

USEEIO National Models and Applications

Wesley Ingwersen, EPA/ORD/CESER

Disclaimer

The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and conducted the research described herein under an approved Quality Assurance Project Plan (K-LRTD-0030017-QP-1-3). It has been subjected to the Agency's peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

SHC 7 - LCIM

7.1. USEEIO Models

7.2. Data and Methods to Advance Facts & Figures

7.3. USEEIO Applications

7.4. Food Waste

Outline

- 1. Overview
- 2. Uses
- 3. Tools to build USEEIO and components
- 4. Accessing USEEIO
- 5. Applications
 - Supply Chain GHG Factors
 - SMM Tools
 - Sustainable Communities Web Challenge
- 6. Vision in Support of EPA SMM Program
- 7. Work in Progress
- 8. Collaborators and Team

USEEIO Models

A family of environmentally-extended input-output (EEIO) models of the US

- Depict environmental and economic performance of all commodities and industries in the US in 400+ or 70+ categories
- Track >2000 unique releases or resource types
- Report 20+ environmental, resource and socio-economic impact indicator scores
- Built on >10 million data points
- Include formal data quality characterization of results
- Open source data and modeling framework
- Most recent version (v2.0)
- <u>Technical article for USEEIOv1</u> and <u>slide overview</u>

USEEIO Versions

Name	Model Form*	# of Sectors	Input- Output Data Year	USD Year	Indicators §	Availability
USEEIOv2.0	Commodity	411	2012	2012	ACID, CCDD, CMSW, CRHW, ENRG, ETOX, EUTR, GHG, HAPS, HCAN, HNCN, HRSP, HTOX, JOBS, LAND, MNRL, NNRG, OZON, PEST, RNRG, SMOG, VADD, WATR	full matrices
USEEIOv1.2	Commodity	386	2007	2013	ACID, CCDD, CMSW, CRHW, ENRG, ETOX, EUTR, GHG, HAPS, HCAN, HNCN, HRSP, HTOX, JOBS, LAND, METL, MNRL, NNRG, OZON, PEST, RNRG, SMOG, VADD, WATR	<u>waste satellite</u> <u>tables</u> <u>API</u>
USEEIOv1.1	Commodity	385	2007	2013	see indicators in <u>elementary flows and</u> indicators	full matrices elementary flows and indicators satellite tables openLCA
USEEIOv1	Commodity	385	2007	2013	see indicators in <u>elementary flows and</u> indicators	Not available

Full details on <u>USEEIO Technical contents page</u>

USEEIO Uses at EPA

Existing

 <u>Sustainable Materials</u> <u>Management Prioritization Tools</u>

In Development

- GHG Emission Factors Hub
- <u>Recycling Economic Information</u> <u>Report</u>
- WARM
- <u>GHG Reductions Through</u> <u>Materials and Land Management</u>
- <u>Smart Sectors Program</u>

Growing Uses of USEEIO

Common Uses of USEEIO

Use Type	Examples
Organizational GHG Scope 3 reporting	<u>General Motors 2021 Carbon Disclosure Report</u> , <u>World</u> <u>Resources Institute GHG Inventory</u>
Sustainable purchasing	Jora app, Alamaeda County Supply Chain Sustainability Report
Industry hotspot analysis	Health Care Pollution And Public Health Damage In The United States
Food and other subsystem life cycle modeling	Integrating Social and Biophysical Models for Exploration of Urban Food, Energy, and Water Systems, Potential Socioeconomic and Environmental Effects of an Expanding US Bioeconomy
Background LCI data for LCA studies and teaching	UMich EAS 573
Footprinting (individual, org, community or region)	Amazon Carbon Footprint

Principal Tools for National Model

1.<u>useeior</u> - Model specification, import of econ data, assembly, calculation
 2.<u>flowsa</u> - Environmental/employment data preparation
 3.<u>LCIAformatter</u> - Indicator data preparation

Model Formats

- 1. useeior and supporting ecosystem tools
- 2. USEEIO API
- 3. USEEIO widgets
- 4. Excel
- 5. openLCA version

