Petra Nova

West Ranch Oil Field CO₂ Monitoring, Reporting and Verification (MRV) Plan

Table of Contents

Introduction	4
Current Status	5
MRV Plan Overview	6
1. Facility Information	6
2. Project Description	6
2.1 Petra Nova Carbon Capture Facility and West Ranch Oil Field	6
2.2 Petroleum Geology of West Ranch Oil Field	9
2.3 Stratigraphy of the West Ranch Oil Field Area	. 11
2.4 Depositional Environment of the West Ranch Oil Field Area	. 14
2.5 Reservoir Characterization and Modeling	. 14
2.6 Development of West Ranch Oil Field, Primary and Secondary Production	. 18
2.7 Regulatory Process	. 20
2.8 Description of CO ₂ EOR Project Facilities and the Injection Process	. 20
2.8.1 West Ranch Oil Field Facility Description	. 20
2.8.2 Wells at West Ranch Oil Field	. 22
2.9 Storage Capacity Calculation	23
3. Delineation of Monitoring Area and Timeframes	. 24
3.1 Active Monitoring Area	. 24
3.2 Maximum Monitoring Area	. 25
3.3 Monitoring Timeframes	. 26
4. Evaluation of Potential Pathways for CO ₂ Leakage to the Surface	. 27
4.1 Introduction	. 27
4.2 Diffuse leakage through the Anahuac Shale	. 27
4.3 Faults and Fractures	. 27
4.4 Natural and Induced Seismic Activity	. 28
4.5 Failure of Zonal Isolation in Existing Wells	. 28
4.6 Failure of Zonal Isolation in New Well Construction	. 29
4.7 Drilling through the CO ₂ Area	. 30
4.8 Lateral Migration outside West Ranch Oil Field	. 30
4.9 Pipeline/Surface Equipment	. 30
5. Site-specific Risk-based Monitoring	. 31
5.1 Losses through Subsurface Infrastructure	. 31
5.1.1 Inactive Well Monitoring	. 31
5.1.2. Production Well Monitoring	. 34
5.1.3. Injection Well Monitoring	. 34
5.2 Losses through Surface Infrastructure	. 35
6. Determination of Baselines	. 35

7. Determination of Sequestration Volumes Using Mass Balance Equations	
7.1 Mass of CO2 Injected into the Subsurface	
Mass of CO ₂ Received	
Mass of CO ₂ Recycled	
7.2 Mass of CO ₂ Produced	39
7.3 Mass of CO2 Emitted by Surface Leakage	40
8. MRV Plan Implementation Schedule	41
9. Quality Assurance Program	41
9.1 Monitoring QA/QC	
9.1.1 Flow Meter Provisions	41
9.1.2 Concentration of CO ₂	41
9.2 Missing Data Procedures	41
9.3 MRV Plan Revisions	42
10. Records Retention	42
11. References	43
12. Appendices	45
Appendix 1 Acronyms	45
Appendix 2 Well Identification Numbers	46

Introduction

The Petra Nova project is a commercial scale post-combustion carbon capture project utilizing an advanced amine-based absorption technology to capture at least 90 percent of the carbon dioxide (CO₂) from a nominal 240 MW equivalent flue gas slipstream diverted from the coalfired Unit 8 (Unit 8) at NRG Energy, Inc.'s W.A. Parish Electric Generating Station (Carbon Capture Equipment (CCE)). The CCE is located southwest of Houston, Texas, in rural Fort Bend County, in the town of Thompsons, Texas. The captured CO₂, up to 4,717 metric tons (5,200 short tons) per day, is being dried, compressed, and transported via an 81-mile pipeline to the West Ranch oil field in Jackson County, Texas (West Ranch), where it is used in CO₂ enhanced oil recovery (EOR) operations. Petra Nova Parish Holdings LLC (PNPH), through its wholly-owned subsidiary Petra Nova CCS I LLC, owns the CCE. PNPH is a joint venture between NRG Energy, Inc. (NRG) and JX Nippon Oil and Gas Exploration Corporation (JX).

The CCE uses the Kansai Mitsubishi Carbon Dioxide Recovery Process, also known as KM-CDR Process®, an advanced amine-based CO₂ absorption technology jointly developed by Mitsubishi Heavy Industries, Ltd. and the Kansai Electric Power Co. Inc. The CCE achieved commercial operation on December 29, 2016, and represents the largest commercial-scale deployment of post-combustion CO₂ capture technology at a coal power plant to date.

The CCE has been capturing CO₂ since late 2016 and sending it to West Ranch. The working interest and capital equipment of the West Ranch is owned by Texas Coastal Ventures, LLC (TCV), a joint venture between Petra Nova LLC (a wholly-owned subsidiary of PNPH) and Hilcorp Energy I LP. TCV, through its wholly-owned subsidiary, TCV Pipeline, LLC, owns the dedicated 81-mile CO₂ pipeline between the CCE and West Ranch. Figure 1 outlines the ownership structure of the CCE and TCV.

Hilcorp Energy Company (Hilcorp) is the designated operator of West Ranch. It uses CO₂ captured at and transported from the CCE (Fresh CO₂) and CO₂ produced during the oil production process (Recycled CO₂) for EOR floods at West Ranch.

Petra Nova LLC (PN), a wholly owned subsidiary of PNPH and the 50 percent direct owner of TCV, prepared this Monitoring, Reporting, and Verification Plan (MRV Plan). This MRV Plan and any related reporting will be managed by PNPH through PN on behalf of TCV, with the assistance of Hilcorp, as the operator of West Ranch, including the reporting to the U.S. Environmental Protection Agency (EPA) under its Greenhouse Gas Reporting Program (GHGRP), Subpart RR. The operator will continue to report to the EPA under the GHGRP, Subpart W.

As part of the U.S. Department of Energy (DOE) grant to PNPH, a Monitoring, Verification and Accounting Plan (MVA Plan) was required to be developed and managed by PNPH during a 3-year demonstration period (2017-2019) starting after the commercial operation date of the CCE. PNPH contracted with the Bureau of Economic Geology at the University of Texas at Austin to develop and support the management of the MVA Plan. The DOE approved MVA Plan was deployed a year prior to the beginning of CO₂ injection (to develop a pre-flood baseline) and was in operation until the end of the DOE demonstration period at the end of 2019. The MVA Plan and the knowledge gained from operating under that plan supported the development of the MRV Plan described herein. The mass balance accounting for determining the quantity of CO_2 stored conforms to the requirements in Subpart RR and is consistent with the method used in the MVA Plan. The method, described in Section 7, uses metered volumes of CO_2 received, injected, and produced, as well as quantified volumes of other CO_2 emissions and losses, if any.

Current Status

The mass balance accounting under the MVA Plan started in March 2017, after the commissioning of the surface facilities at West Ranch. Through the end of 2020, the amount of CO_2 sequestered is listed below in metric tons. The difference between CO_2 delivered and CO_2 sequestered is the mass of CO_2 lost at the surface.

	CO2 Delivered at West Ranch (Metric Tons)	CO2 Sequestered at West Ranch (Metric Tons)
2017 (Mar-Dec)	909,419	904,757
2018	1,008,601	996,154
2019	1,386,987	1,373,958
2020	293,171	281,542
Total	3,598,178	3,556,411

MRV Plan Overview

Section No.	Торіс
1	Facility information
2	Project description. This section describes the overall project information; the geology, reservoir characterization and development history; the current operation and infrastructure including the CO ₂ injection process; and the CO ₂ storage capacity at West Ranch.
3	Delineation of monitoring area and timeframes
4	Evaluation of potential pathways for CO ₂ leakage to the surface
5	Site-specific risk-based monitoring
6	Determination of baselines
7	Determination of sequestration volumes using mass balance equations
8	MRV Plan implementation schedule
9	Quality assurance program
10	Records retention
11	References
12	Appendices

This MRV plan contains twelve sections:

1. Facility Information

- a. Reporter number 575661 Petra Nova West Ranch
- b. The wells at West Ranch are permitted by the Texas Railroad Commission (TRRC), through TAC 16 Part 1 Chapter 3. The TRRC has primacy to implement the federal UIC Class II requirements and incorporated those provisions in TAC 16 Part 1 Chapter 3.
- c. All wells at West Ranch are identified by name, API number, status, and type. A listing of the wells as of December 2020 is included in Appendix 2.

2. Project Description

2.1 Petra Nova Carbon Capture Facility and West Ranch Oil Field

When operating at 100 percent load, the CCE captures approximately 4,717 metric tons (5,200 short tons) per day from Unit 8 of NRG's W.A. Parish Power Station near Houston, Texas. The

captured CO₂ is compressed, dried, cooled, and transported to West Ranch via 81-mile long CO₂ pipeline. The CCE is the only source of CO₂ delivered for injection at West Ranch during the "Specified Period" as discussed below. West Ranch is located in southeast Texas in Jackson County near the town of Vanderbilt as shown in Figure 2.1.1.

Figure 2.1.1 Location of West Ranch Oil Field

The West Ranch Unit (WRU) boundary for the current CO_2 EOR operation is delineated in Figure 2.1.2. The WRU was formed by consolidating portions of two Oligocene-age reservoirs, the 98-A and 41-A, within the Frio Formation.¹

¹ The 98-A and 41-A zones are unitized as West Ranch 41-A/98-A (Consolidated) Unit in 2016 (O & G Docket No. 02-0299798).

Figure 2.1.2 West Ranch Unit (41-A/98-A (Consolidated) Unit) Boundary (in Red)

CO₂ flooding was initiated in the 98-A reservoir in December 2016 and has been subsequently expanded horizontally. While the horizontal expansion of the 98-A reservoir is still ongoing, a vertical expansion into the 41-A reservoir, which lies immediately above the 98-A reservoir, began in 2018. The CO₂ EOR operations at West Ranch are planned to expand horizontally and vertically upward over time, including the CO₂ flooding of additional portions of the 98-A and 41-A reservoirs, and three additional reservoirs in the Frio Formation: Greta, Glasscock, and Ward. This MRV Plan anticipates the expansion into the entire interval between the base of 98-A reservoir and the base of the Anahuac Shale, a regionally contiguous and impermeable shale immediately above Frio Formation at West Ranch (Project Interval). In order to expand into the full Project Interval, the operator will obtain TRRC approval for certifications as tertiary recovery projects, unitization agreements, and permits to conduct fluid injection operations in each area of expansion in the Project Interval. The reservoirs in the Project Interval have similar geologic characteristics and the operator will apply the same operational controls in each area of expansion. All injection zones in the Project Interval share the following characteristics:

- four-way dip anticline trapping mechanisms,
- no faulting,
- presence of a primary confining intervals above each injection zone within the Project Interval and a secondary confining interval (Anahuac Shale) that overlays the entire project area, and
- depleted reservoir pressure.

The operational requirements that currently apply in WRU will also apply in the expansion zones. They include rules for injection wells such as the confirmation of nearby well condition, the periodic testing of casing integrity, the adequate cementing to confine fluids in the injection reservoir, and the monitoring and limitation of injection pressure. Based on these conditions, PNPH believes that all reservoirs within the Project Interval at West Ranch can be included under this MRV Plan as they are brought online.

2.2 Petroleum Geology of West Ranch Oil Field

West Ranch is one of several oil fields located in the Gulf Coast Basin that shares the same petroleum system. West Ranch is formed on a gentle four-way anticlinal structure on a roll-over structure (Figures 2.2.1(a), 2.2.1(b), 2.2.2(a), and 2.2.2(b)) on the upthrown side of a northeast-southwest trending regional growth fault as shown in Figure 2.2.3.

Figure 2.2.1 Structure-contour map of West Ranch Oil Field with the currently existing WRU boundary (41-A/98-A Consolidated) (red outline). Datum is the top of (a) 98-A and (b) 41-A reservoirs.

Figure 2.2.2 Structure-contour map of West Ranch Oil Field. Datum is the top of (a) the Greta and (b) the Glasscock reservoirs (Baurenschmidt, 1944).

Figure 2.2.3 Regional cross section though West Ranch Oil Field showing non-faulted structure. From Galloway and Cheng, 1985

2.3 Stratigraphy of the West Ranch Oil Field Area

The generalized stratigraphic section illustration of geologic formations present at West Ranch is shown in Figure 2.3.1. The reservoir sandstones into which CO₂ is currently or planned to be injected at West Ranch include five reservoir sandstones in Frio Formation, being 98-A, 41-A, Ward, Glasscock, and Greta, from the deepest (6,200 feet) to the shallowest (5,100 feet). Each reservoir sandstone is separated by locally continuous low permeability and individually confining mudstones (Figure 2.3.2).

Anahuac Shale is a low-permeability confining layer that has served as a stratigraphic seal to prevent upward migration of hydrocarbon throughout geologic term for many oil fields throughout the Gulf Coast region (Galloway and Cheng, 1985), and it serves as the secondary seal in addition to the individual confining layers overlaying each reservoir.

Above Anahuac Shale is a series of sandstones separated by shales collectively known regionally as Oakville Formation, also referred to as Miocene Sands.

Figure 2.3.1 Generalized lithostratigraphic and hydrostratigraphic names for rocks/aquifers underlying West Ranch Oil Field. Depths shown correspond with those seen at West Ranch Oil Field. The Project Interval is indicated on the right.

Figure 2.3.2 Type log for West Ranch Oil Field, modified from Galloway (1983), shows the entire injection zone for Project Interval. Current CO₂ EOR flooding is in the 98-A and 41-A, future expansion will be into the permeable zones (Ward, Glasscock, Greta). Each permeable zone is interspersed with non-permeable zones that serve as the primary confining layers. The secondary confining layer, the Anuhuac Shale is not marked on this Type log.

2.4 Depositional Environment of the West Ranch Oil Field Area

The reservoirs of West Ranch are part of the extensively characterized Oligocene-aged Frio Formation in the barrier/strandplain system, located between the Houston and Norias Delta Systems (Galloway et. al., 1983) (Figure 2.4). The barrier/strandplain system is composed of the northeast-southwest elongated bodies of laterally deposited shoreline sands, similar to the Padre-Mustang-St. Joseph-Matagorda island complex of today.

Within the barrier/strandplain system, the barrier island and shoreface deposits, such as the Greta reservoir, are well sorted, continuous, sandy, and internally homogeneous as a result of their high-energy, shallow-marine depositional origin. The Glasscock reservoir is one of the most widespread reservoirs in the field. It is a particularly thin barrier-island sand body that was deposited before a local transgression terminating the "C" cycle of strandplain progradation. The 41-A reservoir is a moderately thick sand body that occurs at the top of the widespread sand of the "B" cycle. Well-developed upward-coarsening sequences do not appear at the stratigraphic position of the 41-A reservoir for several miles farther basinward. Stratigraphic relationships suggest that much of the reservoir is overlain, and therefore sealed, by lagoonal mudstones deposited landward of a prograding barrier-sand complex. The 98-A and Ward reservoirs are both relatively thin progradational sand units (Galloway, 1986).

Figure 2.4 Oligocene (Frio) paleogeographic setting of Texas Gulf Coast, showing West Ranch Oil Field within Greta/Carancahua Barrier Strandplain System. Ambrose et al. (2008); modified from Galloway and Cheng (1985) and Galloway (1986).

2.5 Reservoir Characterization and Modeling

As previously discussed, PNPH, working with the BEG, developed and managed an MVA Plan that covered the three-year demonstration period that started on January 1, 2017 (aligned with the beginning of commercial operations of the CCE). As a part of the MVA Plan, reservoir modeling was used to characterize the currently existing WRU reservoirs, i.e., 98-A and 41-A, to develop a detailed understanding of each reservoir as well as the predictability of internal reservoir architecture, including the behavior of CO₂ in the course of CO₂ EOR operation. In general, the modeling was successful in demonstrating that the pressure elevation and the

movement of CO_2 plume in the reservoirs are managed by the operational strategies, and the reservoirs have the capacity to permanently retain the injected CO_2 volume within the structural trap for prolonged period after the cessation of CO_2 EOR operation.

Reservoir modeling is the major predictive tool that determines the capacity of the subsurface to accept CO_2 . Numerical simulation models are used to model the spatial extent of the CO_2 plume in the subsurface, which demonstrates that, under given assumptions and operational strategies, CO_2 is remaining within the targeted area. The numerical simulation modeling starts by building static reservoir models. The tops and bases of target sandstones and major seals are defined with well logs. The model is then constructed based on rock properties interpreted from Spontaneous Potential and Gamma-Ray logs, and to a limited extent, core sample studies at West Ranch. Rock properties were also assigned based on available data through literature review and historical field measurements.

A numerical simulation model of the 98-A and 41-A reservoirs was constructed based on the static geologic model as well as fluid properties (fluid compositions and PVT (pressure-volume-temperature) data) from the field, to develop a dynamic numerical model to history match the production and pressure data of the field, and to simulate the current and future performance of the field. The numerical model is developed using a compositional simulator. In compositional simulations, three phases (water, oil, and gas) with multiple components were defined. Relative permeability data, available through literature survey and special core analysis, was used as input in the simulations. Thermodynamic properties of the specific fluids in this field were tuned and modeled in a fluid characterization software.

The porosity and permeability maps of the model are shown in Figure 2.5.1 and 2.5.2.

Figure 2.5.1 Porosity distribution of 98-A input into the numerical simulation model with 41-A/98-A Consolidated Unit (red)

Figure 2.5.2 Location of EOR operation wells and horizontal permeability of 98-A input into the numerical simulation model.

The expected pressure and the gas saturation fields in the 98-A reservoir as of March 2020 based on the simulation model, with the best history match until September 2019, are shown below (Figure 2.5.3 and Figure 2.5.4). Overall results show that the pressure values remain within the intended range and below the fracturing pressure. Gas saturations are larger around the injection wells and mostly remain in the intended patterns.

Pressure (psi) 2019-09-01 K Plane: 18 of 26

Pressure (psi) 2020-03-01 K Plane: 18 of 26

Figure 2.5.3 Pressure field at 98-A reservoir in (a) September 2019 and (b) March 2020.

Gas Saturation 2020-03-01 K Plane: 18 of 26

Figure 2.5.4 Gas saturation at 98-A reservoir in (a) September 2019 and (b) March 2020.

