Determining the Predictive Limit of QSAR Models

Scott Kolmar

ORCID: 0000-0002-7797-700X, Kolmar.Scott@epa.gov

June 24th, 2021

US EPA

ORD-CCTE-CCED-CCCB

This work does not reflect EPA policy.

QSAR models attempt to predict the *population mean*

Prediction value

QSAR models attempt to predict the *population mean*

QSAR models are evaluated by $\varepsilon_{observed}$

QSAR models attempt to predict the *population mean*

QSAR models are evaluated by $\varepsilon_{observed}$

This evaluation is flawed because the *experimental value* is not overlapping with the *population mean*

Experimental value

Prediction value

Research Question

Population means are difficult to measure or are generally unavailable in typical QSAR datasets. How can we judge the quality of a QSAR model when it is trained on *experimental values* which do not represent *population means*?

Prediction value

Research Question

Population means are difficult to measure or are generally unavailable in typical QSAR datasets. How can we judge the quality of a QSAR model when it is trained on *experimental values* which do not represent *population means*?

Strategy

- Designate the *experimental values* as "*population means*"
- Add simulated error to these values
- Train a QSAR model on the error laden values
- Make predictions
- Evaluate if the predictions are closer to our designated "*population means*" or the error laden values

Experimental Error in QSAR

response variable	number of molecules	number of results	number of molecules to consider	percentage of data set with a single measurement
human hep CL _{int}	10668	22588	9819	40
human mic CL _{int}	32492	47566	31215	74
human PPB	61356	80725	59852	89
log D _{7.4}	115441	140662	113339	93
rat hep CL _{int}	39112	55969	36807	77
rat PPB	16476	23738	16037	85
solubility (dried DMSO)	44256	49043	42821	95
solubility (solid)	38722	42736	36256	95

Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125

• Uncertainty information from multiple measurements is rare in cheminformatics

Experimental Error in QSAR

response variable	number of molecules	number of results	number of molecules to consider	percentage of data set with a single measurement
human hep CL _{int}	10668	22588	9819	40
human mic CL _{int}	32492	47566	31215	74
human PPB	61356	80725	59852	89
log <i>D</i> _{7.4}	115441	140662	113339	93
rat hep CL _{int}	39112	55969	36807	77
rat PPB	16476	23738	16037	85
solubility (dried DMSO)	44256	49043	42821	95
solubility (solid)	38722	42736	36256	95

Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125

• Uncertainty information from multiple measurements is rare in cheminformatics

Cortes-Ciriano et al. J. Chem. Inf. Model., 2015, 55, 1413

• Simulated error can elicit different responses from different algorithms; certain hyperparameters govern these responses

Error in QSAR

Explicit Assumption: Predictions must have uncertainty higher than or equal to the training set.

"It follows that the model's prediction of the *external test set* will have uncertainty equal to or greater than that contained within the *training set*."

Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125

"The experimental uncertainty sets the *upper limit of performance* of in silico models that can be achieved."

Kramer et al. J. Med. Chem., 2012, 55, 5165

Error in QSAR

Explicit Assumption: Predictions must have uncertainty higher than or equal to the training set.

"It follows that the model's prediction of the *external test set* will have uncertainty equal to or greater than that contained within the *training set*."

Wenlock et al. J. Chem. Inf. Model., 2015, 55, 125

"The experimental uncertainty sets the *upper limit of performance* of in silico models that can be achieved."

Kramer et al. J. Med. Chem., 2012, 55, 5165

Implicit Assumption: Test sets do not have error and can be used to evaluate QSAR models.

5-fold GridSearchCV

- *Train* is commonly acknowledged to contain error
- It is assumed that *Test* has no error
- Models are evaluated on their ability to predict *error laden* data

Error in QSAR

This work seeks to directly test the hypothesis that a model's *prediction uncertainty* is limited by the *uncertainty in the training data*

Datasets:

- Span a range of complexity from quantum mechanical to *in vivo* toxicological
- Represent endpoints of interest in QSAR
- The series of datasets will have endpoints with increasing levels of experimental uncertainty

Methods:

- Add simulated error to each dataset
- Build models on the *error laden data*
- Make predictions
- Evaluate predictions against the *true values*
- Evaluate predictions against the *error laden values*
- Compare model performance

