Williams Fork, Piceance Basin: Flowback Water Reuse – Quality and Quantity

Jill E. Cooper
Encana Oil & Gas (USA) Inc.
March 30, 2011
Williams Fork, Piceance Basin Water Strategy
Presentation Outline

Piceance Overview

• Geology and Fracturing Necessities
• Current Water Quality and Infrastructure
• Source Inflow Volumes of Water
• Outflows of Water
Piceance Basin – Williams Fork

• Geology
 • Overpressure Reservoir
 • 3000’ Vertical Section
 • Shale, Sandstone, Coal Deposition
 • Avg Porosity 6%
 • Avg Permeability 7µD
 • Avg Water Saturation 65%
 • Frac Gradient 0.5-0.75 psi/ft

• Frac Characteristics
 • Highly Naturally Fractured
 • High-Perm Formation Created When Hydraulically Fractured
Why Produced Water

• Formation Needs
 • Proppant
 • High Perm Fractured Environment
 • Low/No Proppant
 • Gels
 • Cause Damage to Formation
 • Not Needed For Proppant Transport
 • Not Needed For Fracture Height Growth
• Water
 • Clay Swelling Not an Issue
 • Very Little Fines Migration
 • Compatibility
Example: Fracturing Fluid Composition

• “Slickwater” fracturing fluid
 • Water: 98.9% to 99.2% (average 100,000 bbl/well)
 • Sand (proppant): 0.7% to 1%
 • Other additives (combined): <0.09%

• Fluid and water flowed back is either recycled and used as frac fluid (reducing fresh water usage) or disposed of in permitted injection wells
Fresh vs Produced Water Study
Flowback Water Recovery

Typical Williams Fork Well

- 75% Recovery in 60 Days
- 100% Recovery over Life of Well

- 100% Recovery over Life of Well
Piceance Basin Water Strategy

Water Recycling Composition

• North and South Piceance operations are interconnected
• Produced and flowback water taken to central water facility by pipeline (where available) or water truck
• Water is treated for reuse
 • Solids, iron and hydrocarbon levels decreased
 • Stored in tanks or large facility ponds
 • Water is chemically treated for scaling and to break emulsions
• Water reused in completions operations
 • Transport by pipeline or truck, within geologic basin
 • Disposal minimized where possible
• On average 90% - 95%, of the water used in Piceance operations is recycled; the balance is fresh water used in drilling
Piceance Basin Water Strategy
Current Infrastructure (estimates)

Hunter Mesa Water Treatment Facility
• 40 miles of connected pipeline
• 2 high pressure pumps
• 310,000 bbl storage pond (13 million gallons ~ 40 acre-ft)

Benzel Water Treatment Facility
• 4 Miles of connected pipeline
• 85,000 bbl storage pond (3.6 million gallons ~ 11 acre-ft)

High Mesa Water Treatment Facility
• 40 miles of connected pipeline
• 1 high pressure pumps
• 208,000 bbl storage pond (8.7 million gallons ~ 27 acre-ft)

Middle Fork Water Facility
• 17 miles connected pipeline
• 4 high pressure pumps
• 217,000 bbl storage pond (9.1 million gallons ~ 28 acre-ft)
Water Quality & Treatment
Typical Water Treatment Facility in the Industry
Piceance Water Basin Strategy
Secondary Water/Condensate/Solids Separation

• Dissolved Air Flotation - Solids and hydrocarbon removal step
• Oil/Water Separator – Hydrocarbon removal step
Piceance Basin Challenges & Opportunities
Dissolved Air Flotation Results

90% Solids Reduction
50% BOD Reduction

75% Iron Reduction

80% Hydrocarbon Reduction

www.encana.com
Questions?