A long-term simulation was also run through 2040, and the result shows that CO_2 accumulates at the crest of structure and within the intended area (Figure 2.5.5).

Figure 2.5.5 Demonstration of gas migration after CO₂ flooding. Gas saturation at 98-A reservoir in (a) September 2019 and (b) April 2040 with 41-A/98-A Consolidated Unit (red)

2.6 Development of West Ranch Oil Field, Primary and Secondary Production

West Ranch was discovered in 1938. The main reservoirs at West Ranch (Greta, Glasscock, Ward, 41-A, and 98-A) are porous and permeable, averaging more than 27 percent porosity and 400 mD permeability. The discovery and original conditions of main producing reservoirs, and the oil field operations including hydrocarbon production and brine injection, are described in this section. Besides the five main producing sands, 79 additional minor reservoirs have been classified as producing sands by the TRRC.

At discovery, a primary gas cap was in contact with the oil zone in all main oil-producing reservoirs. This indicates vertical hydraulic isolation of each sand zone. These reservoirs were originally produced with a gas-cap expansion and/or a natural water drive. Glasscock and Ward reservoirs were constituted from oil-rim reservoirs with gas caps as large as one-third of the volume, and 95 percent of the energy thereof was attributable to the expansion of their gas caps (Galloway and Cheng, 1985). The Greta, 41-A, and 98-A reservoirs were mainly energized by strong natural water drive.

In most of the water-injection programs, water was injected into reservoirs along the periphery of their gas caps to maintain reservoir pressure and to prevent expansion of the gas cap into the oil-bearing zone (Galloway and Cheng, 1985).

Reservoir	Discovery Date	Cum. Prod. (MMSTB)
Greta	1938	101.3
41-A	1940	99.5
98-A	1940	59.2
Glasscock	1939	45.8
Ward	1939	30.4

Cumulative oil production in the main reservoirs as of 2010 is provided in Table 2.6.1.

Table 2.6.1 Cumulative oil production of major reservoirs at West Ranch Oil Fieldfrom TRRC (2010)

The original reservoir conditions, such as fluid contact depths, water saturation, and solution gas ratios, are listed in Table 2.6.2, along with average rock and fluid properties.

	Greta	Glasscock	Ward	41 A	98 A
Gas-Oil contact, ft ss	5,065	5,475	5,705	5,690	6,070
Oil-Water contact, ft ss	5,105	5,570	5,735	5,750	6,140
Average porosity, %	30	27	30	30	31
Average permeability, md	1,200+	400	1,200	1,700	500
Original pressure, psia	2,350	2,560	2,650	2,625	2,795
Reservoir temp, °F	160	166	171	171	178
Oil gravity, API	24.7	31.6	30.6	31.1	40.4
Solution gas ratio, scf/stb	306	440	451	500	671

 Table 2.6.2 General reservoir data and original conditions of main sands at West Ranch Oil Field

 (Bauernschmidt, 1962)

Initial reservoir pressures found in West Ranch indicate an original hydrostatic pressure gradient of approximately 0.53 psi/ft (Figure 2.6.1). Kreitler and Akhter (1990) gathered and plotted nearly 17,400 pressure values from a commercial database to study the complex hydrologic regimes of the Texas Gulf Coast region. Two major gradients are observed: (1) a formation water hydrostatic regime (0.465 psi/ft) that reaches depths of 11,000 ft, and (2) a geopressured regime as shallow as 7,000 ft. Both have been extensively depleted by production, although the original profile can be identified by plotting the maximum pressures. The West Ranch pressure gradient is not geopressured but is slightly steeper than the average hydrostatic gradient for freshwater in the area (Figure 2.6.2(a)). A current pressure profile from the A-600 well in 2012, the injection location for a recent CO_2 injection test, is imposed over the Kreitler and Akhter (1990) Gulf Coast pressure profile for comparison (Figure 2.6.2(b)). The A-600 well profile shows strongly depleted zones, likely resulting from past production of reservoirs that lacked good connection to water drive. In contrast, the pressure of Greta, 41-A and 98-A reservoirs indicates the strong natural water drive as mentioned above.

Figure 2.6.1 West Ranch hydrostatic pressure gradient. Adapted from Bauernschmidt (1962)

Figure 2.6.2 (a) Gulf Coast pressure profile. Pressure measurements from drill-stem tests (DST) and bottomhole pressures, adapted from Kreitler and Akhter (1990), and (b) Current pressure profile at West Ranch Oil Field in red at A-600 well plotted against Gulf Coast pressure profile.

2.7 Regulatory Process

Prior to commencement of any underground injection of CO₂ for EOR, the operator must submit a permit application and obtain approval from the TRRC. Texas Administrative Code (TAC) Title 16 Part 1 §3.46 governs fluid injection into reservoirs for production of oil, gas, or geothermal resources. The information required in the application includes the data concerning the project, the subject reservoir, and the well(s); and the geographic description of area covered by the project. The technical requirements include: the isolation from usable-quality water by 250 feet of low permeability strata, the area of review (AoR) to determine if all abandoned wells within one-quarter (1/4) mile radius of the proposed well have been properly plugged, the cementing interval for surface and production casings, the packer setting depth, the injection pressures, and in certain areas, a seismicity review. Notice of application must be given to parties affected or who may be affected by implementation of the project along with notice to local regulatory bodies and the public. There is an opportunity for a hearing in the event of a protest. After permit approval, a mechanical integrity test is required to be performed for each well before injection and periodically thereafter, and the operator is obligated to file a completion report and annual injection report.

Unitization is necessary to conduct CO₂ EOR operations at reservoirs which straddle multiple tracts with separate and divergent ownership interests, primarily to determine the participation formula of interest owners. Unitization is subject to TRRC approval, and the information required and the procedure employed are similar to those applicable to the injection permitting process. The project must satisfy all of the requirements set out in Texas Natural Resources Code Title 3 Subtitle C Chapter 101, including (a) unit operations are necessary to increase ultimate recovery from the reservoir or prevent waste, (b) correlative rights of interest owners are protected, and (c) the additional cost involved does not exceed the additional recovery anticipated. The approval is also subject to receiving the injection permits.

There are also economic incentives to conduct CO_2 EOR operations in Texas, particularly those with anthropogenic CO_2 . There is a severance tax on crude oil, and a 50 percent reduction in that severance tax rate by obtaining an EOR project certification under TAC Title 16 Part 1 §3.50, which is further lowered by additional 50 percent, to 25 percent of the original rate, if anthropogenic CO_2 is used and the certification under TAC Title 16 Part 1 Subchapter C is obtained. The TRRC must approve a measurement, monitoring and verification program for stored anthropogenic CO_2 , and the certification is issued only if the TRRC finds that at least 99 percent of the CO_2 sequestered will remain sequestered for at least 1,000 years.

The current CO₂ EOR operations in the WRU for 98-A and 41-A reservoirs have gone through all regulatory processes as discussed in this section, and the same processes will be followed when the development area in West Ranch expands either horizontally outside of the existing WRU, or vertically upwards to Greta, Ward, Glasscock or other sub-layers.

2.8 Description of CO₂ EOR Project Facilities and the Injection Process

2.8.1 West Ranch Oil Field Facility Description

The following two figures illustrate the CO₂ EOR process at West Ranch. Figure 2.8.1 is a generalized facility flow diagram and Figure 2.8.2 shows the location of all facilities within the

WRU boundary.

Figure 2.8.1 Facility Flow Diagram

Figure 2.8.2 Locations of current Meter station, Central processing facilities (CPF1 and CPF2) and Test Sites (TS) at West Ranch Oil Field. Locations within this footprint may change over the life of the project. WRU boundary (red) and current flood area (green).

1. Central Processing Facility (CPF)

There are two CPFs at West Ranch (shown as CPF1 and CPF 2 on Figure 2.8.2). Produced fluids (water, oil, and gas) are separated in the high/intermediate/low pressure water knock-out drums and separators located at the CPFs.

- a) The water is mainly separated from gas and oil in the water knock-out drums, then reinjected into the field through injection wells with make-up water from water source wells.
- b) The oil is separated from gas in the separators, settled in tanks for few days, then metered and sold.
- c) The produced gas, which consists of CO₂ and reservoir hydrocarbon gas, is transferred to flash/recycle gas compressors (FGC/RGC). High and intermediate pressure gas is directly transferred to the RGC. Low pressure gas is compressed by the FGC then transferred to the RGC.
- 2. Test Site (TS)

There are five TSs (TS 1-5 on Figure 2.8.2) and two extended TSs (TS 1B and 5B on Figure 2.8.2) in the field. Produced fluids from the production wells are aggregated at one of the five TSs. Each TS consists of a three-phase test separator, which measures production rates of oil, water, and gas from each production well at least once per month. This data is not used in the mass balance accounting but is used to allocate produced fluid to wells and for production optimization. Produced fluid from the individual production wells gathered at the TSs is transferred to one of the two CPFs through high/intermediate/low pressure production lines.

3. CO₂ Injection Process

Fresh CO₂ is captured at the CCE and transported to West Ranch via the CO₂ pipeline, and the flow is metered at the metering station at West Ranch (M₂). The concentration of Fresh CO₂ applicable to calculate the mass of CO₂ received at West Ranch is measured at the custody transfer meter located in the vicinity of the CCE (M₁ on Figure 2.8.1). Fresh CO₂ received from the CO₂ pipeline and Recycled CO₂ from the RGCs at the CPFs, the volume and concentration of which is measured at M₃, are comingled and sent through the CO₂ distribution pipeline system to injection wells throughout the field.

All processes at West Ranch are monitored by the Supervisory Control and Data Acquisition (SCADA) system located on site and equipped with alarms to alert operators of any abnormalities. As the CO₂ flood expands into the entire Project Interval, new injection areas will be tied into this system using existing or new equivalent equipment.

2.8.2 Wells at West Ranch Oil Field

As of December 2020, there are 257 active wells at West Ranch; 155 are producing wells, 91 are injection wells, and 11 are water sourcing wells. Appendix 2 lists these wells with well identification numbers. Table 2.8.2 shows total well count at West Ranch by status.

Well Count	Active	Shut-in	Temporarily Abandoned	Plugged and Abandoned
TOTAL	257	277	2	389

Table 2.8.2 West Ranch Oil Field Well Count

TRRC rules govern well siting, construction, operation, maintenance, and closure for all oil field wells. The TRRC granted authority the operator to inject CO_2 in permitted wells after application, notice and hearings. TRRC requirements are found at TAC Title 16 Part 1 Chapter 3 and Chapter 5^2 and include:

- Fluids must be constrained in the strata in which they are encountered;
- Activities governed by the TRRC rules cannot result in the pollution of subsurface or surface water;
- Adherence to specified casing, cementing, drilling well control, and completion requirements designed to prevent fluids from moving from the strata encountered into strata with oil and gas, or into subsurface and surface waters;
- Filing of a well completion report including basic electric log (e.g., a density, sonic, or resistivity (except dip meter) log run over the entire wellbore);
- Equipping wells with a Bradenhead valve, measuring the pressure between casing strings using the Bradenhead gauge, and following procedures to report and address any instances where pressure on a Bradenhead is detected;
- Following plugging procedures that require advance approval from the TRRC and allow consideration of the suitability of the cement based on the use of the well, the location and setting of plugs;
- Corrosion monitoring under TAC Title 16 Part 1 §5.305(1) (D) is met by alternative monitoring through continuous SCADA monitoring in all wells;
- Using corrosion resistant alloy (CRA) for facilities which are exposed to CO₂; and
- Conducting Casing Integrity Tests annually as required under TAC Title 16 Part 1 §5.305(1)(C).

All changes in the status of wells must be in compliance with the TRRC rules and go through the TRRC approval process, and will be included in the annual report to EPA under GHGRP, Subpart RR.

2.9 Storage Capacity Calculation

During the injection of CO_2 and water for CO_2 EOR operations, fluids will move from injection wells toward the production wells following the pressure trends. At the end of CO_2 EOR operations, the reservoir fluids will be in equilibrium based on their gravity difference where lighter fluids, likely gases, will move toward the top of the formation below the seal of each reservoir (see Section 2.5, Reservoir Characterization and Modeling). The estimated total amount of the CO_2 that can be sequestered in these reservoirs is based on the available pore space at each of the reservoirs. Though the available pore space is considered to be the entire

² TRRC rules can be found online at:

https://texreg.sos.state.tx.us/public/readtac\$ext.ViewTAC?tac_view=4&ti=16&pt=1&ch=3&rl=Y and https://texreg.sos.state.tx.us/public/readtac\$ext.ViewTAC?tac_view=4&ti=16&pt=1&ch=5

pore space from top of the reservoir to the spill point, for purpose of this calculation, the original oil and gas in place of each reservoir is assumed as the available pore space, and further, only down to the shallower of spill point or oil water contact. The oil water contacts are above the spill points in the 41-A and Greta reservoirs; hence, the pore space accounted for these two reservoirs are only down to the oil water contact. The oil water contacts are below the spill points in 98-A, Ward, and Glasscock.

The following equation was used to estimate the storage capacity:

$$CO_2$$
 Storage Capacity = HCPV * E * ρCO_2

where:

HCPV = *Hydrocarbon pore volume above oil water contact or a spill point of the southwest structure.*

E = Efficiency factor. $\rho CO_2 = CO_2$ density at reservoir pressure and temperature.

Based on the numerical simulations conducted by the BEG, the CO_2 occupancy of the pore space at the end of the CO_2 EOR operation is calculated. These calculations assume a 50 percent efficiency factor, and results are tabulated in Table 2.9.1.

Reservoir	Storage capacity (MM metric ton)
Greta	12.35
Glasscock	6.35
Ward	10.10
41-A	10.74
98-A	8.52
Total	48.06

Table 2.9.1 West Ranch Oil Field CO₂ storage capacity in different reservoirs (metric tons)

At reservoir conditions of West Ranch, the five main target reservoirs could hold about 919 Bscf (48.06 million metric tons) of CO₂ in the reservoir based on the original oil and gas in place. PNPH forecasts that 20 years of CO₂ EOR operations would result in sequestered CO₂ occupying approximately 61 percent of the calculated storage capacity.

3. Delineation of Monitoring Area and Timeframes

3.1 Active Monitoring Area

As discussed in Sections 2.1 through 2.4, the subsurface characteristics of the existing WRU for the 98-A and 41-A reservoirs are similar to the characteristics in the other reservoirs within the Project Interval at West Ranch. They all have four-way dip anticline trapping mechanisms, no faulting, primary confining layers over each injection zone, the existence of secondary confining interval (Anahuac Shale) in addition to individual confining layers overlying each

reservoir, and depleted reservoir pressure. Expansion into the full Project Interval will require the operator to obtain approval for unitization and permits for injection from TRRC, as explained in Sections 2.7 and 2.8. In addition, the reservoir simulation effort carried out as part of DOE's MVA Plan, and the storage capacity calculation as illustrated in Sections 2.5 and 2.9 demonstrated the viability of the Project Interval for a long-term CO₂ retention. Because CO₂ is retained within the WRUs, the Active Monitoring Area (AMA) is the existing WRU boundary of 41-A/98-A (Consolidated) Unit, as depicted in Figure 2.1.2, plus the half mile buffer. When a new WRU for CO₂ EOR operation is established, either for the currently flooded reservoirs or for the other three reservoirs and sublayers within the Project Interval, the AMA will be expanded to cover the boundaries of those new WRUs, plus the half mile buffer. In addition to the aforementioned reason, the following factors are considered in defining this boundary:

- CO₂ injected into West Ranch reservoirs remains contained within the unit boundary because of the fluid and pressure management, which includes: the practice of targeting the maintenance of an injection-withdrawal ratio of 1.0, which assures a stable reservoir pressure, and the managed leaseline water injection and production wells that are used to retain CO₂ and fluids within the unit boundary. The effectiveness was demonstrated by the history matching and reservoir simulation effort in Section 2.5 as it demonstrated that the movement of CO₂ plume is largely contained within the intended patterns and the elevation of reservoir pressure is maintained within the intended range.
- Over geologic timeframes, sequestered CO₂ will remain in the respective unit boundaries, and will not migrate downdip, because of the higher elevations of the WRUs compared to other part of the corresponding reservoirs in the same structure as described in Figures 2.2.1 and 2.2.2.

3.2 Maximum Monitoring Area

Based on the potential future expansion of WRU to conduct CO₂ EOR operations in the currently flooded reservoirs and the other three reservoirs and sublayers within the Project Interval, the injection zone extends geologically along the outermost boundary of those reservoirs subject to CO₂ EOR operation, which is primarily determined by oil-water-contact and structures (Figure 3.2). In accordance with 40 CFR §98.448-449, the Maximum Monitoring Area (MMA) will extend for the half mile buffer beyond the boundary.

Figure 3.2 Areal extent of Maximum Monitoring Area (red dashed line) includes the outermost boundary of reservoirs at West Ranch Oil Field that could potentially be developed by utilizing CO₂ EOR operation, plus ½ mile buffer.

3.3 Monitoring Timeframes

The primary purpose for injecting CO₂ is to produce oil that would otherwise remain trapped in the reservoir. During the Specified Period, PNPH will have a secondary purpose of establishing the long-term containment of a measurable quantity of CO₂ at West Ranch. The Specified Period will be shorter than the period of production from West Ranch. This is in part because the purchase of Fresh CO₂ for injection is projected to taper off significantly before production ceases at West Ranch. At the conclusion of the Specified Period, PNPH will submit a request for discontinuation of reporting. This request will be submitted with a demonstration that the cumulative mass of CO₂ reported as sequestered during the Specified Period is not expected to migrate in the future in a manner likely to result in surface leakage. See 40 CFR $\S98.441(b)(2)(ii)$.

4. Evaluation of Potential Pathways for CO₂ Leakage to the Surface

4.1 Introduction

The subsurface characteristics at West Ranch are well known as a result of exploration, production, and continued reevaluation for optimization of production, including the recent reevaluation for CO_2 EOR and monitoring activities under the MVA Plan. The presence of thick oil and gas accumulations in the subsurface of West Ranch provides strong evidence that the mudstones that separate the sandstones are effective in isolating buoyant fluids and provides assurance that injected CO_2 will be effectivity trapped. Further evidence of effective confinement of fluids is the sustained pressure depletion of some zones after production.