Datasets

Dataset	Category	Number of Molecules ^a	Endpoint	Range
G298_atom	Quantum Mechanical	131,082	ΔG^{o}_{at} (kcal mol ⁻¹)	-2,417288
Alpha	Quantum Mechanical	131,082	α (Bohr ³)	9.0 - 27.8
Lip	Physiochemical	4,200	logD	-1.5 - 4.5
Solv	Physiochemical	642	ΔG^{o}_{hyd} (kcal mol ⁻¹)	-25.5 - 3.4
BACE	Biochemical	1,513	pIC ₅₀	2.5 - 10.5
Tox_102 ^b	Toxicological in vitro	971	$logAC_{50}$	-2.1 - 4.7
Tox_134°	Toxicological in vitro	1,347	$logAC_{50}$	-4.0 - 2.8
LD50	Toxicological in vivo	5,003	logLD ₅₀ (mg kg ⁻¹)	-1.9 - 4.8

^a Original size of the dataset. If datasets have more than 1,000 molecules, they were randomly sampled down to a size of 1,000 before modeling.

^b Includes data exclusively from the ATG-PPre-cis assay

^c Inclues data exclusively from the ATG-PPARg-trans assay

Algorithms and Hyperparameters

Algorithm	Hyperparameters Searched in Optimization
Ridge Regression (Ridge)	$PCA \ n \ components \in (1, 3, \dots, 59)$
k- Nearest Neighbors (kNN)	$\alpha \in (1, 2, 3, 4, 5, 10)$ <i>PCA n components</i> $\in (1, 3,, 59)$
Support Vector Regressor (SVR)	$k \in (1, 2,, 20)$ PCA n components $\in (1, 3,, 59)$
	$C \in (0.01, 0.1, 1, 10)$
Random Forest (RF)	<i>kernel:</i> Radial basis function (RBF) $PCA n \text{ components} \in (1, 3,, 59)$
	<i>n</i> estimators \in (1, 10,, 200)
	$max \ depth \in (1, 3,, 99)$
Gaussian Process (GP)	$max \ leaf \ nodes \in (2, 12, \dots, 92)$ $PCA \ n \ components \in (1, 3, \dots, 59)$
	<i>kernel</i> : RBF, WhiteKernel, Matern, DotProduct, ExpSineSquared, ConstantKernel or RationalQuadratic
	Normalize y: True

G298 atom Results

Tox134 Results

 $\sigma / RMSE_0$

Tox134, KNN

 $\sigma / RMSE_0$

RMSE Slope Ratios

Dataset/Algorithm	Ridge	kNN	SVR	RF	$\mu\pm\sigma$
G_298_atom	5.8	8.8	8.9	8.8	8.1 ± 1.3
Alpha	6.9	8.7	7.3	7.8	7.7 ± 0.67
Lip	19	18	6.9	14	14 ± 4.8
Solv	5.8	3.0	3.3	6.1	4.6 ± 1.4
BACE	13	12	2.9	12	10 ± 4.1
Tox_102	44	10	220	43	79 ± 82
Tox_134	52	14	55	-	40 ± 19
LD50	-	11	6.0	16	11 ± 4.1
$\mu\pm\sigma$	21 ± 18	11 ± 4.1	39 ± 70	15 ± 12	
$\mu\pm\sigma^{\ a}$	10 ± 5.2	10 ± 4.5	5.9 ± 2.1	11 ± 3.5	

^a With Tox102 and Tox134 ratios omitted.

 $\hat{\mathbf{Y}} = \hat{\mathbf{y}}_1, \hat{\mathbf{y}}_2, \dots, \hat{\mathbf{y}}_n$

$$\sigma_{\hat{y}} = \sigma_{\hat{y}1}, \sigma_{\hat{y}2}, \dots, \sigma_{\hat{y}n}$$

 $Mean \, \sigma_{\hat{y}} = \frac{1}{n} \sum_{i=1}^{n} \sigma_{\hat{y}i}$

$$\sigma_{\hat{y}} 95\% CI = \frac{1.960}{\sqrt{n}} \left[\frac{1}{n} \sum_{i=1}^{n} (\sigma_{\hat{y}i} - Mean \sigma_{\hat{y}})^2 \right]$$