USEEIO Excel - Outlet

						ŕ.
1	•	•	•	•	1	14
			:		L	
					L	
	•		n		L	
		1	•	-		

m Publisher

U.S. EPA Office of Research and Development (ORD)

USEEIOv2.0

Metadata Updated: June 25, 2021

This dataset provides the waste sector disaggregation data, model component matrices, model result matrices, model price adjustment matrices, and associated metadata for the USEEIOv2.0 model. This model was generated using useeiorv0.4 (https://github.com/USEPA/useeior/tree/v0.4/) by calling the buildModel() function and passing "USEEIOv2.0" as the model. This uses the model configuration file, which can be found @ https://github.com/USEPA/useeior/blob/v0.4/inst/extdata/modelspecs/USEEIOv2.0.yml. The resulting model was exported using the writeModeItoXLSX() function to create this dataset. The waste disaggregation data are required for model building and also embedded in the useeiorv0.4. The generateModeIIdentifier() function was used on the same model create the model identifier. The US dollar (USD) year for the model data, where USD is used, is 2012. See any additional notes in Contents on specific components. A complete description can be found in the associated manuscript.

USEEIO Excel - A matrix

,	AutoSave 🧿	off 🛱	9 ° C	~ f ~ :	~	USEEIOv2.(0.xlsx A ^Q -	Last Modifi	ed: June 24	•	D Sea	arch				
Fi	le Hon	ne Inse	ert Drav	w Page	Layout	Formulas	Data	Review	View	Help	Acrobat					
Pa	Cut	y ~	Calibri	U ~ 💷	~ 11 ~ /			≫~~ e	b Wrap Text	Center v	General	. ۵.۹	Cond	itional Form	Normat as Bad	mal 2 2
	 ✓ Sorr Clipboar 	mat Painter d	_	Eont		<u> </u>	- = =	Alianmer	a merge oc	Center •	.p ° ∕o Nun	ען ע.00 →	Forma	tting ∽ Tab	ole v	Styles
A1		- 	x 🗸	f _x												
	А	В	С	D	E	F	G	н	I.	J	K	L	м	N	0	Р
1		1111A0/U	1111B0/US	111200/US	111300/US	111400/US	111900/US	112120/US	1121A0/U	112300/US	112A00/U	113000/US	114000/US	115000/US	211000/US	212100/US
2	1111A0/U	0.052092	0.001397	0.000203	0	0	0	0	0	0	0	-3.3E-06	0	0.000474	0	0
3	1111B0/US	0	0.073033	0	0	2.4E-08	0.009443	0.051184	0.079851	0.04653	0.007668	0.000656	3.63E-06	0.004115	0	0
4	111200/US	0	0	0.04384	0.000194	3.03E-08	0	0	0	0	6.33E-07	3.61E-06	1.7E-06	0.00029	0	0
5	111300/US	0	0	0	0.005744	2.91E-09	0	0	0	0	2.3E-07	1.31E-06	6.18E-07	3.89E-05	0	0
6	111400/US	0	0	0	0	0.159081	0	0	0	0	2.99E-05	0.00017	8.03E-05	0.011122	0	0
7	111900/US	0.009096	0.00144	0	0	1.21E-09	0.026621	0.004705	0.003813	0	0.000524	0.001685	3.56E-06	0.000373	2.09E-08	5.51E-05
8	112120/US	0	0	0	0	3.15E-09	0	0	0	0	7.47E-05	5.38E-07	0	5.43E-07	0	0
9	1121A0/U	0.000774	0.002122	0.000203	0.000815	0.00053	0.00048	0.047318	0.288066	0	0.008214	8.94E-05	0	0.007464	0	0
10	112300/US	0.000211	0	0	0	4.36E-09	5.33E-05	0	0	0.101708	2.96E-06	2.02E-05	7.96E-06	0.001211	0	0
11	112A00/U	0.000492	0.001267	6.78E-05	0.000388	0.000266	0.001014	0.00338	0.006402	0	0.126052	0.001303	2.71E-06	0.014046	0	0

USEEIO in openLCA

Accessible via Federal LCA Commons

USEEIO API

USEEIO-API

Base URL: /api, Version: 1.0.2, The USEEIO API Wiki on github provides more information on using the API.