This MRV Plan considered the following potential leakage pathways:

- Diffuse leakage through the Anahuac Shale
- Faults and fractures
- Natural and induced seismic activity
- Failure of zonal isolation in existing wells
- Failure of zonal isolation in new well construction
- Drilling through the CO₂ area
- Lateral migration outside the West Ranch Oil Field
- Pipeline/surface equipment

4.2 Diffuse leakage through the Anahuac Shale

Diffuse leakage through the seals that lie above the reservoirs in the Project Interval is highly unlikely. There are numerous sections above the sand reservoirs in the Project Interval that are impermeable and serve as reliable barriers to prevent fluids from moving upwards towards the surface. These barriers are referred to as seals because they effectively seal fluids into the formations beneath them. In addition, Anahuac Shale was deposited over much of the Gulf Coast during a major regional transgression. It serves as a major confining unit that traps hydrocarbons. It is also widely used as a top seal for Class I disposal operations in the Gulf Coast area. Anahuac Shale is more than 120 feet thick in the West Ranch area, and a 30-foot core collected at the A-600 well has been examined in detail to characterize the quality of this confining layer (Lu et al 2014). It is composed of silty clay (average 56 percent clay) and has permeabilities of 0.0006 to 0.0026 mD. Gas chemistry shows that gas migration is limited by diffusion and adsorption and confirms that Anahuac Shale is an effective seal which will not allow diffuse leakage of CO₂ above the Project Interval. Injection pressure is continuously monitored and unexplained changes in injection pressure that might indicate leakage would trigger investigation as to the cause.

4.3 Faults and Fractures

West Ranch is a roll-over anticline formed between two major growth fault zones (Figures 2.2.1,

2.2.2 and 2.2.3), and there is no major fault within the field (Baurenschmidt, 1962). The Gulf Coast region is faulted by systems of growth faults (active during sediment accumulation) and by structures associated with deep-seated and piercement salt structures, which have been extensively characterized by exploration. Because the overall section is dominated by mudstones, fault permeability is controlled by clay smear. The sealing nature of faults is evident at many hydrocarbon fields that are fault-bounded. Gulf Coast sandstones and mudstones are typically not fractured but deform without rupture by bending and smearing. As described in Section 2.8.2, all injection permits require that injected fluids be confined in the authorized reservoir, and injection at pressure exceeding fracture pressure is not allowed.

4.4 Natural and Induced Seismic Activity

Although the Gulf Coast has been and is still locally undergoing deformation related to loading and continued subsidence of the Gulf Basin, the area is not seismically active. Deformation occurs without producing earthquakes. The United States Geological Survey (USGS) long term seismic risk map puts the entire Gulf Coast area, including West Ranch, in the lowest risk category (United States Geological Survey, 2014).

Risk of induced seismicity at West Ranch is low for several reasons: 1) magnitude of pressure increase and the area where elevated pressure is aggressively managed by balancing injection and withdrawal rates, 2) the reservoirs have a lower pressure as a result of past production, 3) high permeability and rapid fluid cycling though the reservoir creates little risk of developing local overpressure, and 4) the operation is compliant with regulations limiting injection pressure.

In addition, the application for a new injection well permit or an amendment of an existing injection well permit for injection pressure, injection rate, or injection interval must include a survey of historical seismic events within 5.64 miles, the Area of Interest (AOI). A seismic event of 2.0 Magnitude (M) or greater from the USGS earthquake catalog or the TexNet earthquake catalog triggers seismicity review and requires additional geologic information across the AOI for the TRRC to consider the necessity of a permit disposition.

In the unlikely event that seismicity resulted in a pathway for material amounts of CO_2 to migrate from the injection zone, the monitoring provisions at other reservoir levels would lead to further investigation as elaborated in Section 5.1.

4.5 Failure of Zonal Isolation in Existing Wells

Wells are required to be constructed and either plugged and abandoned or maintained so the injection and production zones are isolated from other zones and from fresh groundwater (underground sources of drinking water or USDW). West Ranch contains many legacy wells; hence, the operator invests in well qualification and management. Well qualification and management are overseen by the TRRC.

TRRC rules call for periodic Mechanical Integrity Testing (MIT). Continuous monitoring devices tracking injection rate, pressure, and volume (as well as continuous monitoring of the annulus with a pressure gauge) are installed in line with the requirement. These monitoring tools conform to the TRRC requirements under TAC Title 16 Part 1 §5.305(1)(B) and used to

protect against the high cost from loss of well control. All pressure gauges are hooked up to a real time reporting SCADA system. The SCADA monitoring system uses set points to trigger an alarm if there is more than a 10 percent change in pressure. In addition, periodic injection profiles are performed on the injection wells, and this will include running temperature surveys on the injection wells. Reservoir pressure is also measured through the injection wells when workovers are performed.

While the CO₂ EOR operation is conducted, injection profiles are performed to determine where the injected fluid is going and to understand the comprehensive picture of what is going on down hole in an injector well. An injection profile package is made up of numerous surveys. The tool used has several components such as a radioactive tracer, spinner logs, temperature logs, caliper logs, and collar logs. The temperature survey looks for anomalies which can indicate if there is fluid loss during injection. A tracer tool monitors the reduction in tracer material as it moves down the well and could indicate channeling and help in quantifying the amount of a release if one is found. A spinner gives the rate, and a shut-in temperature survey indicates fluid losses and events occurring inside and outside the well bore.

In addition, a Reservoir Saturation Tool (RST) is run to measure hydrocarbon and water saturations behind the casing. This tool could indicate if the injected fluid is going out of the targeted interval and into another zone. Baseline RST has been run on six wells.

An exhaustive study of all existing wellbores at West Ranch was carried out prior to the start of the CO_2 flood to confirm well condition and integrity. All of the plugged and abandoned wells at West Ranch have plugs to prevent the upward migration of fluids. Most wells have numerous plugs in the Frio Formation isolating the deeper zones. All shut-in and producing wells in West Ranch were also reviewed, and numerous shut-in wells are used for its active pressure monitoring program throughout the field as described in Section 5.1.1.

Additionally, the TRRC requires an applicant for an injection well permit to examine the data of record for wells that penetrate the proposed injection reservoir within one-quarter (1/4) mile radius of the proposed well to determine if all abandoned wells have been plugged in a manner that will prevent the movement of fluids into strata other than the authorized reservoir for injection (AoR). The operator currently reviews all wells located within one-half (1/2) mile radius of a proposed injection well.

Based on the measures above, the risk of CO₂ leakage through existing wells is being mitigated through a monitoring and maintenance program that will provide early detection of problems that could materialize into a leakage event. Any potential CO₂ leakage would be identified and quantified through the monitoring provisions in Section 5.1.

4.6 Failure of Zonal Isolation in New Well Construction

Well qualification and management are overseen by the TRRC. New wells are constructed to provide zonal isolation and are tested prior to use to confirm that cement in the rock-casing annulus covers the required intervals and is of good quality; hence, the risk of failure of zonal isolation in new wells is low. In the event CO₂ leakage were to occur, it would be identified and quantified through the monitoring provisions in Section 5.1.

All injection wells for the CO₂ EOR operation are newly drilled wells or conversion of existing wellbores and must adhere to the TRRC requirements as described elsewhere herein including

Section 2.8.2. All injection wells have coated tubulars to withstand corrosion. Both the surface and production casing strings are cemented back to the surface, with a confirmation through a cement bond log of a full column of cement behind the casing.

For producing wells for CO₂ EOR operation that are newly drilled, these wells are drilled and completed to deal with corrosion, including coated tubulars and corrosion inhibiting fluid in the annulus between the tubing and the long string casing to prevent corrosion. Both surface and production casings are cemented to the surface.

4.7 Drilling through the CO₂ Area

A future drilling initiative within the existing or future WRU to extend the current CO_2 flood area or to drill into a deeper reservoir creating an inadvertent leakage pathway is possible; however, such risk is considered to be very low. As previously stated, all wells drilled in the West Ranch Oil Field are regulated by the TRRC (specifically under TAC Title 16 Part 1 §3.13) which includes (a) ensuring that the casing is securely anchored to effectively control the well at all times, (b) all usable-quality water zones are isolated and sealed off to effectively prevent contamination or harm, and (c) all productive zones, potential flow zones, and zones with corrosive formation fluids are isolated and sealed off to prevent vertical migration of fluids behind the casing, including gases. Multiple reservoirs at West Ranch are gas charged, and all drilling to each reservoir must be done with proper preparation to contain gas within such reservoirs (e.g., using well control mechanisms such as dense drilling mud, blow out preventers, and completion to isolate zones). In the unlikely event of gas leakage from a reservoir flooded with CO_2 , the methods to quantify the amount of leakage use appropriate engineering variables and standard estimation of releases.

4.8 Lateral Migration outside West Ranch Oil Field

As illustrated in Figures 2.2.1 and 2.2.2, West Ranch contains the highest elevation of both current and future reservoirs for CO_2 flooding within the surrounding area. It is highly unlikely that injected CO_2 will migrate downdip and laterally outside of the existing and future WRUs because CO_2 is less dense than oil and water in the reservoir. As a result, the CO_2 tends to migrate and accumulate at the top of geological structure. The well-defined structural closure based on well logs and oil-water contact provides a strong control on the lateral extent of the CO_2 plume, and the volume of injected CO_2 will be less than the storage capacity of each reservoir. CO_2 -oil miscibility also strongly minimizes possible lateral CO_2 transport distance.

4.9 Pipeline/Surface Equipment

Surface infrastructure is under daily surveillance. Any releases of CO_2 from either planned events or unplanned incidents are being quantified and reported following the requirement of Subpart W of EPA's GHGRP or based on appropriate engineering variables and standard estimation of releases as stated in Section 5.2. The past three years of surveillance show that the release volumes are less than one percent of the captured CO_2 . Confidence in surveillance is high, because release of even small amounts of CO_2 is highly noticeable as dense CO_2 flashes result in large volume increases and strong cooling, resulting in noise and a cloud, ice, or

condensed water.

5. Site-specific Risk-based Monitoring

5.1 Losses through Subsurface Infrastructure

Detection of any losses of CO_2 in the subsurface through damaged or faulty well construction, or through any other potential pathways for CO₂ leakage to the surface as identified in Section 4, including faults and fractures, will be done based on the monitoring information obtained from both active and shut-in wells. Proactive pressure monitoring at active producing wells, active injection wells, and shut-in monitoring wells is done via installation of pressure gauges at the wellhead that access the tubing and casing with connections to the SCADA system. Pressure reading at the surface casing, production casing and tubing on these wells are captured multiple times each day. If CO₂ leaked from an active CO₂ EOR reservoir, which is carefully monitored with the active and shut-in monitoring wells and managed through the operating practice and further backstopped by the higher elevation of the field as explained in section 3.1, it would migrate upwards into another reservoir and increase that reservoir's pressure. As presented in Table 5.1.1, multiple reservoirs above and below the regional Anahuac Shale, each also immediately overlain by confining rocks, are equipped with shut-in monitoring wells to detect the abnormal reservoir pressure change. The shut-in monitoring wells are also horizontally scattered throughout the field, as shown on Figure 5.1.1, which helps with early leak detection. If pressure changes in a reservoir that is not intended to be energized or if there are any CO₂ releases from the subsurface, alarms are set up to be notified through the SCADA system into the control room. All active alarms are followed up by field personnel for further investigation and diagnostics. If a leakage is detected, PNPH will use an event-specific approach to quantify leaked amounts of CO₂. Depending on the circumstance, this might include the use of modeling, engineering estimates, or direct measurements to estimate the relevant parameters (e.g., flow rate, concentration, and duration of leakage) to quantify the leaked volume.

All permanently plugged and abandoned wells are plugged with cement and drilling mud with well tubulars cut off below the surface in accordance with regulatory requirements; however, as these wells are not equipped with pressure gauges, in the unlikely event of well leakage, the detection and quantification will be done indirectly from the pressure reading of surrounding wells that are perforated in the same or shallower reservoirs.

5.1.1 Inactive Well Monitoring

As of December 31, 2020, there are 255 inactive wells completed in the Frio Formation above the injection interval and in select zones above the impenetrable Anahuac Shale that are being used as pressure monitoring wells. These monitoring wells are outfitted with gauges on the tubings, the production casings, and the surface casings. All data is reported and monitored in real time through the SCADA system that reports information into the control room with back-up information fed into the operator's corporate offices. Figure 5.1.1 shows the location of the pressure monitoring wells throughout the field. Table 5.1.1 shows the zones of the inactive monitoring wells.

Figure 5.1.1 Location of inactive wells with pressure monitoring (wells above and below Anahuac Shale are shown as pink triangles and green circles, respectively)

#	Reservoir	Number of well <mark>s</mark>	Depth	
1	Shallow Gas	6		
2	80-A	4	2,940'	
3	Noble/Miocene	11		
4	3800	1	3,775'	
5	Catahoula	13		
6	Discorbis	4	4,555'	_
7	Marg	31	4,960'	-
8	Greta	83	5,065	
9	Randle	2	5,250'	
10	Benneview	1	5,320'	
11	Dixon	2	5,390'	
12	Toney	16	5,400'	
13	Glasscock	14	5,470'	Ana
14	Menefee	3	5 <i>,</i> 550'	Below huac S
15	Mitchell	10	5,580'	hale
16	Armstrong	1	5,600'	
17	Ward	33	5,630'	
18	41-A	7	5,700'	
19	Musquez	1	6,050'	
20	383 Frio	2	6,080'	
21	98-A	10	6,125'	

 Table 5.1.1 Zones where pressure monitoring wells are located

5.1.2. Production Well Monitoring

Figure 5.1.2 depicts how a production well is monitored in the SCADA system. Pressure gauges monitor pressure in the tubing, the production casing, and the surface casing. Gas lift rate and pressure are also monitored for each well. The valves on the right side of the diagram are located at the TS manifold and allow the well to be directed into the high pressure (HP), intermediate pressure (IP), or low pressure (LP) system, or to the TS separator. Alarms are set to monitor any changes in the pressure from the normal pressure ranges. If abnormal pressures are noted, an alarm sounds and the well will be monitored for CO₂ leaks.

Figure 5.1.2 Monitoring of Production Wells

5.1.3. Injection Well Monitoring

Figure 5.1.3 depicts how an injection well is monitored in the SCADA system. Pressure gauges monitor pressure in the tubing, the production casing, and the surface casing. The valves on the right side of the diagram are located at the TS manifold and allow either CO_2 or water to be injected into the well, and in some cases both CO_2 and water at the same time. The injection rate is metered for each well. Alarms are set to monitor any changes in the pressure from the normal pressure ranges. If abnormal pressures are noted, an alarm sounds and the well will be monitored for CO_2 leaks.

Figure 5.1.3 Monitoring of Injection Wells

5.2 Losses through Surface Infrastructure

Losses though surface infrastructure are either intentional releases for maintenance or unplanned releases, in the case of upsets or accidents. The method of detection is identified by the operator using both the data streams and alarms that are reported to the control room and visual inspection of facilities. The methods of quantification use appropriate engineering variables and standard estimation of releases.

PNPH ensures that the operator evaluates and estimates leaks from equipment, the CO₂ content of produced oil, and vented CO₂, as required under 40 CFR Part 98 Subpart W.

6. Determination of Baselines

PNPH will use the results from daily monitoring of field conditions by the operator and operational data, as well as routine testing and maintenance information to monitor for surface leakage. As indicated in Sections 4.5 and 5, the SCADA system is used to conduct the CO₂ EOR operations at West Ranch. The data from these efforts is used to identify and investigate variances from expected performance that could indicate CO₂ leakage. Below is a description of how this data will be used to determine when further investigation of potential CO₂ leakage is warranted.

- Visual Inspections: As mentioned in Section 4.9, operations personnel make daily rounds of the facilities, providing a visual inspection of equipment used in the operations (e.g., vessels, piping, valves, wellheads). These inspection rounds provide the opportunity to identify issues early and address them proactively, which may preclude leaks from happening and/or minimize any CO₂ leakage. If an identified issue cannot be resolved by the person who first observes it, a work order will be generated to resolve the matter. Each event will be documented, including an estimate of the amount of CO₂ leaked and included in the annual Subpart RR reporting. Records for such events will be kept on file for a minimum of three years.
- Mechanical Integrity Test (MIT): TRRC rules calls for operators to comply with MIT requirements, which are designed to ensure that there is no significant leakage within the injection tubing, casing, or packer, as well as no leakage outside of the casing. All active injection wells undergo MIT testing (referred to as "H-5 Testing") at the following intervals:
 - Before injection operations begin;
 - At least once every five years, or more frequently if required by the permit;
 - After any workover that disturbs the seal between the tubing, packer, and casing, or after any repair work on the casing; and
 - When a request is made to suspend or reactivate the injection or disposal permit.

The TRRC requires that the operator notify the TRRC district office at least 48 hours prior to conducting the H-5 Testing. Operators are required to use a pressure recorder and pressure gauge for the test. Operators' field representative must sign the pressure recorder chart and submit it with Form H-5. Casing pressure must fall within 30-70% of the pressure recorder chart's full scale, and the pressure gauge must measure in increments that are no greater than 5% of the test pressure.

In the event a loss of mechanical integrity occurs, the injection well is immediately shutin and an investigation is initiated to determine what caused the loss of mechanical integrity. If investigation of an event identifies that a leak has occurred, those events will be documented, including an estimate of the amount of CO₂ leaked and included in the annual Subpart RR reporting. Records for such events will be kept on file for a minimum of three years.

• **Production and Shut-in Well Pressure Surveillance**: All tubings and casings of production and shut-in wells are equipped with pressure gauges and connected to the SCADA system as described in Section 5. If a 10% deviation in pressure outside of the expected values occurs, the event is investigated to determine if the variance poses a leak threat. If investigation of an event identifies that a leak has occurred, those events will be documented, including an estimate of the amount of CO₂ leaked and included in the annual Subpart RR reporting. Records for such events will be kept on file for a minimum of three years.

