DRAFT CASTNET 2019 Annual Report

Prepared for:

U.S. Environmental Protection Agency Office of Atmospheric Programs

Prepared by:

4475E NW 6th Street, Ext Gainesville, FL 32609

Contract No. EP-W-18-005

October 2020

Table of Contents

1.0	1.0 Introduction1-1			
2.0	Proj	ect Objectives		
3.0	CAS	TNET Sites Visited in 2019		
4.0	Perf	ormance Audit Results		
	4.1	Ozone		
		4.1.1 Ozone Bias		
	4.2	Flow Rate		
	4.3	Shelter Temperature		
	4.4	Wind Speed		
		4.4.1 Wind Speed Starting Threshold		
	4.5	Wind Direction		
		4.5.1 Wind Direction Starting Threshold		
	4.6	Temperature and Two-Meter Temperature		
		4.6.1 Temperature Shield Blower Motors		
	4.7	Relative Humidity		
	4.8	Solar Radiation		
	4.9	Precipitation		
	4.10	Data Acquisition Systems (DAS)		
		4.10.1 Analog Test		
		4.10.2 Functionality Tests		
5.0	Syste	ms Audit Results		
	5.1	Siting Criteria		
	5.2	Sample Inlets		
	5.3	Infrastructure		
	5.4	Site Operators		
	5.5	Documentation		
	5.6	Site Sensor and FSAD Identification		
6.0	Sum	mary and Recommendations6-1		
	6.1	In Situ Comparisons		
7.0	Refe	rences		

List of Appendices

Appendix 1. Audit Standards Certifications

List of Tables

Table 2-1.	Performance Audit Challenge and Acceptance Criteria	2-1
Table 3-1.	Systems and Performance Site Audits	3-1
Table 3-2.	Site Ozone PE Visits	3-3
Table 4-1.	Performance Audit Results by Variable Tested	4-2
Table 4-2.	Performance Audit Results for Ozone	4-3
Table 4-3.	Performance Audit Results Shelter Temperature, and Flow Rate	1- 12
Table 4-4.	Performance Audit Results for Wind Sensors	4-15
Table 4-5.	Performance Audit Results for Temperature and Relative	4-17
Table 4-6.	Performance Audit Results for Solar Radiation and Precipitation	1-20
Table 4-7.	Performance Audit Results for Data Acquisition Systems	4-21

List of Figures

Figure 4-1.	2017 and 2018 Ozone PE Actual Difference Level 2 Audits Performed by EEMS. 4-8
Figure 4-2.	2019 Ozone PE Actual Difference Level 2 Audits Performed by EEMS 4-8
Figure 4-3.	2019 Actual Difference Level 2 NPAP Audits
Figure 4-4.	2019 Ozone PE Actual Difference Level 2 Audits Not Performed by EEMS 4-10

List of Acronyms and Abbreviations

% diff	percent difference
A/D	analog to digital converter
AQS	Air Quality System
ARS	Air Resource Specialists, Inc.
ASTM	American Society for Testing and Materials
BLM	Bureau of Land Management
BLM-WSO	Bureau of Land Management-Wyoming State Office
CASTNET	Clean Air Status and Trends Network
CFR	Code of Federal Regulation
CMAQ	Community Multi-scale Air Quality
DAS	data acquisition system
DC	direct current
DEP	Department of Environmental Protection
deg	degree
DQO	data quality objectives
DVM	digital voltmeter
ECCC	Environment and Climate Change Canada
EEMS	Environmental, Engineering & Measurement Services, Inc.
EPA	U.S. Environmental Protection Agency
ESC	Environmental Systems Corporation
FSAD	Field Site Audit Database
g-cm	gram centimeter
GPS	goblal positioning system
k	kilo (1000)
km	kilometer
lpm	liters per minute
MLM	Multilayer Model
m/s	meters per second
mv	millivolt
NADP	National Atmospheric Deposition Program
NIST	National Institute of Standards and Technology
NOAA	National Oceanic and Atmospheric Administration
NPAP	National Performance Audit Program
NPS	National Park Service
OAQPS	Office of Air Quality Planning and Standards
PE	Performance Evaluation
ppb	parts per billion
ppm	parts per million

PSD	Prevention of Significant Deterioration
QA	quality assurance
QA/QC	quality assurance/quality control
QAPP	Quality Assurance Project Plan
RH	relative humidity
RTD	Resistance Temperature Detector
SJRWMD	Saint John's Water Management District
SLAMS	State or Local Air Monitoring Stations
SOP	standard operating procedure
SRP	standard reference photometer
SSRF	Site Status Report Forms
STP	standard temperature and pressure
TEI	Thermo Environmental Instruments
TTP	Through The Probe
USEPA	U.S. Environmental Protection Agency
USFS	U.S. Forest Service
USNO	United States Naval Observatory
V	volts
VDC	volts direct current
Wood	Wood Environment and Infrastructure Solutions
WRR	World Radiation Reference

1.0 Introduction

The Clean Air Status and Trends Network (CASTNET) is a national air monitoring program established in 1988 by the US EPA. Nearly all CASTNET sites measure weekly concentrations of acidic gases and particles to provide accountability for EPA's emission reduction programs. Most sites measure ground-level ozone as well as supplemental measurements such as meteorology and/or other trace gas concentrations.

Ambient concentrations are used to estimate deposition rates of the various pollutants with the objective of determining relationships between emissions, air quality, deposition, and ecological effects. In conjunction with other national monitoring networks, CASTNET data are used to determine the effectiveness of national emissions control programs and to assess temporal trends and spatial deposition patterns in atmospheric pollutants. CASTNET data are also used for long-range transport model evaluations and critical loads research.

Historically, CASTNET pollutant flux measurements have been reported as the aggregate product of weekly measured concentrations and model-estimated deposition velocities. The Multi-layer Model (MLM) was used to derive deposition velocity estimates from on-site meteorological parameters, land use types, and site characteristics. In 2011, EPA discontinued meteorological measurements at most EPA-sponsored CASTNET sites.

Currently, CASTNET pollutant flux estimates are calculated as the aggregate product of weekly measured chemical concentrations and gridded model-estimated deposition velocities. Total deposition is assessed using the NADP's Total Deposition Hybrid Method (TDEP; EPA, 2015c; Schwede and Lear, 2014), which combines data from established ambient monitoring networks and chemical-transport models. To estimate dry deposition, ambient measurement data from CASTNET were merged with dry deposition rates and flux output from the Community Multiscale Air Quality (CMAQ) modeling system. The dry deposition surface is then merged with wet deposition grids from NADP and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) to estimate total deposition.

Since 2011 nearly all CASTNET ozone monitors have adhered to the requirements for State or Local Air Monitoring Stations (SLAMS) as specified by the EPA in 40 CFR Part 58. As such, the ozone data collected must meet the requirements in 40 CFR Part 58 Appendix A, which defines the quality assurance (QA) requirements for gaseous pollutant ambient air monitoring. The audits performed by EEMS under this contract fulfill the requirement for annual performance evaluation (PE) audits of pollutant monitors in the network. The QA requirements can be found at: https://www3.epa.gov/ttn/amtic/files/ambient/pm25/qa/APP_D%20validation%20template%20ve rsion%2003_2017_for%20AMTIC%20Rev_1.pdf

Currently 86 sites at 84 distinct locations measure ground-level ozone concentrations. Annual PE audit QA data are submitted to the Air Quality System (AQS) database.

As of December 2019, the network is comprised of 95 active rural sampling sites across the United States and Canada, cooperatively operated by the Environmental Protection Agency (EPA), the National Park Service (NPS), Bureau of Land Management – Wyoming State Office (BLM-WSO) and several independent partners. Wood Environment and Infrastructure Solutions (Wood) is responsible for operating the EPA sponsored sites and Air Resource Specialist, Inc. (ARS) is responsible for operating the NPS and BLM-WSO sponsored sites.

2.0 Project Objectives

The objectives of this project are to establish an independent and unbiased program of performance and systems audits for all CASTNET sampling sites. Ongoing QA programs are an essential part of any long-term monitoring network.

Performance audits verify that all reported parameters are consistent with the accuracy goals as defined in the CASTNET Quality Assurance Project Plan (QAPP). The acceptance criteria have changed over the years and EEMS relies on the CASTNET contractor to provide updates to the acceptance criteria. The current criteria are included in Table 2-1.

Due to budgetary necessity, the meteorological measurements were shifted to operating on an asfunded basis. The meteorological sensors were audited on an as directed basis.

Sensor	Parameter	Audit Challenge	Acceptance Criteria
Precipitation	Response	10 manual tips	1 DAS count per tip
Precipitation	Accuracy	2 introductions of known amounts of water	$\leq \pm 10.0\%$ of input amount
Relative Humidity	Accuracy	Compared to reference instrument or standard solution	\leq ±10.0%
Solar Radiation	Accuracy	Compared to WRR traceable standard	$\leq \pm 10.0\%$ of daytime average
Surface Wetness	Response	Distilled water spray mist	Positive response
Surface Wetness	Sensitivity	1% decade resistance	N/A
Shelter Temperature	Average Difference	Comparison to RTD at 3 observed points	2 °C
Temperature	Accuracy	Comparison to 3 NIST measured baths (~ 0° C, ambient, ~ full-scale)	$\leq \pm 0.5^{\circ} \mathrm{C}$

Table 2-1. Performance Audit Challenge and Acceptance Criteria

Sensor	Parameter	Audit Challenge	Acceptance Criteria
Delta Temperature	Accuracy	Comparison to temperature sensor at same test point	$\leq \pm 0.50^{\circ} \mathrm{C}$
Wind Direction	Orientation Accuracy	Parallel to alignment rod/crossarm, or sighted to distant point	$\leq \pm 5^{\circ}$ from degrees true
Wind Direction	Linearity	Eight cardinal points on test fixture	≤±5° mean absolute error
Wind Direction	Response Threshold	Starting torque tested with torque gauge	< 10 g-cm Climatronics; < 20 g-cm R. M. Young
Wind Speed	AccuracyShaft rotational speed generated and measured with certified synchronous motor $\leq \pm 0.5$ m $\leq \pm 5.0\%$ or		$\leq \pm 0.5$ mps below 5.0 mps input; $\leq \pm 5.0\%$ of input at or above 5.0 mps
Wind Speed	Starting Threshold	Starting torque tested with torque gauge	< 0.5 g-cm
Mass Flow Controller	Flow Rate	Comparison with Primary Standard	$\leq \pm 5.0\%$ of designated rate
	Slope	Linear regression of multi- point test gas concentration as measured with a certified	$0.9000 \le m \le 1.1000$
	Intercept		-5.0 ppb ≤ b ≤ 5.0 ppb
Ozone	Correlation Coefficient		$0.9950 \le r$
	Percent Difference	Comparison with Standard Concentration	Audit levels 3 through 10: $\leq \pm 15.1\%$ of test gas concentration Audit levels 1 and 2: $\leq \pm 0.15$ ppb difference or $\leq \pm 15.1\%$
DAS	Accuracy	Comparison with certified standard	$\leq \pm 0.003 \text{ VDC}$

The accuracy goals defined for ozone monitors in the CASTNET QAPP Table 4-12 are the same as those of 40 CFR, Part 58 Appendix A, for quality assurance for CASTNET site. To comply with Appendix A, the CASTNET audit program includes annual independent ozone PE. The EEMS field scientists who conduct ozone PE maintain annual certification from the Office of Air Quality

Planning and Standards (OAQPS) through the annual National Performance Audit Program (NPAP) training which EEMS attended in October 2019 (see end of Appendix for NPAP training certifications). EEMS personnel performed the Through-The-Probe (TTP) pollutant monitor audits following EPA's Quality Assurance Guidance Document – Method Compendium – Field Standard Operating Procedures (SOP) for the Federal PM_{2.5} Performance Evaluation Program and NPAP-TTP Audit Standard Operating Procedures (SOP). All procedures and guidance documents used to perform these audits can be found at the EPA OAQPS website:

https://www3.epa.gov/ttn/amtic/npepqa.html

The NPAP is a QA program implemented by the OAQPS to conduct audits of gaseous air pollutant monitors by standard methods throughout each region of the U.S. The method includes introduction of National Institute of Standards and Traceability (NIST) traceable audit gases to the station monitors through the ambient sample inlet, including all filters and fittings. This method evaluates measurement system accuracy including the entire sample train. The audit gas concentrations are also measured and verified with an audit analyzer on-site. For gases other than ozone the audit analyzer is calibrated at the time of the audit.

Performance audits are conducted using standards that are certified as currently traceable to the NIST or another authoritative organization. All standards are certified annually with the exception of ozone standards which are verified as level 2 standards at EPA regional labs at least twice per year.

Site systems audits are intended to provide a qualitative appraisal of the total measurement system. Site planning, organization, and operation are evaluated to ensure that good Quality Assurance/Quality Control (QA/QC) practices are being applied. At a minimum the following audit issues are addressed at each site systems audit:

- Site locations and configurations match those provided in the CASTNET QAPP.
- Meteorological instruments are in good physical and operational condition and are sited to meet EPA ambient monitoring guidelines (EPA-600/4-82-060).
- Sites are accessible, orderly, and if applicable, compliant with OSHA safety standards.
- Sampling lines are free of leaks, kinks, visible contamination, weathering, and moisture.
- Site shelters provide adequate temperature control.
- All ambient air quality instruments are functional, being operated in the appropriate range, and the zero air supply desiccant is unsaturated.
- All instruments are in current calibration.
- Site documentation (maintenance schedules, on-site SOPs, etc.) is current and log book records are complete.

- All maintenance and on-site SOPs are performed on schedule.
- Corrective actions are documented and appropriate for required maintenance/repair activity.
- Site operators demonstrate an adequate knowledge and ability to perform required site activities, including documentation and maintenance activities.

3.0 CASTNET Sites Visited in 2019

This report covers the CASTNET sites audited in 2019. Only those variables that were supported by the CASTNET program were audited. From February through December 2019, EEMS conducted field performance and systems audits at 59 monitoring sites. Meteorological sensors at four of the sites were also audited. The locations, sponsor agency and dates of the audits along with states and EPA Regions are presented in Table 3-1.

