

# SHC 7.2 - Supporting the Waste Measurement Program: Promoting Transparency, Quality, and Reproducibility

David E. Meyer, Matt Pasquali (former ORISE for ORCR/RCSD), Valerie Vines (ORISE for ORCR/RCSD)

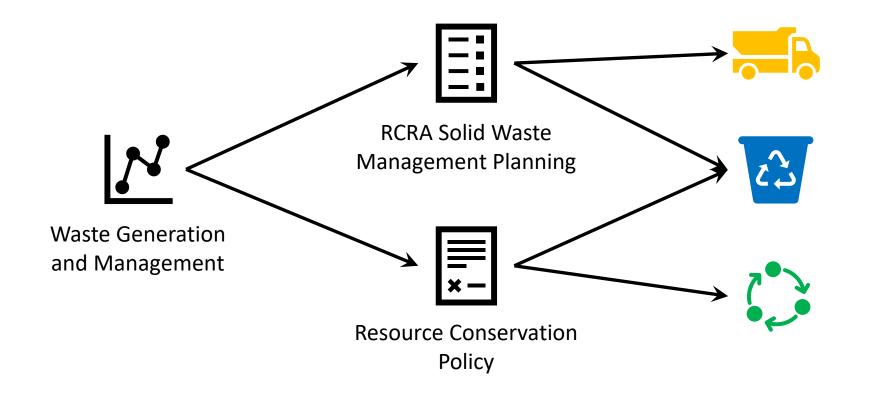


Advancing Sustainable Materials Management: 2018 Fact Sheet

Assessing Trends in Materials Generation and Management in the United States






#### Disclaimer

The U.S. Environmental Protection Agency through its Office of Research and Development compiled the information described here. It has not been subject to Agency review and does not necessarily reflect the views of the Agency. No official endorsement should be inferred.



#### Waste Measurement at EPA

• EPA's Office of Resource Conservation and Recovery (ORCR) provides national statistics on waste management to assist States and communities.



Overseeing landfill capacity and operations

Developing recycling infrastructure and community participation

Implementing sustainable materials management and circularity initiatives



# Communicating Waste Measurement: EPA's Facts and Figures Reporting Program



Advancing Sustainable Materials Management: 2018 Fact Sheet

Assessing Trends in Materials Generation and Management in the United States

December 2020

- National waste generation and management estimates from 1960-2018
- Historically focused on municipal solid waste (MSW) and includes 25 product groups involving 13 materials
- Recently developed stand-alone methods for construction and demolition debris (CDD) and food waste <Not included in report>
- Focus here on MSW with subsequent talks on research related to plastics (SHC 7.2) and food waste (SHC 7.4)

#### Waste Measurement Modeling Support (SHC 7.2)

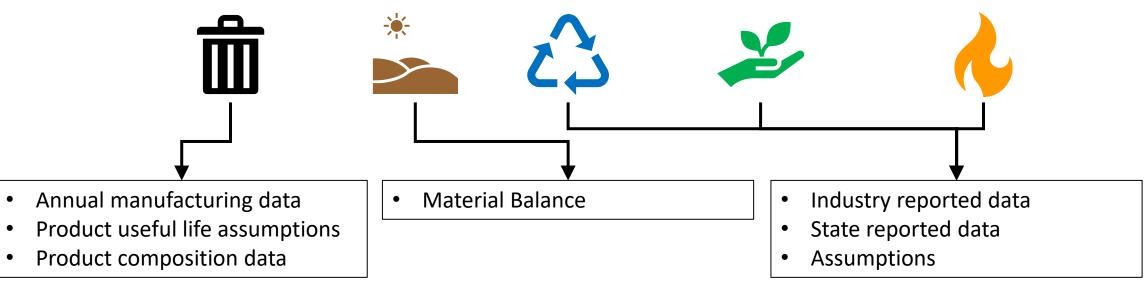
• Research Needs:

ital Protection

- ➢Improve transparency and communication of MSW models (7.2.1)
- Provide critical analysis of MSW modeling approaches (7.2.2)
- Fill data gaps regarding end-of-life processes for key materials of concern (7.2.3, 7.2.4, 7.2.5)
- Evaluate different metrics for recycling and develop methods for calculating them (7.2.1) <Crucial for America Recycles campaign>