7. Determination of Sequestration Volumes Using Mass Balance Equations

PNPH will use equation RR-11 in 40 C.F.R. §98.443 to calculate the Mass of CO₂ Sequestered in Subsurface Geologic Formations in a reporting year as follows:

$$CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FP}$$
 (Eq. RR-11)

where:

- $CO_2 =$ Total annual CO_2 mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year.
- $CO_{2I} = CO_2$ Injected, the total annual CO_2 mass injected (metric tons) in the well or group of wells covered by this source category in the reporting year, includes both Received CO_2 (or Fresh CO_2 , see discussion below) and Recycled CO_2 .
- CO_{2P} = CO_2 Produced, the total annual CO_2 mass produced (metric tons) in the reporting year, includes Recycled CO_2 (see discussion below).
- $CO_{2E} = CO_2$ Emitted by Surface Leakage, total annual CO_2 mass emitted (metric tons) by surface leakage in the reporting year.
- CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in Subpart W.
- CO_{2FP} = Total annual CO₂ mass emitted (metric tons) from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity, for which a calculation procedure is provided in Subpart W.

To account for site-specific considerations, PNPH proposes the locations below for obtaining data to determine the CO₂ volumes used in the mass balance.

The first proposal addresses the propagation of error that would be created if volume data from meters at each injection well were utilized. This issue arises because each meter has a small but acceptable margin of calibration error, and this error could become significant if data were taken from the approximately 100 meters within West Ranch. As such, PNPH proposes to use the mass of Recycled CO₂ from commercial quality flow meters at the inlet of RGCs combined with mass of CO₂ Received (earlier referred to as Fresh CO₂ and further defined below) to determine the mass of CO₂ Injected into the subsurface (CO₂₁ in the formula above). The mass of CO₂ Produced (CO_{2P} in the formula above) will be the same as Recycled CO₂.

The second proposal addresses the concentration of CO_2 Received. Figure 7 shows the planned mass balance envelope overlaid as a blue square onto the facility flow diagram originally shown in Figure 2.7.1. The envelope contains all measurements relevant to the mass balance equation except for CO_2 Received, which is proposed to be measured at the custody transfer meter located in the vicinity of CCE (M₁) as shown in Section 2.8.1.

Figure 7 Material Balance Envelope (in blue)

The following sections describe how each element of the mass-balance equation will be calculated.

7.1 Mass of CO₂ Injected into the Subsurface

The equation for calculating the mass of CO_2 Injected into the Subsurface at West Ranch is equal to the sum of the mass of CO_2 Received (volumetric flow at M_2 using CO_2 concentration at M_1) and the mass of Recycled CO_2 measured at the inlet of the RGC (M_3).

$$\mathrm{CO}_{2I} = \mathrm{CO}_{2T,r} + \mathrm{CO}_{2,u}$$

where:

- $CO_{2I} = CO_2$ Injected, the total annual CO_2 mass injected (metric tons) in the well or group of wells covered by this source category in the reporting year
- $CO_{2T,r} = CO_2$ Received, the injected net annual mass of CO_2 received through flow meter r (metric tons).
- $CO_{2,u} = CO_2$ Recycled, the injected annual CO_2 mass injected (metric tons) as measured by flow meter u.

Mass of CO₂ Received

PNPH will use equation RR-2 as indicated in 40 C.F.R. §98.443 to calculate the mass of CO₂. Received. The volumetric flow at standard conditions as defined in 9.1.2 is measured at the receiving meter at West Ranch at the terminus of CO₂ Pipeline from CCE (M₂), and will be multiplied by the CO₂ concentration measured at the custody transfer meter located in the

vicinity of CCE (M_1) as stated above, and the density of CO₂ at standard conditions to determine mass.

$$CO_{2T,r} = \sum_{p=1}^{4} (Q_{r,p} - S_{r,p}) * D * C_{CO_{2,p,r}}$$
 (Eq. RR-2)

where:

$$CO_{2T,r} = CO_2$$
 Received, the injected net annual mass of CO_2 received through flow meter r
(metric tons).
 $Q_{r,p} = Quarterly$ volumetric flow through a receiving flow meter r in quarter p at standard conditions (standard cubic meters).
 $S_{wp} = Quarterly$ volumetric flow through a receiving flow meter r that is redelivered to

$$S_{r,p} = Quarterly volumetric flow through a receiving flow meter r that is redelivered toanother facility without being injected into your well in quarter p (standard cubicmeters). Since all delivery to West Ranch is used within the oilfield, the quarterlyflow redelivered, $S_{r,p}$ is zero ("0").$$

- $D = Density of CO_2 at standard conditions (metric tons per standard cubic meter) = 0.0018682.$
- $C_{CO2,p,r} = Quarterly CO_2$ concentration measurement in flow for flow meter r in quarter p (volume percent CO₂, expressed as a decimal fraction).

$$p = Quarter of the year.$$

 $r = Receiving flow meter (M_2, CO_2 concentration for M_2 is measured at M_l).$

Mass of CO₂ Recycled

PNPH will use equation RR-5 from 40 C.F.R. §98.443 to calculate the Mass of Recycled CO₂.

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$
 (Eq. RR-5)

where:

- $CO_{2,u} = CO_2$ Recycled, the annual CO_2 mass injected (metric tons) as measured by flow meter u.
- $Q_{p,u} = Quarterly$ volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).
- $D = Density of CO_2 at standard conditions (metric tons per standard cubic meter) = 0.0018682.$
- $C_{CO2,p,u} = CO_2$ concentration measurement for flow meter u in quarter p (volume percent CO_2 , expressed as a decimal fraction).
- p = Quarter of the year.
- u = Flow meter (M₃).

7.2 Mass of CO₂ Produced

As discussed above, the mass of CO_2 Produced equals the mass of Recycled CO_2 measured at the flow meters at inlet of RGCs (M₃). Equation RR-9 in 40 C.F.R. §98.443 will be used to

aggregate the mass of CO₂ produced net of the mass of CO₂ entrained in produced oil as follows:

$$CO_{2P} = \sum_{w=1}^{W} CO_{2,w} + X_{oil}$$
 (Eq. RR-9)

where:

$$CO_{2P} = CO_2$$
 Produced, the total annual CO_2 mass produced (metric tons) in the reporting year.

$$CO_{2,w}$$
 = Annual CO_2 mass produced (metric tons) through flow meter w in the reporting year (further defined below).

$$X_{oil} = Mass of entrained CO_2$$
 (metric tons) in oil in the reporting year calculated as per 40 C.F.R. Subpart W.

$$w = Flow meter (M_3)$$

PNPH will use equation RR-8 as indicated in 40 C.F.R. §98.443 to calculate the annual mass of CO₂ produced.

$$CO_{2,w} = \sum_{p=1}^{4} Q_{p,w} * D * C_{CO_{2,p,w}}$$
 (Eq. RR-8)

where:

 $CO_{2,w}$ = Annual CO_2 mass produced (metric tons) through flow meter w.

- $Q_{p,w} = Volumetric gas flow rate measurement for separator w in quarter p at standard conditions (standard cubic meters).$
- $D = Density of CO_2 at standard conditions (metric tons per standard cubic meter) = 0.0018682.$

$$C_{CO2,p,w} = CO_2$$
 concentration measurement for flow meter w in quarter p (volume percent CO_2 , expressed as a decimal fraction).

p = Quarter of the year.

 $w = Flow meter (M_3)$

7.3 Mass of CO₂ Emitted by Surface Leakage

The mass of CO₂ Emitted by Surface Leakage (term CO_{2E} in Eq. RR-11) is calculated based on various methodologies, including measurements, engineering estimates, and emission factors, used for the leakage originating from subsurface as described in Section 5.1. For releases from surface equipment and equipment venting (terms CO_{2FI} and CO_{2FP} in Eq. RR-11), 40 C.F.R. Subpart W reporting is relied upon as noted above.

Equation RR-10 in 40 C.F.R. §98.443 will be used to calculate and report the Mass of CO₂ Emitted by Surface Leakage:

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$
 (Eq. RR-10)

where:

- CO_2 . = Total annual CO_2 mass emitted by surface leakage (metric tons) in the reporting year.
- $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

x = Leakage pathway

X = *Total number of leakage pathways.*

8. MRV Plan Implementation Schedule

The activities described in this MRV Plan are in place, and reporting is planned to start upon EPA approval. It is anticipated that the Annual Subpart RR Report will be filed on March 31 of the year after the reporting year. As described in Section 3.3 above, PNPH anticipates that the MRV Plan will be in effect during the Specified Period, during which time West Ranch is operated with the subsidiary purpose of establishing long-term containment of a measurable quantity of CO₂ in subsurface geological formations at West Ranch. PNPH anticipates establishing that a measurable portion of the CO₂ injected during the Specified Period will be sequestered in a manner not expected to migrate resulting in future surface leakage. At such time, PNPH will prepare a filing to support the long-term containment determination and submit a request to discontinue reporting under this MRV Plan. See 40 CFR § 98.441(b)(2)(ii).

9. Quality Assurance Program

9.1 Monitoring QA/QC

9.1.1 Flow Meter Provisions

The flow meters used to generate data for the mass balance equations in Section 7 are:

- Operated continuously except as necessary for maintenance and calibration.
- Operated using the calibration and accuracy requirements in 40 CFR §98.3(i).
- Operated in conformance with American Petroleum Institute (API) standards.
- National Institute of Standards and Technology (NIST) traceable.

9.1.2 Concentration of CO₂

 CO_2 concentration is measured using an appropriate standard method consistent with 40 CFR §98.444(f)(1). Further, all measured volumes of CO_2 have been converted to standard cubic meters at a temperature of 60 degrees Fahrenheit and at an absolute pressure of 14.65 psi, including those used in Equations RR-2, RR-5, and RR-8 in Section 7.

9.2 Missing Data Procedures

In the event PNPH is unable to collect data needed for the mass balance calculations, procedures for estimating missing data will be used as follows:

- A quarterly flow rate of CO₂ received that is missing would be estimated using invoices or using a representative flow rate value from the nearest previous time period.
- A quarterly CO₂ concentration of a CO₂ stream received that is missing would be estimated using invoices or using a representative concentration value from the nearest previous time period.
- A quarterly quantity of CO₂ injected that is missing would be estimated using a representative quantity of CO₂ injected from the nearest previous period of time at a similar injection pressure.

For any values associated with CO_2 emissions from equipment leaks and vented emissions of CO_2 from surface equipment at the facility that are reported in this subpart, missing data estimation procedures will be followed.

9.3 MRV Plan Revisions

In the event there is a material change to the monitoring and/or operational parameters of the West Ranch CO₂ EOR operations that is not anticipated in this MRV Plan, the MRV Plan will be revised and submitted to the EPA Administrator within 180 days as required in 40 CFR §98.448(d). As stated earlier in Sections 2 and 3, the subsurface characteristics of the existing WRU for 98-A and 41-A reservoirs are found in the other reservoirs within the Project Interval at West Ranch. Any future expansion into the Project Interval will be subjected to the same regulatory and operational requirements as explained in Sections 2.7 and 2.8. In addition, the reservoir simulation effort carried out as part of DOE's MVA Plan and the storage capacity calculation as illustrated in Sections 2.5 and 2.9 demonstrated the viability of existing and future WRUs for long-term CO₂ retention. Therefore, any horizontal or upward vertical expansion at West Ranch will be managed by applying the same monitoring approach as identified in this MRV Plan and would not trigger a modification to this MRV Plan, as far as they are confined within the Project Interval and fall under the definition of AMA and/or MMA.

10. Records Retention

PNPH will follow the record retention requirements specified by 40 CFR §98.3(g). In addition, the requirements in 40 CFR §98.447 will be met by maintaining the following records for at least three years:

- Quarterly records of CO₂ received including volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of this stream.
- Quarterly records of injected CO₂ including volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of this stream.
- Quarterly records of produced CO₂ including volumetric flow at standard conditions and operating conditions, operating temperature and pressure, and concentration of this stream.

- Annual records of information used to calculate the CO₂ emitted by surface leakage from leakage pathways.
- Annual records of information used to calculate the CO₂ emitted from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead.
- Annual records of information used to calculate the CO₂ emitted from equipment leaks and vented emissions of CO₂ from equipment located on the surface between the production wellhead and the flow meter used to measure production quantity.

All data will be collected as generated and aggregated as required for reporting purposes.

11. References

- Ambrose, W. A., Lakshminarasimhan, Srivatsan, Nuñez-López, Vanessa, Hovorka, S. D., and Duncan, I. J., 2008, Geologic factors controlling CO₂ storage capacity and permanence: case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO₂ storage: Environmental Geology, v. 54, p. 1619-1633.
- Baurenschmidt, A. J., Jr., 1962, West Ranch field, Jackson County, *in* Typical oil and gas fields of southeast Texas: Houston Geological Society, p. 233-237.
- Eskew, J. O., 1975, Low tension waterflood process 41-A reservoir, West Ranch field, Jackson County, Texas: Corpus Christi Producing Area Report.
- Galloway, W. E., Hobday, D. K., and Magara, K., 1982, Frio Formation of the Texas Gulf Coast Basin: depositional systems, structural framework, and hydrocarbon origin, migration, distribution, and exploration potential: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 122, 78 p.
- Galloway, W. E., Ewing, T. E., Garrett, C. M., Tyler N. and Bebout, D. G., 1983, Atlas of major Texas oil, Texas Bureau of Economic Geology, 139 p.
- Galloway, W. E., 1986, Reservoir facies architecture of microtidal barrier systems: AAPG Bulletin, v. 70, no. 7, p. 787-808.
- Galloway, W. E., and Cheng, E. S., 1985, Reservoir facies architecture in a microtidal barrier system—Frio Formation, Texas Gulf Coast: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 144, 36 p. and 2 plates.
- Kreitler, C. W., and Akhter, M. S., 1990, Hydrologic hydrochemical characterization of Texas Frio Formation used for deep-well injection of chemical wastes: Environmental Geology Water Science, v. 16, no. 2, p. 107-120.
- Lu, J., Larson, T.E., and Smyth, R.C.2013, Carbon isotope effects of methane transport through Anahuac Shale — A core gas study, Journal of. Geochemical Exploration http://dx.doi.org/10.1016/j.gexplo.2014.09.005
- Murphy, C. L., Thied, D. M. and Eskew, J. O., 1976, A successful low tension waterflood twowell test, Society of Petroleum Engineers of AIME, SPE-6005

- United States Geological Survey, 2014, National Seismic Hazard Maps Simplified 2014 Hazard Map (PGA, 2% in 50 years), <u>https://earthquake.usgs.gov/hazards/hazmaps/conterminous/2014/images/HazardMap2</u> 014_lg.jpg
- Wolaver, B. D., Hovorka, S. D., Smyth R. C., 2013. at Greensites and brownsites: Implications for CO₂ sequestration characterization, risk assessment and monitoring, International Journal of Greenhouse Gas Control 19 (2013) 49–62

12. Appendices

Appendix 1 Acronyms

- AMA Active Monitoring Area
- AoR Area of Review
- API American Petroleum Institute
- Bscf-Billion Standard Cubic Feet
- CO₂ Carbon Dioxide
- EOR Enhanced Oil Recovery
- EPA U.S. Environmental Protection Agency
- GHGRP Greenhouse Gas Reporting Program
- MIT Mechanical Integrity Test
- MMSTB Million barrels
- $MRV-Monitoring, \, Reporting, \, and \, Verification$
- scf Standard Cubic Feet
- UIC Underground Injection Control
- USDW Underground Source of Drinking Water

Appendix 2 Well Identification Numbers

The following table presents the well name, API number, status and type for the wells in the West Ranch as of December 2020. The table is subject to change over time as new wells are drilled, existing wells change status, or existing wells are repurposed.