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
ACA416	NPS	Acadia NP	ME / R1	9/18/2019
ALC188	EPA	Alabama-Coushatta	TX / R6	2/25/2019
ALH157	EPA	Alhambra	IL / R5	12/16/2019
BAS601	EPA	Basin	WY / R8	8/19/2019
BBE401	NPS	Big Bend NP	TX / R6	2/27/2019
BFT142	EPA	Beaufort	NC / R4	12/17/2019
BUF603	BLM	Buffalo	WY / R8	8/20/2019
BVL130	EPA	Bondville	IL / R5	11/7/2019
BWR139	EPA	Blackwater NWR	MD / R3	11/19/2019
CAD150	EPA	Caddo Valley	AR / R6	4/16/2019
CDR119	EPA	Cedar Creek St. Park	WV / R3	11/12/2019
CDZ171	EPA	Cadiz	KY / R4	12/17/2019
CHC432	NPS	Chaco NHP	NM / R6	8/5/2019
CHE185	EPA	Cherokee Nation	OK / R6	4/15/2019
CKT136	EPA	Crockett	KY / R4	11/11/2019
CND125	EPA	Candor	NC / R4	6/14/2019
CNT169	EPA	Centennial	WY / R8	7/16/2019
CVL151	EPA	Coffeeville	MS / R4	4/13/2019
DCP114	EPA	Deer Creek St. Park	OH / R5	10/24/2019
EGB181	EPA	Egbert	ON	11/12/2019

 Table 3-1. Systems and Performance Site Audits

3-1

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
EVE419	NPS	Everglades NP FL / R4		3/19/2019
GLR468	NPS	Glacier NP	MT / R8	7/3/2019
GRS420	NPS	Great Smoky Mountains NP	TN / R4	10/7/2019
GTH161	EPA	Gothic	CO / R8	8/6/2019
KIC003	EPA	Kickapoo Res	KS / R7	10/23/2019
KNZ184	EPA	Konza Prairie	KS / R7	10/22/2019
LAV410	NPS	Lassen Volcanic NP	CA / R9	5/7/2019
LRL117	EPA	Laurel Hill St. Park	PA / R3	9/26/2019
MAC426	NPS	Mammoth Cave NP	KY / R4	10/17/2019
MCK131	EPA	Mackville	KY / R4	11/5/2019
MCK231	EPA	Mackville (precision site) KY / R4		11/5/2019
NEC602	EPA	Newcastle WY / R8		7/23/2019
NIC001	EPA	Nick's Lake NY / R2		7/10/2019
OXF122	EPA	Oxford OH / R5		10/25/2019
PAL190	AL190 EPA Palo Duro TX / R6		TX / R6	3/1/2019
PAR107	EPA Parsons WV / R3		9/25/2019	
PED108	EPA	Prince Edward VA / R3		7/26/2019
PIN414	NPS	Pinnacles NM	CA / R9	5/8/2019
PND165	EPA	Pinedale	WY / R8	7/1/2019
PRK134	EPA	Perkinstown	WI / R5	8/27/2019
QAK172	EPA Quaker City OH / R5		OH / R5	11/10/2019
ROM206	EPA	EPA Rocky Mountain NP CO /		6/11/2019
ROM406	NPS	Rocky Mountain NP	CO / R8	6/6/2019
SAN189	EPA	Santee Sioux	NE / R7	10/25/2019
SEK430	NPS	Sequoia NP	CA / R9	5/14/2019
SHE604	BLM	Sheridan	WY / R8	8/20/2019

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
SHN418	NPS	Shenandoah NP - Big Meadows	VA / R3	10/22/2019
STK138	EPA	Stockton	IL / R5	11/5/2019
THR422	NPS	Theodore Roosevelt NP	ND / R8	7/22/2019
UND002	EPA	Underhill	VT / R1	7/9/2019
VIN140	40 EPA Vincennes		IN / R5	11/7/2019
VOY413 NPS Voyageurs NP		Voyageurs NP	MN / R5	8/29/2019
VPI120	EPA	Horton Station	VA / R3	9/24/2019
WFM105 EPA		White Face Mountain	NY / R2	7/2/2019
WNC429	WNC429 NPS Wind Cave NP		SD / R8	7/24/2019
WSP144 EPA Wash		Washington Crossing St. Park	NJ / R2	6/17/2019
YEL408 NPS Yellowstone 1		Yellowstone NP	WY / R8	7/2/2019
YOS404 NPS		Yosemite NP	CA / R9	5/13/2019
ZIO433	NPS	Zion NP	UT / R8	8/3/2019

In addition to the sites listed in Table 3-1 that were visited for complete systems and performance audits, the 30 sites listed in Table 3-2 were visited to conduct TTP ozone and other pollutant gas PE.

Table 3-2.	Site	Ozone	PE	Visits	
------------	------	-------	----	--------	--

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
ABT147	EPA	Abington	CT / R1	9/25/2019
ANA115	EPA	Ann Arbor	MI / R5	8/22/2019
ARE128	EPA	Arendtsville	PA / R3	7/24/2019
ASH135	EPA	Ashland	ME / R1	9/19/2019
BEL116	EPA	Beltsville	MD / R3	11/18/2019
CAN407	NPS	Canyonlands NP	UT / R8	8/7/2019
CHA467	NPS	Chiricahua NM	AZ / R9	4/11/2019

Site ID	Sponsor Agency	Site Location	State and EPA Region	Audit dates
COW137	EPA	Coweeta	NC / R4	6/13/2019
CTH110	EPA	Connecticut Hill	NY / R2	7/15/2019
DEN417	NPS	Denali NP	AK / R10	9/5/2019
DIN431	NPS	Dinosaur NM	UT / R8	8/8/2019
ESP127	EPA	Edgar Evins St. Park	TN / R4	4/28/2019
GAS153	EPA	Georgia Station	GA / R4	3/26/2019
GRB411	NPS	Great Basin NP	NV / R9	9/16/2019
GRC474	NPS	Grand Canyon NP	AZ / R9	4/9/2019
HOX148	EPA	Hoxeyville	MI / R5	8/23/2019
HWF187	EPA	Huntington Wildlife Forest	NY / R2	7/5/2019
IRL141	EPA	Indian River Lagoon	FL / R4	3/19/2019
KEF112	EPA	Kane Experimental Forest	PA / R3	7/24/2019
MKG113	EPA	M. K. Goddard St. Park	PA / R3	7/25/2019
NPT006	EPA	Nez Perce Tribe	ID / R10	7/8/2019
PET427	NPS	Petrified Forest NP	AZ / R9	4/8/2019
PNF126	EPA	Cranberry	NC / R4	10/5/2019
PSU106	EPA	Penn State University	PA / R3	7/25/2019
SAL133	EPA	Salamonie Reservoir	IN / R5	5/8/2019
SND152	EPA	Sand Mountain	AL / R4	4/27/2019
SPD111	EPA	Speedwell	TN / R4	11/6/2019
SUM156	EPA	Sumatra	FL / R4	3/27/2019
UVL124	EPA	Unionville	MI / R5	8/22/2019
WST109	EPA	Woodstock	NH / R1	8/19/2019

4.0 Performance Audit Results

This section provides the summarized performance evaluation (audit) results of each variable challenged at each station visited except for trace gas audit results. CASTNET operates trace gas monitors at several sites including three sites that are part of the NCORE Network (GRS420, MAC426, and BVL130). Performance evaluation audits of the CASTNET trace gas monitors were performed at BVL130, ROM206, PND165, HWF187, GRS420, and PNF126 in 2019. Results of the NO_y, CO, and SO₂ monitor audits for those sites have been uploaded to the EPA AQS database and are not included in this report. All PE results for all monitors were within acceptance limits. The NO_y PE audit was not performed at MAC426 due to site monitor malfunction.

Performance audit results are discussed for each variable in the following sections. Tables are included to summarize the average and maximum error between the audit challenges and site results as recorded by the on-site Data Acquisition System (DAS). Linear regression and percent difference (% diff) calculation results are included where appropriate. Results that are outside the CASTNET QAPP acceptance criteria are shaded in the tables.

The errors presented in the tables in the following sections are reported as the difference of the measurement recorded by the DAS and the audit standard. Where appropriate, negative values indicate readings that were lower than the standard, and positive values indicate readings that were above the standard value. The results are arranged by audit date. Viewing the results in this order helps to detect any errors that could have been caused by the degradation or drift of the audit standards during the year. The audit standards are transported and handled with care, and properly maintained to help prevent such occurrences. No known problems with the standards were apparent during the year. All standards were within specifications when re-certified at the end of the year. Errors for all parameters other than ozone appear to be random and without bias.

The ozone results are sorted by the level 2 photometer standard used for the audit and arranged by audit date. The audit results obtained by the newest ozone standard (model 49iQPS) indicate a slight negative trend throughout the year. Ozone audit results in general indicate a slight negative bias which will be discussed in the following section.

Detailed reports of the field site audits, which contain all test points for each variable at each site, can be found in the Appendices of each of the 2019 Quarterly reports. The variable specific data forms included in Appendix A of each quarter's report contain the challenge input values, the output of the DAS, additional relevant information pertaining to the variable and equipment, and all available means of identification of the sensors and equipment for each site.

Table 4.1 summarizes the number of test failures by variable tested. All station data are recorded from the station's primary datalogger.

Variable Tested	Number of Tests	Number of tests Failed	% Failed		
Ozone	80	14	17.5		
Flow Rate	57	1	1.8		
Shelter Temperature (average)	52	1	1.9		
Wind Direction Orientation Average Error	4	1	25		
Orientation Maximum Error	4	2	50		
Wind Direction Linearity Average Error	4	0	0		
Linearity Maximum Error	4	0	0		
Wind Direction Starting Torque	4	1	25		
Wind Speed Low Range Average Error	3	0	0		
Low Range Maximum Error	3	0	0		
Wind Speed High Range Average Error	3	1	33.3		
High Range Maximum Error	3	1	33.3		
Wind Speed Starting Torque	4	0	0		
All Temperature Sensors	58	0	0		
Relative Humidity	3	0	0		
Solar Radiation	4	0	0		
Precipitation	4	0	0		
DAS Analog to Digital	33	0	0		

Table 4-1. Performance Audit Results by Variable Tested

4.1 Ozone

Eighty ozone performance evaluation audits were performed in 2019. All ozone challenges were conducted to comply with the OAQPS NPAP-TTP Standard Operating Procedures (SOP) which can be found at <u>https://www3.epa.gov/ttn/amtic/npapsop.html</u>. Each ozone monitor was challenged with ozone-free air and four up-scale concentrations. The ozone test gas concentrations were measured with a NIST-traceable photometer that was verified as a level 2 standard by USEPA. The results of the ozone audits were uploaded to the AQS database at the end of each quarter.

Results of all ozone audits performed are included in Table 4-2. Fourteen monitors tested failed the annual PE with a level 2 test point difference above \pm 1.5 ppb. These are highlighted in the table below. The monitors at THR422, ACA416 and WNC429 are not CASTNET monitors, and are operated by state agencies. It was determined that the monitor at UVL124 required maintenance.

Some monitors responded low to ozone-free air which may also contribute to low response at the level 2 audit point.

Site ID	Actual Difference for Level 2	Average (% diff) for Levels 3, 4 and 6	Maximum (% diff) for Levels 3, 4 and 6	Ozone Slope	Ozone Intercept	Ozone Correlation	EEMS Standard Number	Date
ALC188	-0.34	-3.2	-4.2	0.96029	0.55012	0.99988	1110	2/25/2019
BBE401	-0.22	-0.6	-0.7	0.99057	0.23958	0.99999	1110	2/27/2019
PAL190	-0.4	-1.2	-1.8	0.99603	-0.33515	0.99999	1110	3/1/2019
PET427	-0.38	-1.3	-2.4	0.98967	-0.11093	0.99997	1110	4/8/2019
GRC474	-0.48	-0.8	-1.6	0.99520	-0.13062	0.99996	1110	4/9/2019
CHA467	-0.37	-1.7	-2.0	0.97661	0.55123	0.99994	1110	4/11/2019
LAV410	-1.28	-4.0	-6.9	0.98111	-0.72695	0.99986	1110	5/7/2019
PIN414	-0.33	0.3	0.7	1.00749	-0.27178	0.99999	1110	5/8/2019
YOS404	-0.6	0.2	-1.2	1.01307	-0.42535	0.99995	1110	5/13/2019
SEK430	-0.59	-3.8	-4.2	0.96157	0.10304	0.99998	1110	5/14/2019
ROM406	-1.86	-4.6	-5.8	0.97271	-1.15458	0.99999	1110	6/6/2019
ROM206	-1.01	-1.3	-3.3	1.00644	-0.90695	0.99996	1110	6/11/2019
PND165	-2.25	-9.5	-13.5	0.95438	-2.08948	0.99964	1110	7/1/2019

Table 4-2. Performance Audit Results for Ozone

Site ID	Actual Difference for Level 2	Average (% diff) for Levels 3, 4 and 6	Maximum (% diff) for Levels 3, 4 and 6	Ozone Slope	Ozone Intercept	Ozone Correlation	EEMS Standard Number	Date
YEL408	-0.31	0.3	0.6	1.00478	-0.1015	0.99999	1110	7/2/2019
GLR468	-0.04	2.5	3.6	1.03800	-0.521	0.99997	1110	7/3/2019
NPT006	-0.42	-0.7	-1.7	1.00136	-0.45783	0.99999	1110	7/8/2019
CNT169	0.39	3.5	4.0	1.03170	0.05684	1	1110	7/16/2019
THR422	-1.7	-6.0	-8.1	0.96757	-1.34024	0.99998	1110	7/22/2019
NEC602	-1.81	-4.8	-6.8	0.97785	-1.07778	0.99981	1110	7/23/2019
WNC429	0.73	-0.5	-1.2	0.97856	1.03205	1	1110	7/24/2019
ZIO433	-0.51	-1.9	-2.0	0.98129	-0.02606	1	1110	8/3/2019
CHC432	-0.3	-0.5	-0.8	0.99233	0.12613	0.99999	1110	8/5/2019
GTH161	-0.05	1.0	1.9	1.01969	-0.35367	0.99998	1110	8/6/2019
CAN407	-1	-4.0	-5.2	0.97119	-0.339	0.99995	1110	8/7/2019
DIN431	-0.75	-2.0	-2.6	0.99070	-0.52028	0.99998	1110	8/8/2019
BAS601	-0.54	-1.2	-3.5	0.99416	-0.21771	0.99981	1110	8/19/2019
DEN417	1.62	5.5	6.6	1.03417	1.35257	0.99995	1110	9/5/2019
GRB411	-0.99	-3.1	-3.9	0.97911	-0.40853	0.99996	1110	9/16/2019
SAN189	-1.45	-3.9	-5.4	0.98555	-1.28329	0.99999	1110	10/25/2019
ALH157	0.19	-0.3	-0.8	0.99500	0.11306	0.99999	1110	12/16/2019
CDZ171	-0.85	-1.3	-3.5	1.01071	-1.10155	0.99997	1110	12/17/2019
IRL141	-1.12	-1.6	-2.6	1.00208	-1.09943	1	1114	3/19/2019
GAS153	-1.97	-4.6	-6.9	0.98742	-1.85433	1	1114	3/26/2019
SUM156	-1.64	-1.1	-2.9	1.02263	-2.10227	1	1114	3/27/2019
CVL151	-0.27	-1.2	-2.3	0.98143	0.14908	0.9999	1114	4/13/2019
CHE185	0.18	-0.6	-0.9	0.99049	0.12824	0.99999	1114	4/15/2019
CAD150	-1.66	-2.5	-3.3	0.98939	-1.43004	0.99988	1114	4/16/2019
SND152	-1.14	-2.8	-3.8	0.99028	-0.99572	1	1114	4/27/2019
ESP127	-0.58	0.0	-0.7	1.01038	-0.61174	1	1114	4/28/2019
SAL133	-0.37	-0.8	-1.6	1.00057	-0.48793	1	1114	5/8/2019

Site ID	Actual Difference for Level 2	Average (% diff) for Levels 3, 4 and 6	Maximum (% diff) for Levels 3, 4 and 6	Ozone Slope	Ozone Intercept	Ozone Correlation	EEMS Standard Number	Date
WSP144	-0.89	-0.1	-1.1	1.01500	-0.94684	1	1114	6/17/2019
HWF187	-0.66	-2.7	-2.8	0.97682	-0.2718	1	1114	7/5/2019
CTH110	-0.83	-4.3	-4.6	0.96273	-0.36734	1	1114	7/15/2019
KEF112	-0.28	-0.5	-1.2	1.00429	-0.46454	1	1114	7/24/2019
MKG113	-1.02	-3.9	-4.2	0.97286	-0.68795	0.99999	1114	7/25/2019
PED108	0.02	-0.9	-1.7	0.99796	-0.29137	0.99999	1114	7/26/2019
CND125	-0.1	-2.3	-2.5	0.97601	0.12496	1	1114	7/31/2019
ANA115	-0.26	0.4	0.8	1.00901	-0.33313	0.99999	1114	8/22/2019
UVL124	-3.54	-9.0	-12.3	0.96589	-3.15365	0.99993	1114	8/22/2019
HOX148	-0.55	-1.8	-2.6	0.99012	-0.37417	1	1114	8/23/2019
PRK134	-2.08	-5.5	-6.9	0.9664	-1.33743	0.99999	1114	8/27/2019
VOY413	-0.47	-0.2	-0.5	1.00464	-0.49771	0.99999	1114	8/29/2019
VPI120	-0.6	-4.0	-4.9	0.96526	-0.04806	0.99996	1114	9/24/2019
PAR107	-1.17	-1.9	-3.3	0.98162	-0.62791	0.99985	1114	9/25/2019
LRL117	-0.99	-2.6	-3.6	0.98045	-0.50137	0.99994	1114	9/26/2019
PNF126	-1.05	-1.0	-2.3	1.00778	-1.06583	1	1114	10/5/2019
GRS420	-0.78	-1.3	-2.0	0.99738	-0.61972	1	1114	10/7/2019
MAC426	1.86	2.9	5.8	0.98781	2.24646	0.99999	1114	10/17/2019
STK138	-0.53	-2.2	-2.4	0.97775	-0.12925	0.99999	1114	11/5/2019
BVL130	-0.67	-2.6	-2.9	0.97565	-0.11353	1	1114	11/7/2019
BEL116	-0.73	-1.5	-1.8	0.99282	-0.54196	0.99999	1114	11/18/2019
BWR139	-1.39	-4.3	-4.9	0.97304	-1.01079	0.99999	1114	11/19/2019
BFT142	-1.21	-4.3	-5.1	0.96728	-0.58271	1	1114	12/17/2019
COW137	-1.28	-3.9	-5.6	0.96767	0.17821	0.99958	1115	6/13/2019
ARE128	-0.78	-2.4	-2.9	0.97944	-0.31014	0.99998	1115	7/24/2019
PSU106	-0.74	-4.1	-4.3	0.95555	0.12622	1	1115	7/25/2019
WST109	-0.81	-3.8	-4.0	0.96271	-0.07811	0.99999	1115	8/19/2019

