U.S. EPA
National Rivers and Streams Assessment: A Collaborative Survey
Appendix B
Ecoregion-Specific Benchmarks Used in NRSA 2013–14

| Ecoregion | oregion Benthic Macroinvertebrate  MMI |          | Fish MMI |          | Total Nitrogen (µg/L) |          | Total Phosphorus (µg/L) |          | Salinity as Conductivity (µS/cm) |          |
|-----------|----------------------------------------|----------|----------|----------|-----------------------|----------|-------------------------|----------|----------------------------------|----------|
|           | Good (≥)                               | Poor (≤) | Good (≥) | Poor (≤) | Good (≤)              | Poor (≥) | Good (≤)                | Poor (≥) | Good (≤)                         | Poor (≥) |
| CPL       | 54.9                                   | 40.7     | 57.3     | 46.8     | 624                   | 1081     | 55.9                    | 103.0    | 500                              | 1000     |
| NAP       | 55.0                                   | 40.9     | 57.6     | 47.1     | 345                   | 482      | 17.1                    | 32.6     | 500                              | 1000     |
| SAP       | 45.0                                   | 30.8     | 60.3     | 49.8     | 240                   | 456      | 14.8                    | 24.4     | 500                              | 1000     |
| UMW       | 36.9                                   | 22.7     | 39.8     | 29.3     | 583                   | 1024     | 36.3                    | 49.9     | 500                              | 1000     |
| TPL       | 40.3                                   | 26.2     | 58.0     | 47.5     | 700                   | 1274     | 88.6                    | 143.0    | 1000                             | 2000     |
| NPL       | 56.8                                   | 42.6     | 46.3     | 35.8     | 575                   | 937      | 64.0                    | 107.0    | 1000                             | 2000     |
| SPL       | 35.5                                   | 21.3     | 50.2     | 39.7     | 581                   | 1069     | 55.8                    | 127.0    | 1000                             | 2000     |
| WMT       | 50.1                                   | 35.9     | 75.9     | 65.4     | 139                   | 249      | 17.7                    | 41.0     | 500                              | 1000     |
| XER       | 57.0                                   | 42.8     | 76.8     | 63.7     | 285                   | 529      | 52.0                    | 95.9     | 500                              | 1000     |

See the NRSA 2013–14 Technical Support Document for ecoregional category assignments for in-stream fish habitat, riparian vegetation cover, and stream- bed sediment. See Appendix A for indicators that are assessed with nationally consistent benchmarks.

U.S. EPA

National Rivers and Streams Assessment 2013-2014: A Collaborative Survey

Appendix C

Percentage of Stream Miles in Each Category: 2008–09 Estimates (Original and Recalculated), 2013–14 Estimates, and Difference Between 2008–09

Recalculated and 2013–14 Estimates

| Indicator   | Category     | Original estimate<br>from 2008–09 report<br>(percent) | 2008–09 estimate recalculated for consistency with 2013–14 report (percent) | 2013–14 estimate<br>(percent) | Difference (with confidence intervals) between recalculated 2008– 09 estimate and 2013–14 estimate (percentage points) | Reason for difference between original 2008–09<br>estimate and 2008–09 recalculated estimate used in<br>difference analysis                                                                                                                                                                                                                                                                                                                                  |
|-------------|--------------|-------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Benthic MMI | Good         | 28                                                    | 29.6                                                                        | 30.2                          | 0.6 (-3.1 to 4.3)                                                                                                      | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                                                                                                                                                                                                                        |
| Benthic MMI | Fair         | 25                                                    | 24.5                                                                        | 26.1                          | 1.6 (-2.6 to 5.8)                                                                                                      | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                                                                                                                                                                                                                        |
| Benthic MMI | Poor         | 46                                                    | 44.9                                                                        | 43.5                          | -1.4 (-5.5 to 2.8)                                                                                                     | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                                                                                                                                                                                                                        |
| Benthic MMI | Not Assessed | 1                                                     | 1                                                                           | 0.2                           | -0.8 (-1.3 to -0.4)                                                                                                    | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                                                                                                                                                                                                                        |
| Fish MMI    | Good         | 36                                                    | 34.8                                                                        | 26.4                          | -8 (-12 to -4)                                                                                                         | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.  2) Analytical approach for developing the fish MMI changed from a random-forest model to a more traditional approach similar to the one used for the benthic MMI.  3) A larger set of reference sites was used in 2013-14 to establish benchmarks than in 2008-09. |