 $Y = y_1, y_2, \dots, y_n$

$$\sigma_y = \sigma_{y1}, \sigma_{y2}, \dots, \sigma_{yn}$$

 $\hat{\mathbf{Y}} = \hat{\mathbf{y}}_1, \hat{\mathbf{y}}_2, \dots, \hat{\mathbf{y}}_n$

$$\sigma_{\hat{y}} = \sigma_{\hat{y}1}, \sigma_{\hat{y}2}, \dots, \sigma_{\hat{y}n}$$

 $Mean \, \sigma_{\hat{y}} = \frac{1}{n} \sum_{i=1}^{n} \sigma_{\hat{y}i}$

$$\sigma_{\hat{y}} 95\% CI = \frac{1.960}{\sqrt{n}} \left[\frac{1}{n} \sum_{i=1}^{n} (\sigma_{\hat{y}i} - Mean \sigma_{\hat{y}})^2 \right]$$

$$Y = y_1, y_2, \dots, y_n$$
$$\sigma_y = \sigma_{y1}, \sigma_{y2}, \dots, \sigma_{yn}$$

Information about experimental uncertainty

GP Slope ratios

Dataset	No σ_y	With σ_y
G_298_atom	1.9	2.0
Alpha	1.8	9.4ª
Solv	1.6	2.5ª
BACE	3.8	7.8ª
Tox_102	2.8	_b
Tox_134	7.0	_b
LD50	5.4	6.0
$\mu \pm \sigma$	3.5 ± 1.9	5.5 ± 2.9

^aSlopes m and m_{true} were calculated excluding the first two points due to a discontinuity in the line.

^bThe slope m_{true} was negative for these plots, so the slope ratio was not calculated.

GP Prediction Uncertainties

	No σ_y	No σ_y	With σ_y	With σ_y
Dataset	Mean $\sigma_{\hat{y}}$	σ _ŷ 95% CI	Mean $\sigma_{\hat{y}}$	σ _ŷ 95% CI
G_298_atom	1.0	0.40	0.52	-0.10
Alpha	1.1	0.16	0.44 ^a	0.32ª
Solv	0.94	-0.19	0.10	0.10
BACE	0.25	0.38	-0.12	-0.35
Tox_102	0.32	0.028	-0.96	-0.48
Tox_134	0.49	0.53	-0.66	-0.17
LD50	0.66	-0.39	-0.60	0.14

- "It follows that the model's prediction of the *external test set* will have uncertainty equal to or greater than that contained within the *training set*"
- Because these slopes are < 1, prediction uncertainty is actually *less* than the <u>added</u> error!

- Methods
- Gaussian error was added to 8 representative QSAR datasets and modeled using 5 algorithms
 - The use of Gaussian distributed error represents an *ideal* but *realistic* simulation of real-world modeling

Methods

- Gaussian error was added to 8 representative QSAR datasets and modeled using 5 algorithms
 - The use of Gaussian distributed error represents an *ideal* but *realistic* simulation of real-world modeling

Results

- For each dataset and algorithm, the *true test set* was always predicted more accurately than the *error laden test set*
- The difference between RMSE and $RMSE_{true}$ depends on algorithm, dataset, and the level of added error
- When using Gaussian Process
 - Increasing the simulated error increases the prediction uncertainty
 - Providing information about error to the algorithm mitigates these trends
 - Prediction uncertainty is often *less* than the amount of <u>added</u> error!

Implications

- QSAR models *can* make predictions which are more accurate than training data
- Evaluation of QSAR models on error laden test sets can give flawed interpretations of performance
 - A model may be making good predictions, but this will be obscured by test set error

Implications

- QSAR models can make predictions which are more accurate than training data
- Evaluation of QSAR models on error laden test sets can give flawed interpretations of performance
 - A model may be making good predictions, but this will be obscured by test set error
- Different models respond differently to error
 - *RMSE/RMSE*_{true} is model dependent
 - *RMSE* is observed
 - $RMSE_{true}$ is unknown
- Determining relative performance can be tenuous and potentially misleading

Future Work

- Evaluation of new algorithms and new models will be similarly limited by knowledge of the uncertainty in validation and test sets
- New methods of inferring uncertainty in datasets and new evaluation methodologies which utilize knowledge of uncertainty are needed to give more reliable comparisons of QSAR models
- Our group will focus on sources of error prominent in toxicological modeling, particularly systematic error

Categorizing Continuous Data in QSAR

Splitting Data

Cheminformaticians often split (categorize) continuous data into categorical data

But this leads to a *loss of information*, *loss of effect size*, and *loss of statistical significance* between variables
Loss of Information

Scenario:

• *C* is closer to *B* than to *D*

Result:

- Loss of individual differences between observations
- *C* and *D* are judged to be more similar than *C* and *B*

Loss of Effect Size and Statistical Significance

t(48) = 2.19, p = 0.03

٠

• t(48) = 1.47, p = 0.15

MacCallum et al. Psychological Methods, 2002, 7, 19.

