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Determining the Predictive Limit of QSAR Models

This work does not reflect EPA policy.



Evaluating QSAR Models



Evaluating QSAR Models

QSAR models attempt to predict the population mean



Evaluating QSAR Models

QSAR models attempt to predict the population mean

QSAR models are evaluated by εobserved



Evaluating QSAR Models

QSAR models attempt to predict the population mean

QSAR models are evaluated by εobserved

This evaluation is flawed because the experimental value is not overlapping 
with the population mean
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Evaluating QSAR Models

Population means are difficult to measure or are generally unavailable in 
typical QSAR datasets. How can we judge the quality of a QSAR model 

when it is trained on experimental values which do not represent 
population means?

• Designate the experimental values as “population means” 
• Add simulated error to these values
• Train a QSAR model on the error laden values
• Make predictions
• Evaluate if the predictions are closer to our designated “population means” 

or the error laden values

Research Question

Strategy
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Experimental Error in QSAR

Cortes-Ciriano et al. J. Chem. Inf. Model., 2015, 55, 1413 Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125 

• Uncertainty information from multiple 
measurements is rare in cheminformatics

• Simulated error can elicit different responses from 
different algorithms; certain hyperparameters govern 
these responses
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Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125 

“It follows that the model’s prediction of the external test set 
will have uncertainty equal to or greater than that contained 

within the training set.”
Kramer et al. J. Med. Chem., 2012, 55, 5165 

“The experimental uncertainty sets the upper limit of 
performance of in silico models that can be achieved.”

Explicit Assumption: Predictions must have uncertainty higher than or equal to the training set.



Error in QSAR

Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125 

“It follows that the model’s prediction of the external test set 
will have uncertainty equal to or greater than that contained 

within the training set.”
Kramer et al. J. Med. Chem., 2012, 55, 5165 

“The experimental uncertainty sets the upper limit of 
performance of in silico models that can be achieved.”

Val1

Val2

Val3

Val4

Val5

TestTrain

• Train is commonly acknowledged to contain error
• It is assumed that Test has no error
• Models are evaluated on their ability to predict error laden data

Explicit Assumption: Predictions must have uncertainty higher than or equal to the training set.

Implicit Assumption: Test sets do not have error and can be used to evaluate QSAR models.



Error in QSAR
This work seeks to directly test the hypothesis

that a model’s prediction uncertainty is limited by the uncertainty in the training data

Datasets:
• Span a range of complexity from quantum mechanical to in vivo toxicological
• Represent endpoints of interest in QSAR
• The series of datasets will have endpoints with increasing levels of experimental uncertainty

Methods:
• Add simulated error to each dataset
• Build models on the error laden data
• Make predictions
• Evaluate predictions against the true values
• Evaluate predictions against the error laden values
• Compare model performance



Datasets
Dataset Category Number of Moleculesa Endpoint Range

G298_atom Quantum Mechanical 131,082 ΔGo
at (kcal mol-1) -2,417  ̶ -288

Alpha Quantum Mechanical 131,082 α (Bohr3) 9.0  ̶ 27.8

Lip Physiochemical 4,200 logD -1.5  ̶ 4.5

Solv Physiochemical 642 ΔGo
hyd (kcal mol-1) -25.5  ̶ 3.4

BACE Biochemical 1,513 pIC50 2.5  ̶ 10.5

Tox_102b Toxicological in vitro 971 logAC50 -2.1  ̶ 4.7

Tox_134c Toxicological in vitro 1,347 logAC50 -4.0 – 2.8

LD50 Toxicological in vivo 5,003 logLD50 (mg kg-1) -1.9  ̶ 4.8
a Original size of the dataset. If datasets have more than 1,000 molecules, they were randomly sampled down to a size of 
1,000 before modeling.
b Includes data exclusively from the ATG-PPre-cis assay
c Inclues data exclusively from the ATG-PPARg-trans assay
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Algorithms and Hyperparameters
Algorithm Hyperparameters Searched in Optimization

Ridge Regression (Ridge) PCA n components ∈ (1, 3, … , 59)

