Tracking Bacteria in the Animas & San Juan Rivers

San Juan Watershed Group
San Juan Soil & Water Conservation District
Animas Watershed Partnership
Melissa May

“WHO POOPED IN THE RIVER?”

Image courtesy of Source Molecular laboratory
E. coli Bacteria

- **Indicator of fecal pollution**
 - Pathogenic strains, microorganisms
- **Contamination pathways**
- **Human health risks**
 - Diarrhea, infections, severe gastrointestinal illness
Who Cares?

EPA and state water quality criteria

“...designed to protect primary contact recreation, including swimming, bathing, surfing, water skiing, tubing, water play by children, and similar water contact activities where a high degree of bodily contact with the water, immersion and ingestion are likely.”
EPA and state water quality criteria

"...designed to protect primary contact recreation, including swimming, bathing, surfing, water skiing, tubing, water play by children, and similar water contact activities where a high degree of bodily contact with the water, immersion and ingestion are likely."
Who Cares?

"...designed to protect primary contact recreation, including swimming, bathing, surfing, water skiing, tubing, water play by children, and similar water contact activities where a high degree of bodily contact with the water, immersion and ingestion are likely."
Does primary contact “Recreation” standard protect traditional and ceremonial uses?

What level of primary contact use is occurring on the San Juan between Farmington and heavily rafted areas in Utah?

"...designed to protect primary contact recreation, including swimming, bathing, surfing, water skiing, tubing, water play by children, and similar water contact activities where a high degree of bodily contact with the water, immersion and ingestion are likely."
2000-2010 Bacteria identified as a problem in San Juan Watershed

- SJWG formed 2001
- TMDL released by NMED 2010

What is the trend over time?
Pollutant
- E. Coli
- Total Phosphorus
- Nutrients/ Eutrophication
- Temperature
- Turbidity
- Sedimentation

NM Clean Water Act 303(d) List of Water Quality Impairments for 2012

Pollutant
- E. Coli
- Total Phosphorus
- Nutrients/ Eutrophication
- Temperature
- Turbidity
- Sedimentation

Animas River
San Juan River
La Plata River
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Animas River</th>
<th>San Juan River</th>
<th>La Plata River</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrients/ Eutrophication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedimentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollutant</td>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Coli</td>
<td>Animas River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>San Juan River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrients/Eutrophication/DO</td>
<td>La Plata River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedimentation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Have changes in the watershed actually reduced E.coli pollution on Animas and Upper San Juan, or is low-frequency sampling missing information?
Sampling Sites

- Animas @ State Line
- Animas @ Aztec
- San Juan @ Hogback
- Animas @ Boyd Park
- San Juan @ Farmington
Sampling Season: April – October 2013 & 2014

- Start of Irrigation
- Spring Runoff
- Summer Low Flow
- Monsoon Runoff
The bacteria *Bacteroides* and *E. coli* are natural inhabitants of warm-blooded animals such as humans, cattle, and birds.

Due to the unique biochemical environment in the G.I. tract of different animals, gut bacteria have become adapted to their animal “host.” There are genetic differences in bacteria from different animals.

Thus, it is possible to track the source of gut bacteria back to its animal host using genetic analyses.
Fecal Indicator Bacteria

Bacteroides:
Makes up to 20% of the mass in fecal material (E. coli less than 1%). Bacteroides are strict anaerobes so less likely to grow once they exit the intestinal tract. Samples used to ID host sources.

E. coli:
The most widely used fecal indicator bacteria. Infamous O157:H7 strain is virulent, but most strains are harmless. Samples directly comparable with standards used to determine bacteria impairment.
Comparison of E. coli and River Flow in Animas at Aztec

4/50 samples >410

Comparison of E. coli and Discharge levels at Animas Aztec 2014
Comparison of E. coli and River Flow in Animas at Boyd Park

13/49 samples >410
How did 2014 Animas E.coli loads compare to TMDLs?
Animas *E. coli* frequently 10 times greater than target loads
Comparison of E. coli and River Flow in San Juan at Farmington

22/50 samples >410
Comparison of E. coli and River Flow in San Juan at Hogback

Comparison of E. coli and Discharge levels at San Juan Hog

2014

Discharge, cubic feet per second (cfu): daily mean

E. coli concentrations (cfu/100mL)

E. coli levels
SJ-Hogback (cfu/100mL)

NMED grab limit: 410 cfu/100mL

24/49 samples
>410
E. coli Quantification

Water Quality criteria for primary contact
Florida River

- E.Coli load in the Florida River ranged from 3% - 78% of the E.coli load downstream of the Animas-Florida confluence.

Average load contribution was 28% despite only contributing an avg. 8% of the flow.
Florida River

2015 sampling within the Florida drainage indicates Salt Creek as a contributor of *E. coli*, TN, and TP.
Bird and Ruminant contamination is similar at all sampling sites
Human contamination more frequent on San Juan River than Animas River

(\(n = 78 - 80\) samples for H1 and Bird, \(n=54-56\) for Rumen)
All sites showed a consistent presence of ruminant source bacteria
San Juan River at Hogback had significantly higher human bacteria than all other sites.
How Much Are Humans Contributing *Bacteroides dorei* to Our Rivers?