Site ID	Actual Difference for Level 2	Average (% diff) for Levels 3, 4 and 6	Maximum (% diff) for Levels 3, 4 and 6	Ozone Slope	Ozone Intercept	Ozone Correlation	EEMS Standard Number	Date
ACA416	-0.23	4.6	5.9	1.06837	-1.25419	0.99999	1115	9/18/2019
ASH135	-2.51	-4.2	-5.7	0.99454	-2.50547	0.99993	1115	9/19/2019
ABT147	-0.39	-0.9	-1.3	0.99630	-0.32338	1	1115	9/25/2019
SHN418	-0.6	-2.0	-2.3	0.98595	-0.2997	0.99999	1115	10/22/2019
DCP114	-1.3	-4.4	-4.8	0.96442	-0.53192	0.99999	1115	10/24/2019
OXF122	-1.21	-2.3	-3.3	0.99496	-1.07432	1	1115	10/25/2019
MCK131	-1.4	-2.6	-4.4	0.99511	-1.37691	0.99993	1115	11/5/2019
MCK231	-1.51	-2.3	-3.0	1.00181	-1.68192	0.99994	1115	11/5/2019
SPD111	-1.24	-2.2	-3.6	0.99213	-1.02793	0.99988	1115	11/6/2019
VIN140	-1.01	-1.6	-1.9	0.99069	-0.37885	0.99997	1115	11/7/2019
QAK172	-0.93	-1.4	-3.2	1.00619	-1.01653	0.99999	1115	11/10/2019
CKT136	-2.1	-8.7	-9.2	0.92747	-0.93752	0.99999	1115	11/11/2019
CDR119	-0.5	0.3	1.0	1.01370	-0.6245	0.99999	1115	11/12/2019

4.1.1 Ozone Bias

EEMS is aware of the EPA *Technical Assistance Document* "<u>Transfer Standards for Calibration of</u> <u>Air Monitoring Analyzers for Ozone</u>" *October 2013* which can be found at the AMTIC website: <u>https://www3.epa.gov/ttn/amtic/files/ambient/qaqc/OzoneTransferStandardGuidance.pdf</u>.

The document provides the rationale for standard photometer designation and the procedures required to ensure photometer stability. The process involves comparisons to a higher-level standard (in this case a regional EPA level 1 standard) and multiple comparisons on separate days, known as "6x6 verification". As described in the document, once the transfer standard comparison relationship with the level 1 standard has been established and the stability requirements are met, the actual ozone concentration is calculated by:

Std.
$$O_3$$
 conc. = $\frac{1}{\bar{m}}$ (Indicated O_3 conc. - \bar{I})

Where:

 \overline{m} = average slope \overline{I} = average intercept EEMS used this equation prior to 2017 with a rolling 6x6 average slope and intercept to correct level 2 standard photometer measurements back to the regional EPA level 1 standard reference photometer (SRP) for ozone PE audits. Since the technical assistance document also states that if any adjustments are made to the transfer standard a new 6x6 verification is required, EEMS did not adjust the physical settings (background and span) of the level 2 standards unless the photometer did not meet the criteria (+/- 3 %) comparison to the level 1 standard. Thereby only mathematical corrections were applied to the level 2 standard photometers.

Review of data prior to 2017 indicated that this procedure may have introduced a bias to the standard since the level 2 standards are only compared to the level 1 SRP two or three times per year. The rolling 6x6 slope and intercept averages may not have reflected the current relationship between the level 2 and the level 1 standards. This bias was observed in the data from the 2016 ozone PE audits.

In 2017, EEMS elected to deviate from the EPA Technical Assistance Document and began correcting the level 2 standard photometer using the most recent verification results rather than the rolling 6x6 results. All ozone audit standard measurements have been corrected back to the EPA level 1 standard using most recent slope and intercept relationship to the SRP since 2017.

The remainder of this section will focus on only Level 2 audit results. Data presented includes not only EEMS audit data, but audit data available in AQS from other audit agencies. Station monitor response to ozone-free (zero-air) audit gas are not available in AQS. Since EEMS frequently observes negative responses to zero-air from station monitors, it is likely that the lowest audit concentrations are impacted. Level 2 audit results provide the lowest concentration data with enough data points for a cursory comparison, therefore only level 2 audit data are compared.

Figures 4-1 presents annual PE ozone results for Level 2 concentrations performed by EEMS in 2017 and 2018 respectively. As previously stated, beginning in 2017 calculations of standard values only include the most recent comparison to the SRP (not a rolling 6x6 average) and little if any bias is evident in the audit results. In 2018 it appears that there may be a slight negative increase in bias.

4-7

Figure 4-2 presents 2019 Level 2 annual PE audit results performed by EEMS. It seems clear that the negative bias trend has increased from 2018 through 2019.

Figure 4-2. 2019 Ozone PE Actual Difference Level 2 Audits Performed by EEMS

EEMS has not observed this bias when performing ozone audits for stations that are not part of CASTNET (see previous annual reports). Although data are not included in this report, the contractors responsible for calibrations and maintenance of CASTNET ozone monitors have not reported negative responses to zero-air or bias low audit results. Therefore, as further investigation, audit data of CASTNET ozone monitors performed by other agencies was obtained from AQS.

Figure 4-3 presents 2019 NPAP Level 2 audit data. NPAP audits are performed at each CASTNET site approximately once every three years by each EPA regional laboratory or contractor. NPAP audit data should be directly comparable to EEMS annual PE audit data since the identical method is used by NPAP and EEMS field scientists and both NPAP and EEMS use very similar mobile laboratory systems to perform the audits. Most notably the zero-air generator and dilution systems are identical. The data were downloaded from AQS but not parsed to determine which regional mobile lab or agency performed the NPAP audit. Data are not available to indicate the site monitor response to zero-air. It is most likely that data are obtained from more than one NPAP mobile laboratory and field scientist. Although not as prominent as EEMS annual PE results, there appears to be a slight negative bias.

Figure 4-3. 2019 Actual Difference Level 2 NPAP Audits

Several state and local agencies perform annual ozone PE at CASTNET stations. Those data were downloaded from AQS for those audits performed in 2019. Figure 4.4 presents the level 2 concentration audit results. It is unknown what methods and equipment the state and local agencies use to perform the audits. It is not known if the audits are performed TTP or back-of-the-analyzer (BOA). Data were not parsed to determine which sites were audited or which agency performed the audits. No data are available to indicate the station response to zero-air. It appears there is no bias at the level 2 audit concentration for audits performed by state and local agencies.

Figure 4-4. 2019 Ozone PE Actual Difference Level 2 Audits Not Performed by EEMS

The data, and observations of monitor response to audit zero-air, indicate that the bias at low concentrations might be attributed to the negative response to ozone-free audit gas. A likely theory is that the audit gas is much drier than the ambient air that is being sampled by the monitor prior to the audit. The moisture contained in the ambient air has likely coated and permeated the sample lines and filters upstream of the monitor and is slightly impacting the response. This could also explain why the effect is not observed at sites other than CASTNET, since the sample lines at those sites are much shorter and usually do not contain a filter at the inlet that is subject to moisture permeation.

The zero-air generators used by EEMS and NPAP produce very dry air. The audit gas dew point is most likely much lower than the on-site zero-air system, and the zero-air systems used by the state and local agencies to generate audit gas. This may be why the EEMS and NPAP results differ from the automatic on-site checks and audits by local agencies.

EEMS is continuing to investigate the observed bias. Thirty EPA sponsored CASTNET ozone monitors incorporate an inline NafionTM dryer to help dry the sample air as it enters the monitor. The dryer is located near the back of the monitor inside the station shelter and is operated by vacuum from the dry deposition filter pump. In 2020 EEMS is performing ozone PE with the vacuum pump engaged and the dryer active. This has not been done in previous years.

A more thorough analysis of this phenomenon could include investigation of correlation with site humidity and elevation. It is also suspected that on-site calibration methods could contribute to the impact depending on the flow rate and pressure of the calibration gas generated.

4.2 Flow Rate

The controlled flow rate operated by the CASTNET filter pack system was audited at 57 sites in 2019. All flow rates are in standard temperature and pressure (at 25 °C) (STP). A NIST-traceable dry-piston primary flow rate device was used for the tests. The readings obtained from this primary standard are the STP flow rate observed, while the DAS flow rate was read from the on-site data logger. All but one (MAC426) of the flow rate data accuracy results were found to be within the acceptance limits.

4.3 Shelter Temperature

At each site reporting ozone concentrations to AQS, the hourly average shelter temperature must be maintained between 20.0 to 30.0 degrees C or per manufacturers specifications if designated to a wider temperature range. Shelter temperature was audited at 52 of the sites visited. All but two (CHC432 and ZIO433) of the shelter temperature data accuracy results were found to be within the acceptance criterion of ± 2 °C. The method consisted of placing the audit standard in close proximity (in situ) to the shelter temperature sensor and recording either instantaneous observations of both sensors, or averages from both sensors. A Resistance Temperature Detector (RTD) was used as the audit standard.

Nearly all of the site sensors were observed to lag behind the audit sensor during the rapid changes in temperature inside the shelter as the air conditioning or heating cycled on and off. In most instances the shelter temperature sensors never reached the minimum or maximum temperature measured with the audit standard. This is not likely to add a large error to the hourly averaged shelter temperature measurements. However, since the output of the shelter temperature sensors follow a sine wave curve but the actual shelter temperature does not change following a sine wave curve, if the shelter temperature is set near the lower or higher allowable limits (20 to 30 degrees C)¹ the actual hourly averages may be lower or higher than those measured by the site sensors.

The shelter temperature and flow rate audit results are summarized in Table 4-3. Flow rate and shelter temperature data are reported only for the sites that were visited for complete systems and performance audits.

¹ The revised acceptable operating temperature range for Thermo 40*i* monitor is 5 to 40 degrees C.

Site ID	Shelter Temp. Average Error (C)	Shelter Temp. Maximum Error (C)	STP Flow Rate Primary Standard (lpm)	STP Flow Rate Site DAS (lpm)	Flow Error (% diff)	Audit date
ALC188	-0.93	-0.96	1.54	1.50	-2.38	2/25/2019
BBE401	0.30	1.08	2.98	3.00	0.67	2/27/2019
PAL190	-0.34	1.99	3.02	3.00	-0.55	3/1/2019
EVE419			3.02	3.01	-0.44	3/19/2019
CVL151	-0.11	-0.16	1.52	1.50	-1.32	4/13/2019
CHE185	0.14	0.33	1.53	1.50	-1.96	4/15/2019
CAD150	0.27	0.31	1.52	1.50	-1.32	4/16/2019
LAV410	-0.05	-1.75	3.02	3.01	-0.22	5/7/2019
PIN414	0.11	0.74	2.97	3.01	1.23	5/8/2019
YOS404	1.61	2.31	3.00	3.00	-0.33	5/13/2019
SEK430	0.29	0.46	3.04	3.01	-1.10	5/14/2019
ROM406	2.00	2.98	3.00	2.95	-1.66	6/6/2019
ROM206	0.97	1.49	3.04	3.00	-1.31	6/11/2019
CND125	1.03	1.13	1.50	1.50	-0.22	6/14/2019
WSP144	-0.05	0.31	1.49	1.50	0.45	6/17/2019
PND165	-0.60	-1.14	3.04	3.00	-1.21	7/1/2019
WFM105			2.96	3.00	1.47	7/2/2019
WNC429	0.82	1.13	2.99	3.08	3.12	7/2/2019
YEL408	-0.08	1.17	2.98	3.00	0.54	7/2/2019
GLR468	-0.99	-1.09	3.01	3.00	-0.33	7/3/2019
UND002			3.04	3.00	-1.21	7/9/2019
NIC001			3.00	3.00	-0.11	7/10/2019
CNT169	-0.13	-0.41	3.02	2.99	-0.77	7/16/2019
THR422	1.70	2.1	3.05	3.07	0.77	7/22/2019
NEC602	0.88	1.06	3.12	3.00	-3.64	7/23/2019
PED108	0.55	1.47	1.47	1.50	2.04	7/26/2019
ZIO433	2.4	3.44				8/3/2019
CHC432	2.32	2.88				8/5/2019
GTH161	0.04	0.13	3.04	3.01	-1.10	8/6/2019

Site ID	Shelter Temp. Average Error (C)	Shelter Temp. Maximum Error (C)	STP Flow Rate STP Flow I Primary Site DAS Standard (lpm) (lpm)		Flow Error (% diff)	Audit date
BAS601	0.43	0.45	3.04	3.00	-1.42	8/19/2019
BUF603			2.92	3.00	2.86	8/20/2019
SHE604			3.03	3.11	2.88	8/20/2019
PRK134	-0.26	-0.28	1.49	1.50	0.90	8/27/2019
VOY413	0.18	0.28	2.99	3.00	0.22	8/29/2019
ACA416	1.83	2.1	1.53	1.52	-0.44	9/18/2019
VPI120	0.72	0.87	1.50	1.50	0.00	9/24/2019
PAR107	0.17	0.61	1.54	1.51	-2.16	9/25/2019
LRL117	-0.08	-0.94	1.50	1.49	-0.45	9/26/2019
GRS420	0.15	0.35	2.92	3.00	2.62	10/7/2019
MAC426	-0.06	0.53	1.59	1.51	-5.03	10/17/2019
KNZ184	0.10	1.23	2.99	2.99	-0.11	10/22/2019
SHN418	-0.04	-0.06	1.52	1.50	-1.53	10/22/2019
KIC003			2.98	2.99	0.45	10/23/2019
DCP114	1.32	1.42	1.53	1.50	-2.17	10/24/2019
OXF122	0.09	0.46	1.51	1.50	-0.88	10/25/2019
SAN189	-0.03	0.42	2.98	3.00	0.78	10/25/2019
MCK131	0.00	0.30	1.55	1.51	-3.00	11/5/2019
MCK231	0.56	0.98	1.54	1.51	-2.16	11/5/2019
STK138	-0.67	-0.8	1.43	1.50	4.65	11/5/2019
BVL130	0.08	0.28	1.51	1.50	-0.88	11/7/2019
VIN140	-0.17	-0.98	1.53	1.50	-1.96	11/7/2019
QAK172	0.59	0.80	1.49	1.50	0.67	11/10/2019
CKT136	1.07	1.12	1.50	1.50	-0.22	11/11/2019
CDR119	0.71	0.9	1.51	1.50	-0.66	11/12/2019
EGB181	-0.55	-0.56	1.47	1.49	1.36	11/12/2019
BWR139	0.49	0.61	1.54	1.50	-2.39	11/19/2019
ALH157	-0.41	-0.67	1.48	1.50	1.35	12/16/2019
BFT142	0.09	0.20	1.49	1.49	0.22	12/17/2019
CDZ171	-0.02	-1.04	1.54	1.50	-2.39	12/17/2019

4.4 Wind Speed

The wind speed sensors at three sites (only low speed tested at BVL130) equipped for meteorological measurements were audited. The wind speed data accuracy results at ACA416 were above the acceptance limit. The results of the wind speed performance audits are presented in Table 4-4. The state of Maine operates the meteorological sensors at ACA416. Audits in previous years have indicated similar results. The sensor appears to be accurate up to speeds above 20 m/s (over 45 mph) and then fails at higher speeds. It is likely that the sensor is not tested by the state at high wind speeds and this is not a concern.

4.4.1 Wind Speed Starting Threshold

The condition of the wind speed bearings was evaluated as part of the performance audits. The data acceptance criterion for wind speed bearing torque is not defined in the QAPP. However, *Appendix 1: CASTNET Field Standard Operating Procedures*, states that the wind speed bearing torque should be ≤ 0.2 g-cm. To establish the wind speed bearing torque criterion for audit purposes the rational described in the QAPP measurement criteria was applied. The QAPP states that field criteria are more stringent than DQO and established to maintain the system within DQO. Typically, field measurement criteria are set at approximately one-half the DQO. Therefore, 0.5 g-cm was used for the acceptance limit for audit purposes. This value is within the manufacturers' specifications for a properly maintained system.

