

Overview: PFAS Treatment and Destruction Research

Greg Sayles

Center for Environmental Solutions and Emergency Response Office of Research and Development

> Executive Meeting | Board of Scientific Counselors September 29-30, 2021

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Risk Management Research

Research Needs

- Effective approaches for addressing PFAS in the natural and built environment
- Effective approaches for end-oflife materials management

Research Approach

- Laboratory studies
- Pilot-scale studies
- Full-scale field studies

Source: GAO | GAO-21-37

€PA

Research to Inform Decision Making

Ξ FPA

RISK MANAGEMENT

Contaminant Management

- Contaminated site cleanup
- Wastewater treatment
- Drinking water treatment
- Waste disposal and destruction

Sustainability

- Avoiding unintended consequences
- Operation suits operator capabilities
- Cost (capital and operating)
- Robustness and future flexibility

Addressing Two Scenarios

- 1. Existing waste streams and treatment processes where PFAS is present, for example:
 - Incineration of wastewater treatment plant biosolids
 - Regeneration or incineration drinking water treatment plant granular activated carbon (GAC)
- 2. Processes designed for PFAS treatment and control, for example:
 - Aqueous film forming foam (AFFF) (and other high strength wastes) destruction
 - Soils remediation
 - Off-gas treatment in stacks at manufacturing plants

Risk Management: PFAS Challenges

PFAS have unique chemical and physical properties compared to other environmental contaminants

• Strong C-F chemical bond

⇒EPA

- Presence of multiple fluorine atoms increases
 C-C and C-F bond strength
- Fluorine (in organic molecules) is not very reactive
- Many PFAS are surfactants
 - Have water-soluble and water-insoluble parts
 - Accumulate at interfaces

Laboratory and Pilot-Scale Studies

Laboratory and pilot-scale studies generate data under controlled conditions

• To measure the effectiveness of different technologies for removing or destroying PFAS

SEPA

• To identify how treatment conditions can impact treatment performance

Can be conducted in partnership with educational institutions, utilities or facilities, and/or state and local government agencies

Field studies provide data from full-scale, real-world applications of different technologies and management approaches

 Decision makers have the most confidence in real-world data that comes from full-scale studies

Can be conducted in partnership with utilities or facilities and state and local government agencies

Risk Management Approaches

Water Treatment

Goal: Remove or reduce PFAS in drinking water and wastewater

Example Technologies

Drinking Water – Granular activated carbon (GAC), ion exchange resin, reverse osmosis (RO) Wastewater – Sedimentation/partitioning, GAC

Site Remediation

Goal: Remove or reduce PFAS at contaminated sites (soil, sediment, groundwater, etc.)

Example Technologies

Soil excavation, stabilization, pump and treat

→ Treated Water

Destruction and Disposal

Goal: Prevent re-introduction of PFAS into the environment through destruction or containment

Waste Example Technologies

"Conventional" – Incineration, landfilling, underground injection control, GAC reactivation "Innovative" – Supercritical water oxidation, pyrolysis/gasification, electrochemical oxidation, mechanochemical destruction

→ Remediated Site

Drinking Water Treatment

How do we remove PFAS from drinking water?

Effective Treatment Technologies for PFAS

⇒FPA

- Anion exchange resin, granular activated carbon (GAC), and membrane separation (RO) are generally effective at removing PFAS
- More effective for long-chain than short-chain PFAS
- Removal efficiencies and cost depend on source water characteristics and water system characteristics

Treatment Residuals

- PFAS found in spent GAC and spent resin
- Spent media can be regenerated, landfilled, or incinerated with unknown releases of PFAS or products of incomplete destruction (PICs)
- There are no known fully destructive treatments (mineralization) for RO concentrate streams

SEPA Wastewater Treatment

How do we remove PFAS from wastewater?

Pretreatment practices are likely more effective that central treatment

Site Characterization and Remediation

KEY (Atmospheric Deposition (Diffusion/Dispersion/Advection (D

Site Characterization

EPA

- Fate of PFAS through natural systems is not well characterized
- PFAS are found in air, soils, plants, biota, water, and sediments

Remediation

- All management approaches have residual streams that potentially re-release PFAS into the environment
- Managing at the source is optimal economically and environmentally

Destruction and Disposal FPA Waste gas Incinerator Air emissions stream Gas emissions Air environment Scrubbing water **PFAS-contaminated** solid/semi-solid Ash wastes Leachate Landfill Water environment

PFAS Waste Destruction and Disposal

- Data gap in the understanding of PFAS behavior during end-of-life management and ultimate disposal
- Some management approaches may release PFAS into the environment
- Evaluate efficacy of disposal/destruction technologies for solid and semi-solid wastes (e.g., landfilling, incineration, in situ stabilization) to manage end-of-life disposal
- Evaluate the treatment of waste gas streams and the emissions from those thermal oxidizers
- Evaluate possibility of products of incomplete combustion/destruction

Summary

- ORD will continue to develop data on the treatment of PFAS for various medias
 - Drinking water
 - Remediation medias (water, soils, etc.)
 - Waste streams (wastewater, solid wastes, etc.)
 - Residual streams from above treatments (spent media, regeneration solutions, concentrates, ash, biosludge/biosolids, etc.)
- Results will be used to determine the most cost effective and sustainable method of PFAS mitigation while avoiding unintended consequences

