also, as more information becomes available, it can be done again, with additional information for better results. It could also be used in a post-remediation situation to demonstrate hazard reduction.

When you say subsurface clearance you don't specify how deep, can you explain why? (Woolford)

Because we have been using an overlap in the hazard assessment of intrusive depths and depth where munitions are located, the depth of subsurface clearance is a site-specific relationship, rather than an absolute. The depth of clearance of munitions would be related to the intrusive depth of the activities associated with the current or future land use and depth below ground surface where the munitions are located.

Would you need to allow for some amount of error in intrusive depth?

We talk about the maximum intrusive depth in relation to the minimum depth of the munition. The project team would need to determine these maximums and minimums and use that in their calculations. These are conservative assumptions and allows for some flexibility in the alternatives and tradeoffs.

So once I have this information, what is my decision?

As a group we have really focused on creating a tool to provide the information to the project teams to support their decision based on that information. So your decision would depend on what your goals and desired outcome is, as well as your resources. Teams will need to use their own alternatives analysis. We have intentionally stayed away from presumptive remedies etc. that would link a specific score to a specific response action requirement.

Comment: (Woolford) This only addresses the munitions aspect, so it is almost an overlay with the risk assessment process in CERCLA and those two processes may be used together to make decisions.

What is the role of MEC HA in "No Further Action" decisions? If you get a category 4, is that an off-ramp for CERCLA?

We have struggled with that, and have not resolved it. For example, if you have an MEC site, you will almost always need some sort of long-term institutional controls and we have drafted language to that effect we will recommend for inclusion in the draft guidance document. If that were the case, when would it truly be a no action site? These are questions that we are still working on.

Comment: (Meehan) To me, this supplements the other things that are out there but I do not see this as making a decision on NOFA because you are not looking at some of the other elements.

Comment: (Woolford) But relative to explosive safety, is there no action because we are certain that there is no more explosive hazard? It would need to be narrowly defined to relate to explosive safety.

Addressing Critical Infrastructure, Ecological and Cultural Resources

The work group members explained that they were concerned about how to address these issues because they do not address human risk/potential impacts to people. We have proposed instructing teams to look at them in terms of presence or absence (rather than scoring) and if present, then instruct teams to address them in the CERCLA analysis (nine criteria). The degree to which the presence of these resources attract to people is addressed in another input factor (proximity of additional receptors and/or accessibility).

Comment: (Aquino) We are concerned about getting tribal reaction concerning this. Anecdotally tribes should be as or more concerned with these situations, but getting the feedback

can be difficult, and TASWER can help with that. The TASWER conference is a potential vehicle and we would also suggest being involved in some other conferences as forums for communication.

How will it be made public?

It will either be published as a joint document from all the groups, or one agency will publish it with all of the groups' logos and information on it. We could also do a notice of availability in the Federal Register and could publish in trade publications.

Comment: (Meehan) We would like to see the package out as joint document.

The whole group agreed with this comment that the preference is for a joint document.

Comment: (Woolford) We would hope that the States, through ASTSWMO, would be able to be part of the document release as they've been so involved in the development. EPA will take the lead in getting it through the Federal Register.

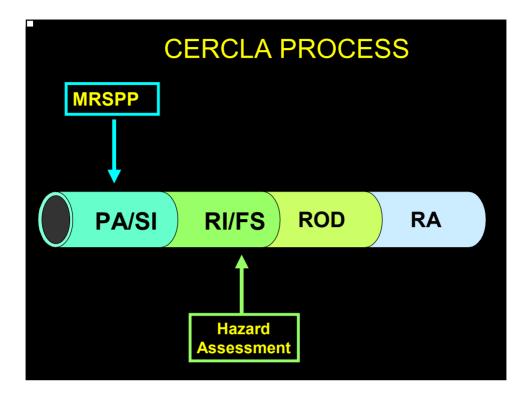
Comment: (Meehan) You may want to look into Fort. A.P. Hill as a possible pilot test site. They have a lot of interesting situations and they are used regularly by the Boy Scouts of America. There are newer families of ordnance there which might make an interesting comparison.