α ∈ (1, 2, 3, 4, 5, 10)
k- Nearest Neighbors (kNN) PCA n components ∈ (1, 3, … , 59)

k ∈ (1, 2, … , 20)
Support Vector Regressor (SVR) PCA n components ∈ (1, 3, … , 59)

C ∈ (0.01, 0.1, 1, 10)

kernel: Radial basis function (RBF)
Random Forest (RF) PCA n components ∈ (1, 3, … , 59)

n estimators ∈ (1, 10, … , 200)

max depth ∈ (1, 3, … , 99)

max leaf nodes ∈ (2, 12, … , 92)
Gaussian Process (GP) PCA n components ∈ (1, 3, … , 59)

kernel: RBF, WhiteKernel, Matern, DotProduct, ExpSineSquared, ConstantKernel or 
RationalQuadratic

Normalize y: True



G298_atom Results



Tox134 Results



RMSE Slope Ratios
Dataset/Algorithm Ridge kNN SVR RF µ ± σ

G_298_atom 5.8 8.8 8.9 8.8 8.1 ± 1.3

Alpha 6.9 8.7 7.3 7.8 7.7 ± 0.67

Lip 19 18 6.9 14 14 ± 4.8

Solv 5.8 3.0 3.3 6.1 4.6 ± 1.4

BACE 13 12 2.9 12 10 ± 4.1

Tox_102 44 10 220 43 79 ± 82

Tox_134 52 14 55 - 40 ± 19

LD50 - 11 6.0 16 11 ± 4.1

µ ± σ 21 ± 18 11 ± 4.1 39 ± 70 15 ± 12

µ ± σ a 10 ± 5.2 10 ± 4.5 5.9 ± 2.1 11 ± 3.5
a With Tox102 and Tox134 ratios omitted.
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Gaussian Process (GP) Results
Ŷ = ŷ1, ŷ2, … , ŷ𝑛𝑛
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Information about experimental uncertainty
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GP Slope ratios
Dataset No σy With σy

G_298_atom 1.9 2.0

Alpha 1.8 9.4a

Solv 1.6 2.5a

BACE 3.8 7.8a

Tox_102 2.8 -b

Tox_134 7.0 -b

LD50 5.4 6.0

µ ± σ 3.5 ± 1.9 5.5 ± 2.9

aSlopes m and mtrue were calculated excluding the first two points due

to a discontinuity in the line.

bThe slope mtrue was negative for these plots, so the slope ratio was

not calculated.



Gaussian Process (GP) Results



GP Prediction Uncertainties
No σy No σy With σy With σy

Dataset Mean σŷ σŷ 95% CI Mean σŷ σŷ 95% CI

G_298_atom 1.0 0.40 0.52 -0.10

Alpha 1.1 0.16 0.44a 0.32a

Solv 0.94 -0.19 0.10 0.10

BACE 0.25 0.38 -0.12 -0.35

Tox_102 0.32 0.028 -0.96 -0.48

Tox_134 0.49 0.53 -0.66 -0.17

LD50 0.66 -0.39 -0.60 0.14

• “It follows that the model’s prediction of the external test set will have uncertainty equal to or greater than that 
contained within the training set”

• Because these slopes are < 1, prediction uncertainty is actually less than the added error!
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Methods
• Gaussian error was added to 8 representative QSAR datasets and modeled using 5 algorithms

• The use of Gaussian distributed error represents an ideal but realistic simulation of real-world modeling



Conclusions

Methods
• Gaussian error was added to 8 representative QSAR datasets and modeled using 5 algorithms

• The use of Gaussian distributed error represents an ideal but realistic simulation of real-world modeling

Results
• For each dataset and algorithm, the true test set was always predicted more accurately than the error laden test set
• The difference between RMSE and RMSEtrue depends on algorithm, dataset, and the level of added error

• When using Gaussian Process
• Increasing the simulated error increases the prediction uncertainty 
• Providing information about error to the algorithm mitigates these trends
• Prediction uncertainty is often less than the amount of added error!