| Fish MMI   | Fair         | 19 | 23.9 | 22.4 | -1.5 (-6 to 3)   | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.  2) Analytical approach for developing the fish MMI changed from a random-forest model to a more traditional approach similar to the one used for the benthic MMI.  3) A larger set of reference sites was used in 2013-14 to establish benchmarks than in 2008-09. |
|------------|--------------|----|------|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fish MMI   | Poor         | 32 | 26.5 | 36.8 | 10 (6 to 14)     | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.  2) Analytical approach for developing the fish MMI changed from a random-forest model to a more traditional approach similar to the one used for the benthic MMI.  3) A larger set of reference sites was used in 2013-14 to establish benchmarks than in 2008-09. |
| Fish MMI   | Not Assessed | 13 | 14.8 | 14.3 | -0.5 (-3 to 3)   | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.  2) Analytical approach for developing the fish MMI changed from a random-forest model to a more traditional approach similar to the one used for the benthic MMI.  3) A larger set of reference sites was used in 2013-14 to establish benchmarks than in 2008-09. |
| Phosphorus | Good         | 35 | 34.4 | 17.5 | -17 (-21 to -13) | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                                                                                                                                                                                                                        |
| Phosphorus | Fair         | 19 | 18.1 | 24.1 | 6 (2 to 10)      | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                                                                                                                                                                                                                        |

| Phosphorus | Poor         | 46  | 47.3 | 58.4 | 11 (7 to 15)         | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |
|------------|--------------|-----|------|------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phosphorus | Not Assessed | 0.2 | 0.3  | 0    | - 0.3 (-0.5 to -0.1) | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |
| Nitrogen   | Good         | 38  | 38.7 | 32.3 | -6.4 (-10.3 to -2.4) | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |
| Nitrogen   | Fair         | 20  | 20.3 | 24.5 | 4.2 (0.32 to 8.1)    | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |
| Nitrogen   | Poor         | 41  | 40.8 | 43.2 | 2.4 (-1.6 to 6.5)    | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |
| Nitrogen   | Not Assessed | 0.2 | 0.3  | 0    | -0.3 (-0.5 to -0.04) | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |
| Salinity   | Good         | 85  | 84   | 86.4 | 2.4 (-0.01 to 4.9)   | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |
| Salinity   | Fair         | 12  | 11.7 | 9.7  | -2.0(-4.3 to 0.4)    | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |
| Salinity   | Poor         | 3   | 3.9  | 3.8  | -0.12 (-1.3 to 1.1)  | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14. |

| Salinity      | Not Assessed                                       | 0.3 | 0.5  | 0.1  | -0.4 (-0.7 to -0.1) | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                                                                                                                       |
|---------------|----------------------------------------------------|-----|------|------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acidification | None                                               | 99  | 98.5 | 98.4 | 0.0 (-1 to 0.9)     | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.  2) Acid mine drainage, episodic acidification, and acid deposition were reported as separate categories in 2008-09 but are grouped together as "poor" in 2013-14. |
| Acidification | ACID-organic                                       | 0.4 | 0.5  | 0.2  | -0.3 (-0.6 to 0.0)  | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.  2) Acid mine drainage, episodic acidification, and acid deposition were reported as separate categories in 2008-09 but are grouped together as "poor" in 2013-14. |
| Acidification | Poor (ACID- AMD,<br>Episodic, or ACID-<br>aciddep) | 0.5 | 0.8  | 1.1  | 0.2 (-0.3 to 0.7)   | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.  2) Acid mine drainage, episodic acidification, and acid deposition were reported as separate categories in 2008-09 but are grouped together as "poor" in 2013-14. |
| Acidification | Not Assessed                                       | 0.2 | 0.2  | 0.3  | 0.1 (-0.3 to 0.5)   | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.  2) Acid mine drainage, episodic acidification, and acid deposition were reported as separate categories in 2008-09 but are grouped together as "poor" in 2013-14. |