Splitting Up: It's a Bad Idea..

STATISTICS IN MEDICINE Statist. Med. 2006; 25:127–141 Published online 11 October 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2331

Psychological Methods 2002, Vol. 7, No. 1, 19-40 Copyright 2002 by the American Psychological Association, Inc. 1082-989X/02/\$5.00 DOI: 10.1037//1082-989X.7.1.19

Dichotomizing continuous predictors in multiple regression: [a bad idea]

Patrick Royston^{1,*,†}, Douglas G. Altman² and Willi Sauerbrei³

JULIE R. IRWIN and GARY H. McCLELLAND*

Marketing researchers frequently split (dichotomize) continuous predictor variables into two groups, as with a median split, before performing data analysis. The practice is prevalent, but its effects are not well understood. In this article, the authors present historical results on the effects of dichotomization of normal predictor variables rederived in a regression context that may be more relevant to marketing researchers. The authors then present new results on the effect of dichotomizing continuous predictor variables with various nonnormal distributions and examine the effects of dichotomization on model specification and fit in multiple regression. The authors conclude that dichotomization has only negative consequences and should be avoided.

Negative Consequences of Dichotomizing Continuous Predictor Variables

Splitting a Predictor at the Upper Quarter or Third and the Lower Quarter or Third

uniformly or normally distributed. By discretizing x into three categories, we claw back about half the efficiency lost by the commonly used strategy of dichotomizing the predictor.

Andrew GELMAN and David K. PARK

Dichotomizing Continuous Outcome Variables: Dependence of the Magnitude of Association and Statistical Power on the Cutpoint

On the Practice of Dichotomization of Quantitative Variables

Robert C. MacCallum, Shaobo Zhang, Kristopher J. Preacher, and Derek D. Rucker

Ohio State University described, and justifications that are offered for such usage are examined. The authors present the case that dichotomization is rarely defensible and often will

David R. Ragland

Dichotomizing a continuous outcome variable casts that variable in traditional epidemiologic terms (that is, disease, no disease). One consequence is overall reduced statistical power. A more fundamental concern is that the magnitude

yield misleading results.

Finding What Is Not There through the Unfortunate Binning of Results: The Mendel Effect

Howard Wainer, Marc Gessaroli, and Monica Verdi National Board of Medical Examiners

Project Plan

Hypothesis

Categorization of continuous data is bad statistical practice and distorts the relationship between variables.

Will this fundamental principle result in less predictive machine learning models? How does categorization affect the quality of predictions in QSAR?

Approach

Using continuous datasets, make predictions before (Regression) and after (Classification) categorization.

Datasets

Dataset	Category	Number of Molecules ^a	Endpoint	Range
G298_atom	Quantum Mechanical	131,082	ΔG^{o}_{at} (kcal mol ⁻¹)	-2,417288
Solv	Physiochemical	642	ΔG^{o}_{hyd} (kcal mol ⁻¹)	-25.5 - 3.4
Tox_102 ^b	Toxicological in vitro	971	$logAC_{50}$	-2.1 - 4.7
Tox_134°	Toxicological in vitro	1,347	logAC ₅₀	-4.0 - 2.8

^a Original size of the dataset. If datasets have more than 1,000 molecules, they were randomly sampled down to a size of 1,000 before modeling.