4.5 Wind Direction

Two separate tests were performed to evaluate the accuracy of each wind direction sensor:

- A linearity test was performed to evaluate the ability of the sensor to function properly and accurately throughout the range from 1 to 360 degrees. This test evaluates the sensor independently of orientation and can be performed with the sensor mounted on a test fixture.
- An orientation test was used to determine if the sensor was aligned properly when installed to measure wind direction accurately in degrees true. An audit standard compass was used to perform the orientation tests.

The results of the wind direction performance audits are presented in Table 4-4. The average errors for all sensors were within the acceptance limits or the linearity test. The average errors for all sensors except ZIO433 were within the acceptance limits or the orientation test.

4.5.1 Wind Direction Starting Threshold

The condition of the wind direction bearings were evaluated as part of the performance audits. The data acceptance criterion for wind direction bearing torque is not defined in the QAPP. However,

Appendix 1: CASTNET Field Standard Operating Procedures, states that the wind direction bearing torque should be ≤ 10 g-cm for R. M. Young sensors. The manufacturer states that a properly maintained sensor will be accurate up to a starting threshold of 11 g-cm. To establish the wind direction bearing torque criterion for audit purposes the rational described in the QAPP measurement criteria was applied. The QAPP states that field criteria are more stringent than DQO and established to maintain the system within DQO. Typically, field criteria are set to approximately one-half the DQO. For audit purposes 20 g-cm was used for the acceptance limit for R. M. Young sensors. Climatronics sensors typically have a lower starting torque. For audit purposes a threshold of 10 g-cm was selected for Climatronics sensors. The sensor at ACA416 tested outside of acceptance limits for wind direction starting threshold. The test results are provided in Table 4-4.

		W	ind Direc	tion	Wind Speed					
Site ID	Orientati	on Error	Lineari	inearity Error Starting		Low Ran	Low Range Error High Range Error			
	Ave (deg)	Max (deg)	Ave (deg)	Max (deg)	Torque (g-cm)	Ave (m/s)	Max (m/s)	Ave (% diff)	Max (% diff)	Torque (g-cm)
ACA416	-3.8	-5.2	1.78	3.2	11.5	-0.08	-0.21	-7.0	-25.67	0.45
BVL130	0.3	-2	1.0	2.0	14	-0.07	-0.20	NP	NP	0.4
CHC432	-1.4	-3.2	1.73	4.4	10	-0.05	-0.20	0.10	0.20	0.3
ZIO433	-9.5	-12	1.35	2.9	15	-0.05	-0.20	0.0	0.0	0.3

 Table 4-4. Performance Audit Results for Wind Sensors

* Note: The wind systems acceptance criteria were applied to the average of the results. The data validation section of the CASTNET QAPP states that if any wind direction or wind speed challenge result is outside the acceptance criterion the variable is flagged. (NP = not performed)

4.6 Temperature and Two-Meter Temperature

The EPA sponsored site temperature measurement systems consist of a temperature sensor mounted on a tower approximately 9 meters above ground-level. Sites operated by the Park Service have moved the temperature sensors to approximately two meters above the ground (2-meter temperature).

The BLM has recently upgraded the temperature sensors at their sites to submersible RTD sensors. However, the sensor operating at NPS sponsored CHC432 site, is a combined relative humidity and temperature sensor and not standalone RTD or encased thermistor temperature sensor. Due to the design of the RH/Temperature sensor, it cannot be submerged in water baths to challenge the sensor at different temperature audit levels. For that reason, the combination RH/Temperature sensor was audited by placing the sensor in a watertight chamber (RH salt chamber) and then placing the chamber in an ice-water bath, ambient bath, and hot water bath. Therefore, the temperature audit results for site CHC432 are not directly comparable to audit results of RTD or encased thermistor sensors, and not reported.

All sites use shields to house the sensors that are either mechanically aspirated with forced air, or naturally aspirated. In all cases the sensors were removed from the sensor shields and placed in a uniform temperature bath with a precision NIST-traceable RTD, during the audit.

A total of 58 temperature sensors were tested, and all were found to be within the acceptance criterion. It should be noted that one of those sensors (CHC432) is a combination RH/Temperature sensor as described above and cannot be submersed in a water-bath. The average errors for all sensors are presented in Table 4-5.

4.6.1 Temperature Shield Blower Motors

All fourteen of the temperature systems with sensor shield blower motors (forced-air aspiration) encountered during the site audits conducted during 2019 were found to be functioning.

4.7 **Relative Humidity**

The three relative humidity systems that were audited were tested with a combination of primary standard salt solutions, and a NIST traceable transfer standard relative humidity probe. The results of the average and maximum errors throughout the measurement range of approximately 30% to 95% are presented in Table 4-5. All humidity sensors were within the acceptable limits.

As in previous years, operation of both temperature and humidity sensors with respect to natural or forced-air aspiration can vary between sites. At most EPA sponsored sites temperature and humidity sensors are operating in naturally aspirated shields. At most NPS sponsored sites temperature and humidity sensors are operating in shields designed to be mechanically aspirated with forced-air blowers.

During humidity audit tests with the primary standard salt solutions, the sensors were removed from the shields and placed in a temperature-controlled enclosure. During audit tests with the transfer standard probe, the sensor and transfer were placed in the same ambient conditions. Therefore, the audit tests do not account for differences in the operation of the sensors due to the different shield configurations.

		9-meter	2-Meter	Relative Humidity			
Audit Date	Site ID	Temperature Ave. Error	Temperature Ave. Error	Range	0 - 100%		
		(deg C)	(deg C)	Ave. Error	Max. Error		
2/25/2019	ALC188	-0.26					
2/27/2019	BBE401		0.26				
3/1/2019	PAL190	-0.03					
4/13/2019	CVL151	-0.05					
4/15/2019	CHE185	-0.33					
4/16/2019	CAD150	-0.05					
5/7/2019	LAV410		-0.05				
5/8/2019	PIN414		-0.15				
5/13/2019	YOS404		-0.15				
5/14/2019	SEK430		-0.23				
6/6/2019	ROM406		0.22				
6/11/2019	ROM206	-0.10					
6/14/2019	CND125	0.32					
6/17/2019	WSP144	-0.11					
7/1/2019	PND165	-0.04					
7/2/2019	WFM105	0.12					
7/2/2019	YEL408		-0.29				
7/3/2019	GLR468		0.23		-		
7/9/2019	UND002	0.06	-		-		
7/10/2019	NIC001	0.00					
7/16/2019	CNT169	0.05					
7/22/2019	THR422		0.04				
7/23/2019	NEC602		0.09				
7/24/2019	WNC429		0.11				
7/26/2019	PED108	-0.13					

Tuble I ci i ci i ci intulle i tudit i contro i ci i	Table 4-5.	Performance	Audit	Results	for	Tem	perature	and	Relative
--	------------	-------------	-------	---------	-----	-----	----------	-----	----------

		9-meter Temperature Ave. Error	2-Meter	Relative Humidity	
Audit Date	Site ID		Temperature Ave. Error	Range 0 – 100%	
		(deg C)	(deg C)	Ave. Error	Max. Error
8/3/2019	ZIO433		0.30		
8/5/2019	CHC432			-1.81	-2.7
8/6/2019	GTH161	0.09			
8/19/2019	BAS601		0.12		
8/20/2019	BUF603		0.08		
8/20/2019	SHE604		0.07		
8/27/2019	PRK134	-0.07			
8/29/2019	VOY413		-0.37		
9/18/2019	ACA416		0.10	-0.79	-2.2
9/24/2019	VPI120	-0.01			
9/25/2019	PAR107	-0.19			
9/26/2019	LRL117	-0.04			
10/7/2019	GRS420		0.01		
10/17/2019	MAC426		0.18		
10/22/2019	KNZ184	-0.13			
10/22/2019	SHN418		0.11		
10/23/2019	KIC003	0.08			
10/24/2019	DCP114	0.07			
10/25/2019	OXF122	0.33			
10/25/2019	SAN189	-0.06			
11/5/2019	MCK131	0.05			
11/5/2019	MCK231	-0.20			
11/5/2019	STK138	-0.01			
11/7/2019	BVL130	-0.08	0.03	0.53	3.1
11/7/2019	VIN140	0.05			
11/10/2019	QAK172	0.17			

Audit Date		9-meter Temperature Ave. Error (deg C)	2-Meter	Relative Humidity	
	Site ID		Temperature Ave. Error (deg C)	Range 0 – 100%	
				Ave. Error (%)	Max. Error (%)
11/11/2019	CKT136	0.28			
11/12/2019	CDR119	0.07			
11/12/2019	EGB181	-0.10			
11/19/2019	BWR139	0.10			
12/16/2019	ALH157	-0.03			
12/17/2019	BFT142	0.08			
12/17/2019	CDZ171	-0.08			

4.8 Solar Radiation

The ambient conditions encountered during the audit visits were suitable (high enough light levels) for accurate comparisons of solar radiation measurements. A World Radiation Reference (WRR) traceable Eppley PSP radiometer and translator or a model 8-48 were used as the audit standard system.

Three sites were tested. All sites had daytime average results that were within the acceptance criterion. The results of the individual tests for each site are included in Table 4-6. The percent difference of the maximum single-hour average solar radiation value observed during each site audit is also reported in Table 4-6 although this criterion is not part of the CASTNET data quality indicators. All maximum values were also within $\pm 10\%$.

4.9 Precipitation

The four sites audited used a tipping bucket rain gauge for obtaining precipitation measurement data. The audit challenges consisted of entering multiple amounts of a known volume of water into the tipping bucket funnel at a rate equal to approximately 2 inches of rain per hour. Equivalent amounts of water entered were compared to the amount recorded by the DAS. The results are summarized in Tables 4-6. All sensors were within the acceptance criteria.

Site ID		Provinitation			
	Daytime Ave. (% diff)	Std. Max. Value (w/m2)	Site Max. Observed (w/m2)	Max. Value (% diff)	Ave. Error (% diff)
ACA416					-2.0
BVL130	7.5	481	523	8.7	2.0
CHC432	-1.6	991	963	-3.4	-0.9
ZIO433	-0.8	791	794	-2.3	-0.1

Table 4-6. Performance Audit Results for Solar Radiation and Precipitation

4.10 Data Acquisition Systems (DAS)

All of the NPS sponsored sites visited utilized an ESC logger as the primary and only DAS. All EPA sites visited operated Campbell Scientific loggers as their only DAS. The results presented in table 4-7 include the tests performed on the logger at each site. The BLM sites utilize a Campbell Scientific CR1000. The CR1000 and some of the other loggers encountered are not configured to allow analog tests.

4.10.1 Analog Test

The accuracy of each logger was tested on two different channels (if two channels were available to be used) with a NIST-traceable Fluke digital voltmeter. At the EPA sponsored sites the channels above analog channel 8 could not be tested since there were no empty channels available to test. All data loggers were within the acceptance criterion of ± 0.003 volts.

4.10.2 Functionality Tests

Other performance tests used to evaluate the DAS included the verification of the date and time. All site data loggers were found to be set to the correct date and within ± 5 minutes per the acceptance criterion for time except for EGB181. The NPS sponsored site data loggers were found to be set to the correct date and within ± 5 minutes of the acceptance criterion for time. However, most of the NPS clocks were found to be 1 to 3 minutes different than the standard, whereas the EPA sponsored site clocks were all within 2-3 seconds. The Campbell Scientific logger clocks at the EPA sites are synchronized with the internet, whereas the ESC loggers at the NPS sites are not.

	Site ID	Analog Test Error (volts)				Data	Time
Audit Date		Low Channel		High Channel		Correct	Error
		Average	Maximum	Average	Maximum	(Y/N)	(minutes)
2/25/2019	ALC188	0.0001	0.0004			Y	0.00
2/27/2019	BBE401			0.0000	-0.0003	Y	-1.85
3/1/2019	PAL190	0.0001	0.0002			Y	-1.00
3/19/2019	EVE419	0.0000	0.0002			Y	-1.72
4/13/2019	CVL151	-0.0001	-0.0002			Y	0.00
4/15/2019	CHE185	-0.0020	-0.0030			Y	-0.15
4/16/2019	CAD150	0.0000	-0.0001			Y	0.00
5/7/2019	LAV410			-0.0001	-0.0004	Y	1.45
5/8/2019	PIN414			0.0002	0.0005	Y	-0.95
5/13/2019	YOS404	-0.0001	-0.0003			Y	0.92
5/14/2019	SEK430			0.0003	0.0008	Y	1.90
6/6/2019	ROM406					Y	-1.25
6/11/2019	ROM206	-0.0002	-0.0005			Y	0.00
6/14/2019	CND125	-0.0001	-0.0001			Y	0.02
6/17/2019	WSP144	-0.0001	-0.0002			Y	-0.08
7/1/2019	PND165	-0.0001	-0.0004			Y	-0.05
7/2/2019	YEL408	0.0000	-0.0004			Y	-0.08
7/3/2019	GLR468			-0.0001	-0.0005	Y	-0.67
7/16/2019	CNT169	-0.0001	-0.0003			Y	0.08
7/22/2019	THR422			0.0002	0.0004	Y	1.10
7/24/2019	WNC429	-0.0001	-0.0003			Y	-1.67
7/26/2019	PED108	-0.0001	-0.0003			Y	0.00
8/3/2019	ZIO433	-0.0002	-0.0003			Y	-0.75
8/5/2019	CHC432	0.0003	0.0007			Y	0.95
8/6/2019	GTH161	-0.0002	-0.0010			Y	0.00
8/27/2019	PRK134	0.0000	-0.0001			Y	0.03
8/29/2019	VOY413	0.0000	0.0001			Y	1.83

Table 4-7.	Performance Au	dit Results for	Data Acquisition	Systems			
			Analog Test	Data	Time		
---------------	---------	---------	-------------	---------	---------	---------	-----------
Audit Data	Site ID	Low	Channel	High	Channel	Correct	Error
Date		Average	Maximum	Average	Maximum	(Y/N)	(minutes)
9/18/2019	ACA416			-0.0006	-0.0019	Y	-0.17
9/24/2019	VPI120	0.0000	0.0001			Y	0.00
9/25/2019	PAR107	0.0000	-0.0001			Y	0.00
9/26/2019	LRL117	0.0000	0.0001			Y	0.00
10/7/2019	GRS420	-0.0001	-0.0002			Y	-0.13
10/17/2019	MAC426	0.0000	0.0001			Y	-0.73
10/22/2019	KNZ184	0.0000	0.0003			Y	-0.08
10/24/2019	DCP114	0.0000	-0.0001			Y	0.00
10/25/2019	OXF122	-0.0001	-0.0001			Y	0.00
10/25/2019	SAN189	0.0001	0.0003				0.00
11/5/2019	MCK131	0.0000	0.0000			Y	0.00
11/5/2019	MCK231	0.0000	0.0000			Y	0.00
11/5/2019	STK138	0.0001	0.0002			Y	0.00
11/7/2019	BVL130	0.0002	0.0003			Y	0.00
11/7/2019	VIN140	0.0000	0.0001			Y	0.00
11/10/2019	QAK172	0.0000	-0.0001			Y	0.03
11/11/2019	CKT136	-0.0001	-0.0001			Y	0.00
11/12/2019	CDR119	0.0000	-0.0001			Y	-0.02
11/12/2019	EGB181	-0.0001	-0.0002			Y	5.75
11/19/2019	BWR139	0.0000	0.0001			Y	-1.00
12/16/2019	ALH157	0.0000	0.0002			Y	0.00
12/17/2019	BFT142	0.0000	0.0001			Y	-0.05
12/17/2019	CDZ171	0.0001	0.0002			Y	-0.03

5.0 Systems Audit Results

The following sections summarize the site systems audit findings and provide information observed regarding the measurement processes at the sites. Conditions that directly affect data accuracy have been reported in the previous sections. Other conditions that affect data quality and improvements to some measurement systems or procedures are suggested in the following sections.

5.1 Siting Criteria

All of the sites that were visited have undergone changes during the period of site operation which include population growth, road construction, and foresting activities. None of those changes were determined to have a significant impact on the siting criteria that did not exist when the site was initially established.

Some sites that are located in state and national parks are not in open areas and have trees within the 50 meter criterion established in the QAPP. Given the land use and aesthetic concerns, these sites are acceptable and represent an adequate compromise with regard to siting criteria and the goal of long-term monitoring. For sites that measure ozone data designated as NAAQS compliant, these sites may violate recommended siting criteria in 40 CFR Part 58.