Well Name	API Number	Well Status
DRUMMOND JH 1	422390233500	P&A
DRUMMOND JH 2	422390233600	P&A
DRUMMOND JH 3	422390233700	Monitor
DRUMMOND JH 4	422390233800	P&A
DRUMMOND JH 5	422390233900	Monitor
DRUMMOND JH 6	422390234000	Monitor
DRUMMOND JH 7	422390234100	Monitor
DRUMMOND JH 8	422390234200	Monitor
DRUMMOND JH 1A	422390234300	P&A
DRUMMOND JH 9	422390234400	P&A
DRUMMOND JH 1B	422390234500	P&A
DRUMMOND JH 2B	422390234600	P&A
DRUMMOND JH 3B	422390234700	Monitor
DRUMMOND JH 4B	422390234800	P&A
DRUMMOND JH 1C	422390234900	P&A
DRUMMOND JH 2C	422390235000	Monitor
DRUMMOND JH 1D	422390235100	P&A
WEST RANCH A 2	422390235600	P&A
WEST RANCH A 3	422390235700	P&A
WEST RANCH A 4	422390235800	P&A
WEST RANCH A 5	422390235900	Monitor
WEST RANCH A 6-ST	422390236001	P&A
WEST RANCH A 6	422390236099	P&A
WEST RANCH A 7-ST	422390236101	P&A
WEST RANCH A 8	422390236200	P&A
WEST RANCH A 9	422390236300	P&A
WEST RANCH A 10	422390236400	Monitor
WEST RANCH A 11	422390236500	Monitor
WEST RANCH A 12	422390236600	P&A
WEST RANCH A 13	422390236800	Monitor
WEST RANCH A 14	422390236900	P&A
WEST RANCH A 15	422390237000	P&A
WEST RANCH A 16	422390237100	Monitor
WEST RANCH A 17	422390237200	Monitor
WEST RANCH A 18-OH	422390237399	P&A
WEST RANCH A 19	422390237400	P&A
WEST RANCH A 20	422390237500	P&A
WEST RANCH A 21	422390237600	P&A
WEST RANCH A 22	422390237700	P&A
WEST RANCH A 23	422390237800	Monitor
WEST RANCH A 24	422390237900	P&A
WEST RANCH A 25	422390238000	P&A
WEST RANCH A 26	422390238100	P&A
WEST RANCH A 27	422390238200	Monitor

WEST RANCH A 28	422390238300	P&A
WEST RANCH A 29	422390238400	Monitor
WEST RANCH A 30	422390238500	Monitor
WEST RANCH A 31	422390238600	P&A
WEST RANCH A 32	422390238700	Monitor
WEST RANCH A 33	422390238800	P&A
WEST RANCH A 34-HR	422390238901	Monitor
WEST RANCH A 35	422390239000	OIL-Conventional
WEST RANCH A 36	422390239100	Monitor
WEST RANCH A 37-HR	422390239201	Monitor
WEST RANCH A 38	422390239300	P&A
WEST RANCH A 39	422390239400	P&A
WEST RANCH A 40	422390239500	P&A
WEST BANCH A 41	422390239600	P&A
WEST RANCH A 42	422390239700	WSW
WEST RANCH A 43	422390239800	P&A
	422390239900	P&A
WEST RANCH A 44	422390239900	P&A
WEST RANCH A 45	422390240000	P&A
WEST RANCH A 40	422330240100	Monitor
	422390240200	DS.A
	422390240300	Monitor
	422390240400	Monitor
	422390240500	Nonitor
	422390240601	Wontor Oll Conventional
WEST RANCH A 52	422390240700	OIL-Conventional
WEST RANCH A 53	422390240800	P&A
WEST RANCH A 54	422390240900	IVIONITO
	422390241000	P&A
WEST RANCH A 56	422390241100	IVIONITO
	422390241200	P&A
	422390241300	
WEST RANCH A 59	422390241400	P&A
	422390241500	IVIONILOF
WEST RANCH A 61	422390241600	P&A
WEST RANCH A 62	422390241700	ivionitor
WEST RANCH A 63	422390241800	P&A
WEST RANCH A 64	422390241900	Monitor
WEST RANCH A 65	422390242000	Monitor
WEST RANCH A 66	422390242100	P&A
WEST RANCH A 67	422390242200	P&A
WEST RANCH A 68	422390242300	Monitor
WEST RANCH A 69	422390242400	P&A
WEST RANCH A 70	422390242500	P&A
WEST RANCH A 71	422390242600	P&A
WEST RANCH A 72	422390242700	Monitor
WEST RANCH A 73	422390242800	P&A
WEST RANCH A 74	422390242900	P&A
WEST RANCH A 75	422390243000	Monitor
WEST RANCH A 76	422390243100	Monitor
WEST RANCH A 77	422390243200	Monitor
WEST RANCH A 78	422390243300	P&A
WEST RANCH A 79	422390243400	OIL-Conventional
WEST RANCH A 80	422390243500	P&A

WEST RANCH A 81	422390243600	P&A
WEST RANCH A 82	422390243700	Monitor
WEST RANCH A 83	422390243800	Monitor
WEST RANCH A 84	422390243900	P&A
WEST RANCH A 85	422390244000	P&A
WEST RANCH A 86	422390244100	P&A
WEST RANCH A 87	422390244200	P&A
WEST RANCH A 88	422390244300	P&A
WEST RANCH A 89	422390244400	P&A
WEST RANCH A 90	422390244500	P&A
WEST RANCH A 91	422390244600	P&A
WEST RANCH A 92	422390244700	P&A
WEST RANCH A 93	422390244800	P&A
WEST BANCH A 94	422390244900	P&A
WEST RANCH A 95	422390245000	P&A
WEST RANCH A 96	422390245000	Monitor
	422390245100	Monitor
WEST RANCH A 99	422390245200	DS.A
WEST RANCH A 99	422330245300	P&A
	422350245400	P&A
	422390245500	PQA DQA
	422390245800	PQA DQA
	422390245700	PQA
WEST RANCH A 103	422390245800	
	422390245900	P&A
WEST RANCH A 105	422390246000	IVIONILOF
	422390246100	PQA
	422390240200	Oll Conventional
WEST RANCH A 108	422390240300	Monitor
WEST RANCH A 110	422390246500	P&A
WEST RANCH A 110	422390246600	Monitor
WEST RANCH A 112	422390246700	Monitor
WEST RANCH A 113	422390246800	P&A
WEST BANCH A 114	422390246900	P&A
WEST RANCH A 115	422390247000	P&A
WEST RANCH A 115	422390247100	Monitor
WEST RANCH A 117	422390247200	P&A
WEST RANCH A 118	422390247300	Monitor
WEST RANCH A 119	422390247400	P&A
WEST RANCH A 120	422390247500	P&A
WEST RANCH A 121	422390247600	P&A
WEST RANCH A 122	422390247700	P&A
WEST RANCH A 123	422390247800	Monitor
WEST RANCH A 124	422390247900	P&A
WEST RANCH A 125	422390248000	Monitor
WEST RANCH A 126	422390248100	P&A
WEST RANCH A 127	422390248200	OIL-Conventional
WEST RANCH A 128	422390248300	P&A
WEST RANCH A 129	422390248400	P&A
WEST RANCH A 130	422390248500	P&A
WEST RANCH A 131	422390248600	P&A
WEST RANCH A 132	422390248700	P&A
WEST RANCH A 133	422390248800	P&A

