

Analytical Methods Overview

Christopher A. Impellitteri, Marc Mills, Andy Gillespie Safe and Sustainable Water Resources Research Program Office of Research and Development

> Executive Meeting | Board of Scientific Counselors September 29-30, 2021

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Outline

- Targeted vs. non-targeted
- EPA method categories
- Drinking water (DW)
- Non-DW aqueous samples
- Solids
- Total/absorbable fluorine
- Total oxidizable precursors

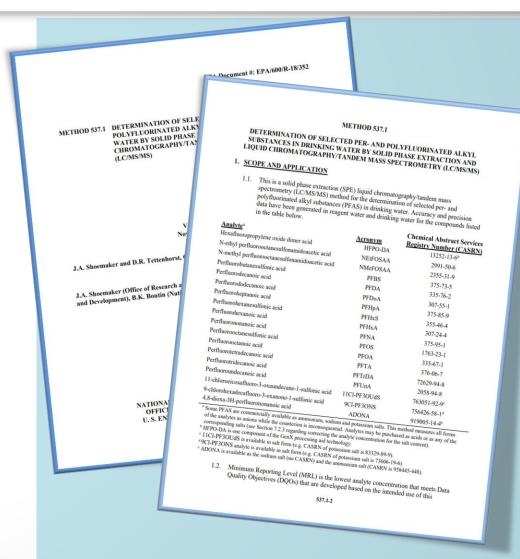
Targeted vs Non-Targeted

Targeted methods are methods which are applicable to a specific defined set of known analytes

- Analytical standards exist for quantitation
- Method only 'sees' analytes on the targeted list will not measure others
- 'One and done' once the analysis is complete, can't look for other analytes

Non-targeted methods involve the use of High-Resolution Mass Spectrometry (HRMS) capable of identifying all analytes in a sample, known and unknown

- Can quantitate those for which laboratory standards exist, otherwise may semi-quantitate based on known, structurally similar analytes
- Can screen for lists of known suspects, can discover new/unknown analytes
- Can store the HRMS data and go back later to look for analytes which were unidentified at the time of analysis, but which later become known


EPA Method Categories

- Safe Drinking Water Act Methods
 - https://www.epa.gov/dwanalyticalmethods
- Clean Water Act Methods
 - https://www.epa.gov/cwa-methods
- SW846 Methods
 - https://www.epa.gov/hw-sw846/guidance-methods-development-and-methods-validation-resource-conservation-and-recovery-act
- Air Methods
 - Air Emission Measurement Center (EMC)
 - Category A: Methods proposed or promulgated in the Federal Register
 - Category B: Source Category Approved Alternative Methods
 - Category C: Other Methods
 - Category D: Historic Conditional Methods (Closed to new method additions)

Drinking Water Method 537: Revision I

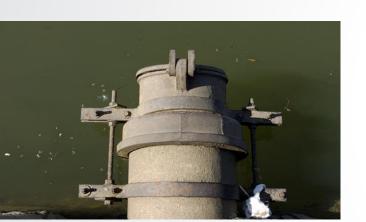
- Update: External lab validation for additional analytes by 537
 - Perfluoro-2-propoxypropanoic acid (GenX chemical HFPO-DA, CAS 13252-13-6)
 - Potassium 9-chlorohexadecafluoro-3-oxanone-1-sulfonate (9Cl-PF3ONS, CAS 73606-19-6)
 - Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate (11Cl-PF3OUdS, CAS 83329-89-9)
 - Sodium dodecafluoro-3H-4,8-dioxanonate (ADONA, CAS 958445-44-8)
- Incorporated clarifications issued in EPA Technical Advisory epa.gov/sites/production/files/2016-09/documents/pfoatechnical-advisory.pdf
- Final published method (November, 2018) <u>epa.gov/water-research/epa-drinking-water-research-methods</u>
- LC/MS/MS with internal standards. Single lab lowest concentration minimum reporting levels (LCMRLs) range from 0.53-6.3 ng/L

Drinking Water Method 533

Solid phase extraction/isotope dilution method targeting PFAS <C12

- Method 537 generally performs poorly for C4 compounds (e.g. PFBA, PFBS)
- Solid phase extraction, LC/MS/MS, Isotope dilution
- Will support the fifth Unregulated Contaminant Monitoring Rule
- Released December 2019
 - https://www.epa.gov/dwanalyticalmethods/analytical-methodsdeveloped-epa-analysis-unregulated-contaminants