The CASTNET QAPP is currently being revised to more closely follow 40 CFR Part 58 Appendix E. The audit program will incorporate those changes when they are implemented beginning with audits in 2020.

5.2 Sample Inlets

Based on the siting criteria information provided in the CASTNET QAPP, with consideration given to the siting criteria compromises described in the previous section, all but four sites (LAV410, YEL408, VOY413, and CDR119) visited in 2019 have ozone monitor sample trains that are sited properly and in accordance with the CASTNET QAPP. All ozone sample inlets are currently being evaluated with respect to obstructions above the inlet. The acceptance criterion requires that there should be no obstructions (including trees) within a 26.6 degree angle (object distance must be at least two times the height) above the ozone inlet. There are trees that violate the 26.6 degree sample inlet requirement at the four sites listed above.

All but two CASTNET ozone monitors have sample inlet heights at 10 meters the exceptions are WNC429 at 3.35 meters and THR422 at 12.2 meters. With the exception of the state operated sites (WNC429 and THE422), the ozone zero, span, and precision calibration test gases are introduced at the ozone sample inlet, through all filters and the entire sample train. All sample

trains are comprised of only Teflon or Kynar fittings and materials. Sample inlet particulate filters of 5 micron are present at most sites.

The dry deposition filter packs are designed to sample from a height of 10 meters. Most of the filter pack sample lines are also Teflon. Inline filters are present in the sample trains to prevent moisture and particulates from damaging the flow rate controller. A few sites were configured with the dry deposition filter face below the edge of the rain shield enclosure. This may impact the size of the particles collected on the filter. The standard CASTNET configuration is the filter face must not extend below the edge of the enclosure.

5.3 Infrastructure

Sites continue to be improved by repairing the site shelters which had deteriorated throughout the years of operation. A few of the site shelters are still in need of repair, but overall, the condition of the sites has improved again during the past year. Wi-Fi routers with improved internet service have been installed at most sites.

5.4 Site Operators

Generally the site operators are very conscientious and eager to complete the site activities correctly. They are willing to, and have performed sensor replacements and repairs at the sites with support provided by the Wood and ARS field operations centers. In some cases, where replacements or repairs were made, documentation of the activities was not complete, and did not include serial numbers of the removed and installed equipment.

Many of the CASTNET site operators also perform site operator duties for the National Atmospheric Deposition Program (NADP). Many of the NPS site operators also perform other air, or environmental quality functions within their park. All are a valuable resource for the program.

Still many of the site operators have not been formally trained to perform the CASTNET duties by either Wood or ARS. They had been given instructions by the previous site operators and over the phone instructions from the field operation centers at Wood and ARS.

5.5 Documentation

The NPS site operator procedures are well developed and readily accessible at all of the NPS sites visited. There is an electronic interface (DataView 2) available to view, analyze, and print site data. There are electronic "checklists" for the site operator to complete during the site visits; however, all of the CASTNET filter pack procedures are not included in the "checklists". Flow rates and leak check results are not recorded electronically.

An electronic logbook is included in the interface software. This system permits easy access to site documentation data. Complete calibration reports have been added to the system and accessible through the site computer, however the reports available on-site are not up to date.

5.6 Site Sensor and FSAD Identification

Continued improvement has also been made in the area of documentation of sensors and systems used at the sites. It is important to maintain proper sensor identification for the purposes of site inventory and to properly identify operational sensors for data validation procedures. Many sensors have had new numbers affixed for proper identification.

Where possible the identification numbers assigned (serial numbers and barcodes) are used within the field site audit database for all the sensors encountered during the site audits. The records are used for both the performance and systems audits. If a sensor is not assigned a serial number by the manufacturer, that field is entered as "none". If it is unknown whether an additional client ID number is assigned to a sensor, and a number is not found, the client ID is also entered as "none". If it is typical for a manufacturer and/or client ID number to be assigned to a sensor, and that number is not present, the field is entered as "missing". If either the serial number or the client ID numbers cannot be read, the field is entered as "illegible". An auto-number field is assigned to each sensor in the database in order to make the records unique.

6.0 Summary and Recommendations

The CASTNET Site Audit Program has been successful in evaluating the field operations of the sites. The results of performance and systems audits are recorded and archived in a relational database, the Field Site Audit Database (FSAD). CASTNET site operations are generally acceptable and continue to improve. Some differences between actual site operations and operations described in the QAPP have been identified and described. Procedural differences between EPA and NPS sponsored sites have also been described.

As discussed previously the shelters have received some much needed attention. It was also observed that improvements were made to the shelter temperature control systems. As a requirement in 40 CFR Part 58 for ozone monitoring, shelter temperature is an important variable. Additional improvement could be made to accurately measure and report shelter temperature.

The previous paragraphs and sections included some recommendations for improving the field operations systems. One recommendation for improving the audit program is presented in the following section.

6.1 In Situ Comparisons

An improvement to the audit procedures designed to evaluate the differences in measurement technique would be to develop an "In Situ" audit measurement system. This would require a suite of sensors that would be collocated with the site sensors. Ideally the audit sensors would address the inconsistent sensor installations observed throughout the network. By deploying a suite of certified NIST traceable sensors installed and operating as recommended by the manufacturer and to EPA guidelines, subtle differences in the operation of the existing CASTNET measurement systems could be evaluated. The "In Situ" sensors would be operated at each site for a 24 hour period and the measurements would be compared to the CASTNET measurements. A portable system of meteorological sensors would be beneficial for meteorological measurement evaluations particularly at BLM sponsored sites. EEMS is still pursuing this type of audit system.

7.0 References

Office of Air Quality and Planning Standards AMTIC website, SOP and guidance documents: www.epa.gov/ttn/amtic/

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume II - Ambient Air Specific Methods – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV - Meteorological Measurements – EPA.

Clean Air Status and Trends Network (CASTNET) Quality Assurance Project Plan (2003) – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume I: - A Field Guide To Environmental Quality Assurance – EPA.

Quality Assurance Handbook for Air Pollution Measurement Systems: Volume II: Part1 Ambient Air Quality Monitoring Program Quality System Development – EPA.

Sensitivity of the National Oceanic and Atmospheric Administration multilayer model to instrument error and parameterization uncertainty: Journal of Geophysical Research, Vol. 105. No. D5, March 16, 2000.

Wind System Calibration, Recommended Calibration Interval, Procedure, and Test Equipment: November 1999, R. M. Young Company

Bowker, G.E., Schwede, D.B.; Lear, G.G.; Warren-Hicks, W.J., and Finkelstein, P.L., 2011. Quality assurance decisions with air models: a case study of imputation of missing input data using EPA's multi-layer model. Water, Air, and Soil Pollution 222, 391e402.

Schwede, D., & Lear, G.C. (2014). A novel hybrid approach for estimating total deposition in the United States. Atmospheric Environment, 92, 207-220.

APPENDIX 1

Audit Standards Certifications

Certificate Number A3079040 Issue Date: 01/23/19

Certificate of Calibration

Customer: ENVIRONMENTAL ENGINEERING & MEASUREMENT SERVICES

1128 NW 39TH DRIVE	P.O. Number:						
GAINESVILLE, FL 32605							
FEDEX	ID Number: EEMS 01226						
Description: DIGITAL STIK THERMOMETER	Calibration Date: 01/23/2019						
Manufacturer: FLUKE	Calibration Due: 01/23/2020						
Model Number: 1551A EX	Procedure: FLUKE 1551A EX,52A EX Rev: 11/1/2010						
Serial Number: 2085085	Temperature: 71 F						
Technician: STEVE TORRES	Humidity: 43 % RH As Found Condition: IN TOLERANCE						
On-Site Calibration:	Calibration Results: IN TOLERANCE						

Limiting Attribute:

This instrument has been calibrated using standards traceable to the SI units through the National Institute of Standards and Technology (NIST) or other National Metrological Institute (NMI). The method of calibration is direct comparison to a known standard, derived from natural physical constants, ratio measurements or compared to consensus standards.

Reported uncertainties are expressed as expanded uncertainty values at an approximately 95% confidence level using a coverage factor of k=2. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025:2017 and ANSI/NCSL Z540-1-1994. ISO/IEC 17025:2017 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. This calibration complies with all the requirements of ANSI/NCSL Z540-1-1994 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Measurements not currently on TMI's Scope of Accreditation are identified with an asterisk.

FAR

FRANK BAHMANN, BRANCH MANAGER

Scott Chamberlain

Scott Chamberlain, QUALITY MANAGER

	Cal	ibration Standards		
Asset Number 05535	Manufacturer FLUKE	Model Number 5609-12-D	Date Calibrated 7/3/2018	<u>Cal Due</u> 7/3/2019
660TL18010015	ADDITEL	ADT875PC-155	6/1/2018	6/1/2019
A88072	FLUKE/HART	1502A	12/17/2018	4/2/2019

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Certificate Number A3079040 Issue Date: 01/23/19

Certificate of Calibration

Page 2 of 2

Data Sheet

Parameter	Nominal	Minimum	Maximum	As Found	As Left	<u>Unit</u>	ADJ/FAIL
Temperature Accuracy	-25.00	-25.05	-24.95	-25.02	-25.02	°C	
Temperature Accuracy	0.00	-0.05	0.05	0.00	0.00	°C	
Temperature Accuracy	100.00	99.95	100.05	99.99	99.99	°C	
Temperature Accuracy	150.00	149.95	150.05	149.96	149.96	°C	

EEMS # 01226

m = 0.999875 b = -0.01046 $r^2 = 1.00000$

Technical Maintenance, Inc.

Rev. 13 8/17/2018 12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Certificate Number A3079044 Issue Date: 01/23/19

Certificate of Calibration

Customer: ENVIRONMENTAL ENGINEERING & MEASUREMENT SERVICES

1128 NW 3 GAINESVIL FEDEX	9TH DRIVE .LE, FL 32605	P.O. Number:	IS 01229
Description:	DIGITAL STIK THERMOMETER	Calibration Date:	(01/23/2019
Manufacturer:	FLUKE	Calibration Due:	01/23/2020
Model Number	1551A EX	Procedure:	FLUKE 1551A EX,52A EX Rev: 11/1/2010
Serial Number:	3275143	Temperature:	71 F
Technician: On-Site Calibra	STEVE TORRES	Humidity: As Found Conditi Calibration Result	43 % RH on: IN TOLERANCE ts: IN TOLERANCE
Comments: TU	R is 2 to 1		

Limiting Attribute:

This instrument has been calibrated using standards traceable to the SI units through the National Institute of Standards and Technology (NIST) or other National Metrological Institute (NMI). The method of calibration is direct comparison to a known standard, derived from natural physical constants, ratio measurements or compared to consensus standards.

Reported uncertainties are expressed as expanded uncertainty values at an approximately 95% confidence level using a coverage factor of k=2. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025:2017 and ANSI/NCSL Z540-1-1994. ISO/IEC 17025:2017 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. This calibration complies with all the requirements of ANSI/NCSL Z540-1-1994 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Measurements not currently on TMI's Scope of Accreditation are identified with an asterisk.

FAR

FRANK BAHMANN, BRANCH MANAGER

Scott Chamberlain

Scott Chamberlain, QUALITY MANAGER

	Cal	Ibration Standards		
Asset Number	Manufacturer	Model Number	Date Calibrated	Cal Due
05535	FLUKE	5609-12-D	7/3/2018	7/3/2019
660TL18010015	ADDITEL	ADT875PC-155	6/1/2018	6/1/2019
A88072	FLUKE/HART	1502A	12/17/2018	4/2/2019

Calibratian Otandarda

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Certificate Number A3079044 Issue Date: 01/23/19

Certificate of Calibration

Page 2 of 2

Data Sheet

Parameter	Nominal	Minimum	Maximum	As Found	As Left	<u>Unit</u>	ADJ/FAIL
Temperature Accuracy	-25.00	-25.05	-24.95	-25.02	-25.02	°C	
Temperature Accuracy	0.00	-0.05	0.05	0.01	0.01	°C	
Temperature Accuracy	100.00	99.95	100.05	99.99	99.99	°C	
Temperature Accuracy	150.00	149.95	150.05	149.97	149.97	°C	

EEMS # 01229

m =	0.999893
be	-0.006489
r2 =	1.00000

Technical Maintenance, Inc.

Rev. 13 8/17/2018 12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

2/12/2019 - - Calibration and certification of fluke Thermocouples

	TMI Cert data	1/23/2019								offset		offset		offset
					At	Da	ate	fluke =	01311	-0.3	01312	-0.2	01310	0.8
	EEMS			EEMS	5 2/12/	/2019		EEMS		EEMS		EEMS		
	STD	RT	D			RTD			van3		van 2		van 1	
cert # =	A3079044	012	29			01229	t	hermo =	01236		01237		01238	
			diff	corrected	raw	correc	cted		raw	corrected	raw	corrected	raw	corrected
	-25.00	-25.02	0.020	-25.02	0.	<mark>)2</mark>	0.03		0.7	0.14	0.1	-0.46	0.3	0.01
	0.00	0.01	-0.010	0.02	88.	<mark>74</mark>	88.76		89.4	88.84	89.8	88.59	89.5	88.76
	100.00	99.99	0.010	100.01	79.	<mark>50</mark>	79.51		80.1	79.54	80.6	79.45	80.2	79.51
	150.00	149.97	0.030	149.99	61.	<mark>50</mark>	61.51		62.0	61.44	62.5	61.49	62.2	61.60
			0.000	0.01	51.	<mark>65</mark>	51.66		52.3	51.74	52.8	51.86	52.3	51.75
			0.000	0.01	39.	<mark>60</mark>	39.61		40.0	39.44	40.5	39.65	39.9	39.41
					31.	<mark>)7</mark>	31.08		31.6	31.04	32.0	31.21	31.4	30.95
			RTD	01229	15.	<mark>64</mark>	15.65		16.2	15.64	16.7	16.02	16.2	15.83
	2019 0	correction: s	lope=	0.99989313										
		i	ntercept=	-0.0064885	Th	ermocou	uple offs	et =	-0.3		-0.2		0.3	
			1.0000000		POS	T CALIBR.	RATION C	HECK						
					20.	<mark>38</mark>	20.89		20.9	20.34	21.0	20.29	20.9	20.51
							slope	=	1.00007		1.0073916		1.005088	
Ein Hebert 2/12/2019					i	intercep	ot =	0.557902		0.5587589		0.289648		
						C	orrelation	on =	1.0000		1.0000		1.0000	

Date

Date

2/12/2019 - - Calibration and verification of three RTD meters with most recent certification of EEMS RTD

	TMI Cert data	1/23/2019					RTD		RTD		RTD	
					At	Date	01230 / 012	31	01227 / 1		01228 / 2	
	TMI	EEM	IS		EEMS	2/12/2019	EEMS		EEMS		EEMS	
	STD	RTE	2		F	RTD	AER		van3		van1	
Cert #	A2380069	0122	29		01	1229						
			diff	corrected	raw	corrected	raw	corrected	raw	corrected	raw	corrected
	-25.00	-25.02	0.020	-25.016	0.02	0.03	0.04	0.01	0.15	0.00	-0.09	0.02
	0.00	0.01	-0.010	0.016	10.32	10.33	10.35	10.34	10.56	10.09	10.31	10.57
	100.00	99.99	0.010	100.007	21.10	21.11	21.12	21.12	21.43	20.89	21.19	21.35
	150.00	149.97	0.030	149.993	30.30	30.31	30.32	30.33	30.67	30.30	30.47	30.30
					40.00	40.01	39.98	40.00	40.46	40.02	40.28	40.03
					47.91	47.92	47.89	47.92	48.40	47.90	48.23	47.90
					25.00	25.01	25.00	25.00	25.34	25.01	25.14	25.02
			RTD 0	1229								
	2019	correction: sl	ope=	0.99989313								
		in	tercept=	-0.0064885								
		corr= 1	0000000									
B						slope =	0.998872		1.007333		1.009092	
	Ein Hel	rit	2/12/2019			intercept =	0.026147		0.144973		-0.11036	
						correlation =	1.0000		1.0000		1.0000	

Date

2/14/2019 - - Calculation of correction factor for RH standard with n

Ein Hebert 2/14/2019

A3092730 Issue Date: 02/06/19	of Calibration Page 1 of 2
omer: ENVIRONMENTAL ENGINEERING & MEASUREM	ENT SERVICES
GAINESVILLE EL 32605	P.O. Number.
FEDEX	ID Number: EEMS 01222
Description: PSYCHROMETER Manufacturer: AZ INSTRUMENTS Model Number: AZ 8723 Serial Number: 10325187 Technician: STEVE TORRES On-Site Calibration:	Calibration Date: 02/06/2019 Calibration Due: 02/06/2020 Procedure: TMI-M-HYGROTHERMOGRAF Rev: 2/22/2011 Temperature: 71 F Humidity: 43 % RH As Found Condition: IN TOLERANCE Calibration Results: IN TOLERANCE
Limiting Attribute:	units through the National Institute of Standards and Technology (NIST) or other National

Reported uncertainties are expressed as expanded uncertainty values at an approximately 95% confidence level using a coverage factor of k=2. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025:2017 and ANSI/NCSL Z540-1-1994. ISO/IEC 17025:2017 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. This calibration complies with all the requirements of ANSI/NCSL Z540-1-1994 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

Calibration Standards

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Measurements not currently on TMI's Scope of Accreditation are identified with an asterisk.

