Modeling *versus* The Real World Of Hydraulic Fracturing

Denise A. Tuck, P.E.
Global Manager, Chemical Compliance
03/29/2011
Objectives

- Overview of potential migration pathways
- Identify and discuss key fate and transport (F&T) modeling parameters
- Review available data for key F&T parameters
- Identify data gaps and discuss implications for EPA study
Potential HF Related Migration Pathways

- Surface releases of HF and flowback fluids
 - Migration to groundwater
 - Migration to surface water

- Subsurface migration of HF additives (upward migration) to drinking water aquifers
 - Migration from the target zone
Sensitive F&T Model Parameters

- Key model “source” characterization information for surface release simulations
 - Spill volume
 - Spill area
 - Chemical constituents/concentrations in spilled fluid

- Source characterization considerations for migration from bedrock (upward migration)
 - Fraction of trapped HF fluid/flowback (e.g., 9 to 35% in Marcellus shale, 68 to 82% in CBM)
 - Geochemistry of brine and HF additives in target formation
Sensitive F&T Model Parameters

- **Surface Releases:** Key parameters that typically control transport downgradient from source area
 - Hydraulic conductivity of soils and aquifers
 - Direction and magnitude of hydraulic gradient relative to drinking water well locations
 - Biodegradation of organic chemicals
 - Adsorption

- **Upward Migration:** Factors that control potential vertical migration of subsurface fluids
 - Direction and magnitude of natural head gradient
 - Bedrock stratigraphy and hydraulic properties
 - Distance between HF induced fractures and drinking water units
 - Strength of attenuation processes
Sensitive F&T Model Parameters (cont)

- Key sensitive F&T parameters can be grouped into four general categories:
 - Source chemical characterization
 - Surface release
 - Upward migration
 - Hydrogeological and attenuation processes

- Available data, gaps, and modeling challenges for each of these categories are discussed as follows
Source Chemical Characterization

- **HF additives**
 - Halliburton and other service companies have provided EPA-requested data
 - EPA should be able to use this information to assess F&T characteristics of HF fluids

- **Flowback characterization**
 - Data for Marcellus shale is being continually generated (e.g., Hayes, 2009; NYSDEC, 2009; The Palmerton Group, 2011), other formations are also being analyzed

- EPA should identify key marker HF-related compounds for F&T evaluation
 - HF additives vary by job and formation
 - Appropriate to identify group of marker compounds
Flowback Quality Variability