A RESTful API that provides access to versions of the USEEIO models. Results are returned as JSON objects.

Schemes: http

Summary

Path	Operation	Description
/models	GET	Get the available models from the server.
/{model}/calculate	POST	Calculate the result for a given demand and perspective.
/{model}/demands	GET	Returns a list with all available demand vectors from a model
/{model}/demands/{demandID}	GET	Returns a demand vector from the model
/{model}/indicators	GET	Get all indicators of the model.
/{model}/indicators/{indicatorID}	GET	Get indicator information by ID.
/{model}/matrix/A	GET	Get the direct requirements matrix of the IO model.
/{model}/matrix/B	GET	Get the satellite matrix of the IO model.

USEEIO Widgets

Upstream	Commodities	Downstream
Search	= Search	Search
Primary iron, steel, and ferroalloy \$0.050 input per \$1 spent	Primary batteries Value Added: \$0.501 per \$1 spent	Speed changer \$0.258 output
Other secondary nonferrous meta \$0.034 input per \$1 spent	Mechanical power transmission equipr	Mechanical po \$0.145 output
Vehicle engines and engine parts \$0.033 input per \$1 spent	Automobiles Value Added: \$0.282 per \$1 spent	Heavy duty true \$0.097 output
Transmission and power train par \$0.025 input per \$1 spent	Customs duties	Other engine en \$0.077 output
Vehicle metal stamping \$0.021 input per \$1 spent	Household employees	Ships and ship \$0.059 output
Lids, jars, bottle caps, other meta \$0.021 input per \$1 spent	Tenant-occupied housing	Material handli \$0.041 output
Other vehicle parts \$0.021 input per \$1 spent	■ Independent artists, writers, and perfor — Value Added: \$0.877 per \$1 spent	Remediation se \$0.023 output
Motor vehicle and motor vehicle \$0.021 input per \$1 spent	Owner-occupied housing Value Added: \$0.870 per \$1 spent	Veneer, plywoo \$0.022 output
Vehicle seating and interior trim (\$0.021 input per \$1 spent	Wholesale electronic markets and ager	Primary batteri \$0.021 output
Company and enterprise manage \$0.018 input per \$1 spent	Sound recording Value Added: \$0.825 per \$1 spent	S0.019 output
1-10 of 411 <	➤ Rows per page: 10 ▼ 1-10 of 411	< >

Speed changers, industrial high-s \$0.258 output per \$1 spent	_
Mechanical power transmission e \$0.145 output per \$1 spent	—
Heavy duty trucks \$0.097 output per \$1 spent	-
Other engine equipment \$0.077 output per \$1 spent	-
Ships and ship repair \$0.059 output per \$1 spent	-
Material handling equipment \$0.041 output per \$1 spent	1.1
Remediation services \$0.023 output per \$1 spent	
Veneer, plywood, and engineered \$0.022 output per \$1 spent	
Primary batteries \$0.021 output per \$1 spent	
Hydraulic pumps, motors, cylinde \$0.019 output per \$1 spent	

Goods & Services

Search			2.PC	tentin	Potent	cototion cototion	20 58
ID	Name	Int	P ACO	eres	ENTOS	STOR HU	S.C.
111300	Fresh fruits and tree nuts						
112A00	Animal farms and aquaculture ponds (except cattle and poultry)						I
111200	Fresh vegetables, melons, and potatoes						l
212100	Coal						I
□ 1111B0	Fresh wheat, corn, rice, and other grains						I
111900	Tobacco, cotton, sugarcane, peanuts, sugar beets, herbs and spices, and other						I
311920	Coffee and tea						1
□ 1121A0	Cattle ranches and feedlots						I
221100	Electricity						1
221300	Drinking water and wastewater treatment						i

Impact chart with configuration

The settings box, sector list and indicator results are linked via a hash configuration on this page.