FAR

FRANK BAHMANN, BRANCH MANAGER

Scott Chamberlain

Scott Chamberlain, QUALITY MANAGER

Asset Number 0710649 Manufacturer THUNDER SCIENTIFIC Model Number 2500ST Date Calibrated 11/2/2018 Cal Due 6/23/2019

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Certificate Number A3092730 Issue Date: 02/06/19

Certificate of Calibration

Page 2 of 2

Data Sheet

Parameter	Nominal	Minimum	Maximum	As Found	As Left	<u>Unit</u>	ADJ/FAIL
Temperature Accuracy	50.0	49.0	51.0	49.7	49.7	°F	
Temperature Accuracy	70.0	69.0	71.0	69.5	69.5	°F	
Temperature Accuracy	90.0	89.0	91.0	89.4	89.4	°F	
Humidity Accuracy	33.0	30.0	36.0	31.7	31.7	%RH	
Humidity Accuracy	50.0	47.0	53.0	49.6	49.6	%RH	
Humidity Accuracy	75.0	72.0	78.0	74.9	74.9	%RH	

EEMS # 01222

m =	1.02.73
6=	-2.0396
r2 =	0.99994

0 2/14/19

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com ANSI/NCSL Z540-1-1994

Rev. 13 8/17/2018 Date

2/14/2019 - - Calculation of correction factor for RH standard with n

Ein Hebert 2/14/2019

1128 NW 3 GAINESVIL	9TH DRIVE	D			
GAINESVIL		P.0	D. Number:		
	LE, FL 32605			\rightarrow	
FEDEX			Number: EEM	S 01223	
Description:	PSYCHROMETER	(Calibration Date:	02/06/2019	7
Manufacturer:	AZ INSTRUMENTS	(Calibration Due:	02/06/2020	
Model Number	: AZ 8723	F	Procedure:	TMI-M-HYC Rev: 2/22/2	BROTHERMOGRA
Serial Number:	10325189		Temperature:	71 F	011
Technician	STEVE TORRES	1	Humidity:	43 % RH	
rechincian.	STEVE TORKES	,	As Found Conditio	n: IN TOLERA	NCE
On-Site Calibra	ation:		Calibration Results	S: IN TOLERA	NCE
compliance are bas	sed on test results falling within specified limits	with no reduction by the uncert	ainty of the measurement		
TMI's Quality Syste operations, meeting 1994 and TMI's Qu Results contained i administrative purp This certificate shal	em is accredited to ISO/IEC 17025:2017 and A g the principles of ISO 9001 and aligned with in ality Manual, QM-1. In this document relate only to the item calibra- ioses and do not imply continued conformance II not be reproduced, except in full, without the	NSI/NCSL Z540-1-1994. ISO/II ts pertinent requirements. This ted. Calibration due dates appe to specifications. written permission of Technical	EC 17025:2017 is written calibration complies with a aring on the certificate or Maintenance, Inc.	in a language relevall the requirement label are determin	vant to laboratory is of ANSI/NCSL Z540-1 ed by the client for
TMI's Quality Syste operations, meeting 1994 and TMI's Qu Results contained i administrative purp This certificate shal Measurements not	em is accredited to ISO/IEC 17025:2017 and A g the principles of ISO 9001 and aligned with in ality Manual, QM-1. In this document relate only to the item calibra- ioses and do not imply continued conformance II not be reproduced, except in full, without the currently on TMI's Scope of Accreditation are	NSI/NCSL Z540-1-1994. ISO/II ts pertinent requirements. This ted. Calibration due dates appe to specifications. written permission of Technical identified with an asterisk.	EC 17025:2017 is written calibration complies with a aring on the certificate or Maintenance, Inc.	in a language relevall the requirement	vant to laboratory is of ANSI/NCSL Z540-1- ed by the client for
TMI's Quality Syste operations, meeting 1994 and TMI's Qu Results contained i administrative purp This certificate sha Measurements not	em is accredited to ISO/IEC 17025:2017 and A g the principles of ISO 9001 and aligned with it ality Manual, QM-1. In this document relate only to the item calibra ioses and do not imply continued conformance II not be reproduced, except in full, without the currently on TMI's Scope of Accreditation are	NSI/NCSL Z540-1-1994. ISO/II ts pertinent requirements. This ted. Calibration due dates appe to specifications. written permission of Technical identified with an asterisk.	EC 17025:2017 is written calibration complies with a aring on the certificate or Maintenance, Inc.	in a language relevall the requirement label are determin	vant to laboratory s of ANSI/NCSL Z540-1- ed by the client for
TMI's Quality Syste operations, meeting 1994 and TMI's Qu Results contained i administrative purp This certificate shal Measurements not	em is accredited to ISO/IEC 17025:2017 and A g the principles of ISO 9001 and aligned with in ality Manual, QM-1. In this document relate only to the item calibra- ioses and do not imply continued conformance II not be reproduced, except in full, without the currently on TMI's Scope of Accreditation are CALCAN BAHMANN, BRANCH MANAGER	INSI/NCSL Z540-1-1994. ISO/II ts pertinent requirements. This ted. Calibration due dates appe to specifications. written permission of Technical identified with an asterisk.	EC 17025:2017 is written calibration complies with a aring on the certificate or Maintenance, Inc. Maintenance, Inc.	n a language relevalt the requirement label are determin	ed by the client for
TMI's Quality Syste operations, meeting 1994 and TMI's Qu Results contained i administrative purp This certificate sha Measurements not	em is accredited to ISO/IEC 17025:2017 and A g the principles of ISO 9001 and aligned with in ality Manual, QM-1. In this document relate only to the item calibra- ioses and do not imply continued conformance II not be reproduced, except in full, without the currently on TMI's Scope of Accreditation are ACTAC BAHMANN, BRANCH MANAGER	INSI/NCSL Z540-1-1994. ISO/II ts pertinent requirements. This ted. Calibration due dates appe to specifications. written permission of Technical identified with an asterisk.	EC 17025:2017 is written calibration complies with a aring on the certificate or Maintenance, Inc.	n, QUALITY N	vant to laboratory is of ANSI/NCSL Z540-1- ed by the client for

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Certificate of Calibration

Page 2 of 2

Data Sheet

Parameter	Nominal	Minimum	Maximum	As Found	As Left	Unit	ADJ/FAIL
Temperature Accuracy	50.0	49.0	51.0	49.5	49.5	°F	
Temperature Accuracy	70.0	69.0	71.0	69.7	69.7	°F	
Temperature Accuracy	90.0	89.0	91.0	89.4	89.4	°F	
Humidity Accuracy	33.0	30.0	36.0	32.0	32.0	%RH	
Humidity Accuracy	50.0	47.0	53.0	49.7	49.7	%RH	
Humidity Accuracy	75.0	72.0	78.0	74.7	74.7	%RH	

EEMS # 01223

M =	1.0154
6=	-1.3456
Y2 =	0.99994

GOD 2/14/19

Certificate Number

A3092732 Issue Øate: 02/06/19

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Date

2/14/2019 - - Calculation of correction factor for RH standard with n

Ein Hebert 2/14/2019

mer: ENVIRON	IMENTAL ENGINEERING & MEASUREMEI	NT SERVICES	Van 2
1128 NW	39TH DRIVE	P.O. Number:	
GAINESV	/ILLE, FL 32605		
FEDEX		ID Number: EEN	NS 01225 / 01220
Description:	THERMO HYGROMETER	Calibration Date.	02/06/2019
Manufacturer	: ROTRONIC	Calibration Due:	02/06/2020
Model Numbe	er: HYGROPALM	Procedure:	TMI-M-HYGROTHERMOGRAF
Serial Numbe	er: 40861 002/124431	Temperature:	71 F
Technician:	STEVE TORRES	Humidity: As Found Conditi	43 % RH ion: IN TOLERANCE
On-Site Calib Comments:	ration:	Calibration Resul	ts: IN TOLERANCE

Reported uncertainties are expressed as expanded uncertainty values at an approximately 95% confidence level using a coverage factor of k=2. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025:2017 and ANSI/NCSL Z540-1-1994. ISO/IEC 17025:2017 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. This calibration complies with all the requirements of ANSI/NCSL Z540-1-1994 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Measurements not currently on TMI's Scope of Accreditation are identified with an asterisk.

FAR

FRANK BAHMANN, BRANCH MANAGER

Scott Chamberlain

Scott Chamberlain, QUALITY MANAGER

	Calib	ration Standards		
<u>Asset Number</u> 05535	Manufacturer FLUKE	Model Number 5609-12-D	Date Calibrated 7/3/2018	<u>Cal Due</u> 7/3/2019
0710649	THUNDER SCIENTIFIC	2500ST	11/2/2018	6/23/2019
A88072	FLUKE/HART	1502A	12/17/2018	4/2/2019

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Certificate Number A3092720 Issue Date: 02/06/19

Certificate of Calibration

Page 2 of 2

Data Sheet

Parameter	Nominal	Minimum	Maximum	As Found	<u>As Left</u>	Unit	ADJ/FAIL
Temperature Accuracy	15.0	14.6	15.4	14.9	14.9	С	
Temperature Accuracy	25.0	24.6	25.4	24.7	24.7	С	
Temperature Accuracy	35.0	34.6	35.4	34.7	34.7	С	
Humidity Accuracy	33.0	31.4	34.6	34.2	34.2	%	
Humidity Accuracy	50.0	48.4	51.6	50.2	50.2	%	
Humidity Accuracy	75.0	73.4	76.6	74.3	74.3	%	

ÉEMS# 01220 /01225 Van 2 0.9555 M = 2.5795 6 =

r= 0.99998

2/14/19

TMI

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

EEMS 01240 --- Licor LI-200 and RMY solar radiation system

• Range = 0 to 1 volt = 0 to 1400 w/m2

Compared with EEMS 01245/01246 Eppley PSP standard.

3/9/2019 At EEMS by Eric Hebert

slope =	0.9646
intercept =	4.3322
correlation =	0.99959

Page 1 of 2

(

THE EPPLEY LABORATORY, INC.

12 Sheffield Avenue, PO Box 419, Newport, Rhode Island USA 02840 Phone: 401.847.1020 Fax: 401.847.1031 Email: info@eppleylab.com

Calibration	Certificate)		EEMS#	01245
Instrument: Procedure:	Precision Spectral 1 This pyranometer v procedures describe The Eppley Labora	Pyranometer, Mo was compared in ed in <i>ISO 9847 S</i> itory, Inc.'s Quali	odel PSP, Serial Numb Eppley's Integrating H <i>Jection 5.3.1</i> and Technity Assurance Manual	er 34341F3 lemisphere according to nical Procedure, TP01 of on Calibrations.	
Transfer Standard:	Eppley Precision S	pectral Pyranome	eter, Model PSP, Seria	Number 21231F3	
Results:	Sensitivity: Uncertainty: Resistance:	$S = 9.29 \mu V$ U ₉₅ = ±0.91% 699 Ω at 23°C	/ Wm ⁻² (95% confidence level	, k=2)	
	Date of Test:	January 22, 201	9		
Traceability:	This calibration is t comparisons with E which participated XII) at Davos, Swit the remarks section "AS FOUND / AS	traceable to the W Eppley's AHF sta in the Twelfth In- tzerland in Septer below or on the LEFT".	Vorld Radiation Referend ndard self-calibrating ternational Pyrheliome mber-October 2015. U Sales Order, the result	nce (WRR) through cavity pyrheliometers etric Comparisons (IPC nless otherwise stated in s of this calibration are	
Due Date:	Eppley recommend annual calibrations	ls a minimum ca for highest meas	alibration cycle of five urement accuracy.	e (5) years but encourage	es
Customer:	EEMS Gainesville, FL				
Signatures:	Dubra L. In Charge of Test:	Sunty	Reviewed by:	Kuh	
Eppley SO:	65367	$\overline{)}$			
Remarks:	Amplifier #10765 s	set with gain of 76	6.89 so pair produces 1	$V = 1400 \text{ Wm}^{-2}$.	

The Eppley Laboratory, Inc. 12 Sheffield Ave.

S.O. No. 65367

1/23/2019

Phone # 401-847-1020 Fed. ID No. 05-0136490

lage 2 of 2 EEMS# 01245 01246

Name/Address EEMS Att: Eric Hebert 1128 NW 39th Drive Gainesville, FL 32605

Ship To

EEMS Att: Eric Hebert 1128 NW 39th Drive Gainesville, FL 32605

P.O	Ship Date	1/30/2019	Ship Via	FedEx COL	LECT
			and the second	0	magaaler eer
Recalibration Model 8-48	# 2382	4			
Recalibration of Model P	SP # 343	SHIFS W/ SHIELD	+ CAISLE		
Reset Amplifier # 10765	-				
SET GAIN SO	V = 1	460 Wm2			
1400×5	= Vç.	012		22. 2	
S	= 19.2	29			
Yfor	(now) = 5 x	(1400 = 13066	2		
V fore	(x) = c	1 013006			
GAIN= -	IV =	= 70	6.89		
45	for (v)		1		
					-1-1-1
Made in USA					

Terms Credit Card

FOB Newport, RI USA

Page 1 of 1

THE EPPLEY LABORATORY, INC.