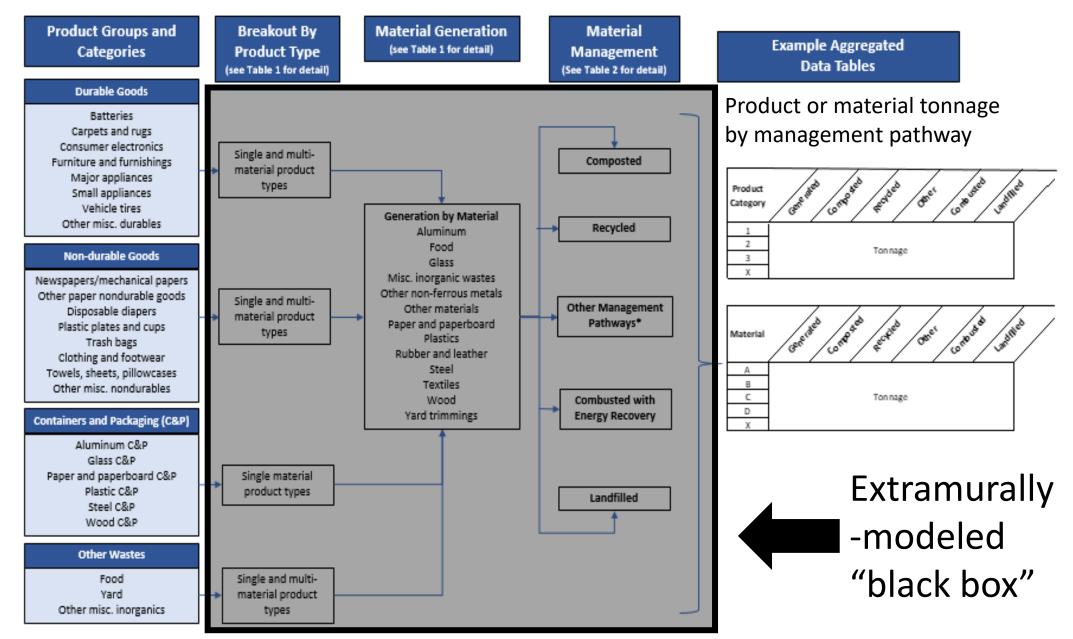









## The Facts and Figures Model


#### **Generation = Landfill + Recycle + Compost + Energy Recovery**



- The Facts and Figures models are a complex blend of industry data, government data, and assumptions.
- Landfill tonnage is the remainder after accounting for other pathways.



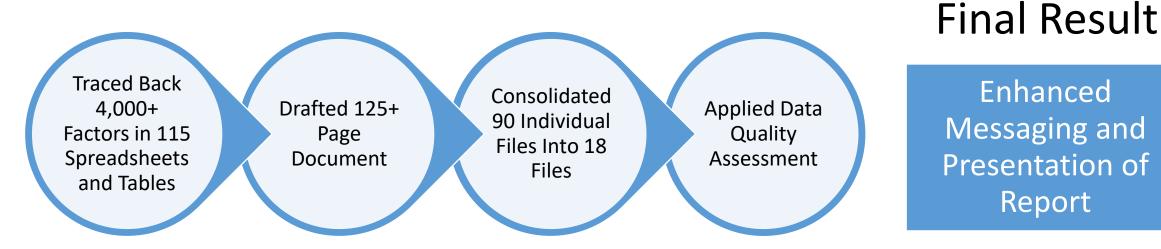
#### The Facts and Figure Review Challenge





## 7.2.1 - Model Review and Data Quality (DQ) Assessment

• Unbiased review of all products and factors for the most recent year (2018)


- Each product and factor scored 1 (highest) 5 (lowest) based on average of five indicators<sup>1</sup>
- >Uses approach analogous to specifying significant figures for laboratory data

| Flow Reliability                                                 | Temporal<br>Correlation   | Geographical<br>Correlation             | Technological<br>Correlation                                    | Data Collection<br>Methods                                                       |
|------------------------------------------------------------------|---------------------------|-----------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|
| • How<br>trustworthy is<br>the data or<br>information<br>source? | • How recent is the data? | • How well does it represent entire US? | <ul> <li>Are current<br/>technologies<br/>reflected?</li> </ul> | <ul> <li>Is the data<br/>representative<br/>of the entire<br/>market?</li> </ul> |
|                                                                  |                           |                                         |                                                                 | Ģ                                                                                |

1. Edelen, A. AND W. Ingwersen. Guidance on Data Quality Assessment for Life Cycle Inventory Data. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-16/096, 2016.