WEST RANCH A 135 42239024900 P&A WEST RANCH A 136 422390249100 P&A WEST RANCH A 137 422390249200 Monitor WEST RANCH A 138 422390249200 P&A WEST RANCH A 139 422390249500 P&A WEST RANCH A 141 422390249500 P&A WEST RANCH A 141 422390249500 P&A WEST RANCH A 142 422390249500 P&A WEST RANCH A 143 422390249500 P&A WEST RANCH A 143 422390249500 P&A WEST RANCH A 143 422390249500 P&A WEST RANCH A 144 422390249500 P&A WEST RANCH A 146 42239025000 Monitor WEST RANCH A 146 42239025000 Monitor WEST RANCH A 148 422390250300 P&A WEST RANCH A 147 422390250400 P&A WEST RANCH A 151 42239025040 P&A WEST RANCH A 152 42239025040 P&A WEST RANCH A 153 42239025040 P&A WEST RANCH A 153 4223902
WEST RANCH A 136 422390249100 P&A WEST RANCH A 137 422390249200 Monitor WEST RANCH A 138 422390249300 P&A WEST RANCH A 139 422390249400 P&A WEST RANCH A 140 422390249600 P&A WEST RANCH A 141 422390249600 P&A WEST RANCH A 142 422390249600 P&A WEST RANCH A 143 422390249700 Monitor WEST RANCH A 143 422390249700 P&A WEST RANCH A 144 422390250100 Monitor WEST RANCH A 145 422390250200 Monitor WEST RANCH A 146 422390250400 P&A WEST RANCH A 148 422390250400 P&A WEST RANCH A 149 422390250400 P&A WEST RANCH A 151 422390250600 P&A WEST RANCH A 152 422390250600 P&A WEST RANCH A 153 422390250600 P&A WEST RANCH A 154 422390250600 P&A WEST RANCH A 155 422390250600 P&A WEST RANCH A 155 <
WEST RANCH A 137 422390249200 Monitor WEST RANCH A 138 422390249400 P&A WEST RANCH A 140 422390249400 P&A WEST RANCH A 140 422390249500 Monitor WEST RANCH A 141 422390249500 P&A WEST RANCH A 142 422390249700 Monitor WEST RANCH A 143 422390249700 P&A WEST RANCH A 143 42239025000 P&A WEST RANCH A 144 42239025000 Monitor WEST RANCH A 146 42239025000 Monitor WEST RANCH A 148 422390250200 Monitor WEST RANCH A 147 422390250300 P&A WEST RANCH A 148 422390250300 P&A WEST RANCH A 150 422390250600 P&A WEST RANCH A 151 422390250600 P&A WEST RANCH A 152 422390250600 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 155 42239025000 P&A WEST RANCH A 155
WEST RANCH A 138 422390249300 P&A WEST RANCH A 139 422390249500 Monitor WEST RANCH A 140 422390249500 Monitor WEST RANCH A 141 422390249500 P&A WEST RANCH A 141 422390249500 P&A WEST RANCH A 143 422390249500 P&A WEST RANCH A 143 422390249500 P&A WEST RANCH A 144 422390249500 P&A WEST RANCH A 145 422390250100 Monitor WEST RANCH A 146 422390250100 Monitor WEST RANCH A 146 42239025000 P&A WEST RANCH A 149 42239025000 P&A WEST RANCH A 150 42239025000 P&A WEST RANCH A 151 42239025000 P&A WEST RANCH A 151 42239025000 P&A WEST RANCH A 152 42239025000 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 154 42239025100 Monitor WEST RANCH A 155 42239025100 Monitor WEST RANCH A 158 <t< td=""></t<>
WEST RANCH A 139 422390249400 P&A WEST RANCH A 140 422390249500 P&A WEST RANCH A 141 422390249500 P&A WEST RANCH A 142 422390249500 P&A WEST RANCH A 143 422390249500 P&A WEST RANCH A 143 422390249900 P&A WEST RANCH A 145 422390250200 Monitor WEST RANCH A 146 422390250200 Monitor WEST RANCH A 146 422390250200 Monitor WEST RANCH A 147 422390250500 P&A WEST RANCH A 149 422390250500 P&A WEST RANCH A 151 422390250500 P&A WEST RANCH A 151 422390250500 P&A WEST RANCH A 152 42239025000 P&A WEST RANCH A 152 42239025000 P&A WEST RANCH A 154 42239025000 P&A WEST RANCH A 155 42239025100 Monitor WEST RANCH A 157 42239025100 P&A WEST RANCH A 157 42239025100 P&A WEST RANCH A 161 422
WEST RANCH A 140 422390249500 Monitor WEST RANCH A 141 422390249500 P&A WEST RANCH A 141 422390249700 Monitor WEST RANCH A 143 422390249700 P&A WEST RANCH A 143 422390249700 P&A WEST RANCH A 144 42239025000 P&A WEST RANCH A 145 42239025000 Monitor WEST RANCH A 146 42239025000 Monitor WEST RANCH A 147 42239025000 P&A WEST RANCH A 146 42239025000 P&A WEST RANCH A 149 42239025000 P&A WEST RANCH A 150 42239025000 P&A WEST RANCH A 151 42239025000 P&A WEST RANCH A 152 42239025000 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 154 42239025000 P&A WEST RANCH A 155 42239025100 Monitor WEST RANCH A 156 42239025100 P&A WEST RANCH A 156 42239025100 P&A WEST RANCH A 161 4223902
WEST RANCH A 141 422390249600 P&A WEST RANCH A 142 422390249600 P&A WEST RANCH A 143 422390249800 P&A WEST RANCH A 143 422390249800 P&A WEST RANCH A 144 422390250100 Monitor WEST RANCH A 145 422390250100 Monitor WEST RANCH A 147 42239025000 P&A WEST RANCH A 150 422390250500 P&A WEST RANCH A 151 42239025000 P&A WEST RANCH A 152 42239025000 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 154 42239025100 Monitor WEST RANCH A 155 42239025100 P&A WEST RANCH A 156 42239025100 P&A WEST RANCH A 158 42239025100 P&A WEST RANCH A 161 42239025100 </td
WEST RANCH A 142 422390249700 Monitor WEST RANCH A 143 422390249800 P&A WEST RANCH A 143 422390249800 P&A WEST RANCH A 144 42239025000 Monitor WEST RANCH A 145 42239025000 Monitor WEST RANCH A 146 42239025000 Monitor WEST RANCH A 147 42239025000 P&A WEST RANCH A 148 42239025000 P&A WEST RANCH A 149 42239025000 P&A WEST RANCH A 150 42239025000 P&A WEST RANCH A 151 42239025000 P&A WEST RANCH A 152 42239025000 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 154 42239025100 Monitor WEST RANCH A 155 42239025100 Monitor WEST RANCH A 156 42239025100 Monitor WEST RANCH A 158 42239025100 P&A WEST RANCH A 163 42239025100 P&A WEST RANCH A 163 42239025100 P&A WEST RANCH A 163 4
WEST RANCH A 143 422390249800 P&A WEST RANCH A 144 422390249900 P&A WEST RANCH A 145 42239025000 Monitor WEST RANCH A 145 42239025000 Monitor WEST RANCH A 146 422390250100 Monitor WEST RANCH A 147 422390250300 P&A WEST RANCH A 148 42239025000 P&A WEST RANCH A 149 42239025000 P&A WEST RANCH A 150 42239025000 P&A WEST RANCH A 151 42239025000 P&A WEST RANCH A 151 42239025000 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 153 422390251000 Monitor WEST RANCH A 154 422390251000 Monitor WEST RANCH A 155 422390251000 Monitor WEST RANCH A 157 42239025100 Monitor WEST RANCH A 158 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 162 <
International International International WEST RANCH A 144 422390249900 P&A WEST RANCH A 145 422390250000 Monitor WEST RANCH A 145 422390250000 Monitor WEST RANCH A 146 422390250000 Monitor WEST RANCH A 147 42239025000 P&A WEST RANCH A 149 42239025000 P&A WEST RANCH A 149 42239025000 P&A WEST RANCH A 150 42239025000 P&A WEST RANCH A 151 42239025000 P&A WEST RANCH A 152 42239025000 P&A WEST RANCH A 153 42239025000 P&A WEST RANCH A 154 42239025100 Monitor WEST RANCH A 155 42239025100 Monitor WEST RANCH A 158 42239025100 Monitor WEST RANCH A 158 42239025100 P&A WEST RANCH A 158 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 161
MEST RANCH A 145 422390250000 Monitor WEST RANCH A 145 42239025000 Monitor WEST RANCH A 146 422390250100 Monitor WEST RANCH A 147 422390250300 P&A WEST RANCH A 148 422390250300 P&A WEST RANCH A 150 422390250500 P&A WEST RANCH A 151 422390250500 P&A WEST RANCH A 152 422390250600 P&A WEST RANCH A 152 422390250700 P&A WEST RANCH A 152 422390250800 P&A WEST RANCH A 154 422390250900 P&A WEST RANCH A 155 42239025100 Monitor WEST RANCH A 156 42239025100 Monitor WEST RANCH A 157 42239025100 P&A WEST RANCH A 158 42239025100 P&A WEST RANCH A 160 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 163 42239025100 P&A WEST RANCH A 163 42239025100 P&A WEST RANCH A 163 42
WEST RANCH A 146 422390250200 Monitor WEST RANCH A 147 422390250200 Monitor WEST RANCH A 148 422390250300 P&A WEST RANCH A 149 422390250400 P&A WEST RANCH A 150 422390250500 P&A WEST RANCH A 150 422390250500 P&A WEST RANCH A 151 422390250700 P&A WEST RANCH A 152 422390250900 P&A WEST RANCH A 154 422390250900 P&A WEST RANCH A 155 422390250900 P&A WEST RANCH A 156 422390251000 Monitor WEST RANCH A 156 42239025100 Monitor WEST RANCH A 158 42239025100 P&A WEST RANCH A 159 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 162 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 162 42239025100 Monitor WEST RANCH A 163 42239025100 P&A WEST RANCH A 164 4
HIST RANCH A 147 422390250200 Monitor WEST RANCH A 147 422390250200 Monitor WEST RANCH A 148 422390250300 P&A WEST RANCH A 149 422390250500 P&A WEST RANCH A 150 422390250500 P&A WEST RANCH A 151 422390250600 P&A WEST RANCH A 151 422390250600 P&A WEST RANCH A 152 422390250800 P&A WEST RANCH A 153 422390250900 P&A WEST RANCH A 155 42239025000 Monitor WEST RANCH A 155 42239025000 Monitor WEST RANCH A 155 42239025100 Monitor WEST RANCH A 156 42239025100 P&A WEST RANCH A 159 42239025100 P&A WEST RANCH A 160 42239025100 P&A WEST RANCH A 161 42239025100 Monitor WEST RANCH A 163 42239025100 Monitor WEST RANCH A 163 42239025100 Monitor WEST RANCH A 163 42239025100 Monitor WEST RANCH A 164
WEST RANCH A 148 4223025000 P&A WEST RANCH A 148 422300250400 P&A WEST RANCH A 150 422390250400 P&A WEST RANCH A 151 422390250600 P&A WEST RANCH A 152 422390250700 P&A WEST RANCH A 152 422390250800 P&A WEST RANCH A 152 422390250800 P&A WEST RANCH A 154 422390250800 P&A WEST RANCH A 155 422390251000 Monitor WEST RANCH A 156 422390251000 Monitor WEST RANCH A 156 422390251000 P&A WEST RANCH A 157 422390251000 P&A WEST RANCH A 157 42239025100 P&A WEST RANCH A 159 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 161 42239025100 Monitor WEST RANCH A 161 42239025100 Monitor WEST RANCH A 162 42239025100 Monitor WEST RANCH A 164 42
WEST RANCH A 149 422330250500 P&A WEST RANCH A 149 422300250500 P&A WEST RANCH A 150 422390250500 P&A WEST RANCH A 151 422390250700 P&A WEST RANCH A 152 422390250800 P&A WEST RANCH A 153 422390250800 P&A WEST RANCH A 153 422390250800 P&A WEST RANCH A 153 422390250900 P&A WEST RANCH A 155 422390251000 Monitor WEST RANCH A 157 422390251200 P&A WEST RANCH A 157 422390251300 Monitor WEST RANCH A 157 422390251400 P&A WEST RANCH A 159 422390251600 P&A WEST RANCH A 161 422390251600 Monitor WEST RANCH A 162 422390251800 Monitor WEST RANCH A 163 422390251900 Monitor WEST RANCH A 164 422390251900 Monitor WEST RANCH A 165 422390251900 Monitor WEST RANCH A 165 422390251900 Monitor WEST RANCH A 16
WEST RANCH A 150 422390250500 P&A WEST RANCH A 151 422390250500 P&A WEST RANCH A 151 422390250700 P&A WEST RANCH A 152 422390250900 P&A WEST RANCH A 153 422390250900 P&A WEST RANCH A 155 422390251000 Monitor WEST RANCH A 155 422390251000 Monitor WEST RANCH A 156 422390251000 Monitor WEST RANCH A 157 422390251400 P&A WEST RANCH A 158 422390251400 P&A WEST RANCH A 159 422390251400 P&A WEST RANCH A 160 422390251400 P&A WEST RANCH A 161 422390251400 P&A WEST RANCH A 162 422390251400 P&A WEST RANCH A 163 422390251400 Monitor WEST RANCH A 164 422390251900 Monitor WEST RANCH A 163 422390251900 Monitor WEST RANCH A 164 422390251900 Monitor WEST RANCH A 165 42239025200 P&A WEST RANCH A 166
WEST RANCH A 150 422390250600 P&A WEST RANCH A 151 422390250700 P&A WEST RANCH A 152 422390250700 P&A WEST RANCH A 153 422390250900 P&A WEST RANCH A 154 422390251000 Monitor WEST RANCH A 155 422390251100 Monitor WEST RANCH A 156 422390251100 Monitor WEST RANCH A 157 422390251200 P&A WEST RANCH A 158 422390251400 P&A WEST RANCH A 159 422390251600 P&A WEST RANCH A 160 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 162 42239025100 Monitor WEST RANCH A 161 42239025100 Monitor WEST RANCH A 162 42239025100 Monitor WEST RANCH A 164 42239025100 Monitor WEST RANCH A 164 42239025100 Monitor WEST RANCH A 164 42239025100 P&A WEST RANCH A 165 42239025200 P&A WEST RANCH A 166
WEST RANCH A 151 422390250700 P&A WEST RANCH A 152 422390250700 P&A WEST RANCH A 153 422390250800 P&A WEST RANCH A 154 422390250900 P&A WEST RANCH A 155 422390251000 Monitor WEST RANCH A 156 422390251000 Monitor WEST RANCH A 156 422390251200 P&A WEST RANCH A 158 422390251300 Monitor WEST RANCH A 158 42239025100 P&A WEST RANCH A 163 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 161 42239025100 P&A WEST RANCH A 161 42239025100 Monitor WEST RANCH A 162 42239025100 Monitor WEST RANCH A 163 42239025100 Monitor WEST RANCH A 164 42239025100 Monitor WEST RANCH A 165 42239025200 P&A WEST RANCH A 166 42239025200 P&A WEST RANCH A 168 42239025200 P&A WEST RANCH A 169
WEST RANCH A 152 42239025000 P&A WEST RANCH A 153 422390250800 P&A WEST RANCH A 154 422390250900 P&A WEST RANCH A 155 422390251000 Monitor WEST RANCH A 156 422390251200 P&A WEST RANCH A 157 422390251200 P&A WEST RANCH A 158 422390251200 P&A WEST RANCH A 159 422390251500 P&A WEST RANCH A 160 422390251500 P&A WEST RANCH A 161 422390251600 Monitor WEST RANCH A 162 422390251800 Monitor WEST RANCH A 161 422390251900 Monitor WEST RANCH A 162 422390251900 Monitor WEST RANCH A 163 42239025100 Monitor WEST RANCH A 164 42239025100 Monitor WEST RANCH A 165 42239025200 Monitor WEST RANCH A 166 42239025200 Monitor WEST RANCH A 167 42239025200 P&A WEST RANCH A 170 42239025200 Monitor WEST RANCH A 1
WEST RANCH A 153 422390250800 P&A WEST RANCH A 154 422390251000 Monitor WEST RANCH A 155 422390251000 Monitor WEST RANCH A 155 422390251000 Monitor WEST RANCH A 155 422390251000 Monitor WEST RANCH A 158 422390251200 P&A WEST RANCH A 158 422390251300 Monitor WEST RANCH A 159 422390251300 P&A WEST RANCH A 160 42239025100 P&A WEST RANCH A 161 422390251700 Monitor WEST RANCH A 161 422390251700 Monitor WEST RANCH A 162 422390251900 Monitor WEST RANCH A 163 422390251900 Monitor WEST RANCH A 164 42239025200 P&A WEST RANCH A 165 42239025200 P&A WEST RANCH A 168 42239025200 P&A WEST RANCH A 168 42239025200 P&A WEST RANCH A 170 42239025200 P&A WEST RANCH A 171 42239025200 P&A WEST RANCH A 172 </td
WEST RANCH A 154 4223025000 P&A WEST RANCH A 155 422300251000 Monitor WEST RANCH A 156 422300251000 P&A WEST RANCH A 157 42230251200 P&A WEST RANCH A 158 42230251300 Monitor WEST RANCH A 159 42230251300 P&A WEST RANCH A 159 42230251500 P&A WEST RANCH A 160 42230251500 P&A WEST RANCH A 161 42230251600 Monitor WEST RANCH A 161 42230251700 Monitor WEST RANCH A 162 42230251800 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 164 422390251800 Monitor WEST RANCH A 165 422390251800 Monitor WEST RANCH A 166 422390252000 Monitor WEST RANCH A 166 42239025200 P&A WEST RANCH A 167 42239025200 P&A WEST RANCH A 169 42239025200 P&A WEST RANCH A 170 42239025200 P&A WEST RANCH A 171
WEST RANCH A 155 422390251000 Monitor WEST RANCH A 156 422390251100 Monitor WEST RANCH A 157 422390251200 P&A WEST RANCH A 158 422390251300 Monitor WEST RANCH A 159 422390251300 P&A WEST RANCH A 159 422390251500 P&A WEST RANCH A 160 422390251600 Monitor WEST RANCH A 161 422390251600 Monitor WEST RANCH A 162 422390251700 Monitor WEST RANCH A 162 422390251800 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 163 422390251000 Monitor WEST RANCH A 165 422390251000 Monitor WEST RANCH A 165 422390252000 Monitor WEST RANCH A 166 42239025200 P&A WEST RANCH A 168 42239025200 P&A WEST RANCH A 169 42239025200 P&A WEST RANCH A 170 42239025200 P&A WEST RANCH A 171 42239025200 P&A WEST RAN
WEST RANCH A 156 422390251100 Monitor WEST RANCH A 157 422390251200 P&A WEST RANCH A 158 422390251300 Monitor WEST RANCH A 159 422390251400 P&A WEST RANCH A 160 422390251500 P&A WEST RANCH A 161 422390251600 Monitor WEST RANCH A 161 422390251700 Monitor WEST RANCH A 162 422390251800 Monitor WEST RANCH A 163 422390251900 Monitor WEST RANCH A 163 422390252000 Monitor WEST RANCH A 166 422390252000 Monitor WEST RANCH A 166 42239025200 P&A WEST RANCH A 166 42239025200 P&A WEST RANCH A 166 42239025200 P&A WEST RANCH A 168 42239025200 P&A WEST RANCH A 169 42239025200 P&A WEST RANCH A 169 42239025200 P&A WEST RANCH A 170 42239025200 P&A WEST RANCH A 171 42239025200 P&A WEST RANCH A 173
WEST RANCH A 157 422390251200 P&A WEST RANCH A 158 422390251300 Monitor WEST RANCH A 159 422390251400 P&A WEST RANCH A 160 422390251500 P&A WEST RANCH A 161 422390251700 Monitor WEST RANCH A 162 422390251700 Monitor WEST RANCH A 163 422390251700 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 163 422390251700 Monitor WEST RANCH A 163 422390251900 Monitor WEST RANCH A 164 42239025100 P&A WEST RANCH A 165 42239025200 P&A WEST RANCH A 166 42239025200 P&A WEST RANCH A 167 42239025200 P&A WEST RANCH A 169 42239025200 P&A WEST RANCH A 170 42239025200 P&A WEST RANCH A 171 42239025200 P&A WEST RANCH A 171 42239025200 P&A WEST RANCH A 173 42239025200 P&A WEST RANCH A 173
WEST RANCH A 158 422390251300 Monitor WEST RANCH A 159 422390251400 P&A WEST RANCH A 160 422390251500 P&A WEST RANCH A 161 422390251600 Monitor WEST RANCH A 162 422390251600 Monitor WEST RANCH A 162 422390251800 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 164 422390251800 Monitor WEST RANCH A 165 42239025100 Monitor WEST RANCH A 164 42239025200 Monitor WEST RANCH A 165 42239025200 P&A WEST RANCH A 166 42239025200 P&A WEST RANCH A 167 42239025200 P&A WEST RANCH A 167 42239025200 P&A WEST RANCH A 170 42239025200 Monitor WEST RANCH A 170 42239025200 P&A WEST RANCH A 171 42239025200 Monitor WEST RANCH A 172 42239025200 P&A WEST RANCH A 173 42239025200 P&A WEST RANCH A 175 </td
WEST RANCH A 159 422390251400 P&A WEST RANCH A 160 422390251500 P&A WEST RANCH A 161 422390251500 Monitor WEST RANCH A 162 422390251700 Monitor WEST RANCH A 163 422390251700 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 163 422390251900 Monitor WEST RANCH A 166 422390252000 Monitor WEST RANCH A 166 422390252000 P&A WEST RANCH A 166 422390252000 P&A WEST RANCH A 166 422390252000 P&A WEST RANCH A 167 422390252000 P&A WEST RANCH A 167 422390252000 P&A WEST RANCH A 168 422390252000 Monitor WEST RANCH A 170 422390252000 Monitor WEST RANCH A 171 422390252000 Monitor WEST RANCH A 171 422390252000 Monitor WEST RANCH A 173 422390252000 Monitor WEST RANCH A 173 422390252000 Monitor <td< td=""></td<>
WEST RANCH A 160 422390251500 P&A WEST RANCH A 161 422390251600 Monitor WEST RANCH A 162 422390251700 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 163 422390251900 Monitor WEST RANCH A 164 422390251900 Monitor WEST RANCH A 165 422390252000 Monitor WEST RANCH A 166 422390252000 P&A WEST RANCH A 167 422390252000 P&A WEST RANCH A 168 422390252000 Monitor WEST RANCH A 169 422390252000 Monitor WEST RANCH A 170 422390252000 Monitor WEST RANCH A 171 422390252000 Monitor WEST RANCH A 173 422390252000 P&A WEST RANCH A 173 422390252000 P&A WEST RANCH A 175 422390253000 Monitor WES
WEST RANCH A 161 422390251600 Monitor WEST RANCH A 162 422390251700 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 164 422390251900 Monitor WEST RANCH A 165 422390252000 Monitor WEST RANCH A 166 422390252000 P&A WEST RANCH A 166 422390252000 P&A WEST RANCH A 166 422390252200 P&A WEST RANCH A 167 422390252200 P&A WEST RANCH A 167 422390252300 Monitor WEST RANCH A 167 422390252300 Monitor WEST RANCH A 170 42239025200 P&A WEST RANCH A 170 42239025200 P&A WEST RANCH A 171 42239025200 Monitor WEST RANCH A 172 42239025200 P&A WEST RANCH A 173 42239025200 P&A WEST RANCH A 173 42239025200 P&A WEST RANCH A 175 42239025300 P&A WEST RANCH A 176 </td
WEST RANCH A 162 422390251700 Monitor WEST RANCH A 163 422390251800 Monitor WEST RANCH A 164 422390251900 Monitor WEST RANCH A 165 422390252000 Monitor WEST RANCH A 165 422390252000 Monitor WEST RANCH A 166 422390252000 P&A WEST RANCH A 167 42239025200 P&A WEST RANCH A 167 42239025200 P&A WEST RANCH A 167 42239025200 Monitor WEST RANCH A 167 42239025200 Monitor WEST RANCH A 168 42239025200 Monitor WEST RANCH A 170 42239025200 P&A WEST RANCH A 170 42239025200 P&A WEST RANCH A 171 42239025200 Monitor WEST RANCH A 172 42239025200 P&A WEST RANCH A 173 42239025200 P&A WEST RANCH A 173 42239025200 P&A WEST RANCH A 175 42239025300 Monitor WEST RANCH A 175 42239025300 P&A WEST RANCH A 177
WEST RANCH A 163 422390251800 Monitor WEST RANCH A 164 422390251900 Monitor WEST RANCH A 165 422390252000 Monitor WEST RANCH A 166 422390252100 P&A WEST RANCH A 166 422390252000 P&A WEST RANCH A 166 42239025200 P&A WEST RANCH A 167 42239025200 P&A WEST RANCH A 168 42239025200 P&A WEST RANCH A 169 42239025200 Monitor WEST RANCH A 170 42239025200 P&A WEST RANCH A 170 42239025200 P&A WEST RANCH A 171 42239025200 P&A WEST RANCH A 171 42239025200 Monitor WEST RANCH A 172 42239025200 P&A WEST RANCH A 173 42239025200 P&A WEST RANCH A 174 42239025200 Monitor WEST RANCH A 175 42239025300 Monitor WEST RANCH A 176 42239025300 P&A WEST RANCH A 177 42239025300 P&A WEST RANCH A 178 <td< td=""></td<>
WEST RANCH A 164 422390251900 Monitor WEST RANCH A 165 422390252000 Monitor WEST RANCH A 166 422390252100 P&A WEST RANCH A 166 422390252200 P&A WEST RANCH A 167 422390252200 P&A WEST RANCH A 167 422390252300 Monitor WEST RANCH A 168 422390252400 Monitor WEST RANCH A 169 422390252500 P&A WEST RANCH A 170 422390252600 Monitor WEST RANCH A 171 422390252700 OIL-Conventional WEST RANCH A 172 422390252800 P&A WEST RANCH A 173 422390252800 P&A WEST RANCH A 173 422390252900 Monitor WEST RANCH A 174 422390253000 Monitor WEST RANCH A 175 422390253100 P&A WEST RANCH A 176 422390253200 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 178 422390253400 P&A WEST RANCH A 179 422390253400 P&A WE
WEST RANCH A 165 422390252000 Monitor WEST RANCH A 166 422390252100 P&A WEST RANCH A 167 422390252200 P&A WEST RANCH A 167 422390252300 Monitor WEST RANCH A 168 422390252300 Monitor WEST RANCH A 169 422390252400 Monitor WEST RANCH A 170 422390252500 P&A WEST RANCH A 171 422390252600 Monitor WEST RANCH A 171 422390252700 OlL-Conventional WEST RANCH A 172 422390252800 P&A WEST RANCH A 173 422390252800 P&A WEST RANCH A 173 422390252800 P&A WEST RANCH A 174 422390252800 P&A WEST RANCH A 175 422390253000 Monitor WEST RANCH A 175 422390253000 P&A WEST RANCH A 176 422390253200 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 178 422390253400 P&A WEST RANCH A 179 422390253400 P&A
WEST RANCH A 166 422390252100 P&A WEST RANCH A 167 422390252200 P&A WEST RANCH A 168 422390252300 Monitor WEST RANCH A 169 422390252400 Monitor WEST RANCH A 169 422390252500 P&A WEST RANCH A 170 422390252600 Monitor WEST RANCH A 171 422390252600 Monitor WEST RANCH A 171 422390252700 OIL-Conventional WEST RANCH A 172 422390252800 P&A WEST RANCH A 173 422390252900 Monitor WEST RANCH A 174 422390252900 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 176 422390253100 P&A WEST RANCH A 177 422390253300 Monitor WEST RANCH A 178 422390253300 Monitor WEST RANCH A 178 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 167 422390252200 P&A WEST RANCH A 168 422390252300 Monitor WEST RANCH A 169 422390252400 Monitor WEST RANCH A 170 422390252500 P&A WEST RANCH A 170 422390252600 Monitor WEST RANCH A 171 422390252600 Monitor WEST RANCH A 171 422390252700 OIL-Conventional WEST RANCH A 172 422390252800 P&A WEST RANCH A 173 422390252900 Monitor WEST RANCH A 174 422390252900 Monitor WEST RANCH A 175 422390253000 P&A WEST RANCH A 176 422390253100 P&A WEST RANCH A 176 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 178 422390253400 P&A WEST RANCH A 179 422390253500 Monitor WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 168 422390252300 Monitor WEST RANCH A 169 422390252400 Monitor WEST RANCH A 170 422390252500 P&A WEST RANCH A 171 422390252600 Monitor WEST RANCH A 171 422390252700 OIL-Conventional WEST RANCH A 172 422390252800 P&A WEST RANCH A 173 422390252800 P&A WEST RANCH A 173 422390252800 P&A WEST RANCH A 173 422390252900 Monitor WEST RANCH A 174 422390253000 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 176 422390253100 P&A WEST RANCH A 176 422390253200 P&A WEST RANCH A 177 422390253300 Monitor WEST RANCH A 178 422390253300 Monitor WEST RANCH A 179 422390253400 P&A WEST RANCH A 179 422390253500 Monitor
WEST RANCH A 169 422390252400 Monitor WEST RANCH A 170 422390252500 P&A WEST RANCH A 171 422390252600 Monitor WEST RANCH A 171 422390252700 OlL-Conventional WEST RANCH A 172 422390252800 P&A WEST RANCH A 173 422390252900 Monitor WEST RANCH A 174 422390252900 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 175 422390253100 P&A WEST RANCH A 176 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 179 422390253400 P&A WEST RANCH A 179 422390253500 Monitor
WEST RANCH A 170 422390252500 P&A WEST RANCH A 171 422390252600 Monitor WEST RANCH A 172 422390252700 Oll-Conventional WEST RANCH A 173 422390252800 P&A WEST RANCH A 173 422390252900 Monitor WEST RANCH A 174 422390252900 Monitor WEST RANCH A 174 422390253000 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 176 422390253100 P&A WEST RANCH A 176 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 177 422390253300 Monitor WEST RANCH A 178 422390253300 Monitor WEST RANCH A 179 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 171 422390252600 Monitor WEST RANCH A 172 422390252700 Oll-Conventional WEST RANCH A 173 422390252800 P&A WEST RANCH A 173 422390252900 Monitor WEST RANCH A 174 422390252900 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 175 422390253100 P&A WEST RANCH A 176 422390253100 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 178 422390253400 P&A WEST RANCH A 179 422390253500 Monitor WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 172 422390252700 Oll-Conventional WEST RANCH A 173 422390252800 P&A WEST RANCH A 174 422390252900 Monitor WEST RANCH A 174 422390253000 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 175 422390253100 P&A WEST RANCH A 176 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 178 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 173 422390252800 P&A WEST RANCH A 174 422390252900 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 176 422390253100 P&A WEST RANCH A 176 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 179 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 174 422390252900 Monitor WEST RANCH A 175 422390253000 Monitor WEST RANCH A 176 422390253100 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 177 422390253300 Monitor WEST RANCH A 177 422390253300 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 179 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 175 422390253000 Monitor WEST RANCH A 176 422390253100 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 179 422390253400 P&A WEST RANCH A 179 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 176 422390253100 P&A WEST RANCH A 177 422390253200 P&A WEST RANCH A 177 422390253300 Monitor WEST RANCH A 178 422390253400 P&A WEST RANCH A 179 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 177 422390253200 P&A WEST RANCH A 178 422390253300 Monitor WEST RANCH A 179 422390253400 P&A WEST RANCH A 179 422390253500 Monitor WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 178 422390253300 Monitor WEST RANCH A 179 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 179 422390253400 P&A WEST RANCH A 180 422390253500 Monitor
WEST RANCH A 180 422390253500 Monitor WEST RANCH A 101 122200252500 D0 1
WEST RANCH A 181 422390253600 P&A
WEST RANCH A 182 422390253700 P&A
WEST RANCH A 185 422350253800 P&A WEST RANCH A 184 422390253900 P&A
WEST RANCH A 185 422350253800 P&A WEST RANCH A 184 422390253900 P&A WEST RANCH A 185 422390254000 P&A