Model version USEEIOv1.2 ¥	S	uppy chain *	S v			
Sectors		Indicato	or results			
Search	n î	Acid Rain	Freshwater Aquatic Ecotoxicity			
Telephones	5	Eutrophication	Greenhouse Gases			
Vireless communications Abrasive products		Human Health - Respiratory Effects	Human Health Toxicity			
□ Accounting, tax preparation, bookkeeping, and " □ Adhesives		Ozone Depletion	Smog Formation			
Advertising and public relations		Energy Use	Land Use			
Air and gas compressors		Minerals and Metals Use	Water Use			
Air conditioning, reingeration, and warm an nearing		Commercial Municipal Solid Waste	Commercial RCRA Hazardous Waste			
□ Air transport □ Aircraft		Hazardous Air Pollutants	Metals			
Aircraft engines and parts All other converted paper products		Pesticides	Jobs Supported			
All other food and drinking places	-	Value Added				

USEEIO Widgets - About

- Drop-in components for displaying USEEIO model data for web pages open to anyone
- Created for web developers without the model/domain expertise to use USEEIO directly
- Simplify process of integrating model results
- Configurable to work with any USEEIO family model available on the USEEIO API

Widgets Links

- List of widgets with standalone implementation
- Example integration with local data

Widgets summarized in webinars

- Industry Comparison Tools for Sustainable Communities
- <u>SMM Prioritization and Web-Enabled Tools Session</u>

Applications

Supply Chain Factors (SEFs)

<u>Report</u>

Factors Dataset

National GHG Industry Attribution Model

Supply Chain Factors (SEFs) Details

GHGs Included

- CO₂
- CH₄
- N₂O
- Other GHGs (SF₆,NF₃,CFCs/HFCs)

Form of the Factors

kg of GHG per **\$** purchased of a commodity or from an industry

where \$ are in 2018 USD in purchaser price

Examples

0.467 kg CO_2 /\$ of farm commodities 0.008 kg CH_4 /\$ of fresh wheat, corn, rice and and other grains

0.21 kg CO_2 /\$ from the ship building industry

The Coverage of the Factors in the Product Life Cycle

Supply Chain Emission Factors with Margins

SEFs for CO₂ 2010-2016

SEFs for CO₂ 2016 Direct vs Indirect

Analysis Settings

Least Impactful

0

Most Impactful

Contact Us Share

Related Topics: Sustainable Materials Management

C

Selected

Potential Areas of Opportunity: US

The heatmap below shows goods & services (down the left side) ranked by overall environmental, human health and socioeconomic impacts (across the top) based on the selected analysis settings. Click a good or service name to learn more about it, click an indicator name to sort by that indicator, and check out the comparison analyses below the heatmap. Click a "What's this?" link for more information.

Point of Consumption, US, Full System, 2007, Consumption

- National **Prioritization Tool**

- Organizational Tool

																Tutorial V	Vhat's this? 🚺
			In	npact I	Potenti	al				Resour	ce Use		Wa	ste Gener	ated	Economi	c & Social
Search	ACID	ETOX	EUTR	GCC	HRSP	нтох	OZON	SMOG	ENRG	LAND	MINE	WATR	FOOD	HAZW	MSW	JOBS	VADD
Electricity																	
State and local genera																	
Gasoline, fuels, and b																	
Packaged meat (except																	
Limited-service restau																	
Single-family resident																	
Truck transport																	

Sustainable Communities Web Challenge 2021

A virtual <u>Federal Challenge</u> event that culminated on 10/2/2021 for web developers, designers and students to build off the <u>model.earth</u> <u>community</u> platform, awarding \$9,000 in prizes

Objective: To develop, customize and improve the look-and-feel of communityspecific web resources on model.earth that integrate the USEEIO widgets with other data sources useful to inform assessment of community sustainability.

Background

EPA Science Matters July 2020; SMARTer Together Industry Comparison Tools webinar

Challenge Partners

- EPA ORD and Region 4
- GA Economic Development Center for Innovation
- GDIT and Code for America

Challenge Winners

- <u>School-based sustainability</u> <u>initiatives, Loyola Chicago</u>
- <u>Āinaviz Data Viewer, Code for</u> <u>Hawaii</u>
- Impact Profiles for Communities, Abrie Badenhorst
- <u>Get Involved Within Your</u> <u>Community, Ryan Marohn</u>
- <u>Nature's Lifecycle: Parks and</u> <u>Recreation, Don Adams and Julie</u> <u>Bender</u>

A Sustainable Future

'Aina Vis is a public dataset of a historical index of 'aina organizations from 1968-2021 in Hawai', which are organizations dedicated to the concept of Aina (and, that which feeds) in Hawai'. This community page is an example of how the dataset can be utilized once downloaded from our public site, which is in progress.