Conclusions

Implications
• QSAR models can make predictions which are more accurate than training data
• Evaluation of QSAR models on error laden test sets can give flawed interpretations of performance

• A model may be making good predictions, but this will be obscured by test set error



Conclusions

Implications
• QSAR models can make predictions which are more accurate than training data
• Evaluation of QSAR models on error laden test sets can give flawed interpretations of performance

• A model may be making good predictions, but this will be obscured by test set error
• Different models respond differently to error

• RMSE/RMSEtrue is model dependent
• RMSE is observed
• RMSEtrue is unknown

• Determining relative performance can be tenuous and potentially misleading



Future Work
• Evaluation of new algorithms and new models will be similarly limited by knowledge of the uncertainty 

in validation and test sets

• New methods of inferring uncertainty in datasets and new evaluation methodologies which utilize 
knowledge of uncertainty are needed to give more reliable comparisons of QSAR models

• Our group will focus on sources of error prominent in toxicological modeling, particularly systematic 
error



Categorizing Continuous Data in QSAR



Splitting Data
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Categorization

Cheminformaticians often split (categorize) continuous data into categorical data

But this leads to a loss of information, loss of effect size, and loss of statistical significance 
between variables



Loss of Information

Categorization

Continuous X

mean

A B C D
Binary X

mean

A

B

C

D

0 1

Result:
• Loss of individual differences between observations
• C and D are judged to be more similar than C and B

Scenario:
• C is closer to B than to D



Loss of Effect Size and Statistical Significance

Categorization

Population
• n = > 1x106

• ρxy = 0.40

Sample
• n = 50
• rxy = 0.30
• 95% CI = [0.02, 0.53]
• Null Hypothesis: ρxy = 0.0
• t(48) = 2.19, p = 0.03

Same Sample
• n = 50
• rxy = 0.21
• 95% CI = [-0.07, 0.46]
• Null Hypothesis: µ1 = µ2
• t(48) = 1.47, p = 0.15

MacCallum et al. Psychological Methods, 2002, 7, 19.

Sampling

Too many points to show



Splitting Up: It’s a Bad Idea..



Project Plan

•QM
•Physiochemical
•Toxicological

Continuous 
Datasets

•Characterize 
information 
content

•Statistical 
analysis

Categorize 
Data

•Regression 
Models

•Classification 
Models

•Compare

Build 
Models

Hypothesis

Categorization of continuous data is bad statistical practice 
and distorts the relationship between variables.

Will this fundamental principle result in less predictive machine learning models?
How does categorization affect the quality of predictions in QSAR?

Approach

Using continuous datasets, make predictions before (Regression) and after (Classification) categorization.



Datasets
Dataset Category Number of Moleculesa Endpoint Range

G298_atom Quantum Mechanical 131,082 ΔGo
at (kcal mol-1) -2,417  ̶ -288

Solv Physiochemical 642 ΔGo
hyd (kcal mol-1) -25.5  ̶ 3.4

Tox_102b Toxicological in vitro 971 logAC50 -2.1  ̶ 4.7

Tox_134c Toxicological in vitro 1,347 logAC50 -4.0 – 2.8
a Original size of the dataset. If datasets have more than 1,000 molecules, they were randomly sampled down to a size of 
1,000 before modeling.
b Includes data exclusively from the ATG-PPre-cis assay
c Inclues data exclusively from the ATG-PPARg-trans assay



Loss of Correlation Effect Size

mean std min 25th perc 50th perc 75th perc max Num. of R with p < 0.05

g298atom -0.020 0.079 -0.22 -0.061 -0.0078 0.017 0.25 -9

Solv -0.021 0.060 -0.27 -0.054 -0.019 0.015 0.26 -10

Tox102a -0.015 0.036 -0.010 -0.042 -0.014 0.014 0.068 -33

Tox134a -0.021 0.031 -0.11 -0.042 -0.019 0.0011 -0.089 -53

Dataset

Categorization

Cont. y Binary y_dX

x1 … x1444

Rx1y
...
…
…

Rx1444y

Corr.