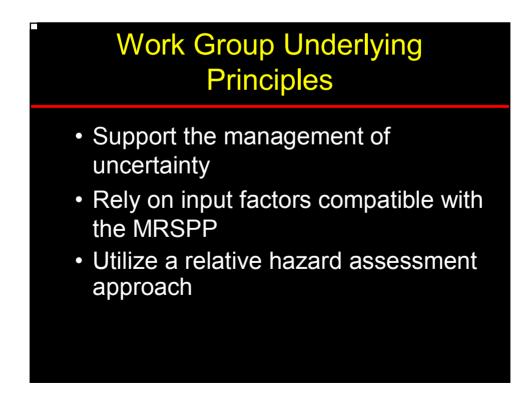
Doug Maddox thanked the executive sponsors for coming for this briefing and explained that the workgroup had talked about getting together again in August, and maybe holding another briefing like this for the executive sponsors at that time.

Munitions and Explosives of Concern Hazard Assessment (MEC HA) Initiative

Executive Sponsor Briefing March 30, 2005

Purpose of this Briefing


- Overview Why a MEC HA?
- Relationship to MRSPP
- Progress to Date
- Outreach Efforts and Next Steps
- Emerging Policy Issues


Why a MEC HA?

- CERCLA & NCP require "risk assessment"
- Traditional risk assessment methods not applicable to MEC hazards
- Need for consistent method under CERCLA for MEC response actions
- Emphasis for EE/CA, RI/FS analysis to support remedy selection

Relationship Between the MEC HA and the MRSPP

- MRSPP Supports Programmatic Goals
 - Provides relative priority for each Munitions Response Site, based on overall risks
 - Allows sequencing decisions to consider Other Factors (e.g., programmatic, environmental justice, development)
- MEC HA Supports Site Specific Decisions
 - Removal & Remedial Actions
 - Land Use Activities

Work Group Underlying Principles (cont.)

- Connection to the Conceptual Site Model
- Support early decision making
- Support communication with stakeholders.

What will the MEC HA Provide ?

- Consistent framework for developing
 a site-specific hazard assessment
- Assistance in managing uncertainty
- Facilitate site-specific land use activity decisions

What will the MEC HA Provide ? (cont.)

- Evaluation of hazard management choices response actions
- Support hazard communication
- Build confidence in decision making process

Work Group Progress

- Issue Papers
- Framework Papers
- Draft Framework
- Execute Outreach Plan

Issue Papers

- Review of Existing Methods
- Purpose of MEC HA
- Role of Uncertainty
- Probabilistic Risk
- Input Factors
- Analysis of Response Alternatives
- MEC HA as Communication Tool

- Performance Objectives
- Comparison of MRSPP to MEC HA
- Input Factors
- Structure and Output
- MEC HA in the CERCLA Process

MEC HA Framework

- Includes scoring, weighting, and combining input factors
- Uses a relative numeric approach, similar to the approach used in the EHE module of the MRSPP
- The organization of the structure follows the severity, accessibility and sensitivity components.

The functional relationships addressed in the MEC HA are:

- **Severity**: The potential severity of the result should an MEC item function.
- Accessibility: The likelihood that a receptor will be able to interact with an MEC item.
- **Sensitivity**: The likelihood that an MEC item will function should a receptor interact with it.

Relationship to Conceptual Site Model (CSM)

- The CSM components (source, pathways, receptors) are addressed by the MEC HA
- MEC HA organization follows the Hazard Assessment functions
 - Recognizes the fundamental differences from human health risk assessment
 - -Focus on the functions of the MEC HA

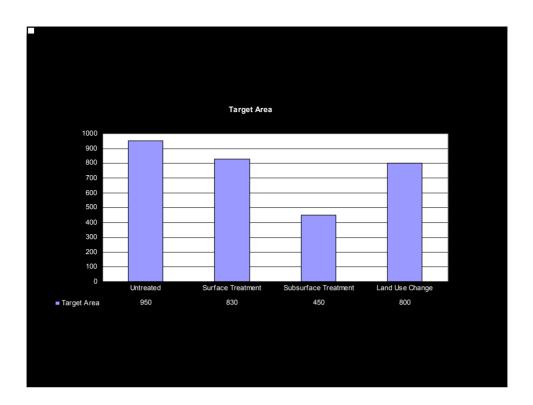
MEC HA Outputs

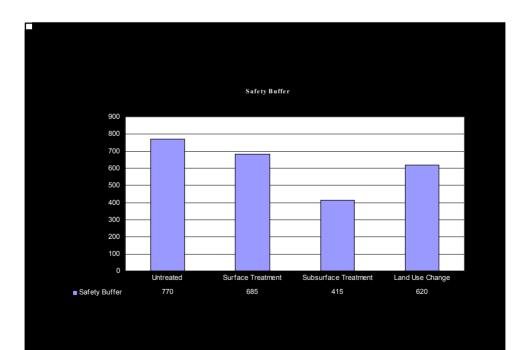
- The Output Categories for the MEC HA are based on relative numeric scores
- Score Range is from 115 to 1000
- Score Range is broad enough to differentiate between hazard categories
- Uses a different range than the MRSPP