WEST RANCH A 187	422390254200	P&A
WEST RANCH A 188	422390254300	Monitor
WEST RANCH A 189	422390254400	P&A
WEST RANCH A 190	422390254500	Monitor
WEST RANCH A 191	422390254600	P&A
WEST RANCH A 192	422390254700	P&A
WEST RANCH A 193	422390254800	P&A
WEST RANCH A 194	422390254900	P&A
WEST RANCH A 195	422390255000	Monitor
WEST RANCH A 196	422390255100	Monitor
WEST RANCH A 197	422390255200	WSW
WEST RANCH A 198	422390255300	P&A
WEST RANCH A 199	422390255400	P&A
WEST BANCH A 200	422390255500	P&A
WEST RANCH A 200	422390255600	P&A
WEST RANCH A 201	422390255700	Monitor
WEST BANCH A 202	422350255700	D.A.
WEST RANCH A 203	422350255800	P&A
WEST RANCH A 204	422390255900	Monitor
	422350250000	Monitor
WEST RANCH A 200	422390256200	D.A
WEST RANCH A 207	422390256200	P&A
	422390256300	PQA
WEST RANCH A 205	422390256400	PQA
	422390256500	PQA
	422390256600	PQA
	422390256700	P&A Oll Conventional
WEST RANCH A 214	422390256800	OIL-COnventional
	422390250900	Monitor
	422390257000	DS.A
	422390257100	P&A D&A
	422350257200	P&A
WEST RANCH A 210	422390257300	P&A
WEST RANCH A 220	422390257500	P&A
	422350257500	P&A
	422390257000	Monitor
	422350257700	
	422390257900	Monitor
	422390258000	
	422390258100	PQA DQA
	422350258200	PQA
	422390258300	PQA DQA
	422390258400	P&A D&A
	422350258500	Monitor
	422390258000	Monitor
	422390258700	
	422370238800	Maritar
WEST RANCH A 255	422390258900	Monitor
	422370239000	
	422390259100	P&A
	422390259200	P&A
WEST RANCH A 239	422390259300	
WEST RANCH A 241	422390259400	P&A
WEST KANCH A 242	422390259500	OIL-Conventional

WEST RANCH A 243	422390259600	P&A
WEST RANCH A 246	422390259700	P&A
WEST RANCH A 245	422390259800	P&A
WEST RANCH A 247	422390259900	P&A
WEST RANCH A 248	422390260000	P&A
WEST RANCH A 249	422390260100	P&A
WEST RANCH A 250	422390260200	P&A
WEST RANCH A 251	422390260300	P&A
WEST RANCH A 254	422390260400	P&A
WEST RANCH A 255	422390260500	P&A
WEST RANCH A 256	422390260600	P&A
WEST BANCH A 257	422390260700	Monitor
WEST RANCH A 258	422390260800	Monitor
WEST RANCH A 252	422390260900	Monitor
WEST RANCH A 252	422390261000	P&A
WEST RANCH A 260	422390261100	P&A
WEST RANCH A 260	422390261200	D&A
WEST RANCH A 261	422390201200	P&A
WEST RANCH A 262	422390201300	Monitor
WEST RANCH A 263	422390261400	Monitor
	422390261500	Monitor
	422390261800	DS.A
	422390261700	PQA
WEST RANCH A 267	422390261800	PQA
WEST RANCH A 209	422390261900	Monitor
WEST RANCH A 271	422390262000	IVIONITO
WEST RANCH A 272	422390262100	P&A
WEST RANCH A 273	422390262200	
	422390202300	PQA DQA
	422390262400	PQA DQA
	422390262500	Monitor
	422350202000	Monitor
	422390262700	DS.A
WEST RANCH A 280	422390262800	Monitor
	422390262900	
	422390263000	PQA
	422390263100	Monitor
	422390263200	Monitor
WEST RANCH A 285	422390263300	Nonitor
WEST RANCH A 280	422390263400	Nonitor
	422390263500	Monitor
	422390263600	
	422390263700	PQA DQA
	422390263800	PQA
WEST RANCH A 291	422390263900	PQA
	422390204000	PQA
	422390204100	
	422390204200	P&A
	422390204300	
	422390204400	PQA
WEST RAINCH A 237 MEST DANICH A 200	422330204300	P&A D9.A
	422330204000	P CLA D S. A
	422370204/00	PQA
WEST KANCH A SUU	422390264800	róa

WEST RANCH A 301	422390264900	Monitor
WEST RANCH A 302	422390265000	Monitor
WEST RANCH A 303	422390265100	P&A
WEST RANCH A 304	422390265200	P&A
WEST RANCH A 305	422390265300	OIL-Conventional
WEST RANCH A 306	422390265400	P&A
WEST RANCH A 307	422390265500	P&A
WEST RANCH A 308	422390265600	P&A
WEST RANCH A 309	422390265700	OIL-Conventional
WEST RANCH A 310	422390265800	Monitor
WEST RANCH A 311	422390265900	Monitor
WEST BANCH A 312	422390266000	P&A
WEST RANCH A 313	422390266100	P&A
WEST RANCH A 314	422390266200	Oll-Conventional
WEST RANCH A 315	422390266300	OIL-Conventional
WEST RANCH A 316	422390266400	P&A
WEST RANCH A 317	422390266500	P&A
WEST RANCH A 317	422390266600	P&A
WEST RANCH A 219	422390266700	P&A
	422350200700	P&A
	422390266800	Oll Conventional
	422390260900	Monitor
	422390267000	
	422390267100	PQA
WEST RANCH A 324	422390267200	PQA
WEST RANCH A 325	422390267300	P&A
WEST RANCH A 326	422390267400	IVIONITO
	422390267500	P&A
	422390207000	IVIONILOF
	422390267700	WSW DRA
	422350267800	PRA Oll Conventional
	422390267900	Monitor
	422390268000	Oll Conventional
	422390268100	
	422390268200	WSW
WEST RANCH A 336	422390268300	OIL-Conventional
WEST RANCH A 337	422390268400	IVIONITO
WEST RANCH A 338	422390268500	P&A
WEST RANCH A 339	422390268600	P&A
WEST RANCH A 340	422390268700	WSW
WEST RANCH A 341	422390268800	P&A
	422390268900	Nonitor
WEST RANCH A 345	422390269000	Monitor
WEST RANCH A 344	422390269100	INIONILOF
WEST RANCH A 345	422390269200	P&A
WEST RANCH A 345	422390269300	Ivionitor
WEST RANCH A 347	422390269400	OIL-Conventional
WEST RANCH A 348	422390269500	P&A
WEST RANCH A 349	422390269600	Wonitor
WEST RANCH A 350	422390269700	WSW
WEST RANCH A 351	422390269800	WSW
WEST RANCH A 352	422390269900	P&A
WEST KANCH A 353	422390270000	P&A
WEST RANCH A 354	422390270100	P&A

WEST RANCH A 355	422390270200	Monitor
WEST RANCH A 355-HR	422390270201	Monitor
WEST RANCH A 356	422390270300	P&A
WEST RANCH A 357	422390270400	Monitor
WEST RANCH A 358	422390270500	Monitor
WEST RANCH A 359	422390270600	P&A
WEST RANCH A 360	422390270700	Monitor
WEST RANCH A 361	422390270800	WSW
WEST RANCH A 362	422390270900	WSW
WEST BANCH A 363	422390271000	Monitor
WEST RANCH A 364	422390271100	Monitor
WEST RANCH A 365	422390271200	Monitor
WEST RANCH A 366	422390271300	Monitor
WEST RANCH A 360	422350271300	Monitor
	422390271400	Monitor
	422390271500	
WEST RANCH A 305	422390271000	PQA
WEST RANCH A 370	422390271700	IVIONITO
WEST RANCH A 371	422390271800	P&A
WEST RANCH A 372	422390271900	Monitor
WEST RANCH A 373	422390272000	OIL-CO2
WEST RANCH A 374	422390272100	OIL-Conventional
WEST RANCH A 375	422390272200	Monitor
WEST RANCH A 376	422390272300	Monitor
WEST RANCH A 377	422390272400	Monitor
WEST RANCH A 378	422390272500	Monitor
WEST RANCH A 379	422390272600	Monitor
WEST RANCH A 380	422390272700	P&A
WEST RANCH A 381	422390272800	P&A
WEST RANCH A 382	422390272900	Monitor
WEST RANCH A 383	422390273000	OIL-Conventional
WEST RANCH A 384	422390273100	Monitor
WEST RANCH A 385	422390273200	P&A
WEST RANCH A 386	422390273300	P&A
WEST RANCH A 387	422390273400	P&A
WEST RANCH A 388	422390273500	P&A
WEST RANCH A 389	422390273600	Monitor
WEST RANCH A 390	422390273700	P&A
WEST RANCH A 391	422390273800	Monitor
WEST RANCH A 392	422390273900	Monitor
WEST RANCH A 393	422390274000	Monitor
WEST RANCH A 394	422390274100	OIL-Conventional
WEST RANCH A 395	422390274200	P&A
WEST RANCH A 396	422390274300	P&A
WEST RANCH A 397	422390274400	Monitor
WEST RANCH A 398	422390274500	Monitor
WEST RANCH A 399	422390274600	Monitor
WEST RANCH A 400	422390274700	P&A
WEST RANCH A 401	422390274800	INJ
WEST RANCH A 402	422390274900	P&A
WEST RANCH A 403	422390275000	OIL-Conventional
WEST RANCH A 404	422390275100	P&A
WEST RANCH A 405	422390275200	Monitor
WEST RANCH A 406	422390275300	P&A

WEST RANCH A 407	422390275400	P&A
WEST RANCH A 408	422390275500	P&A
WEST RANCH A 409	422390275600	P&A
WEST RANCH A 410	422390275700	P&A
WEST RANCH A 411	422390275800	Monitor
WEST RANCH A 412	422390275900	OIL-Conventional
WEST BANCH A 413	422390276000	OIL-Conventional
WEST BANCH A 414	422390276100	Ρ&Δ
WEST BANCH A 415	422390276200	Monitor
WEST RANCH A 416	422390276300	P&A
WEST RANCH A 417	422390276400	Monitor
WEST BANCH A 419	422390276500	Monitor
WEST RANCH A 419	422390276600	Monitor
WEST RANCH A 415	422350276000	Monitor
	422390276700	DS.A
	422390276800	PQA DQA
WEST RANCH A 422	422390276900	PQA
WEST RANCH A 423	422390277000	P&A
	422390277100	P&A
WEST RANCH A 425-ST	422390277201	OIL-Conventional
WEST RANCH A 426-ST	422390277301	P&A
WEST RANCH A 427	422390277400	Monitor
WEST RANCH A 428	422390277500	Monitor
WEST RANCH A 429	422390277600	Monitor
WEST RANCH A 430	422390277700	Monitor
WEST RANCH A 431	422390277800	Monitor
WEST RANCH A 432	422390277900	P&A
WEST RANCH A 433	422390278000	Monitor
WEST RANCH A 434	422390278100	Monitor
WEST RANCH A 435	422390278200	P&A
WEST RANCH A 436	422390278300	P&A
WEST RANCH A 437	422390278400	Monitor
WEST RANCH A 439	422390278500	Monitor
WEST RANCH A 440	422390278600	P&A
WEST RANCH A 441	422390278700	P&A
WEST RANCH A 442	422390278800	P&A
WEST RANCH A 443	422390278900	OIL-Conventional
WEST RANCH A 444	422390279000	Monitor
WEST RANCH A 445	422390279100	Monitor
WEST RANCH A 446	422390279200	P&A
WEST RANCH A 447	422390279300	Monitor
WEST RANCH A 448	422390279400	Monitor
WEST RANCH A 449-OH	422390279599	P&A
WEST RANCH State 2	422390279700	Monitor
WEST RANCH A 233	422390279800	Monitor
DRUMMOND JH 1	422390280400	Monitor
DRUMMOND JH 2	422390280500	Monitor
DRUMMOND 3	422390280600	OIL-Conventional
DRUMMOND 4	422390280700	P&A
DRUMMOND 6	422390280800	Monitor
DRUMMOND 7	422390280900	Monitor
TONFY 1	422390281100	Monitor
TONEY 2	422390281200	P&A
TONEY 3	422390281300	Monitor
IONEIJ	722330201300	women

TONEY 4	422390281400	P&A
TONEY 5	422390281500	P&A
TONEY 6	422390281600	Monitor
TONEY 7	422390281700	Monitor
TONEY 8	422390281800	Monitor
TONEY 9	422390281900	P&A
TONEY 10 (aka WRGSU 310)	422390282000	P&A
TONEY 11	422390282100	P&A
TONEY 12	422390282200	P&A
TONEY 13	422390282300	P&A
TONEY 14	422390282400	P&A
TONEY 15	422390282500	P&A
TONEY 16	422390282600	P&A
TONEY 17	422390282700	P&A
TONEY 19	422390282900	P&A
TONEY 20	422390283000	Monitor
TONEY 21	422390283100	P&A
TONEY 22	422390283200	P&A
TONEY 24	422390283400	P&A
TONEY 26	422390283500	P&A
TONEY 28	422390283600	P&A
TONEY 25	422390283700	P&A
TONEY 28	422390283800	P&A
TONEY 29	422390283900	P&A
TONEY 30	422390284000	P&A
TONEY 31	422330284000	D&A
TONEY 32	422390284200	P&A
TONEY 32	422390284300	Monitor
TONEY 35	422390284300	P&A
TONEY 34	422390284400	Monitor
TONEY 36	422390284600	Monitor
TONEY 37	422390284700	Monitor
TONEY 38	422390284800	Monitor
TONEY 29	422330284800	D.A
TONEY 40	422350284500	D&A
TONEY 41	422390285100	Monitor
TONEY 42	422390285200	P&A
TONEY 42	422350285200	D&A
TONEY 44	422390285400	P&A
TONEY 45	422390285500	P&A
TONEY 46	422390285600	P&A
TONEY 47	422390285700	P&A
TONEY 49	422390285900	P&A
TONEY 50	422350285500	D&A
TONEY 51	422390286000	P&A
TONEY 52	422350200100	D.A
	422330200200	DS.A
	422330280300	P&A D&A
	422390280400	PQA
	422370200300	PQA DPA
	422390286600	P&A
	422390286700	P&A
	422350286800	PGA
IONEY 61	42239028/100	P&A

TONEY 62	422390287200	P&A
TONEY 63	422390287300	P&A
TONEY 65	422390287500	Monitor
TONEY 66	422390287600	P&A
TONEY 67	422390287700	P&A
TONEY 69	422390287800	P&A
TONEY 71	422390287900	P&A
TONEY 72	422390288000	P&A
TONEY 73	422390288100	Monitor
TONEY 74	422390288200	P&A
TONEY 75	422390288300	P&A
TONEY 76 (D & F)		
(aka WRGSU 376)	422390288400	P&A
TONEY 77	422390288500	Monitor
TONEY 78	422390288600	P&A
TONEY 79	422390288700	P&A
VANDERBILT STATE 1	422390288800	P&A
VANDERBILT STATE 5	422390288900	Monitor
VANDERBILT STATE 2	422390289000	Monitor
VANDERBILT STATE 3	422390289100	P&A
VANDERBILT STATE 6	422390289200	Monitor
VANDERBILT STATE 4	422390289300	P&A
VANDERBILT STATE 7	422390289400	Monitor
VANDERBILT STATE 8	422390289500	P&A
VANDERBILT STATE 9	422390289600	Monitor
VANDERBILT STATE B 10	422390289700	Monitor
VANDERBILT STATE 11	422390289800	P&A
VANDERBILT STATE 13	422390290000	P&A
VANDERBILT STATE 14 (aka WRGSU 414)	422390290100	P&A
VANDERBILT STATE 15	422390290200	P&A
VANDERBILT STATE 17	422390290400	Monitor
VANDERBILT STATE 19	422390290600	P&A
VANDERBILT STATE 20	422390290700	P&A
VANDERBILT STATE 21	422390290800	P&A
VANDERBILT STATE 22	422390290900	Monitor
VANDERBILT STATE 24	422390291000	P&A
VANDERBILT STATE B 1	422390291100	P&A
VANDERBILT STATE B 2	422390291200	P&A
VANDERBILT STATE B 3	422390291300	P&A
VANDERBILT STATE B 4	422390291400	P&A
VANDERBILT STATE B 5	422390291500	P&A
VANDERBILT STATE B 6	422390291600	Monitor
VANDERBILT STATE B 7 OH	422390291700	Monitor
VANDERBILT STATE B 8	422390291800	Monitor
VANDERBILT STATE B 9	422390291900	P&A
VANDERBILT STATE 10	422390292000	P&A
VANDERBILT STATE B 11	422390292100	P&A
MENEFEE BAYOU STATE 1	422390293500	P&A
MENEFEE BAYOU STATE 3	422390293600	P&A
MENEFEE BAYOU STATE 4	422390293700	Monitor
MENEFEE BAYOU STATE B 1	422390293800	P&A
MENEFEE BAYOU STATE B 2	422390293900	P&A
MENEFEE BAYOU STATE B 4	422390294100	P&A