Rx1y_d
...
…
…

Rx1444y_d

Corr.

a Log10 scale

Statistics for the Difference in Correlation Vectors Rxy_d – Rxy



Comparing Classification and Regression
Classification

Regression

Continuous Dataset Binary Dataset Binary Predictions

Categorization KNN Classifier
Average BA 
Classifier

Score
K-Fold 

Split

KNN Regressor

Continuous Dataset Binary Prediction

Categorization
Average BA 
Regressor

Score

Continuous Prediction

K-Fold 
Split



Modeling Methods
Compare 3 Modeling Approaches

• Standard
• Algorithm

• Pipe
• Standard Scaler
• PCA n = x
• Algorithm

• Opt
• Standard Scaler
• GridSearchCV

• DT
• PCA n
• Max Depth
• Min Sample Split
• Min Sample Leaf

• KNN
• PCA n
• KNN n

• PCA n = optimized
• Algorithm

• RF
• PCA n
• N Estimators
• Max Depth
• Min Sample Split
• Min Sample Leaf

• SVM
• PCA n
• Kernel
• C



Results – G298Atom

Results Overview

• y-axis is Balanced Accuracy
• Blue lines are classifier scores
• Orange lines are regressor scores
• µ±σ of five 5-fold splits (stratified)

• x-axis is the percentile of the target 
variable at which the data was binarized

• Pipe modeling method
• PCA n = 100



Results - Solv

Results Overview

• y-axis is Balanced Accuracy
• Blue lines are classifier scores
• Orange lines are regressor scores
• µ±σ of five 5-fold splits (stratified)

• x-axis is the percentile of the target 
variable at which the data was binarized

• Pipe modeling method
• PCA n = 100



Results – Tox102

Results Overview

• y-axis is Balanced Accuracy
• Blue lines are classifier scores
• Orange lines are regressor scores
• µ±σ of five 5-fold splits (stratified)

• x-axis is the percentile of the target 
variable at which the data was binarized

• Pipe modeling method
• PCA n = 100



Results Tox134

Results Overview

• y-axis is Balanced Accuracy
• Blue lines are classifier scores
• Orange lines are regressor scores
• µ±σ of five 5-fold splits (stratified)

• x-axis is the percentile of the target 
variable at which the data was binarized

• Pipe modeling method
• PCA n = 100



Performance Metrics
Hypothesis

Balanced Accuracy (BA) is not a perfect or comprehensive metric of performance.

How will relative performance between the classification and regression methods compare if other metrics, 
including probabilistic metrics, are included?

Approach
Aggregate several metrics and compare performance.



Classification Performance Metrics

Actual Negative Actual Positive
Predicted Negative TN FN
Predicted Positive FP TP

Confusion Matrix

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

• Good for when false negatives are 
important

• Good for when false positives are 
important

• How many actual negatives were 
predicted correctly



Classification Performance Metrics

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2

𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛′𝑠𝑠 φ =
χ2

𝑛𝑛
=

𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 ∗ 𝐹𝐹𝐹𝐹
(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 κ =
𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑒𝑒

Actual Negative Actual Positive
Predicted Negative TN FN
Predicted Positive FP TP

Confusion Matrix

• Arithmetic mean of Recall and 
Specificity, more holistic than both

• Harmonic mean of Precision and 
Recall, more holistic than both

• Degree of association between 
predicted and experimental outcomes

• Agreement between predicted and 
experimental outcomes, also corrects 
for probability of random agreement



Probabilistic Performance Metrics

Binary Dataset

KNN Classifier

Balanced 
Accuracy

Scores0.41
0.22
0.97
0.05

Class 0 Class 1

0.59
0.78
0.03
0.95

1
1
0
1

Prediction

Probabilistic Scores

F1 Score

Pearson’s Phi

Cohen’s κ

ROC-AUC
• Performance function
• Adjusts probability cutoff for 

determining class predictions
• Calculate area under the resulting 

curve
• Higher is better

Log Loss
• Cost function
• Logarithm of a loss function 

incorporating probabilities
• Penalizes for very confident wrong 

predictions
• Lower is better

Brier Score
• Cost function
• Mean squared difference between 

the probability of a prediction and 
its label

• Also penalizes for very confident 
wrong predictions

• Lower is better



Multiple Metrics – G298Atom + DT



Multiple Metrics – G298Atom + KNN



Multiple Metrics – G298Atom + RF



Multiple Metrics – G298Atom + SVM



Aggregated Results

BA F1 PearsPhi Kappa ROC-AUC LogLoss Brier

DT - - - - R R R

KNN - - - - R R R

RF R R R R R - R

SVM C C C C C C C

G298Atom

BA F1 PearsPhi Kappa ROC-AUC LogLoss Brier

DT - - - - R R R

KNN - - - - C C C

RF - - - - C C C

SVM - - - - C C C

Solv

Results Overview

• C = classification
• R = regression
• Whichever method has a statistically 

significant advantage for most percentiles
• - =  no statistical difference between 

