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Introduction
Numerical modeling of nonisothermal, multiphase, multicomponent reactive

transport in a geomechanically active subsurface, at a relevant scale such as that
for evaluating the impacts of hydraulic fracturing on drinking water resources,
typically requires solving problems with a large amount of unknowns. This is
particularly challenging because the systems of governing partial differential
algebraic equations (PDAEs) are highly nonlinear and tightly coupled. Here we
present a simulation code/methodology to solve the governing PDAEs in a fully

coupled, fully implicit manner using a Jacobian-Free Newton-Krylov approach.
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Coupling and Solution Approach

Loose Coupling / Operator Split
1. Solve PDE1

2. Pass Data

3. Solve PDEZ2

4. Move To Next Timestep

Sequential Coupling w/lteration
. Solve PDE1

. Pass Data

. Solve PDEZ2

. Pass Data

. Return to 1 Until Convergence
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Fully Coupled

1. Solve PDE1 and PDE2
simultaneously in one system
2. Move To Next Timestep
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Comparison between fully-coupled and operator-splitting solutions for reactive transport systems that have
slow kinetics (weak coupling, above) and fast kinetics (strong coupling, bellow).
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Advanced Computing Capabilities

Parallel Scalability - scales almost ideally on both workstation and large-scale computer clusters
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1. Fluid Flow through a Discrete Fractured Medium with Mesh Adaptivity

« [Initial mesh adaptivity utilized to capture a predefined intersecting, aperture-

varying fracture distribution

* During simulation, regions of high pressure/temperature gradient jumps are
refined for additional detail and regions of little activity, far field rock domain,

is coarsened

Strong scaling tests
Heterogeneous medium
5 primary variables
~200,000 grid cells
~1,024,000 DoFs

CPU # range: 8 - 512
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« Strong scaling tests

« Heterogeneous medium

« 5 primary variables

« ~32 million grid cells

« ~170,000,000 DoFs

« CPU #range: 640 - 10,240
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« Reduces computation time by saving >70% of DoFs calculated in

comparison to uniform mesh

Adaptive mesh overlaid upon temperature field

2. Coupled THMC Simulation in a

Heterogeneous Medium

« Preferential flow paths (high
perm layers)

* Dissolution of in situ mineral,
c, by injecting
undersaturated solution

* Thermal and pressure
iInduced stress

» Torsional/non-uniform stress
caused by heterogeneous
flow paths
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Comparison of DoFs between a uniform mesh and an adaptive mesh.

Temperature [*C]
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Spatial distribution of pressure, temperature, species a concentration, mineral ¢ concentration,

Species A concentration [mol/L]

Permeability [m?]
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xy component of stress, and permeability for an earier time {upper) and later fime (lower).

Conclusion

A fully-coupled fully-implicit solution approach has been developed and

applied to solve coupled hydro-thermo-mechanical-chemical systems.

Advanced computing capabilities, such as massive parallelism and mesh
adaptivity, have enhanced the efficiency and effectiveness of the solution

approach.

Applications of simulators to THMC problems have provided insights into
understanding the nonlinear coupling effects among various processes that
take place during hydraulic fracturing operations and it's potential impacts on

drinking aquifers.
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Future Work

« Explore better ways to describe the discrete fracture initiation/propagation
process. Previous approaches to this problem such as smeared crack
and damage mechanics methods have produced unsatisfactory results.
Current work includes looking at the xFEM method.

« Implementing finite volume capability which enables better mass and
energy conservation.

« Developing an interface with the FracMan® fracture network code in
order to create fracture domains that include non-planar, stochastic, and

field realistic distributions.
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