## Applying DQ Assessment



- A collaborative effort between SHC and ORCR
  - Establish a DQ review process consistent with USEEIO platform that can be applied to other ORCR products
  - Shared process promotes ownership and action

Team Members

- Matt Pasquali, ORISE at RCB
- Valerie Vines, ORISE at RCB
- Dave Meyer, ORD



# **DQ Results**

|                                | Generation   | Recovered    | Recycle Rate |
|--------------------------------|--------------|--------------|--------------|
| Product Category               | Data Quality | Data Quality | Data Quality |
| Durable Goods                  |              | -            |              |
| Major Appliances               |              |              |              |
| Small Appliances               |              |              |              |
| Furniture & Furnishings        |              |              |              |
| Carpets & Rugs                 |              |              |              |
| Rubber Tires                   |              |              |              |
| Batteries, Lead-Acid           |              |              |              |
| Other Miscellaneous Durables   |              |              |              |
| Non Durable Goods              |              |              |              |
| Paper Products                 |              |              |              |
| Other Non-Packaging Paper      |              |              |              |
| Clothing                       |              |              |              |
| Footwear                       |              |              |              |
| Towels, Sheets, & Pillowcases  |              |              |              |
| Miscellaneous Nondurables      |              |              |              |
| Products: Other Wastes         |              |              |              |
| Yard Wastes                    |              |              |              |
| Miscellaneous Inorganic Wastes |              |              |              |

Key High (1) Low (5)



# DQ Results: The Influence of Single Products

| Containers and Packaging      | Generation | Recovered | Recycle Rate |
|-------------------------------|------------|-----------|--------------|
| Glass                         |            |           |              |
| Steel                         |            |           |              |
| Aluminum                      |            |           |              |
| Paper & Paperboard            |            |           |              |
| Plastics                      |            | СВІ       | CBI          |
| Wood                          |            |           |              |
| Other Miscellaneous Packaging |            |           |              |

| Kov             | Aluminum Containers & Packaging | Generation   | Recovered    | Recycle Rate |
|-----------------|---------------------------------|--------------|--------------|--------------|
| Key<br>High (1) | Products                        | Data Quality | Data Quality | Data Quality |
|                 | Beer & Soft Drink Cans          |              |              |              |
|                 | Food & Other Cans               |              |              |              |
|                 | Foil                            |              |              |              |
| Low (5)         | Closures                        |              |              |              |



# Key Findings for Existing Facts and Figures Model

| 21% of factors are measured                                          | <ul> <li>Data reported by industry or states</li> <li>Typically score high in data quality assessment</li> </ul>                  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 75% of factors involve some degree<br>of calculations or conversions | <ul> <li>Scores vary from high to low</li> </ul>                                                                                  |
| 4% of factors are based on assumptions                               | <ul><li>Not data-based</li><li>Low data quality scores</li></ul>                                                                  |
| 35% of factors scored 'Medium' to<br>'Low'                           | <ul> <li>Drive down overall data quality scores</li> <li>Often related to changing data availability and outdated data</li> </ul> |
| 14 products <b>contain at least one</b><br>assumed factor            | <ul> <li>Drive down overall data quality scores</li> </ul>                                                                        |



### Where Do We Go From Here?

- With waning data availability, EPA has decided to explore other waste modeling approaches.
- Research will shift from making improvements to developing a next-generation model.
- Lessons learned to guide development:

| Economic Sensitivity | <ul> <li>Must be able to reflect disruptive events (e.g., pandemic)</li> </ul> |
|----------------------|--------------------------------------------------------------------------------|
| Primary Data         | <ul> <li>Key to higher quality but must be transparent</li> </ul>              |
| Data Availability    | <ul> <li>Must be regular, reproducible, and transparent</li> </ul>             |