<table>
<thead>
<tr>
<th>Sample</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
<th>#9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formation</td>
<td>Woodford Shale</td>
<td>Woodford Shale</td>
<td>Woodford Shale</td>
<td>Marcellus Shale</td>
<td>Marcellus Shale</td>
<td>Marcellus Shale</td>
<td>Marcellus Shale</td>
<td>Bakken Shale</td>
<td>Bakken Shale</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.026</td>
<td>1.036</td>
<td>1.019</td>
<td>1.012</td>
<td>1.070</td>
<td>1.100</td>
<td>1.170</td>
<td>1.105</td>
<td>1.066</td>
</tr>
<tr>
<td>pH</td>
<td>7.92</td>
<td>7.51</td>
<td>7.91</td>
<td>6.61</td>
<td>6.72</td>
<td>6.68</td>
<td>6.05</td>
<td>7.11</td>
<td>7.04</td>
</tr>
<tr>
<td>Resistivity (ohms-cm)</td>
<td>20.42</td>
<td>14.87</td>
<td>36.46</td>
<td>54.93</td>
<td>8.363</td>
<td>6.342</td>
<td>4.776</td>
<td>5.585</td>
<td>8.057</td>
</tr>
<tr>
<td>Temperature (˚C)</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Ionic Strength</td>
<td>0.59</td>
<td>0.881</td>
<td>0.319</td>
<td>0.199</td>
<td>1.919</td>
<td>2.794</td>
<td>4.96</td>
<td>2.874</td>
<td>1.754</td>
</tr>
<tr>
<td>Hydroxide (mpl)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbonate (mpl)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bicarbonate (mpl)</td>
<td>1,010</td>
<td>717</td>
<td>1190</td>
<td>259</td>
<td>183</td>
<td>183</td>
<td>76</td>
<td>366</td>
<td>366</td>
</tr>
<tr>
<td>Chloride (mpl)</td>
<td>19,400</td>
<td>29,400</td>
<td>10,000</td>
<td>6,290</td>
<td>59,700</td>
<td>87,700</td>
<td>153,000</td>
<td>96,400</td>
<td>58,300</td>
</tr>
<tr>
<td>Sulfate (mpl)</td>
<td>34</td>
<td>0</td>
<td>88</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>670</td>
<td>749</td>
</tr>
<tr>
<td>Calcium (mpl)</td>
<td>630</td>
<td>1,058</td>
<td>294</td>
<td>476</td>
<td>7,283</td>
<td>10,210</td>
<td>20,100</td>
<td>4,131</td>
<td>2,573</td>
</tr>
<tr>
<td>Magnesium (mpl)</td>
<td>199</td>
<td>265</td>
<td>145</td>
<td>49.6</td>
<td>599</td>
<td>840</td>
<td>1,690</td>
<td>544</td>
<td>344.0</td>
</tr>
<tr>
<td>Barium (mpl)</td>
<td>49.4</td>
<td>94.8</td>
<td>6.42</td>
<td>6.24</td>
<td>278</td>
<td>213</td>
<td>657</td>
<td>1.06</td>
<td>5.1</td>
</tr>
<tr>
<td>Strontium (mpl)</td>
<td>177</td>
<td>44.7</td>
<td>74.3</td>
<td>2,087</td>
<td>2,353</td>
<td>5,049</td>
<td>178</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Total Iron (mpl)</td>
<td>4.73</td>
<td>25.7</td>
<td>8.03</td>
<td>14</td>
<td>27.4</td>
<td>2.89</td>
<td>67.6</td>
<td>26.4</td>
<td>33.8</td>
</tr>
<tr>
<td>Aluminum (mpl)</td>
<td>0.17</td>
<td>0.21</td>
<td>0.91</td>
<td>0.38</td>
<td>0.18</td>
<td>0</td>
<td>0.1</td>
<td>0.17</td>
<td>0.78</td>
</tr>
<tr>
<td>Silica (mpl)</td>
<td>33.8</td>
<td>–</td>
<td>40.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Baron (mpl)</td>
<td>28.2</td>
<td>27.1</td>
<td>26.7</td>
<td>8.82</td>
<td>45.1</td>
<td>73.1</td>
<td>80.4</td>
<td>94.5</td>
<td>65.7</td>
</tr>
<tr>
<td>Potassium (mpl)</td>
<td>192</td>
<td>273</td>
<td>78.7</td>
<td>85.8</td>
<td>977</td>
<td>1,559</td>
<td>2,273</td>
<td>2,232</td>
<td>1,439</td>
</tr>
<tr>
<td>Sodium (mpl)</td>
<td>10,960</td>
<td>16,450</td>
<td>5,985</td>
<td>3,261</td>
<td>26,780</td>
<td>39,990</td>
<td>61,400</td>
<td>54,690</td>
<td>32,600</td>
</tr>
<tr>
<td>TDS (mpl)</td>
<td>33,300</td>
<td>49,300</td>
<td>18,200</td>
<td>10,800</td>
<td>98,600</td>
<td>144,000</td>
<td>252,000</td>
<td>160,000</td>
<td>97,700</td>
</tr>
<tr>
<td>TSS (mpl)</td>
<td>57</td>
<td>246</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>12</td>
<td>32</td>
<td>120</td>
<td>13,762</td>
</tr>
<tr>
<td>TOC (mpl)</td>
<td>89</td>
<td>64</td>
<td>133</td>
<td>180</td>
<td>218</td>
<td>70</td>
<td>143</td>
<td>266</td>
<td>235</td>
</tr>
</tbody>
</table>
Surface Releases

- Understanding “actual” spill characteristics critical for evaluating release significance and F&T modeling
 - E.g., spill volume, area, location

- Spill databases maintained by various states (e.g., PA, CO, WV)
 - Data are difficult to extract (by public) to perform meaningful statistical analysis
 - If EPA has access, would be useful to characterize the size and frequency of spills associated with HF stimulations
Data Collected As Part of Spill Response Measures