12 Sheffield Avenue, PO Box 419, Newport, Rhode Island USA 02840 Phone: 401.847.1020 Fax: 401.847.1031 Email: info@eppleylab.com

EEMS # 01247

Calibration Certificate

Instrument:	Black & White Pyra	anometer, Model 8-48, Serial Number 23824
Procedure:	This pyranometer w procedures describe The Eppley Labora	was compared in Eppley's Integrating Hemisphere according to ed in <i>ISO 9847 Section 5.3.1</i> and Technical Procedure, TP01 of tory, Inc.'s Quality Assurance Manual on Calibrations.
Transfer Standard:	Eppley Black & Wl	hite Pyranometer, Model 8-48, Serial Number 14061
Results:	Sensitivity: Uncertainty: Resistance:	S =8.80 μV / Wm ⁻² U ₉₅ = ±0.91% (95% confidence level, k=2) 347 Ω at 23°C
	Date of Test:	January 22, 2019
Traceability:	This calibration is t comparisons with E which participated XII) at Davos, Swit the remarks section "AS FOUND / AS	traceable to the World Radiation Reference (WRR) through Eppley's AHF standard self-calibrating cavity pyrheliometers in the Twelfth International Pyrheliometric Comparisons (IPC tzerland in September-October 2015. Unless otherwise stated in below or on the Sales Order, the results of this calibration are LEFT".
Due Date:	Eppley recommend annual calibrations	Is a minimum calibration cycle of five (5) years but encourages for highest measurement accuracy.
Customer:	EEMS Gainesville, FL	
Signatures:	<u>Dilra J. J.</u> In Charge of Test:	ienty Reviewed by:
Eppley SO:	65367	
Date of Certificate	January 23, 2019	

Remarks:

EEMS# 01265 Van 2

Warren-Knight Instrument Company 2045 Bennett Road Philadelphia, PA 19116 Phone: 215-464-9300; Fax: 215-464-9303 Web: http://www.warrenind.com

Page 1 of (

Calibra	tion Da	ta Record	1. 4. S. S 3				Temperature:	71	Humidity:	27%
Custon	ner Nam	e	6	56-1	MS	Item Name	USHIK	ATA		
Manufa	acturer					Model	5-25			
Serial N	lumber		1	9003	57	Calibration Date	1-23-19			
Calibra	tion Free	quency				Job Card Number	5-2607	6)	
Custom	ner Refe	rence Nun	nber			Date of Certification	1-23-11	9	/	
Measurei	ment Stand	dards			12. 	· · · · · · · · · · · · · · · · · · ·	1	/	/	
Theodo	lite Wild	T-3 S/N 18	8801 Calib	ration 01/10	5/19 Due	01/16/20 NIST Number 73	8/229329-83 738/2	223398		
Optical	Wedge k	&E 71-702	20 S/N 5167	7 Calibration	; 01/16/19 [Due 01/16/24, NIST Numb	er 731/244084-89	731/221617		
nitial Rep	port	and which	u thaile i							
/anes							(Degree)	Tolerance (Minute)	Cor	(Minute)
vivot in	line with	Circle/Sig	hts		D Pass	🗌 Fail	0	+/- 30	1	
leedle							45	+/- 30		
vivot Sh	arpness				Pass [🗌 Fail	90	+/- 30	1	
traight	ness (+/-	15 Minute	s)		Pass [] Fail	135	+/- 30		
alance					D Pass [] Fail	180	+/- 30		
ifter Fu	Inction					∃ Fail	225	+/- 30		
rimuth 6	ling						270	+/- 30		
ontrol	Knoh Fu	nction			Pass [Fail	315	+/-30		THE R. LOW CO.
Pinion Gear								1		
Graduation Clarity					Pace [] Fail				
Graduation less than 1 minute in any position				nosition		- Fail				
evel Bubl	ble		ore many	JUSICIUIT	1 rass r	und t hail				
ubble i	n Level				Pass [] Fail				
hysical	Conditio	n			Pass [] Fail				
ass/Repa	ir/Replace									
ass	N/A	Replace	Repair							
				Needle t	Sharpen	n Magnetize				
				Cap with	lewel					
				Pivot 🗆 S	iharpen					
				Level D I	lemount					
				North Sig	nt					
				North Sig	nt Block					
				South Sig	nt					
				South Sig	nt Block					
				Vane Spri	ng					
			0	Drive						
				Control K	nob Assemb	Y				
				Cover Gla	SS					
				Cover Gla	ss Gasket					
	Ц			Clamp Sci	ew					
				Pinion Ge	dí					
				Compass	NING		Annia - 1101 - 1			Contact Provide
anes	41				,	Г Г	Direction	Tolerance	Comp	ass Needie Error
							(Degree)	(Minute)	-	(Minute)
ivot in l	line with	Circle/Sigh	hts		D Pass [J Fail	0	+/- 30		\$30
eedle							45	+/- 30		530
ivot Shi	arpness				12 Páss [J Fail	90	+/- 30		5 50
traightr	ness (+/-:	15 Minutes	s)		P Pass [] Fail	135	+/- 30		30
alance					Pass [] Fail	180	+/- 30	<u> </u>	30
ifter Fu	nction				Pass [] Fail	225	+/- 30		30
zimuth R	ing						270	+/- 30	5	30
ontrol	Knob Fur	nction			Pass [] Fail	315	+/- 30	1 <	.30
inion G	ear				Pass [] Fail				
raduati	ion Clarit	.v			Pass [] Fail				
raduat	ion less t	han 1 min	ute in any p	position	Pass [] Fail				
vel Bubb	sie				1/1-					
ubble i	n Level				19 Pass [] Fail				
hysical	Conditio	n			Pass [] Fail				
erthicatio	n	6 A	1-					-	4	
the	ept	Fa	ology	1				Asta	14	
4"			V/	100 m (24 S		Linho Nora Quality	Assurance (28701	111 11	

ÉEMS # 01272 Page 1 of 1

0	11 m	n	Will	9
Ι.	ð	1	FF	I.
Ľ	1		1.1	Ŀ.
į:			The second se	6
E.	-	and a second		ł

Warren-Knight Instrument Company 2045 Bennett Road Philadelphia, PA 19116 Phone: 215-464-9300; Fax: 215-464-9303 Web- http://www.warrenind.com

Calibration Data Record		CE MC	Itom Name	Temperature:	VILTA	unitary: 97/0
Customer Name	6	= = -14)	Model	USHT STAT	NAIN	
Manufacturer		199540	Calibration Data	0-25	19	
Serial Number		11210	Job Card Number	5-711	44	
Lalibration Frequency			Date of Certification	1-72-1	9	
Customer Reference Numb	er		Date of Certification	1-62-1	/	
Theodolite Wild T-3 S/N 1880	1 Calib	pration 01/16/19 Due	01/16/20 NIST Number 73	8/229329-83 738/	223398	
Intical Wedge K&E 71-7020 S	/N 516	7 Calibration: 01/16/19	Due 01/16/24, NIST Numbe	r 731/244084-89	731/221617	
nitial Report						
anes				Direction	Tolerance (Minute)	Compais Needle Error (Minute)
livet in line with Circle/Sights		D Pass	🗆 Fail	0	+/- 30	
In the with chercy ofgins				45	+/- 30	
livot Sharoness		Pass	🗆 Fail	90	+/- 30	[
traightness (+/-15 Minutes)		D Pass	🗆 Fail	135	+/- 30	
alance		D Pass	🗋 Fail	180	+/- 30	
ifter Euertion			🗆 Fail	225	+/- 30	
rimuth Dine		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		270	+/- 30	
ontrol Knob Function		D Pass	🗆 fail	315	+/- 30	
inion Gaar			🗆 Fail	Commission and and the	Call and a second s	General and a second
raduation Clarity			🗆 Fail			
raduation less than 1 minute	in any	position Pass	🗆 Fail			
evel Bubble	an any	1				
ubble in Level		D Pass	🗆 Fail			
hysical Condition		D Pass	🗆 Fail			
ess/Repair/Replace		1				
Pass N/A Replace	Repair		T Magazias			
		Needle 🗆 Sharpen	 Magnetize 			
		Cap with Jewel				
		Pivot 🗆 Sharpen				
		Level D Remount				
		North Sight Diack				
		South Sight				
		South Sight Block				
		Vane Spring				
		Drive				
		Control Knob Assemb	oly			
		Cover Glass				
		Cover Glass Gasket				
		Clamp Screw	0.000 (
		Pinion Gear				
		Compass Ring				
nai Report			<u> </u>	Direction	Tolerance	Compass Needle Error
anes				(Degree)	(Minute)	(Minute)
ivot in line with Circle/Sights		D Pass	🗆 Fail	0	+/- 30	530
eedle				45	+/- 30	330
vot Sharpness		D Pass	🗆 Fail	- 90	+/- 30	5.30
traightness (+/-15 Minutes)		1 Pass	🗆 Fail	135	+/-30	530
alance		PA Pass	🗆 Fail	180	+/- 30	5 30
ifter Function		Pass	🗆 Fail	225	+/-30	\$ 30
zimuth Ring		/		270	+/- 30	5.30
ontrol Knob Function		D Pass	🗆 Fail	315	+/- 30	\$ 30
inion Gear		D Pass	🗆 Fail			
raduation Clarity		Pass	🗆 Fail			
raduation less than 1 minute	in any	position D Pass	🗆 Fail			
rvel Bubble		11-1-				
ubble in Level	4	Pass	LJ Fail			
hysical Condition	1,	AL Pass	LI Fall			
milishrinn	1		1			1
	nen	2/2			// /	

U

A3081 Issue Date: 01/25	¹⁰² ¹⁹ Certificate	e of Calibration	Page 1 of <u>S</u>
Customer: ENVIRONM	ENTAL ENGINEERING & MEASURE	MENT SERVICES	lan #1
1128 NW 39	OTH DRIVE	P.O. Number:	
GAINESVIL	LE, FL 32605	EEMS #	
FEDEX		ID Number: 01310	
Description:	DIGITAL MULTIMETER	Calibration Date: 01/25/2019)
Manufacturer:	FLUKE	Calibration Due: 01/25/2020	the second
Model Number:	187	Procedure: METCAL FLUKE Rev: 6/15/2015	E 187
Serial Number:	86590148	Temperature: 70 F	
Technician:	TAYLOR FLOYD	Humidity: 42 % RH As Found Condition: IN TOLERANCE	E
On-Site Calibrat Comments:	tion:	Calibration Results: IN TOLERANCE	5

Limiting Attribute:

Certificate Number

This instrument has been calibrated using standards traceable to the SI units through the National Institute of Standards and Technology (NIST) or other National Metrological Institute (NMI). The method of calibration is direct comparison to a known standard, derived from natural physical constants, ratio measurements or compared to consensus standards.

Reported uncertainties are expressed as expanded uncertainty values at an approximately 95% confidence level using a coverage factor of k=2. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025:2017 and ANSI/NCSL Z540-1-1994. ISO/IEC 17025:2017 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. This calibration complies with all the requirements of ANSI/NCSL Z540-1-1994 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

Calibration Standards

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Measurements not currently on TMI's Scope of Accreditation are identified with an asterisk.

FAR

FRANK BAHMANN, BRANCH MANAGER

Scott Chamberlain

Scott Chamberlain, QUALITY MANAGER

Asset Number 7040208

Manufacturer FLUKE

Model Number 5520A

Date Calibrated 3/12/2018

Cal Due 3/12/2019

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Certificate Number A3081104 Issue Date: 01/25/19

Certificate of Calibration

Page 1 of 5

GAINESVIL	LE, FL 32605	ID Number: EEMS 01311
Description: Manufacturer: Model Number: Serial Number: Technician: On-Site Calibra Comments:	DIGITAL MULTIMETER FLUKE 287 95740135 TAYLOR FLOYD tion:	Calibration Date: 01/25/2019 Calibration Due: 01/25/2020 Procedure: METCAL FLUKE 28 Rev: 6/15/2015 Temperature: 70 F Humidity: 42 % RH As Found Condition:IN TOLERANCE Calibration Results: IN TOLERANCE

Reported uncertainties are expressed as expanded uncertainty values at an approximately 95% confidence level using a coverage factor of k=2. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System is accredited to ISO/IEC 17025:2017 and ANSI/NCSL Z540-1-1994. ISO/IEC 17025:2017 is written in a language relevant to laboratory operations, meeting the principles of ISO 9001 and aligned with its pertinent requirements. This calibration complies with all the requirements of ANSI/NCSL Z540-1-1994 and TMI's Quality Manual, QM-1.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

Calibration Standards

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Measurements not currently on TMI's Scope of Accreditation are identified with an asterisk.

FAR

FRANK BAHMANN, BRANCH MANAGER

Scott Chambalain

Scott Chamberlain, QUALITY MANAGER

Asset Number Manufacturer 7040208 FLUKE

Model Number 5520A Date Calibrated 3/12/2018

<u>Cal Due</u> 3/12/2019

Technical Maintenance, Inc.

Rev. 13 8/17/2018 12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Certificate Number A3081107 Issue Date: 01/25/19

Certificate of Calibration

	P.O. Number:
	P.O. Number.
GAINESVILLE, FL 32605	
FEDEX	ID Number: EEMS 01312
Description: DIGITAL MULTIMETER	Calibration Date: 01/25/2019
Manufacturer: FLUKE	Calibration Due: 01/25/2020
Model Number: 287	Procedure: METCAL FLUKE 287
Serial Number: 95740243	Temperature: 70 F
	Humidity: 42 % RH
Technician: TAYLOR FLOYD	As Found Condition: IN TOLERANCE
On-Site Calibration:	Calibration Results: IN TOLERANCE
Comments:	
Limiting Attribute:	
This instrument has been calibrated using standards traceable to the Metrological Institute (NMI). The method of calibration is direct compared to the calibration of the standards traceable to the standards tra	SI units through the National Institute of Standards and Technology (NIST) or other Natio
compared to consensus standards.	
Reported uncertainties are expressed as expanded uncertainty values compliance are based on test results falling within specified limits with	s at an approximately 95% confidence level using a coverage factor of k=2. Statements h no reduction by the uncertainty of the measurement.
TMI's Quality System is accredited to ISO/IEC 17025:2017 and ANSI/ operations, meeting the principles of ISO 9001 and aligned with its pe 1994 and TMI's Quality Manual, QM-1.	/NCSL Z540-1-1994. ISO/IEC 17025:2017 is written in a language relevant to laboratory ertinent requirements. This calibration complies with all the requirements of ANSI/NCSL
Results contained in this document relate only to the item calibrated. administrative purposes and do not imply continued conformance to s	Calibration due dates appearing on the certificate or label are determined by the client for specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Measurements not currently on TMI's Scope of Accreditation are identified with an asterisk.

FOR

FRANK BAHMANN, BRANCH MANAGER

Scott Chamberlain

Scott Chamberlain, QUALITY MANAGER

Asset NumberManufacturerModel NumberDate CalibratedCal Due7040208FLUKE5520A3/12/20183/12/2019

Technical Maintenance, Inc.

12530 TELECOM DRIVE, TEMPLE TERRACE, FL 33637 Phone: 813-978-3054 Fax 813-978-3758 www.tmicalibration.com

Page 2 of 2

EEMS# 01414

As Shipped Calibration Data

As Shipped Cal	ibration Data				2/8/2019
Certificate No 2 Technician	81466 ilianna Malinowska		Lab. Pressure Lab. Temperature	748 mmHg 21.3 °C	1.004
Instrument Reading	Lab Standard Reading	Deviation	Allow	able Deviation	As Shipped
25344 sccm	25183 sccm	0.64%	1.00%	0	In Tolerance
5017.9 sccm	5000.8 sccm	0.34%	1.00%	5	In Tolerance
1508.4 sccm	1501.65 sccm	0.45%	1.00%	5	In Tolerance
21.3 °C	21.3 °C	-	± 0.8°	С	In Tolerance
748 mmHg	748 mmHg	-	± 3.5	mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	01-May-2018	01-May-2019
Percision Thermometer	305460	02-Oct-2018	02-Oct-2019
Precision Barometer	2981392	18-Jul-2018	18-Jul-2019

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

By:

Mohammed Aziz **Director of Engineering** Mesa Laboratories, Inc., Butler, NJ

= 0.99331937 0.0093545 (Lpm) 0.99999 -2 = 2/15/19

Mesa Laboratories Inc. 10 Park Place Butler, NJ 07405 USA (973) 492-8400 FAX (973) 492-8270 www.mesalabs.com Symbol "MLAB" on the NAS

Page 1 of 2

		Calibration Certificate	
CertificateNo.	281466	Sold To:	Environmental Engineering & Measurement Services
Product	200-530+ High Defend	ler 530+ High Flow	8010 SW 17th Place
Serial No.	159956	16M2 # 01414	Gainesville, FL 32607
Cal. Date	08-Feb-2019	EEMS CIT	US
-			

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

Technician	Lilianna Malinowska		Lab. Pressure Lab. Temperature	757 mmHg 21.3 °C		
Instrument Reading	Lab Standard Reading	Deviation	Allowa	ble Deviation	As Received	
25880 sccm	25126 sccm	3.0%	1.00%		Out of Tolerance	
5145.1 sccm	5000.7 sccm	2.89%	1.00%		Out of Tolerance	
1542.4 sccm	1500.35 sccm	2.8%	1.00%		Out of Tolerance	
22.4 °C	22.6 °C	-	± 0.8°	C	In Tolerance	
756 mmHg	757 mmHg	-	± 3.5 r	nmHg	In Tolerance	

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	103521	11-Jun-2018	11-Jun-2019
Percision Thermometer	305460	02-Oct-2018	02-Oct-2019
Precision Barometer	2981392	20-Jul-2018	20-Jul-2019

EEMS # 01416

Calibration Certificate

CertificateNo.	322657	Sold To:	Environmental Engineering & Measurement Services
Product	200-220H Definer 220 High Flow		8010 SW 17th Place
Serial No.	122974		Gainesville, FL 32607
Cal. Date	19-Jul-2019		US

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

MesaLabs

Technician	Lilianna Malinowska		Lab. Pressure Lab. Temperature	754 mmHg 22.4 °C	
Instrument Reading	Lab Standard Reading	Deviation	Allowa	ble Deviation	As Received
25240.6 sccm	25289.71 sccm	-0.19%	1.00%		In Tolerance
5142.08 sccm	5128.72 sccm	0.26%	1.00%		In Tolerance
1599.51 sccm	1588.16 sccm	0.71%	1.00%		In tolerance
22.3 °C	22.3 °C		± 0.8°	С	In Tolerance
754 mmHg	754 mmHg		± 3.5 r	mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	03-May-2019	02-May-2020
Percision Thermometer	305460	02-Oct-2018	02-Oct-2019
Precision Barometer	41000LOB	27-Nov-2018	27-Nov-2019

