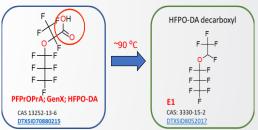


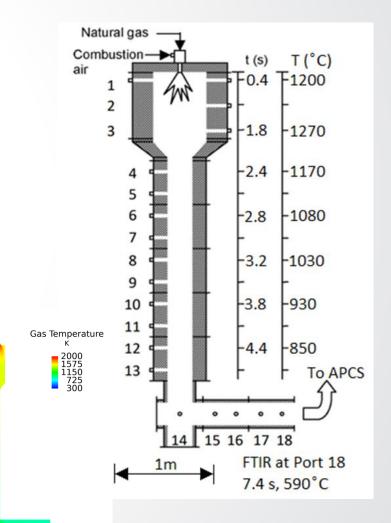
Thermal Treatment of PFAS


W. Linak CEMM/AMCD Office of Research and Development

Executive Meeting | Board of Scientific Counselors September 29-30, 2021

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

EPA Goals


- Highly electronegative F makes C-F bonds particularly strong, requiring high temperatures for destruction
 - CF4 requires 1,440 °C for >1 sec to achieve 99.99% destruction (Tsang et al., 1998)
 - Information regarding potential products of incomplete combustion (PICs) is lacking
 - Desire to achieve full defluorination and fluorine mineralization (HF)
- This research is exploring minimum conditions (temperature, residence time, combustion parameters) necessary for adequate PFAS destruction
 - Different thermal destruction technologies exhibit a large range of temperatures
 - hazardous waste incinerators, municipal waste combustors, sewage sludge incinerators, etc.
 - Halogens inhibit flame propagation
 - PICs from F radicals more likely than for other halogens
 - Stability of CF2 and CF3 radicals suggest the possible reformation of PFAS species
 - Can FTIR detectable surrogate PFAS gases be used to determine destruction behavior of larger PFAS molecules
- Inform program offices about the adequacy of different thermal processes to adequately destroy PFAS wastes
 - EPA tasked with developing PFAS thermal treatment guidance (NDAA)
 - Develop a mechanistic understanding of PFAS behavior and help interpret results from full-scale field studies

\$EPA

Approach

- Inhouse experiments supported by fundamental modeling
 - Moderate temperature bench-scale experiments with Ca sorbents and Al catalysts
 - High temperature pilot-scale thermal destruction of C1 and C2 PFAS (gases)
 - High temperature thermal destruction of AFFF (liquids)
- Computational fluid dynamic (CFD) model
 - Developed for DoD for thermal destruction of chemical warfare agents
 - Modified by EPA/HSRP to include three commercial incinerator designs
 - Further modified to include NIST compiled C1-C3 fluorinated kinetics
 - Large molecule fluorine kinetics being developed by DoD (SERDP & DoD Labs) and EPA (NCSU)
- EPA Inhouse pilot-scale combustors include a refractory lined furnace (right) and a rotary kiln with afterburner.
 - Well characterized research combustors able to capture salient features of full-scale units
 - Serve as EPA accessible platforms to address research questions
 - Serve as sources to develop and test PFAS sampling and analytical techniques
- Support full-scale field efforts in a variety of thermal destruction systems

Sepa

Current Status

- First moderate temperature thermal reaction (FTOHs w/ CaO) paper published https://doi.org/10.1016/j.chemosphere.2021.129859
 - Fluorine reaction with CaO (forming CaF2) effectively destroyed FTOHs at moderate temperatures (400-900 °C) with non-detectable PICs
 - Encouraging results as a control technology or co-firing PFAS wastes in cement kilns
 - Al catalyst experiments initiated (w/ Guild Associates)
- First high temperature thermal destruction (C1 and C2 PFAS gases) paper submitted to JAWMA
 - CF4, CHF3, and C2F6 destruction efficiencies and PICs measured w/ FTIR
 - PFAS destruction and PIC formation characterized (w/ variable temperatures and residence times) and compared to kinetic model
 predictions
 - Different PFAS structures (C-H and C-C) examined
 - Surrogate gases amenable to real-time FTIR measurement (useful for field testing)
- High temperature experiments initiated with AFFF (3M Lightwater)
 - Legacy formulation of 3% PFAS in water including C8 PFOS
 - FTIR measurements to be augmented by OTM-45, SUMMA, and sorbent methods to characterize destruction and targeted and nontargeted fluorinated PICs
- C1-C3 fluorinated kinetics are being augmented with C4-C8 kinetics (DoD laboratories and NCSU)
 - Existing CFD combustion model includes three commercial incinerator designs and two pilot-scale units
 - Existing C1-C3 fluorinated kinetics (~1000 reactions) included
 - Expanding the kinetics to include larger PFAS compounds
 - Goal to independently predict PFAS destruction (and PIC formation) in practical full-scale incineration systems

Contributors

Jonathan Krug, CEMM/AMCD/AAB C.W. Lee, CEMM/AMCD/CSB Paul Lemieux, CESER/HSMMD/STMMB Jeff Ryan, CEMM/AMCD/CSB Peter Kariher, CEMM/AMCD/CSB Erin Shields, CEMM/AMCD/CSB Lindsay Wickersham, CEMM/AMCD/CSB William Roberson, CEMM/AMCD/CSB Stephen Jackson, CEMM/AMCD/CSB Ariel Wallace, CEMM/AMCD/CSB Ken Krebs, CEMM/AMCD/CSB Hannah Liberatore, CEMM/AMCD/CSB

Supported by Sustainable and Healthy Communities