<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>CO</th>
<th>OH</th>
<th>PA</th>
<th>WV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume or flow rate of spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical analysis/identity/kind of spilled fluid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area and vertical extent of spill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to nearest surface water, water wells, groundwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **States Reporting Requirements**
- Unclear, but may include this information
- Spill volume is required for brine spills, but unclear for other spills
- Required
Number of Oil and Gas Well Permits For Wells Drilled Directionally From Common Well Pads in Colorado
03-07-11

Figure from the COGCC website, Weekly & Monthly Oil & Gas Statistics
COGIS - Inspection/Incident Inquiry

You requested: Spill/Release Information

Maximum records are limited to 10

<table>
<thead>
<tr>
<th>Submit Date</th>
<th>Doc.#</th>
<th>Complainant #</th>
<th>Facility ID</th>
<th>Company Name</th>
<th>Ground Water</th>
<th>Surface Water</th>
<th>Berm Contained</th>
<th>Spill Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/19/2011</td>
<td>2213059</td>
<td>15700</td>
<td></td>
<td>CHEVRON USA INC</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>277</td>
</tr>
<tr>
<td>3/22/2011</td>
<td>2213059</td>
<td>69175</td>
<td></td>
<td>PETROLEUM DEVELOPMENT CORPORATION</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>30</td>
</tr>
<tr>
<td>3/21/2011</td>
<td>2213086</td>
<td>69175</td>
<td></td>
<td>PETROLEUM DEVELOPMENT CORPORATION</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>20</td>
</tr>
<tr>
<td>3/21/2011</td>
<td>2213086</td>
<td>69175</td>
<td></td>
<td>PETROLEUM DEVELOPMENT CORPORATION</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>25</td>
</tr>
<tr>
<td>3/18/2011</td>
<td>2213062</td>
<td>10120</td>
<td></td>
<td>NOBLE ENERGY PRODUCTION INC</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>75</td>
</tr>
<tr>
<td>3/18/2011</td>
<td>2213067</td>
<td>46630</td>
<td></td>
<td>K P KAUFFMAN COMPANY INC</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>20</td>
</tr>
<tr>
<td>3/18/2011</td>
<td>2213067</td>
<td>47120</td>
<td></td>
<td>KERR-MCGEE OIL & GAS ONSHORE LP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>65</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>2213067</td>
<td>47120</td>
<td></td>
<td>KERR-MCGEE OIL & GAS ONSHORE LP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>30</td>
</tr>
<tr>
<td>3/14/2011</td>
<td>2213067</td>
<td>46866</td>
<td></td>
<td>KINDER MORGAN CO2 CO LP</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>100</td>
</tr>
<tr>
<td>3/14/2011</td>
<td>2213067</td>
<td>100054</td>
<td></td>
<td>XTO ENERGY INC</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>1320</td>
</tr>
</tbody>
</table>

Link to more detailed info
Description of Spill:

Date of Incident: 11/16/2010
Type of Facility: WELL
Well Name/No.: RIGBY A-2AX
Fac. Name/No.: RIO BLANCO
County Name: RIO BLANCO
Section: 24
Township: 2N
Range: 103W
Meridian: 6

Volumes spilled and recovered (bbls):

- Oil spilled: 0
- Water spilled: 21
- Other spilled: 0

- Recovered: 0
- Recovered: 20

Area and vertical extent of spill: 277 FT X 2-1N

Current Landuse: NON DROP LAND
Weather conditions: DRY WITH MODERATE CLOUDY

Soil/Geology description: SILTY CLAY

Immediate Response:
The line was isolated immediately upon detection. Vacuum trucks removed all of the free fluid. Estimated recovery is ~20 bbls of brine water. The fluids were picked up by vacuum truck and recycled at the truck unloading facility at the main water plant.

Emergency Plugs:
NA

How extent determined:
Visual inspection, Chevron HCA Spill Calculation Worksheet.

Further Remediation:

Prevent Problem:
The piping will be replaced and the line returned to service.