methods



Aggregated Results

BA F1 PearsPhi Kappa ROC-AUC LogLoss Brier

DT - - - - - R R

KNN - - - - C - C

RF - - - - - C C

SVM - - - - C C C

Tox102

BA F1 PearsPhi Kappa ROC-AUC LogLoss Brier

DT - - - - R R R

KNN - - - - - R -

RF - - - - C C C

SVM - - - - C C C

Tox134

Results Overview

• C = classification
• R = regression
• Whichever method has a statistically 

significant advantage for most percentiles
• - =  no statistical difference between 

methods



Conclusions

Results

• Relative performance of classification and regression is dependent on:
• Cutpoint
• Algorithm
• Dataset

• Probabilistic metrics are needed to distinguish performance for some of the datasets

Approach

• Categorization of continuous data is bad statistical practice. But does it affect the predictivity of models?
• By making predictions before (regression) and after (classification) categorizing a continuous dataset, 

we can explore how categorization affects model performance 



Ongoing Work
Open Research Questions

• How will the following affect relative performance?
• Exploring the remaining benchmark datasets
• Applying different levels of noise to the datasets
• Applying a correlation filter to feature variables
• Implementing PCA with variable number of components

• Using probabilistic metrics with binarized regression predictions is a somewhat arbitrary process
• Currently the workflow applies a logistic regression step to derive probabilities from the binarized regression 

values
• Are there alternative methods?

• Is the complexity of our machine learning pipeline obscuring the fundamental statistical differences between 
predicting before and after categorization?
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Essential Literature
Irwin and McClelland, Journal of Marketing Research, 2003, 40, 366.

• Categorization always reduces effect size (R and R2) 
between variables

• This effect holds for non-normal distributions
• This reduces power in simple regression modeling

MacCallum et al. Psychological Methods, 2002, 7, 19.

• Categorization always reduces effect size (R and R2) 
between variables

• Derives the fundamental statistics
• Debunks common justifications for categorization
• Concludes that categorization is rarely defensible

Royston et al. Statist. Med., 2006, 25, 127.

• Categorizing continuous data results in less predictive models



The Effect of Noise on Class Split
g298atom Solv

Molecules ordered 
by 

endpoint value

Amount of Added Noise Amount of Added Noise



The Effect of Noise on Class Split
Tox102 Tox134

Molecules ordered 
by 

endpoint value

Amount of Added Noise Amount of Added Noise



Multiple Metrics – Solv + KNN



Multiple Metrics – Solv + RF



Multiple Metrics – Solv + SVM



Multiple Metrics – Tox102 + DT



Multiple Metrics – Tox102 + KNN



Multiple Metrics – Tox102 + RF



Multiple Metrics – Tox102 + SVM



Multiple Metrics – Tox134 + DT



Multiple Metrics – Tox134 + KNN



Multiple Metrics – Tox134 + RF



Multiple Metrics – Tox134 + SVM



Feature Variables
Hypothesis

The statistics show that when there are few feature variables (~ < 3), categorization of a continuous 
variable leads to clear loss of statistical power.

Our models contain 1400 feature variables in the standard workflow, and 100 feature variables after 
Principal Component Analysis (PCA).

What is the relationship between the number of feature variables and the relative performance of the 
classification and regression methods?

Approach

Feature Variables

Random Selection
of n variables

x0 … x1444 x0 … xn

Subset of Features

Same Workflow 
as before

… Repeat 5x
For a single Percentile Cutpoint



Feature Variable Results - G298Atom + 50%



Feature Variable Results – Solv + 50%
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