Successful Oilfield Water Management
5 Unique Case Studies

Brent Halldorson
Fountain Quail Water Management

EPA Technical Workshop - Wastewater Treatment and Related Modeling
Research Triangle Park, NC. April 18, 2013
Charting a Logical Path

Saltwater
- Lower cost (minimal treatment).
- Difficult logistics (storage + transport)

Freshwater
- Higher cost (thermal distillation).
- Lower risk – store and transport freshwater.

1. (BASIC) TSS/POLYMER REMOVAL ONLY
2. (CUSTOM) REDUCE HARDNESS, SCALING INDEX, ETC.

IS THE COST WARRANTED?
LOGISTICS.
Case Study A

Background:
- Early on everyone used freshwater for fracs.
- Disposal was limited (until Ellenburger used for disposal).
- Devon has a large acreage position held by production.
- FQWM had to become very efficient to compete with low cost Ellenburger disposal.

Objectives:
① Move recycling (disposal + freshwater) close to drilling activity.
② Frac with freshwater (minimal storage & transport issues).
③ Reduce disposal volume.
④ Tie in nearby well flowback & PW using poly pipe.
Barnett

- Over 900 million gallons of flowback + PW recycled back to distilled water.
- Move recycling with Devon’s drilling program.

3 Hydraulic Fracture Stimulations using distilled & fresh water
Case Study B

Background:
- Customer has 17 wells tied into central SWD. Dispose of 5,000-7,000bpd.
- Freshwater is limited and costly. Customer prefers fraccing with and handling freshwater.
- Heavy brine (9.5-10#) has value to operator and others in the region.
- Early flowback hauled long distance to disposal.

Objectives:
1. Use PW as source water to create freshwater using NOMADs. Become independent of groundwater.
2. Reduce SWD volume & extend SWD life.
3. Re-use NOMAD concentrate brine (9.5#) for drilling & completions.
4. Treat high-solids flowback near source.
Case Study B

- Evaporation rate is very high (dry, windy).
- Nature concentrates NOMAD waste brine to 10# at no cost.
Recycling Center – Hub for Water

Past: Disposal OR Recycling
Future: Disposal AND Recycling

- Flowback
- Produced Water
- Other Treatable Water Streams
- Segregate, skim oil, remove solids, treat water.

- Maximize Recovery of Value-Add Products
 - Oil ($$$)
 - Distilled Water (re-use for fracs)
 - Clean Heavy Brine (re-use for drilling)
 - Solids + any untreatable water for disposal.

Optimize & Protect SWD Capacity
Case Study C

Background:
- The Eagle Ford is in “drill-to-hold” mode.
- Producers need a very mobile solution and can re-use saltwater in nearby fracs.
- Customer objective was to clean flowback and PW for re-use (high capacity, low cost).
- Remove TSS, iron and polymers.

Objectives:
1. Test flowback (early, middle and late) and PW removal efficiencies at the well site level.
2. Set-up in 12 hours and be ready for flowback.
Case Study C

High capacity (10,000 bpd).
Solids removed prior to re-use.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metric</th>
<th>Influent to ROVER (Feed)</th>
<th>Effluent from ROVER</th>
<th>Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>mg/L CaCO3</td>
<td>406</td>
<td>206</td>
<td>49%</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>mg/L</td>
<td>83</td>
<td>trace</td>
<td>100%</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>mg/L</td>
<td>1.2</td>
<td>trace</td>
<td>100%</td>
</tr>
<tr>
<td>Total Hardness (Ca+Mg)</td>
<td>mg/L</td>
<td>1025</td>
<td>602</td>
<td>41%</td>
</tr>
<tr>
<td>Silica (SiO2)</td>
<td>mg/L</td>
<td>148</td>
<td>27</td>
<td>82%</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>mg/L</td>
<td>180</td>
<td>19</td>
<td>89%</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>>100</td>
<td>3</td>
<td>n/a</td>
</tr>
<tr>
<td>pH</td>
<td>pH</td>
<td>6.8</td>
<td>6.8</td>
<td>n/a</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS)</td>
<td>mg/L</td>
<td>32,835</td>
<td>34,610</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Case Study D

Background:
- Wells are drilled in “Rows”. All flowback along each row is hard-pipe connected to tanks for re-use.
- Upon completion of a Row, the PW from that Row is connected to the next for re-use.
- The flowback and PW can easily be cleaned with the ROVER prior to re-use (TSS/polymer).

Study Objectives:
1. Remove TSS from incoming flowback and PW prior to re-use.
2. Prevents expensive clean-up when moving tanks from old Row to new Row.
3. Improve frac performance (reduce scaling index). Difficult to quantify value.
Case Study D

Flowback from Well #1

Complete ROW, Re-Using Flowback

100% Re-Use for Well #2

Move Tanks When ROW Complete

ROW 1

ROW 2
Case Study D

Q: Should TSS, Fe & Polymer be removed prior to re-use?

Flowback from Well #1

100% Re-Use for Well #2
Case Study D

- Water formed good floc using FQWM standard treatments.
- Turbidity dropped from 600 NTU to 5 NTU.
- Proposed ROVER Treatment cost: $0.79/bbl.

Customer opted to continue “as-is” and re-use the water without treatment. They recognize that high solids has potential negative impacts for production, but they cannot quantify whether improved water quality will affect production.

Re-use without treatment can be a valid water management strategy.
Case Study E

Background:
Customer challenged us with this problem:

- They have an area in northern Wise County with limited freshwater.
- There are saltwater wells available.
- They prefer to have a large freshwater pond and use freshwater if possible.
- Is it economic to try to go to freshwater?

Study Outcome:
① Budget cost: $0.50/bbl for RO.
② RO recovery increased by blending up to 2,000mg/L TDS into the “freshwater” pit.
③ The RO reject is sent to NOMAD treatment and is handled along with flowback and PW.
Case Study E

Saltwater Well

- 147 gpm

RO System

- 99 gpm
- 15 gpm
- 114 gpm
- RO Permeate
- 77% RO recovery if you factor in the bypass.

Lined Open-Top Tank

- 15,000 bbl
- Flowback & PW

2 NOMAD Site

- 200,000 - 400,000 bbl
- < 2,000 mg/L TDS

Fresh Water Supply (un-lined)

- 147 gpm
- Distilled Water

10# Brine

SWD

Bypass (up to 2,000 mg/L)
Flexibility

1. ROVER Mobile Clarifier (10,000 bbl/d capacity)
2. NOMAD Mobile Plant (2,000 bbl/d capacity)
3. Central Plant (60,000 bbl/d capacity)

TSS Removal
TSS + TDS Removal
New Trends

• Pit covers (prevent evaporation).
• Combine Recycling & Disposal (not Recycling OR Disposal).
• More use of brackish water and saltwater – be careful about hydrogeology.
• Have a common sense discussion with parties involved:
 • Landowners are often writing leases stating that E+Ps must buy groundwater from them.
• Incentivize, not mandate recycling (i.e.: TWRA). www.txwra.org
What is Needed?

 - Ask the right questions & keep it simple (saltwater or freshwater).

2. Range of Solutions.
 - Look for a proven track record. Talk to the customers.
 - Technology must be based on real science backed up with real results.

3. Flexibility.
 - Solution must be adaptable to the changing needs of the industry.

 - Share results and experiences (good and bad). We can learn as much, or more, from what has not worked.