^b Includes data exclusively from the ATG-PPre-cis assay

^c Inclues data exclusively from the ATG-PPARg-trans assay

Loss of Correlation Effect Size

Statistics for the Difference in Correlation Vectors $R_{xy_d} - R_{xy}$

	mean	std	min	25 th perc	50 th perc	75 th perc	max	Num. of R with $p < 0.05$
g298atom	-0.020	0.079	-0.22	-0.061	-0.0078	0.017	0.25	-9
Solv	-0.021	0.060	-0.27	-0.054	-0.019	0.015	0.26	-10
Tox102 ^a	-0.015	0.036	-0.010	-0.042	-0.014	0.014	0.068	-33
Tox134 ^a	-0.021	0.031	-0.11	-0.042	-0.019	0.0011	-0.089	-53

^aLog10 scale

Comparing Classification and Regression

Modeling Methods

Results – G298Atom

- *y*-axis is Balanced Accuracy
 - Blue lines are classifier scores
 - Orange lines are regressor scores
 - $\mu \pm \sigma$ of five 5-fold splits (stratified)
- *x*-axis is the percentile of the target variable at which the data was binarized
- *Pipe* modeling method
 - PCA n = 100

Results - Solv

- *y*-axis is Balanced Accuracy
 - Blue lines are classifier scores
 - Orange lines are regressor scores
 - $\mu \pm \sigma$ of five 5-fold splits (stratified)
- *x*-axis is the percentile of the target variable at which the data was binarized
- *Pipe* modeling method
 - PCA n = 100

Results - Tox 102

- *y*-axis is Balanced Accuracy
 - Blue lines are classifier scores
 - Orange lines are regressor scores
 - $\mu \pm \sigma$ of five 5-fold splits (stratified)
- *x*-axis is the percentile of the target variable at which the data was binarized
- *Pipe* modeling method
 - PCA n = 100

Results *Tox134*

- *y*-axis is *Balanced Accuracy*
 - Blue lines are classifier scores
 - Orange lines are regressor scores
 - $\mu \pm \sigma$ of five 5-fold splits (stratified)
- *x*-axis is the percentile of the target variable at which the data was binarized
- *Pipe* modeling method
 - PCA n = 100

Performance Metrics

Hypothesis

Balanced Accuracy (BA) is not a perfect or comprehensive metric of performance.

How will relative performance between the classification and regression methods compare if other metrics, including probabilistic metrics, are included?

Approach

Aggregate several metrics and compare performance.

Classification Performance Metrics

Confusion Matrix

	Actual Negative	Actual Positive
Predicted Negative	TN	FN
Predicted Positive	FP	ТР

$$Recall = Sensitivity = True \ Positive \ Rate = \frac{TP}{TP + FN}$$

Specificity = True Negative Rate = $\frac{TN}{TN + FP}$

$$Precision = \frac{TP}{TP + FP}$$

- Good for when *false negatives* are important
- How many *actual* negatives were predicted correctly
- Good for when *false positives* are important

Classification Performance Metrics

Confusion Matrix

	Actual Negative	Actual Positive
Predicted Negative	TN	FN
Predicted Positive	FP	ТР

$$Balanced Accuracy = \frac{Recall + Specificity}{2}$$

$$F1 Score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

$$Pearson's \ \varphi = \sqrt{\frac{\chi^2}{n}} = \frac{TN * TP - FN * FP}{\sqrt{(TN + FN)(FP + TP)(TN + FP)(FN + TP)}}$$

 $Cohen's \kappa = \frac{p_o - p_e}{1 - p_e}$

- Arithmetic mean of *Recall* and *Specificity*, more holistic than both
- Harmonic mean of *Precision* and *Recall*, more holistic than both
- Degree of association between predicted and experimental outcomes
- Agreement between predicted and experimental outcomes, also corrects for probability of random agreement

Probabilistic Performance Metrics

Multiple Metrics – G298Atom + DT

Multiple Metrics – G298Atom + KNN

Multiple Metrics -G298Atom + RF

Multiple Metrics -G298Atom + SVM

Aggregated Results

G298Atom

	BA	F1	PearsPhi	Kappa	ROC-AUC	LogLoss	Brier
DT	-	-	-	-	R	R	R
KNN	-	-	-	-	R	R	R
RF	R	R	R	R	R	-	R
SVM	С	С	С	С	С	С	С

Solv

	BA	F1	PearsPhi	Kappa	ROC-AUC	LogLoss	Brier
DT	-	-	-	-	R	R	R
KNN	-	-	-	-	С	С	С
RF	-	-	-	-	С	С	С
SVM	-	-	-	-	С	С	С

- C = classification
- R = regression
- Whichever method has a statistically significant advantage for most percentiles
- = no statistical difference between methods

Aggregated Results

Tox102

	BA	F1	PearsPhi	Kappa	ROC-AUC	LogLoss	Brier
DT	-	-	-	-	-	R	R
KNN	-	-	-	-	С	-	С
RF	-	-	-	-	-	С	С
SVM	-	-	-	-	С	С	С