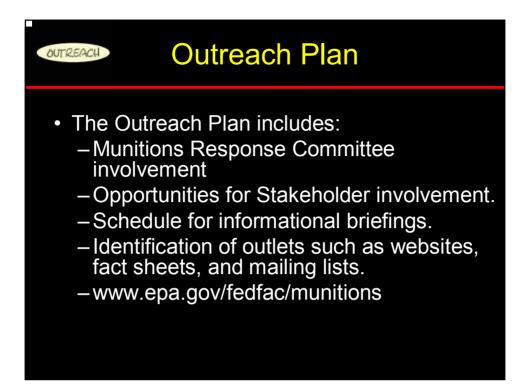
MEC HA Outputs

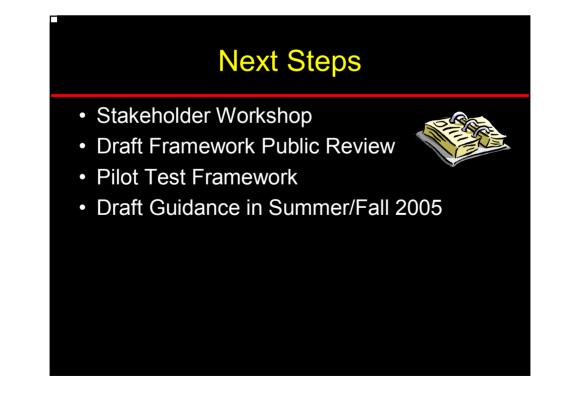
The Output Categories for the MEC HA are:

- **Category 1:** Sites with the highest hazard potential under current use conditions.
- **Category 2:** Sites with a hazard potential under current use conditions.
- **Category 3**: Sites compatible with current uses, but not with more intrusive future uses.
- **Category 4**: Sites compatible with current or future uses.


MEC HA Outputs		
The Output Catego MEC HA are:	ories Scores for the	
Category 1:	860 - 1000	
Category 2:	720 - 855	
Category 3:	475 - 715	
Category 4:	115 - 470	


SCORING EXAMPLE


- Former mortar training area (60 mm and 81mm)
 Two MRSs: Target Area, Safety Buffer.
- Current Use: popular hiking/back packing area.
 - Intrusive activities include trail maintenance and digging latrine pits.
- Cultural resources near or in the target area.
- No physical access restrictions.


REMOVAL OR REMEDIAL ALTERNATIVES

- No Action
- Surface Treatment
- Subsurface Treatment
- Land Use Activity Change

Emerging Policy Issues

- Role of MEC HA for NOFA
- Approach for Critical Infrastructure, Cultural, Tribal, Ecological Resources
- Severity, Accessibility, Sensitivity structure instead of traditional CSM structure
- Importance of Activity versus Land Use

Framework		
Element	Criteria	Characteristic(s)
	Input factors can be clearly and unambiguously	Transparency;
	defined.	Consistency
	The values for input factors are easy to determine or	Efficiency;
	estimate.	Transparency
	The ranges of possible input factors values	Representativeness;
	encompass all likely values for that factor.	Transparency;
		Sensitivity
Input Factors	Input factors included in the framework add to the	Efficiency;
input i actors	functionality of the MEC HA process - each factor	Accuracy;
	contributes to assessing the level of hazard for a site,	Sensitivity
	and only the factors necessary to perform the	
	assessment are required.	
	Input factors included in the framework address all	Accuracy;
	site characteristics that may lead to explosive	Sensitivity;
	hazards – the input factors are sufficient to	Representativeness
	completely describe the hazards.	
	The scores and weights assigned to input factors	Accuracy;
	reflect the relative contribution of each factor to the	Transparency;
	overall site hazard level.	Representativeness
	The method(s) used to combine input factors to	Transparency;
	assess the site-specific hazard level is easy to	Efficiency
Structure	understand and implement.	
	The method(s) used to combine input factors to	Accuracy;
	assess the site-specific hazard level accurately	Representativeness;
	captures the effects of the interactions between input	Sensitivity
	factors.	Consistencen
	The scores, weights and combination method(s) are	Consistency;
	defined clearly and unambiguously.	Transparency
	Output values are descriptive of the site hazard level.	Accuracy; Representativeness;
		Transparency
Output	The number of output levels is sufficient to reflect	Accuracy;
Output	the relative impacts of different remedial alternatives	Sensitivity;
	and differences in choices of land use, as well as to	Representativeness
	allow differentiation between sites.	representativeness
	anow differentiation between sites.	