The detract referenced have unre-correlative (CIA, Consula Examinities, and DOEAW)

Excerpted from the work -in-progress public site:

PROJECT INTRO: VAW transisted from "Oleio Hawa'i (Hewailan language) into English means land, or that which feeds. "VIS" is short to vision, and also means power, in meation to, as compared with, face-to-face with, together. This delased named Alma Vision is about "Bina power, Bina Face-fords, and Bina together.

This humble webpage is a start to a full website in the works, which currently serves as a preliminary public dataset of "lina organization; across Pie Aria (Hawilian biands) in a format that can be easily combined with other datasets to facilitate further research and inputy pertaining to time work.

While in the foure, a living directory of organizations working on Bina may emergie, for now our intent is to simply encourage the representation of Bina works at important contributors to public heath and economy in Hewail 4.4 a tool, the dataset may assist in recognizing the existing network of the organizations to fourthe partnerships with on-the-ground partners and efforts that can increase local capacity for climate resilience and outure resurgence noted for Fae Kina Hawaii by Fae Kina Hawaii.

A Community Effort

Community Footprints

See https://zctaimpacts.abrie.dev for a live demonstration.

Community/Region Profile	
New York	
Entire State	
Acidification Potential (kg SD2 eq)	6.8855962657429455
Commercial Construction and Demolition Debris ():	(i) 7004.062157397474
Commercial Municipal Solid Waste (kg)	657.7663178738074
Commercial RCRA Hazardous Waste (kg)	3.6794818186624094
Energy Use (MJ)	67276.183734039696
Eutrophication Potential (kg N eq)	0.7776218766983102
Freshwater Ecotoxicity Potential (CTUe)	94.34107930398355
Freshwater withdrawals (kg)	220160.22810425045
Greenhouse Gases (kg CO2 eq)	3334.319178412912
Hazardous Air Pollutants (kg)	0.0358583840353880
Hurson Health - Cancer (CTUR)	0.000005273823184721436
Human Health - Noncancer (CTUh)	0.000025574639113378654
Human Health - Respiratory Effects (kg PM2.5 eq)	8.294740833365275
Human Health Texicity (CTUH)	0.00003086525035951772
Jabs Supported (jobs)	0.2310726542010336
Land use (m2*yr)	3281.8703845938644
Minorals and Metals Use (kg)	29940.76405290348
Nonrenewable Energy Use (MJ)	305361.537102527
Ozone Depletion (kg CFC-11 eq)	0.00006760153079258387
Pesticides (kg)	0.00027758109641498905
Renewable Energy Use (MJ)	1192.608121783821
Smog Formation Potential (kg 03 eq)	163.7632367654907
Value Added (5)	29831.129462108656

USEEIO Supporting OLEM SMM Program - Building to Future

Work in progress with near-term delivery

- v1 release with peer-review documentation for supporting software:
 - useeior

nental Protection

- FLOWSA
- StEWI
- New technology addition to economy
- Electricity sector disaggregation
- Add model hybridization capability to useeior
- Update of <u>EPA's Systems-Based GHG Inventory</u>

Work in progress with medium-to-long term delivery

- Update national flow by industry models for:
 - GHGs
 - Nutrient releases
 - Pesticide releases
 - Mineral and materials use
 - Criteria and hazardous air pollutants
- Foreign import GHG coefficients for USEEIO commodities
- WARM-USEEIO
- Waste Input-Output (WIO) Model
- US food system model (see 'Food waste management applications...' presentation)
- Add final consumer (households, government) satellite tables