| In-stream Fish<br>Habitat | Good         | 68 | 67.7 | 64.3 | -3.4 (-7.7 to 0.9)  | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                           |
|---------------------------|--------------|----|------|------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In-stream Fish<br>Habitat | Fair         | 20 | 21.1 | 20.4 | -0.7 (-4.7 to 3.4)  | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                           |
| In-stream Fish<br>Habitat | Poor         | 11 | 11.2 | 14.4 | 3.3 (0.04 to 6.6)   | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                           |
| In-stream Fish<br>Habitat | Not Assessed | 0  | 0    | 0.8  | 0.8 (0.3 to 1.2)    | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                           |
| Riparian<br>Disturbance   | Good         | 34 | 34.7 | 29   | -5.8 (-9.9 to -1.6) | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                           |
| Riparian<br>Disturbance   | Fair         | 46 | 44.2 | 47   | 2.8 (-1.8 to 7.3)   | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                           |
| Riparian<br>Disturbance   | Poor         | 20 | 21.1 | 23.3 | 2.3 (-1.1 to 5.7)   | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                           |
| Riparian<br>Disturbance   | Not Assessed | 0  | 0    | 0.7  | 0.7 (0.3 to 1.2)    | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                           |
| Riparian<br>Vegetation    | Good         | 56 | 55.8 | 58   | 2.2 (-2.1 to 6.5)   | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14 2) A larger set of reference sites was used in 2013-14 than in 2008-09. |

| Riparian<br>Vegetation | Fair         | 20 | 19.1 | 17.4 | -1.7 (-5.5 to 2.2)   | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14 2) A larger set of reference sites was used in 2013-14 than in 2008-09.  |
|------------------------|--------------|----|------|------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Riparian<br>Vegetation | Poor         | 24 | 25.1 | 23.7 | -1.4 (-5.1 to 2.2)   | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14 2) A larger set of reference sites was used in 2013-14 than in 2008-09.  |
| Riparian<br>Vegetation | Not Assessed | 0  | 0    | 0.9  | 0.9 (0.4 to 1.5)     | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14 2) A larger set of reference sites was used in 2013-14 than in 2008-09.  |
| Streambed<br>Sediment  | Good         | 55 | 50.8 | 51.9 | 1.1 (-3.2 to 5.4)    | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14  2) A larger set of reference sites was used in 2013-14 than in 2008-09. |
| Streambed<br>Sediment  | Fair         | 29 | 28.6 | 22.3 | -6.3 (-10.3 to -2.3) | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14 2) A larger set of reference sites was used in 2013-14 than in 2008-09.  |
| Streambed<br>Sediment  | Poor         | 15 | 19.3 | 21.8 | 2.5 (-1.2 to 6.1)    | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14 2) A larger set of reference sites was used in 2013-14 than in 2008-09.  |

| Streambed<br>Sediment | Not Assessed                             | 1  | 1.4  | 4.1  | 2.8 (1.1 to 4.4)    | 1) To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14  2) A larger set of reference sites was used in 2013-14 than in 2008-09. |
|-----------------------|------------------------------------------|----|------|------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enterococci           | Above Human<br>Health<br>Benchmark       | 23 | 21.8 | 29.9 | 8.0 (3.7 to 12.4)   | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA                                                                                                 |
| Enterococci           | At or Below<br>Human Health<br>Benchmark | 70 | 71.3 | 68.9 | -2.5 (-6.9 to 2.0)  | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA                                                                                                 |
| Enterococci           | Not Assessed                             | 6  | 6.8  | 1.2  | -5.6 (-7.1 to -4.1) | To ensure known stream and river lengths were equivalent for difference analysis, the statistical analysis method was updated and applied to data from both NRSA 2008-09 and 2013-14.                                                                            |