MENEFEE BAYOU STATE 2	422390294300	P&A
WEST RANCH A 253	422390337700	P&A
TONEY 80	422390349700	P&A
TONEY 81	422390349800	P&A
TONEY 82	422390349900	Monitor
TONEY 84	422390362800	P&A
TONEY 83	422390365300	Monitor
WEST RANCH A 455	422390365400	Monitor
WEST RANCH A 462	422390365500	P&A
WEST RANCH A 460	422390366100	OIL-Conventional
WEST RANCH A 461	422390366200	Monitor
WEST RANCH A 458	422390366300	P&A
WEST BANCH A 458 OH	422390366399	P&A
VANDERBILT STATE 25	422390366700	P&A
VANDERBILT STATE 26	422390366800	P&A
MENEEFE BAYOU STATE B 5 (aka WRGSU 205E)	422390367900	P&A
	422390368000	D&A
	422390308000	P&A D&A
	422390308300	Monitor
	422390308400	Monitor
	422390366300	
	422390309700	PQA
IUNET 87	422390377800	P&A
WRSOGU 1-2	422390382800	Ivionitor
WRSOGU 2-2	422393282500	IVIONITO
WRSOGU 1-3	422390384400	P&A
WRSOGU 2-3	422393282400	Monitor
WRSOGU 1-4	422390384600	P&A
	422390386100	Ivionitor
	422390393300	Ivionitor
WEST RANCH A 453	422390393900	OIL-Conventional
	422390394200	IVIONITO
VANDERBILT STATE 27	422392028000	P&A
WRSOGU 1-6	422393000300	Monitor
WEST RANCH A 469	422393006100	P&A
WRSOGU 1-7	422393007100	Oil-Conventional
WRSOGU 1-8	422393009500	P&A
WRSOGU 2-1	422393010100	P&A
WRSOGU 1-10	422393011100	Monitor
WRASOGU 1-11	422393011300	P&A
WEST RANCH A 471	422393017500	P&A
WEST RANCH A 472	422393017600	Monitor
WEST RANCH A 473	422393020700	P&A
WEST RANCH A 474	422393022100	P&A
DRUMMOND JH 1E	422393033400	Monitor
VANDERBILT STATE 28	422393036500	Monitor
WEST RANCH A 476	422393038000	P&A
TONEY 89	422393038500	Monitor
WEST RANCH A 477	422393054200	Monitor
WEST RANCH A 482	422393082600	OIL-Conventional
WEST RANCH A 478	422393082800	Monitor
WEST RANCH A 479	422393082900	Monitor
WEST RANCH A 480	422393083000	Monitor
WEST RANCH A 484	422393118900	P&A

WEST RANCH A 483	422393119000	Monitor
WEST RANCH A 481	422393124000	P&A
WEST RANCH A 485	422393124100	Monitor
WEST RANCH A 488	422393124900	Monitor
WEST RANCH A 487	422393125000	P&A
WEST RANCH A 486	422393125100	P&A
WEST RANCH A 489	422393125200	Monitor
WEST RANCH A 491	422393125300	Monitor
WEST RANCH A 490	422393125400	Monitor
WEST RANCH A 492	422393125500	OIL-CO2
WEST RANCH A1 ERD	422393161500	P&A
WEST RANCH A 493	422393163300	Monitor
WEST RANCH A 496	422393168300	Monitor
WEST RANCH & 495	422393168400	Monitor
WEST RANCH A 493	422393197600	P&A
WEST RANCH A 494	422393200700	Monitor
WEST RANCH A 501	422393200800	Monitor
WEST RANCH A 501	422393200800	Monitor
WEST RANCH A 502	422393200900	Monitor
	422353201000	DS.A
WEST RANCH A 503	422393201200	Oll-Conventional
WEST RANCH A 504	422393201300	Monitor
	422353201400	
WEST RANCH A 507	422393201500	PQA
	422393201600	PQA
	422393213100	Nonitor
	422393213401	
	422393213000	
WEST RANCH A 512	422353220500	Monitor
WEST RANCH A 514	422393221500	Monitor
WEST RANCH A 515	422393222400	P&A
WEST RANCH & 516	422393223000	Monitor
WEST RANCH A 510	422393224900	WSW
WEST RANCH & 520	422393228600	Monitor
WEST RANCH & 518	422393235400	Monitor
WEST RANCH A 523	422393236800	Monitor
WEST RANCH A 519	422393237000	Monitor
WEST RANCH A 521	422393237200	P&A
WEST RANCH A 522	422393237800	Monitor
WEST RANCH Unit 1-1	422393241600	Monitor
TONEY 91	422393244500	Monitor
WEST RANCH A 524	422393245900	P&A
WEST RANCH Unit 1-2	422393251300	Monitor
WEST RANCH A 525	422393256600	P&A
WEST RANCH A 526	422393257400	P&A
WEST RANCH A 527	422393258100	Monitor
WEST RANCH A 528	422393258300	Monitor
WEST RANCH A 529	422393260100	OIL-Conventional
WEST RANCH A 531	422393260200	Monitor
WEST RANCH A 530	422393260400	Monitor
WEST RANCH A 533 H	422393270000	Monitor
WRSOGU 1-15	422393273500	Monitor
WRSOGU 1-14	422393276000	Oil-Conventional

DRUMMOND-SUPERIOR 8 (aka 3M-8)	422393289500	Monitor
WEST RANCH A 534 H	422393290600	Monitor
WEST RANCH A 535 H	422393290700	Monitor
WEST RANCH A 539 H	422393296000	Monitor
WEST RANCH A 538 H	422393296100	Monitor
WEST RANCH A 536	422393296200	P&A
WEST RANCH A 537 H	422393296300	Monitor
WEST RANCH A 540 H	422393314800	Monitor
WEST RANCH A 541 H	422393318900	WSW
WEST RANCH A 545 H	422393320700	Monitor
WRSOGU 1-17	422393353800	Oil-Conventional
ASHLEY ANN 1	422393356100	OIL-Conventional
WRSOGU 1-18	422393356300	Oil-Conventional
WRSOGU 1-19	422393356400	Oil-Conventional
DRUMMOND JH 3M	422393356900	OIL-Conventional
ASHLEY ANN 2	422393357600	OIL-Conventional
WEST RANCH A 600	422393358000	INJ
WEST RANCH A 601	422393358100	OIL-Conventional
ASHLEY ANN 3	422393358500	OIL-Conventional
WEST RANCH A 602	422393358600	Monitor
3M-2	422393358900	OIL-Conventional
3M-3	422393359900	Monitor
WEST RANCH A 1129	422393362600	INJ
WEST RANCH A 1131	422393362700	INJ
WEST RANCH A 1133	422393363200	INJ
WEST BANCH A 1104	422393363400	SI-CO2
WEST RANCH A 1089	422393363600	INJ
WEST RANCH A 1059	422393365200	OIL-CO2
WEST RANCH A 2119	422393365300	OIL-CO2
WEST RANCH A 1035	422393365400	INJ
WEST RANCH A 2057	422393365500	INJ
WEST RANCH A 1002	422393365600	OIL-CO2
WEST RANCH A 1036	422393365700	INJ
WEST RANCH A 1060	422393365800	INJ
WEST RANCH A 1061	422393365900	OIL-CO2
WEST RANCH A 1003	422393366000	INJ
WEST RANCH A 1004	422393366100	INJ
WEST RANCH A 2020	422393366200	OIL-CO2
WEST RANCH A 2052	422393366300	OIL-CO2
WEST RANCH A 2029	422393366400	INJ
WEST RANCH A 1005	422393366500	INJ
WEST RANCH A 1037	422393366600	INJ
WEST RANCH A 1007	422393366700	INJ
WEST RANCH A 1062	422393366800	INJ
WEST RANCH A 1006	422393366900	INJ
WEST RANCH A 2121	422393367000	OIL-CO2
WEST RANCH A 1038	422393367100	OIL-CO2
WEST RANCH A 1009	422393367200	INJ
WEST RANCH A 1008	422393367300	OIL-CO2
WEST RANCH A 2065	422393367400	OIL-CO2
WEST RANCH A 2021	422393367500	OIL-CO2
WEST RANCH A 1010	422393367600	OIL-CO2
WEST RANCH A 1011	422393367700	INJ

WEST RANCH A 1012	422393367800	INJ
WEST RANCH A 1013	422393367900	INJ
WEST RANCH A 2150	422393368100	OIL-CO2
WEST RANCH A 1014	422393368300	INJ
WEST RANCH A 1015	422393368400	INJ
WEST RANCH A 1016	422393368500	OIL-CO2
WEST RANCH A 1017	422393368600	INJ
WEST RANCH A 1019	422393368700	INJ
WEST RANCH A 1018	422393368800	INJ
WEST RANCH A 2030	422393368900	OIL-CO2
WEST BANCH A 2053	422393369000	011-002
WEST BANCH & 2055	422393369100	011-002
WEST BANCH A 1020	422393369200	011-002
WEST RANCH A 1020	422393369300	
WEST RANCH A 1040	422393369400	INI
WEST RANCH A 1040	422333369500	INI
WEST DANCH A 1003	422333305300	
	422393309000	
	422393309700	
	422393309800	011-002
	422393369900	UIL-CU2
WEST RANCH A 1022	422393370100	
WEST RANCH A 1023	422393370200	
WEST RANCH A 1021	422393370300	INJ
WEST RANCH A 1024	422393370400	INJ
WEST RANCH A 1064	422393370500	INJ
WEST RANCH A 1065	422393370600	INJ
WEST RANCH A 1069	422393370700	INJ
WEST RANCH A 1070	422393370800	
WEST RANCH A 10/1	422393370900	INJ
WEST RANCH A 1072	422393371000	
WEST RANCH A 1073	422393371100	
WEST RANCH A 2048	422393371200	011-002
WEST RANCH A 2170	422393371300	UIL-CU2
WEST RANCH A 1041	422393371400	
WEST RANCH A 2027	422393371800	OIL-CO2
WEST RANCH A 1066	422393371900	INJ
WEST RANCH A 2034	422393372200	OIL-CO2
WEST RANCH A 1044	422393372300	INJ
WEST RANCH A 1043	422393372400	INJ
WEST RANCH A 1117	422393372500	OIL-Conventional
WEST RANCH A 1116	422393372600	INJ
WEST RANCH A 1055	422393372700	INJ
WEST RANCH A 1056	422393372800	INJ
WEST RANCH A 1057	422393372900	INJ
WEST RANCH A 1113	422393373000	INJ
WEST RANCH A 1054	422393373100	INJ
WEST RANCH A 1053	422393373200	INJ
WEST RANCH A 1052	422393373300	INJ
WEST RANCH A 2047	422393373400	OIL-CO2
WEST RANCH A 2036	422393373500	OIL-CO2
WEST RANCH A 2169	422393373600	OIL-CO2
WEST RANCH A 2179	422393373700	OIL-CO2
WEST RANCH A 2118	422393373800	OIL-CO2

WEST RANCH A 1074	422393373900	INJ
WEST RANCH A 2184	422393374000	OIL-CO2
WEST RANCH A 2014	422393374100	OIL-CO2
WEST RANCH A 2168	422393374200	OIL-CO2
WEST RANCH A 2026	422393374300	OIL-CO2
WEST RANCH A 2028	422393374400	OIL-CO2
WEST RANCH A 2054	422393374500	OIL-CO2
WEST RANCH A 2180	422393374600	OIL-CO2
WEST RANCH A 2035	422393374800	OIL-CO2
WEST RANCH A 2037	422393374900	OIL-CO2
WEST RANCH A 2124	422393375000	OIL-CO2
WEST RANCH A 1045	422393375100	OIL-CO2
WEST RANCH A 2056	422393375200	OIL-CO2
WEST BANCH A 1067	422393375300	INI
WEST BANCH A 1046	422393375400	INI
WEST BANCH A 1075	422393375500	INI
WEST RANCH A 2165	422393375600	011-002
WEST RANCH A 1110	422333375000	
WEST RANCH A 2058	422333375700	SI-CO2
	422333373800	011 CO2
	422393373900	011-002
	422393370000	011-002
	422393370100	
	422393376200	INJ
WEST RANCH A 1029	422393376300	
	422393376400	UIL-CU2
	422393376500	INJ
	422393376600	
	422333370700	011-002
	422333370000	
	422393370900	
	422333377000	
WEST RANCH A 2120	422333377100	
WEST RANCH A 2120	422333377200	011-002
WEST RANCH A 2101	422333377300	
WEST RANCH A 2038	422393377400	011-002
WEST BANCH A 2000	422393377600	011-002
WEST BANCH A 1081	422393377700	
WEST RANCH A 2039	422393377800	OIL-CO2
WEST RANCH A 1082	422393377900	INJ
WEST RANCH A 2045	422393378000	OIL-CO2
WEST RANCH A 1083	422393378100	OIL-CO2
WEST RANCH A 1080	422393378200	INJ
WEST RANCH A 2189	422393378400	OIL-CO2
WEST RANCH A 2190	422393378700	OIL-CO2
WEST RANCH A 2063	422393378900	OIL-CO2
WEST RANCH A 2062	422393379000	OIL-CO2
WEST RANCH A 2046	422393379100	OIL-CO2
WEST RANCH A 1106	422393379200	OIL-CO2
WEST RANCH A 1105	422393379300	OIL-CO2
WEST RANCH A 1048	422393379400	INJ
WEST RANCH A 1047	422393379700	OIL-CO2
WEST RANCH A 2061	422393379800	SI-CO2

WEST RANCH A 1107	422393379900	OIL-CO2
WEST RANCH A 2059	422393380000	OIL-Conventional
WEST RANCH A 2060	422393380100	OIL-Conventional
WEST RANCH A 1111	422393380200	SI-CO2
WEST RANCH A 1112	422393380300	SI-CO2
WEST RANCH A 2075	422393380400	SI-CO2
WEST RANCH A 1025	422393380700	INJ
WEST RANCH A 1028	422393380800	INJ
WEST RANCH A 2050	422393380900	OIL-CO2
WEST RANCH A 2166	422393381000	OIL-CO2
WEST RANCH A 1027	422393381100	INJ
WEST RANCH A 2001	422393381200	OIL-CO2
WEST RANCH A 2153	422393381300	OIL-CO2
WEST BANCH A 1030	422393381400	
WEST BANCH & 1051	422393381500	INI
WEST RANCH A 1051	422393381600	INI
WEST RANCH A 2050	422393381700	011-002
	422333381700	τΛ
WEST RANCH A 2009	422333381800	011-002
	422333381300	011-002
WEST RANCH A 2015	422333382000	
WEST RANCH A 2006	422333382100	
WEST DANCH A 1059	422353382200	
	422535562500	
WEST RANCH A 1119	422393382400	INJ
WEST RANCH A 1120	422393382500	
WEST RANCH A 2008	422393382600	UIL-CU2
WEST RANCH A 1092	422393382700	INJ
WEST RANCH A 1140	422393382800	
WEST RANCH A 2094	422393382900	
	422595565000	
	422393363100	
	422393383200	
WEST RANCH A 2193	422393383300	011-002
WEST RANCH A 2192	422393383400	011-002
WEST RANCH A 2191	422393383500	011-002
WEST RANCH A 2016	422393383700	011-C02
WEST RANCH A 2017	422393383800	011-002
WEST RANCH A 2175	422393383900	011-C02
WEST RANCH A 2176	422393384000	011-C02
WEST RANCH A 21/7	422393384100	OIL-CO2
WEST RANCH A 2127	422393384200	OIL-CO2
WEST RANCH A 2031	422393384300	011-C02
WEST RANCH A 2032	422393384400	OIL-CO2
WEST RANCH A 2033	422393384500	OIL-CO2
WEST RANCH A 2049	422393384600	OIL-CO2
WEST RANCH A 1087	422393385300	SI-CO2
WEST RANCH A 2025	422393385400	OIL-CO2
WEST RANCH A 2041	422393385500	OIL-CO2
WEST RANCH A 2043	422393385600	SI-CO2
WEST RANCH A 1088	422393386000	INJ
WEST RANCH A 2125	422393386100	OIL-CO2
WEST RANCH A 2018	422393386200	OIL-CO2
WEST RANCH A 2196	422393386300	OIL-CO2

WEST RANCH A 2195	422393386400	OIL-CO2
WEST RANCH A 1121	422393386800	INJ
WEST RANCH A 1130	422393386900	INJ
WEST RANCH A 2092	422393387000	OIL-CO2
WEST RANCH A 2090	422393387100	OIL-CO2
WEST RANCH A 2197	422393387600	OIL-CO2
WEST RANCH A 2198	422393387900	OIL-CO2
WEST RANCH A 2019	422393388100	SI-CO2
WEST RANCH A 2073	422393388300	SI-CO2
WEST RANCH A 1109	422393388700	SI-CO2
WEST RANCH A 1154	422393389100	SI-CO2
WEST RANCH A 2089	422393390100	OIL-CO2
WEST RANCH A 1122	422393390200	INJ
WEST RANCH A 1123	422393390300	INJ
WEST RANCH A 1124	422393390700	INJ
WEST RANCH A 1125	422393390800	INJ
WEST RANCH A 2081	422393390900	OIL-CO2
WEST RANCH A 900 ST	422393392300	OIL-Conventional
WEST RANCH A 902	422393392400	OIL-Conventional
WEST RANCH A 904	422393393400	OIL-Conventional
WEST RANCH A 908	422393393600	OIL-Conventional
WEST RANCH A 500	422398062200	P&A
DRUMMOND JH 10	422398062400	P&A
VANDERBILT STATE 18	422398062700	P&A
VANDERBILT STATE 16	422398066500	P&A
TONEY 18	422398082200	P&A
TONEY 48	422398112500	P&A
VANDERBILT STATE 12	422398127200	P&A
WEST RANCH A 475	422398146700	P&A
WEST RANCH A 913	422393393800	OIL-Conventional
WEST RANCH A 912	422393393900	ТА
WRSOGU 1-12	TBD	P&A
WRSOGU 1-13	TBD	P&A
WRSOGU 1-16	TBD	P&A
WRSOGU 1-20	TBD	P&A

P&A: Plugged and Abandoned Well INJ: Injection Well SI: Shut-in Well TA: Temporarily Abandoned Well

WSW: Water Source Well