USEEIO Team

Mo Li, GDIT

Ben Young, ERG

Catherine Birney, EPA

Jorge Vendries, ERG

Léo Jan, GreenDelta

David Meyer, EPA

Loren Heyns, GA Center for Innovation

Wes Ingwersen, EPA

External Collaborators and Friends

Amazon Sustainability, ANL GREET team, BONSAI, Brightway LCA software, Cornell Food Environmental Data System Project, DataFEWSVision team, DOE Advanced Manufacturing Office Strategic **Energy Analysis Center, Georgia Center of Innovation, Federal LCA** Commons Working Group, NETL Energy Analysis Group, NREL BEIOM Team, National Capital Accounting Working Group, National Socio-Environmental Synthesis Center (SESYNC), Office of the Assistant Secretary of Defense for Sustainment, openLCA software, Sustainable Industrial-Natural Coupled Systems (SINCS) lab, USGS Materials Flow Analysis Section, USDA ERS Food Dollar Team, Thomas Group @ Georgia Tech, Yale Center for Industrial Ecology

Acknowledgements

USEEIO is primarily funded by the EPA's Sustainable and Healthy **Communities Research Program.** Additional funding came from the SERDP-ESTCP research program under project WP-2757. In addition to the research team members, substantial input has been provided by Priscilla Halloran and Jarrod Bridge. This research is supported through USEPA contract HHSN316201200013W, Task Order EP-G16H-01256 with General Dynamics IT (GDIT) and contract EP-C-16-015, Task Order 68HERC19F0292 with Eastern Research Group (ERG). Sarah Cashman and Bill Michaud assist with project management. Jorge Rangel and Bhagya Subramanian assist with EPA contract support. Jill Hoelle and Daniel Young provide QA support.

Bibliography

Birney, Catherine, Melissa Conner, and Wesley Ingwersen. 2021. "National Water Withdrawal Totals By Industry 2015." https://doi.org/10.23719/1520953.

Birney, Catherine, Melissa Conner, Wesley Ingwersen, and Jacob Specht. 2021. "National Land Occupation Totals By Industry 2012." https://doi.org/10.23719/1520954.

Birney, Catherine, Wesley Ingwersen, and Mo Li. 2021. "National Employment Totals By Industry 2017." https://doi.org/10.23719/1521091.

Birney, Catherine, Ben Young, Wesley Ingwersen, Melissa Conner, Jacob Specht, and Mo Li. 2021. "FLOWSA." 2021. https://github.com/USEPA/flowsa.

Edelen, Ashley, Troy Hottle, Sarah Cashman, and Wesley Ingwersen. 2019. "The Federal LCA Commons Elementary Flow List: Background, Approach, Description and Recommendations for Use." EPA/600/R-19/092. Washington, DC: U.S. Environmental Protection Agency. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=347251.

EPA, US. 2020. "Supply Chain Greenhouse Gas Emission Factors for US Industries and Commodities." EPA/600/R-20/001. US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=CESER&dirEntryId=349324.

Ingwersen, Wesley. 2018. "An Introduction to USEEIO." Virtual. <u>https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=344412</u>.

———. 2020. "Open Source Tool Ecosystem for Automating LCA Model Creation and Linkage." In. Virtual. <u>https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=350369</u>.

Ingwersen, Wesley, and Catherine Birney. 2021. "Modeling National and Subnational Environmental Flows for USEEIO." In. Virtual. <u>https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=351215</u>.

Ingwersen, Wesley, Loren Heyns, and Valerie Thomas. 2020. "Industry Comparison Tools for Sustainable Communities." <u>https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=CESER&dirEntryId=349941</u>.

Ingwersen, Wesley, and Mo Li. 2020a. "National GHG Industry Attribution Model." <u>http://doi.org/10.23719/1517571</u>.

----. 2020b. "Supply Chain Greenhouse Gas Emission Factors for US Industries and Commodities - DATASET." 2020. http://doi.org/10.23719/1517796.

Bibliography (continued)

Ingwersen, Wesley, Li, Mo, and Meyer, David. 2019. "Commercial Waste National Totals by NAICS and US Satellite Tables for USEEIO." 2019. https://doi.org/10.23719/1503688.