Tox134

	BA	F1	PearsPhi	Kappa	ROC-AUC	LogLoss	Brier
DT	-	-	-	-	R	R	R
KNN	-	-	-	-	-	R	-
RF	-	-	-	-	С	С	С
SVM	-	-	-	-	С	С	С

- C = classification
- R = regression
- Whichever method has a statistically significant advantage for most percentiles
- = no statistical difference between methods

Conclusions

Approach

- Categorization of continuous data is bad statistical practice. But does it affect the predictivity of models?
- By making predictions *before* (*regression*) and *after* (*classification*) categorizing a continuous dataset, we can explore how categorization affects model performance

Results

- Relative performance of classification and regression is dependent on:
 - Cutpoint
 - Algorithm
 - Dataset
- Probabilistic metrics are needed to distinguish performance for some of the datasets

Ongoing Work

Open Research Questions

- How will the following affect relative performance?
 - Exploring the remaining benchmark datasets
 - Applying different levels of noise to the datasets
 - Applying a *correlation filter* to feature variables
 - Implementing *PCA* with *variable number of components*
- Using probabilistic metrics with binarized regression predictions is a somewhat arbitrary process
 - Currently the workflow applies a logistic regression step to derive probabilities from the binarized regression values
 - Are there alternative methods?
- Is the complexity of our machine learning pipeline obscuring the fundamental statistical differences between predicting before and after categorization?

Acknowledgements

Mentor

Chris Grulke

Internal Manuscript Review

Charles Lowe

Richard Judson

Computational Chemistry and Cheminformatics Branch (CCCB)

PIs Daniel Chang Chris Grulke Paul Harten Todd Martin Grace Patlewicz Ann Richard Dan Vallero Antony Williams

Tox102 and Tox134 Datasets Katie Paul-Friedman Postdocs and SSCs Matthew Boyce Zachary Chiodini Willysha Jenkins Charles Lowe Christian Ramsland Gabriel Sinclair Tia Tate

Supplemental Slides

Essential Literature

Irwin and McClelland, Journal of Marketing Research, 2003, 40, 366.

- Categorization always reduces effect size (*R* and *R*²) between variables
- This effect holds for non-normal distributions
- This reduces power in *simple regression modeling*

MacCallum et al. *Psychological Methods*, **2002**, *7*, 19.

- Categorization always reduces effect size (*R* and *R*²) between variables
- Derives the fundamental statistics
- Debunks common justifications for categorization
- Concludes that categorization is rarely defensible

Royston et al. Statist. Med., 2006, 25, 127.

	with model 5 in when continuous variables were retained as continuous.						
Measure	Model 1 Median cutpoint	Model 2 'Optimal' cutpoint	Model 3 Continuous				
Model χ^2	94.6	99.2	136.8				
c-index	0.778	0.774	0.814				
D	1.91	2.02	2.55				
R_D^2	0.465	0.494	0.608				

• Categorizing continuous data results in less predictive models

The Effect of Noise on Class Split

The Effect of Noise on Class Split

Multiple Metrics - Solv + KNN

Multiple Metrics -Solv + RF

Multiple Metrics -Solv + SVM

0.00

0.75 -

Rar

Percentile

Percentile

Percentile

0.02

Multiple Metrics - Tox 102 + DT

Multiple Metrics – *Tox102* + *KNN*

Multiple Metrics - Tox 102 + RF

Multiple Metrics - Tox 102 + SVM

90
Multiple Metrics - Tox 134 + DT

Multiple Metrics - Tox 134 + KNN

0.50

10 20

Percentile

Percentile

Percentile

Multiple Metrics - Tox 134 + RF

90

0.55

0.50

0.45

10

20

30

40

50

Percentile

60

Multiple Metrics - Tox 134 + SVM

Feature Variables

Hypothesis

The statistics show that when there are few *feature variables* ($\sim < 3$), categorization of a continuous variable leads to clear loss of statistical power.

Our models contain 1400 *feature variables* in the standard workflow, and 100 *feature variables* after Principal Component Analysis (*PCA*).

What is the relationship between the number of *feature variables* and the relative performance of the classification and regression methods?

Feature Variable Results - G298Atom + 50%

Feature Variable Results – Solv + 50%