 Table 1: Performance Criteria for Framework Elements

Explosive Hazard Component	Input Factor	CSM Based Input Factor Category
Severity	Filler Type	Source
	Distance of Additional Potential Receptors to Explosive Hazard	Receptor
	Proximity of Critical Infrastructure to Explosive Hazard	Receptor
	Proximity of Cultural Resources to Explosive Hazard	Receptor
	Proximity of Ecological Resources to Explosive Hazard	Receptor
Accessibility	Site Accessibility	Interaction
	Potential Contact Hours	Receptor
	Amount of MEC	Source
	Minimum MEC Depth Relative to the Maximum Intrusive Depth	Source/ Interaction
	Migration Potential	Interaction
Sensitivity	MEC Category	Source
	MEC Size	Source

Table 2: Relationship of Input Factors to CSM Categories

 Table 3: Input Factor Maximum Scores and Resulting Weights

Explosive Hazard Component	Input Factor	Maximum Scores	Weights
	Type of Filler	100	10%
Severity	Distance of Additional Potential Receptors to Explosive Hazard	30	3%
	Component total	130	13%
	Site Accessibility	80	8%
	Total Exposure Hours	120	12%
Accessibility	Amount of MEC	180	18%
	Minimum MEC Depth/ Maximum Intrusive Depth	240	24%
	Migration Potential	30	3%
	Component total		65%
Sensitivity	MEC Category	180	18%
Sensitivity	MEC Size	40	4%
	Component total		22%
	Total Score	1000	100%

Table 4:	MEC HA	Scoring
----------	--------	---------

			Score		
			Surface MEC	Subsurface MEC	
Input Factor	Category or Value	Untreated	Response	Response	
	High Explosive	100	100	100	
Filler Type	Incendiary	80	80	80	
	Spotting Charge	80	80	80	
	Propellant	20	20	20	
Distance of Additional Potential	Within MRS or hazardous distance of the MRS boundary	30	30	30	
Human Receptors to Explosive Hazard	Outside of the hazardous distance	0	0	0	
Hazaru	Non-HE filler type	0	0	0	
Proximity of Critical	Within MRS or hazardous distance of the MRS boundary		Yes		
Infrastructure to Explosive Hazard	Outside of the hazardous distance		No		
Tazatu	Non-HE filler type		No		
Proximity of Cultural Resources	Within MRS or hazardous distance of the MRS boundary		Yes		
to Explosive Hazard	Outside of the hazardous distance		No		
	Non-HE filler type		No		
Proximity of Ecological	Within MRS or hazardous distance of the MRS boundary		Yes		
Resources to Explosive Hazard	Outside of the hazardous distance	No			
	Non-HE filler type		No		
	Full accessibility	80	60	15	
Site Accessibility	Moderate Accessibility	55	25	10	
	Limited Accessibility	15	10	5	
	Very Limited Accessibility	5	5	5	
	Many Hours	120	90	30	
Potential Contact Hours	Some Hours	70	50	20	
Totential Contact Hours	Few Hours	40	20	10	
	Very Few Hours	15	10	5	
	Target area	180	120	30	
	OB/OD area	180	140	30	
	QA function test range	165	90	25	
	Burial Pit	30	30	10	
Amount of MEC	Maneuver areas	115	15	5	
	Storage	25	10	5	
	Explosive-related industrial facility	20	10	5	
	Firing points	75	10	10	
	Safety buffer areas (Range safety fans and OB/OD kick-out areas)	30	5	5	
	MEC located on surface	240	#N/A	#N/A	
Minimum MEC Depth Relative to the Maximum Intrusive	MEC located subsurface, intrusive depth overlaps	220	220	220	
Depth	MEC located subsurface, intrusive depth does not overlap	25	25	25	
Migration Potential	Possible	30	30	10	
	Unlikely	10	10	10	

		Score		
Input Factor	Category or Value	Untreated	Surface MEC Response	Subsurface MEC Response
	UXO with sensitive fuzing	180	180	180
	UXO with normal fuzing	110	110	110
MEC Category	DMM with category 1 fuzes	105	105	105
	DMM with category 2 fuzes.	55	55	55
Ī	Unfuzed DMM	45	45	45
MEC Size	Small	40	40	40
	Large	0	0	0
Minim	Minimum Possible Score		120	115
Maximum Possible Score		1000	890	655