Magnitude of *Bacteroides dorei* Human Fecal Marker

<table>
<thead>
<tr>
<th>Sampling Locations</th>
<th>Site Average 1</th>
<th>Site Average 2</th>
<th>Site Average 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-State Line</td>
<td>3150</td>
<td>3150</td>
<td>3150</td>
</tr>
<tr>
<td>A-Aztec</td>
<td>64</td>
<td>175</td>
<td>328</td>
</tr>
<tr>
<td>A-Boyd Park</td>
<td>28</td>
<td>100</td>
<td>219</td>
</tr>
<tr>
<td>SJ-Farmington</td>
<td>2574</td>
<td>3220</td>
<td>3677</td>
</tr>
<tr>
<td>SJ-Hogback</td>
<td>3220</td>
<td>3677</td>
<td>4200</td>
</tr>
</tbody>
</table>

4200 copies/100ml is a benchmark illness rate of 30 illnesses per 1000 swimmers.
How Much Are Humans Contributing *Bacteroides dorei* to Our Rivers?

![Graph showing the magnitude of *Bacteroides dorei* human fecal marker in different locations.](image)

4200 copies/100ml is a benchmark illness rate of 30 illnesses per 1000 swimmers.
How would specific bacteria sources travel to the river?

<table>
<thead>
<tr>
<th>Biological Source</th>
<th>Source Activity</th>
<th>Pathway to River:</th>
<th>Ground</th>
<th>Wat</th>
<th>Dir</th>
<th>Discharge</th>
<th>Irrigation</th>
<th>Return</th>
<th>Storm</th>
<th>rm</th>
<th>wat</th>
<th>ef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Faulty septic tanks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illegal septic (straight pipes, cess pits, etc.)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leaking sewer pipes</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illegal dumping – waste disposal companies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illegal dumping – recreational vehicles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wastewater treatment plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outdoor defecation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ruminant – (includes cattle, deer, elk, sheep, goats)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Animals with direct access to river</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grazing on irrigated fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grazing in uplands and riparian areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improper manure disposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can we relate trends in the data back to specific pathways and source activities?

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Expected trend in the data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm runoff is a primary pathway for bacteria to reach the rivers</td>
<td>- E.coli, TP, and TKN increase with turbidity</td>
</tr>
<tr>
<td></td>
<td>- High E.coli, TP, and TKN at highest flows</td>
</tr>
<tr>
<td></td>
<td>- High Human and/or Ruminant bacteria at highest flows</td>
</tr>
</tbody>
</table>
Increasing E. coli

Increasing turbidity

Increasing Total Phosphorus
E. coli, Total Phosphorus, & Total Nitrogen all positively correlated with turbidity, but no clear trend with human and ruminant markers.

Frequent presence of multiple bacteria sources clouds relationship to both stormwater and base flow – more analysis needed.
DATA GAP

- Connection between E. coli concentrations and Bacteroides
- Difference in assumptions re: human health risk based on E. coli vs. Bacteroides
- Patterns in Bacteroides concentration (general, human ruminant) as related to flow, turbidity, other parameters
- Relationship between E. coli and “new” USGS continuous turbidity measurement
Human1Bacteria Quantification Dec 2016

![Graph showing the quantification of Human1Bacteria across different sites. The graph indicates the number of copies per 100 mL at various locations, with site names like 1A-State, 2A-Aztec, 3A-Boyd, 45J-Fmtn, and 5SJ-H Bog. The map highlights Harper Valley WWTP and other locations with corresponding numbers: 48,100, 54,900, 36,500, 10,200, and 2,820 copies per 100 mL.]
Conclusions and Opportunities for Future Research and Projects

Conclusions
• Bacteria pollution is reaching the Animas and San Juan Rivers via multiple sources (human, ruminant) and pathways (stormwater, direct, groundwater)
• All available data point to the San Juan River between Farmington and Hogback having a more severe bacteria impairment than the Animas or reach of the San Juan upstream of Farmington

Data Gaps and Suggestions for Future Work
• What is the extent of bacteria pollution downstream of Hogback? Are there hotspots of primary contact in this reach that should be priorities for future outreach and targeted sampling?

• What is the relationship between E.coli and Bacteroides concentrations?
 • At the NM-CO/SUIT boundary, what is contributing to significant concentrations of human bacteria but low concentrations of E.coli?
 • How much of human fecal signal could be coming from treated wastewater?
 • How long can dead anaerobic Bacteroides be detected in the environment (ie: detectable but now longer indicators of a human health risk)

• Is bacteria pollution upstream of Farmington improving, or just hard to capture in monthly baseflow sampling?