Ingwersen, Wesley, Li, Mo, Young, Ben, Vendries, Jorge, and Birney, Catherine. 2021. "USEEIOv2.0." 2021. http://doi.org/10.23719/1521337.

Li, Mo, Ingwersen, Wesley, Ben Young, Vendries, Jorge, and Birney, Catherine. 2021. "Useeior V0.4." 2021. https://github.com/USEPA/useeior.

Meyer, David E., Mo Li, and Wesley W. Ingwersen. 2020. "Analyzing Economy-Scale Solid Waste Generation Using the United States Environmentally-Extended Input-Output Model." *Resources, Conservation and Recycling* 157 (June): 104795. <u>https://doi.org/10.1016/j.resconrec.2020.104795</u>.

Srocka, Michael, Loren Heyns, Yilun Zha, and Wesley Ingwersen. 2021. *Useeio-Widgets V0.1* (version v0.1). Washington, DC: U.S. Environmental Protection Agency. <u>https://github.com/USEPA/useeio-widgets/releases/tag/v0.1</u>.

Srocka, Michael, and Wesley W. Ingwersen. 2019. "USEEIO API V1.0." https://github.com/USEPA/useeio api/.

US EPA, ORD. 2020. "EPA Researchers Working to Improve Life-Cycle Assessment Capabilities for Communities." Overviews and Factsheets. July 22, 2020. https://www.epa.gov/sciencematters/epa-researchers-working-improve-life-cycle-assessment-capabilities-communities.

Yang, Yi, Wesley W. Ingwersen, Troy R. Hawkins, Michael Srocka, and David E. Meyer. 2017. "USEEIO: A New and Transparent United States Environmentally-Extended Input-Output Model." *Journal of Cleaner Production* 158 (August): 308–18. <u>https://doi.org/10.1016/j.jclepro.2017.04.150</u>.

Young, Ben, Catherine Birney, and Wesley Ingwersen. 2021a. "National Commercial Hazardous Waste Totals by Industry 2017." https://doi.org/10.23719/1520954.

----. 2021b. "National Point Source Releases to Ground By Industry 2017." <u>https://doi.org/10.23719/1521090</u>.

----. 2021c. "National Point Source Releases to Water By Industry 2017." https://doi.org/10.23719/1521089.

Young, Ben, Catherine Birney, Wesley Ingwersen, and Caitlin Chiquelin. 2021. "National Criteria and Hazardous Air Pollutant Totals By Industry 2017." https://doi.org/10.23719/1521088.

Young, Ben, Michael Srocka, Wesley Ingwersen, Ben Morelli, Sarah Cashman, and Andrew Henderson. 2021a. "LCIA Formatter." 2021. https://doi.org/10.5281/zenodo.5557895.

----. 2021b. "LCIA Formatter." Journal of Open Source Software 6 (66): 3392. <u>https://doi.org/10.21105/joss.03392</u>.

Additional Slides

v2.0 Basic Specs

- 2012 IO data, ~2012-2017 physical flows
- 411 commodities
- 2668 physical flow types
- 23 environmental and economic indicators
- Total US Consumption, Production and Household Consumption vectors (2012)

v2.0 New Features

- Disaggregation of Waste and Remediation sector
- Domestic vs. foreign input and result distinction
- Price adjustment matrices
- Production and consumption demand vectors
- Validation proofs

v2.0 Improved Data Description & More Data Distribution

- National Totals by Sector by NAICS-6 datasets in lieu of separate satellite tables
- Harmonization with Federal LCA Commons Elementary Flow List
- Additional data provision
 - Make and Use tables
 - Industry and commodity output
 - USEEIO<->BEA<->NAICS crosswalk
 - Domestic versions of matrices
 - More metadata

Updated Environmental Data Inputs

Dataset
National Water Withdrawal Totals By Industry 2015
National Criteria and Hazardous Air Pollutant Totals By Industry 2017
National Point Source Releases to Ground By Industry 2017
National Point Source Releases to Water By Industry 2017
National Commercial Hazardous Waste Totals by Industry 2017
National Land Occupation Totals By Industry 2012
National Employment Totals By Industry 2017