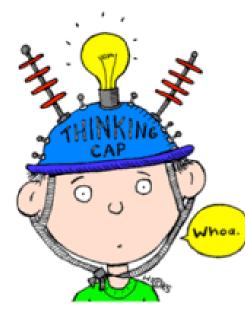


# Waste Modeling Using an Input-Output Framework (SHC 7.2.2)

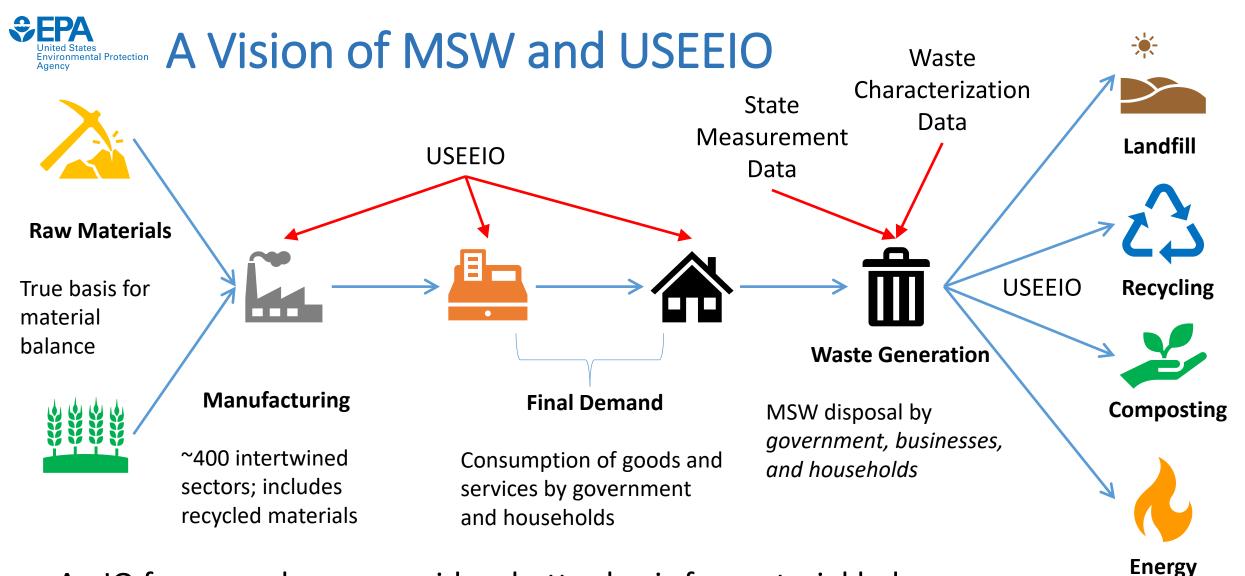
- Tested the use of IO modeling to estimate commercial MSW as part of SHC 7.1
- IO platform as basis for other ORCR tools (SHC 7.1) means consistency



Resources Conservation & Recycling 157 (2020) 104795


|          | Contents lists available at ScienceDirect           | Resources<br>Conservation &<br>Recycling |
|----------|-----------------------------------------------------|------------------------------------------|
|          | Resources, Conservation & Recycling                 |                                          |
| ELSEVIER | journal homepage: www.elsevier.com/locate/resconrec |                                          |

Full length article


Analyzing economy-scale solid waste generation using the United States environmentally-extended input-output model

David E. Meyer<sup>a,\*</sup>, Mo Li<sup>b</sup>, Wesley W. Ingwersen<sup>a</sup>

#### **Critical Review Product**



- Evaluating pros and cons of multiple approaches, including IO •
- Considering how to expand commercial MSW model to full MSW model •
  - Leveraging USEEIO disaggregation work being done in SHC 7.1
- Working with ORCR to understand State Measurements Program
- Helping ORCR develop an Information Collection Request (ICR) for better waste data



- An IO framework may provide a better basis for material balances
- Using measured waste data will provide more realistic bounds for estimates
- It may be possible to use this approach to account for leakage (trash)



#### Next Steps for Supporting the Waste Measurements Program

- Finish Critical Review of Waste Estimation Methodologies
- Work with ORCR partners to specify features and constraints of next-generation waste modeling framework
- Incorporate data needs into ICRs when possible
- Work with USEEIO team to develop and test MSW estimation methods using IO platform
  - ➤Short term satellite accounts
  - Long term physical input output hybrid models and material tracking





#### Feel Free to Discuss!

"A single conversation across the table with a wise person is worth a month's study of books"

- Chinese Proverb