DW Methods 533 and 537.1


Method 533	Both Methods	Method 537.1
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)
1H, 1H, 2H, 2H- perfluorohexane sulfonic acid (4:2 FTS)	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid (6:2 FTS)	4,8-dioxa-3H-perfluorononanoic acid (ADONA)	Perfluorotetradecanoic acid (PFTA)
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	Hexafluoropropylene oxide dimer acid (HFPO-DA)	Perfluorotridecanoic acid (PFTrDA)
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	Perfluorodecanoic acid (PFDA)	
Perfluoro-3-methoxypropanoic acid (PFMPA)	Perfluorododecanoic acid (PFDoA)	
Perfluoro-4-methoxybutanoic acid (PFMBA)	Perfluorohexanoic acid (PFHxA)	
Perfluorobutanoic acid (PFBA)	Perfluoroundecanoic acid (PFUnA)	
Perfluoroheptanesulfonic acid (PFHpS)	Perfluorobutanesulfonic acid (PFBS)	
Perfluoropentanesulfonic acid (PFPeS)	Perfluoroheptanoic acid (PFHpA)	
Perfluoropentanoic acid (PFPeA)	Perfluorohexanesulfonic acid (PFHxS)	
	Perfluorononanoic acid (PFNA)	
	Perfluorooctanoic acid (PFOA)	
	Perfluorooctanesulfonic acid (PFOS)	

Bold indicates analytes listed on UCMR 3

Non-DW Aqueous Samples

SW-846 Method 8327 (Prep Method 3512)-Direct Injection

- 24 PFAS
- Based on EPA Region 5 Laboratory SOP. Similar to American Society for Testing and Materials Method D7979

Validated for groundwater, surface water, wastewater effluent

- Target Quantitation Limits: 10 ng/L
 - https://www.epa.gov/hw-sw846/validated-test-method-8327-and-polyfluoroalkyl-substances-pfas-using-externalstandard

Non-DW Aqueous Samples and Solids

Clean Water Act Draft Method 1633

- Single-laboratory validated draft method release August 2021
- Solid phase extraction-isotope dilution
- 40 PFAS
 - All analytes listed for 533 and 537.1 plus: PFNS, PFDS, PFDoS, PFOSA, NMeFOSA, NEtFOSA, NMeFOSE, NEtFOSE, 3:3 FTCA, 5:3 FTCA, and 7:3 FTCA
- Validated for wastewater, surface water, soil, sediment, biosolids, animal tissues
- Multi-laboratory validation data collection targeted for the end of 2021
 - https://www.epa.gov/system/files/documents/2021-09/method 1633 draft aug-2021.pdf

Total/Absorbable Organic Fluorine

Clean Water Act Method for single and multi laboratory validation

- Sorption (carbon), inorganic F⁻ removal, combustion ion chromatography
- Delivery of draft wastewater screening method to EPA Office of Water by October 2021
- Method developed for wastewater analyses

Total Oxidizable Precursors

Targeted method to estimate oxidizable PFAS precursors

Heated oxidative conversion

60 mM Persulfate, 125 mM Base

Oxidizable PFAA Precursors

PFCAs

85 °C for 6 Hrs

Total Oxidizable Precursors = PFCAs after oxidation - PFCAs before oxidation

- Developed by Houtz et al. No multi-laboratory validated standard methods
- Available from some contract laboratories
- May not identify some precursor compounds

Air Methods

Other Test Method (OTM)-45

- OTM-45 is a method for measuring 50 PFAS in air emissions from stationary sources.
- OTM-45 is a draft method that is under evaluation and will be updated and revised as data from stakeholders becomes available.
- https://www.epa.gov/sites/default/files/2021-01/documents/otm 45 semivolatile pfas 1-13-21.pdf
- EPA is currently refining methods to characterize PFAS in emissions from stationary sources. Candidate methods for evaluation and validation expected in 2022.

Questions?

For more information on sampling, EPA analytical methods, and links to other Federal Agency Methods see:

https://www.epa.gov/water-research/pfas-analytical-methods-development-and-sampling-research