Detailed Description:
A leak occurred in a three inch cement lined steel pipe ~200 feet south of Rigby A-2AX wellhead. The cause of the leak was internal corrosion in the pipe body. There was no impact to surface water. The spill potentially contained a trace of crude oil, but there was no visible sheen. Time required for control of event: ~10 minutes.
Upward Migration

- Data collected at the time of well installation and stimulation
 - Could be used to perform screening level analysis to assess migration potential to drinking water aquifers
- Modeling of field conditions impracticable
 - Not aware of any standard models that can simulate transport processes
 - Data requirements to develop/calibrate a model make this unrealistic
- Migration of “stray gas” also common issue
 - Understanding F&T and modeling a challenge
Data Currently Reported During Well Installation and Stimulation

<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>CO</th>
<th>OH</th>
<th>PA</th>
<th>WV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth interval of stratigraphic units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth interval of freshwater aquifers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth interval of brines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth of target formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casing/wellbore size, type, and depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical, radioactive or other geophysical logging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core/drill cutting analyses/logs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation water chemical analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowback chemical analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type and volume of fluid used to stimulate the well</td>
<td>a</td>
<td></td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- a) Colorado requires chemical analysis of the injected fluid.
- b) Pennsylvania requires operators to list the chemicals or additives used.
Link to diagram of wellbore
Link to reports and permit docs
Casing and cement data
<table>
<thead>
<tr>
<th>Formation</th>
<th>Log Top</th>
<th>Log Bottom</th>
<th>Cored</th>
<th>DSTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0BRAA</td>
<td>5480</td>
<td>6210</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>D SANO</td>
<td>6775</td>
<td>6706</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>J SAND</td>
<td>8828</td>
<td>6810</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Completed information for formation JSND

- **1st Production Date:** 3/10/2006
- **Status Date:** 11/16/2005
- **Commingled:** N
- **Formation Name:** J SAND
- **Formation Treatment:** FRAC 5H2O@OF 2040 SAND
- **Tubing Size:** 2.375
- **Tubing Packer Depth:** 6845
- **Open Hole Top:** Initial Test Data
- **Initial Test Data:** 11/18/2008
- **Test Method:** FLOWING
- **Gas Disposal:**
 - **Test Type:** Measure
 - **BBLS H2O:** 3
 - **BBLS OIL:** 1
 - **BTU GAS:** 1130
 - **CALC GOR:** 100000
 - **CASING PRESS:** 1200
 - **GRAVITY OIL:** 60
 - **MCP GAS:** 100
 - **TUBING PRESS:** 950
- **Perforation Data:**
 - **Interval Bottom:** 8850
 - **Interval Top:** 6954
 - **# of Holes:** 16
 - **Hole Diameter:** 0.36
Induced Fracture Data

Figure from Fisher, K. 2010.
Induced Fracture Data

Figure from Fisher, K. 2010.
Stray Gas Migration

- Migration of natural stray methane to drinking water aquifers a common issue – no correlation with fracking
- Old improperly abandoned wells are typically the cause
 - Serve as preferential migration pathway
 - EPA’s 2004 study found this to be a significant mechanism in investigated case studies
- Understanding communication of such wells to stray gas reservoirs and drinking water aquifers is difficult
 - No standard tests available for measuring such communication
 - Case-by-case analysis needed
- Credible modeling of such scenarios likely not possible
- Proper abandonment is the key to the solution
Hydrogeological & Attenuation Processes

- Hydrogeological and attenuation data (e.g., hydraulic gradient, conductivity) typically not collected as part of HF jobs
- However, extensive data available in the literature for F&T analyses, especially for surface releases
- Attenuation process expected to have a significant influence on HF additives F&T in shales
 - High organic carbon resulting in high retardation
 - Biodegradation expected to be significant due to long travel times
 - Nonetheless, modeling of such processes will be challenging
Overall Implications for EPA Study

- Key data required for F&T evaluations are available
 - E.g., spill databases, gas well construction details
 - Data will provide perspective on relatively low frequency and magnitude of spill incidents, distance to drinking water aquifers
 - Some gaps exist, but can be addressed by using literature values/limited data collection

- HF fluid composition data and flowback characterization data are also available
 - Additive information provided by Halliburton and others
 - Flowback data are being continually generated

- EPA should utilize all data and assess human health risks associated with drinking water
 - EPA study draft places significant emphasis on case studies
 - Unclear how broad conclusions will be drawn on the basis of a few case studies
 - EPA should instead conduct a human health risk assessment that utilizes all available information including that from case studies
References