MesaLabs

EE45#01416

As Shipped Calibration Data

Certificate No	322657		Lab. Pressure	750 mmHg	
Technician	Lilianna Malinowska		Lab. Temperature	22.4 °C	
Instrument Reading	Lab Standard Reading	Deviation	Allowa	ble Deviation	As Shipped
25205.3 sccm	25276.27 sccm	-0.28%	1.00%)	In Tolerance
5118.46 sccm	5120.13 sccm	-0.03%	1.00%)	In Tolerance
1576.23 sccm	1580.85 sccm	-0.29%	1.00%	,	In Tolerance
22.8 °C	22.8 °C	-	± 0.8°	С	In Tolerance
753 mmHg	753 mmHg	1 - Ja 4	± 3.5	mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	03-May-2019	02-May-2020
Percision Thermometer	305460	02-Oct-2018	02-Oct-2019
Precision Barometer	41000LOB	27-Nov-2018	27-Nov-2019

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

By:

Mohammed Aziz Director of Engineering Mesa Laboratories, Inc., Butler, NJ

M = 0.99698188B = 0.006417 lpm R2 = 0.99999 Use uncorrected readings for CASTNET range

Ein Hebert

Page 1 of 2 EEMS # 01417 NULAP L

NVLAP Lab Code 200661-0 Calibration

2/8/2019

As Shipped Calibration Data

Certificate No Technician	281467 Lilian na Malinowska		Lab. Pressure Lab. Temperature	748 mmHg 21.6 °C	1 - 1
Instrument Reading	Lab Standard Reading	Deviation	Allowa	ble Deviation	As Shipped
25266 sccm	25112.5 sccm	0.61%	1.00%		In Tolerance
5043.7 sccm	5001.35 sccm	0.85%	1.00%		In Tolerance
1513.7 sccm	1501.4 sccm	0.82%	1.00%	i.	In Tolerance
21.6 °C	21.6 °C		± 0.8°	С	In Tolerance
748 mmHg	748 mmHg		± 3.5	mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	01-May-2018	01-May-2019
Percision Thermometer	305460	02-Oct-2018	02-Oct-2019
Precision Barometer	2981392	18-Jul-2018	18-Jul-2019

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

By:

Mohammed Aziz Director of Engineering Mesa Laboratories, Inc., Butler, NJ

m = 0.99420885 o = -7.95194422 $F^{2} = 0.99999$ (D) 2/15/19

Page 2 of 2 F

01417

NVLAP Lab Code 200661-0 Calibration

Calibration Certificate

EEMS

CertificateNo	. 281467	Sold To:	Environmental Engineering & Measurement
Product	200-220H Definer 220 High Flow		8010 SW 17th Place
Serial No.	131818		Gainesville, FL 32607
Cal. Date	08-Feb-2019		US

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

Technician	Lilianna Malinowska		Lab. Pressure Lab. Temperature	757 mmHg 21.6 °C		
Instrument Reading	Lab Standard Reading	Deviation	Allowa	able Deviation	As Received	
0 sccm	25111.5 sccm	-100.0%	1.00%	0	Out of Tolerance	
0 sccm	5001.3 sccm	-100.0%	1.00%	þ	Out of Tolerance	
0 sccm	1501 sccm	-100.0%	1.00%	5	Out of Tolerance	
22.2 °C	22.3 °C	-	± 0.8°	С	In Tolerance	
759 mmHg	757 mmHg	-	± 3.5	mmHg	In Tolerance	

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	103521	11-Jun-2018	11-Jun-2019
Percision Thermometer	305460	02-Oct-2018	02-Oct-2019
Precision Barometer	2981392	18-Jul-2018	18-Jul-2019

ase 20f2

EEMS# 01421

3/4/2019

NVLAP Lab Code 200661-0 Calibration

As Shipped Calibration Data

Certificate No	287690		Lab. Pressure	746 mmHg	
Technician	Lilianna Malinowska		Lab. Temperature	20.6 °C	
Instrument Reading	Lab Standard Reading	Deviation	Allowa	ble Deviation	As Shipped
25125 sccm	25097.5 sccm	0.11%	1.00%		In Tolerance
5004.1 sccm	5001 sccm	0.06%	1.00%		In Tolerance
1502.7 sccm	1500.3 sccm	0.16%	1.00%		In Tolerance
20.6 °C	20.6 °C	1. 	± 0.8°0	C	In Tolerance
746 mmHg	746 mmHg	-	± 3.5 r	nmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-44	101897	01-May-2018	01-May-2019
Percision Thermometer	305460	02-Oct-2018	02-Oct-2019
Precision Barometer	2981392	18-Jul-2018	18-Jul-2019

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

By:

Mohammed Aziz Director of Engineering Mesa Laboratories, Inc., Butler, NJ

m= 1,003937 6= -11, 8388 = 0.99999

Use uncorrected readings For CASTNE

3

Mesa Laboratories Inc. 10 Park Place Butler, NJ 07405 USA (973) 492-8400 FAX (973) 492-8270 www.mesalabs.com Symbol "MLAB" on the NAS

CAL02-48 Rev G05

R.M. Young Company 2801 Aero Park Drive Traverse City, Michigan 49686 USA

VAN 2

CERTIFICATE OF CALIBRATION AND TESTING

Model: 18802/18811 Serial Number: CA04353

Description: Anemometer Drive - 2 motors, 20 to 15,000 RPM (18802 comprised of 18820A Control Unit and 18830A Motor Assembly) (18811 comprised of 18820A Control Unit and 18831A Motor Assembly)

R. M. Young Company certifies that the above equipment was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

Nominal	27106D Output		
Motor RPM	Frequency	Calculated	Indicated
RPM	Hz (1)	RPM (2)	RPM (3)
18802	✓ Clockwise and C	ounterclockwise rotation	verified.
300	50	300	300
2700	450	2700	2700
5100	850	5100	5100
7500	1250	7500	7500
10200	1700	10200	10200
12600	2100	12600	12600
15000	2500	15000	15000
18811	Clockwise and C	ounterclockwise rotation	verified.
30.0	5	30.0	30.0
150.0	25	150.0	150.0
300.0	50	300.0	300.0
450.0	75	450.0	450.0
600.0	100	600.0	600.0
750.0	125	750.0	750.0
990.0	165	990.0	990.0

(1) Measured output frequency of YOUNG model 27106D standard anemometer attached to motor shaft.

(2) YOUNG model 27106D produces 10 pulsed per revolution of the anemometer shaft.

(3) Indicated on the Control Unit LCD.

* Indicates out of tolerance.

🗌 New Unit

Service / Repair Unit No calibration adjustments required As found

Traceable frequency meter used for calibration:

Model: 34405A

Serial Number: TW46290020

Date: 16 April 2019 Calibration Interval: One year

Tested By : EC

M E T E O R O L O G I C A L I N S T R U M E N T S Tel: 231-946-3980 Fax: 231-946-4772 Email: met.sales@youngusa.com Website: youngusa.com ISO 9001:2008 CERTIFIED

Page 1 of 1

Ozone Transfer Standard Verification Summary Report

SNUTED STATES		U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division Enforcement and Investigations Branch Superfund and Air Section 980 College Station Rd. Athens, GA 30605 EEMS						
<u>SESD Project #:</u> Test #:	19-0229 # 1	Agency: Contact: Make: Model: S/N: Guest T Guest K	EPA Standard EPA Region 4 Keith Harris NIST SRP 10 Test Status: nown Offset:	GUEST Instrument EEMS Eric Hebert TEI 49 iQps 1180930075 PASS 0				
	asien		Level 2	Slope	Intercept	R ²	High O ₂	Lower O ₂
		A	verages:	1.0080	-0.4021	0.9999972	465	0
		U	pper Tolerance: owerTolerance:	1.0300 0.9700	3.0000 -3.0000			
					/	5	Upper	Lower
							Range	Range
Cycle Start Date	/ Time	File	e Name	Slope	Intercept	R ²	Range (ppb O ₃)	Range (ppb O ₃)
Cycle Start Date 3/25/19 4:13	/ Time PM	File Cal19	Name 032501.xls	Slope 1.0014	Intercept -0.5404	R ² 0.9999967	Range (ppb O ₃) 463	Range (ppb O ₃) -0.14
Cycle Start Date 3/25/19 4:13 3/25/19 5:54	/ Time PM PM	File Cal19 Cal19	e Name 032501.xls 032502.xls	Slope 1.0014 1.0020	Intercept -0.5404 -0.5316	R ² 0.9999967 0.9999971	Range (ppb O ₃) 463 465	Range (ppb O ₃) -0.14 -0.06
Cycle Start Date 3/25/19 4:13 3/25/19 5:54 3/25/19 7:31	/ Time PM PM PM	File Cal19 Cal19 Cal19	e Name 032501.xls 032502.xls 032503.xls	Slope 1.0014 1.0020 1.0132	Intercept -0.5404 -0.5316 -0.4537	R ² 0.9999967 0.9999971 0.9999977	Range (ppb O ₃) 463 465 467	Range (ppb O ₃) -0.14 -0.06 -0.17
Cycle Start Date 3/25/19 4:13 3/25/19 5:54 3/25/19 7:31 3/25/19 9:09	/ Time PM PM PM PM	File Cal19 Cal19 Cal19 Cal19 Cal19	e Name 032501.xls 032502.xls 032503.xls 032504.xls	Slope 1.0014 1.0020 1.0132 1.0121	Intercept -0.5404 -0.5316 -0.4537 -0.3056	R ² 0.9999967 0.9999971 0.9999977 0.9999979	Range (ppb O ₃) 463 465 467 466	Range (ppb O ₃) -0.14 -0.06 -0.17 -0.20
Cycle Start Date 3/25/19 4:13 3/25/19 5:54 3/25/19 7:31 3/25/19 9:09 3/25/19 10:45	/ Time PM PM PM PM PM	File Cal19 Cal19 Cal19 Cal19 Cal19 Cal19	e Name 032501.xls 032502.xls 032503.xls 032504.xls 032505.xls	Slope 1.0014 1.0020 1.0132 1.0121 1.0140	Intercept -0.5404 -0.5316 -0.4537 -0.3056 0.0000	R ² 0.9999967 0.9999971 0.9999977 0.9999979 0.9999975	Range (ppb O ₃) 463 465 467 466 464	Range (ppb O ₃) -0.14 -0.06 -0.17 -0.20 0.12
Cycle Start Date 3/25/19 4:13 3/25/19 5:54 3/25/19 7:31 3/25/19 9:09 3/25/19 10:45 3/26/19 12:22	/ Time PM PM PM PM PM AM	File Cal19 Cal19 Cal19 Cal19 Cal19 Cal19	e Name 032501.xls 032502.xls 032503.xls 032504.xls 032505.xls 032600.xls	Slope 1.0014 1.0020 1.0132 1.0121 1.0140 1.0057	Intercept -0.5404 -0.5316 -0.4537 -0.3056 0.0000 -0.4967	R ² 0.9999967 0.9999971 0.9999977 0.9999975 0.9999960	Range (ppb O ₃) 463 465 467 466 464 464	Range (ppb O ₃) -0.14 -0.06 -0.17 -0.20 0.12 0.05
Cycle Start Date 3/25/19 4:13 3/25/19 5:54 3/25/19 7:31 3/25/19 9:09 3/25/19 10:45 3/26/19 12:22 3/26/19 1:59	/ Time PM PM PM PM AM AM	File Cal19 Cal19 Cal19 Cal19 Cal19 Cal19 Cal19	e Name 032501.xls 032502.xls 032503.xls 032504.xls 032505.xls 032600.xls 032601.xls	Slope 1.0014 1.0020 1.0132 1.0121 1.0140 1.0057 1.0073	Intercept -0.5404 -0.5316 -0.4537 -0.3056 0.0000 -0.4967 -0.4869	R ² 0.9999967 0.9999971 0.9999977 0.9999979 0.9999975 0.9999960 0.9999976	Range (ppb O ₃) 463 465 467 466 464 465 465	Range (ppb O ₃) -0.14 -0.06 -0.17 -0.20 0.12 0.05 0.14

Ozone calibration factors at time of test:

O3 BKG: 0.31 ppb O3 COEF: 1.013

Verification Expires on:

March 26, 2020

21 Keith Harris

Date 03/26/19

Ozone Transfer Standard Verification Summary Report

U. S. Environmental Protection Agency Region 4 Science and Ecosystem Support Division **Enforcement and Investigations Branch** Superfund and Air Section 980 College Station Rd. FEMS Athens, GA 30605

<u>SESD Project #:</u> Test #:	#1	Agency: Contact: Make: Model: S/N: Guest Guest K	EPA Standard EPA Region 4 Mike Crowe NIST SRP 10 Test Status: nown Offset:	GUEST Instrument EEMS Eric Hebert Thermo 49i 1180030022 PASS 0		·# 01	114 'van	3)
	"as found" and "as left"	4	Level 2 Averages:	Slope 0.9984	Intercept 0.2709	R² 0.9999986	High O ₃ 363	Lower O
		L	Jpper Tolerance: owerTolerance:	1.0300 0.9700	3.0000 -3.0000			
Cycle Start Da	ate / Time	Fil	e Name	Slope	Intercept	R ²	Upper Range (pph Qa)	Lower Range
6/11/19 5:0	01 PM	Cal19	061101.xls	0.9984	0.2057	0.9999981	360	0.24
6/11/19 6:3	37 PM	Cal19	061102.xls	0.9975	0.3485	0.99999992	363	-0.02
6/11/19 8:1	13 PM	Cal19	061103.xls	0.9992	0.1985	0.9999984	363	0.12
6/11/19 9:5	50 PM	Cal19	061104.xls	0.9980	0.3826	0.9999987	364	-0.14
6/11/19 11:	26 PM	Cal19	061105.xls	0.9991	0.0000	0.9999981	364	-0.13
6/12/19 1:0	02 AM	Cal19	061200.xls	0.9983	0.3572	0.9999990	365	0.12

Comments:

6/12/19 2:39 AM

Instrument tested as found. Ozone calibration factors at time of test:

O3 BKG: -0.4 ppb O3 COEF: 0.990

0.4040

0.9999988

365

-0.05

Instrument within tolerance

Verification Expires on:

June 12, 2020 September 12, 2019

Cal19061201.xls

(For NPAP use)

0.9986

Mike Crowe Op1 Date

Ozone Certification Records

TEI # 49CPS-	70008-364	49 CPS	EEMS# 01110	Van 2		
	settings at	time of test:	bkg= 0.0	coef= 1.018		
EPA file	date	start time	slope	intercept	correlatioin	location
cal19102801	28-Oct-19	17:34	1.00336	-0.10250	1	R-7
cal19102802	28-Oct-19	18:47	1.00323	-0.06933	1	R-7
cal19102803	28-Oct-19	20:03	1.00334	-0.03624	1	R-7
					1	R-7
					1	R-7
					1	R-7
					1	R-7
					1	R-7
		AVG =	1.003310	-0.069357	1	

TEI # 1180030	0022	49i	EEMS# 01114	Van 3		
	settings	at time of test:	bkg= -0.4	coef= 0.990		
EPA file	date	start time	slope	intercept	correlatioin	location
cal19102902	29-Oct-	19 11:19	0.98637	0.39175	1	R-7
cal19102803	29-Oct-	19 12:32	0.98590	0.47568	1	R-7
cal19102904	29-Oct-	19 13:44	0.98574	0.38138	1	R-7
					1	R-7
					1	R-7
					1	R-7
					1	R-7
					1	R-7
		AVG =	0.986003	0.416270	1	

FINAL SUMMARY AUDIT REPORT CO BASED EEMS Van-3

Site Name: EPA R-7 - LOW

Audit Date: 10/28/2019

Parameter	NPAP Lab Response (ppm)	Station Response (ppm)	Percent Difference	Actual Difference (ppm)	Pass/Fail	Warning
Ozone						
Pre Zero						
Ozone audit level 6				-	N/A	
Ozone audit level 5					N/A	
Ozone audit level 4					N/A	
Ozone audit level 3					N/A	
Ozone audit level 2					N/A	
Post Zero						
Carbon Monoxide						
Pre Zero	-0.0069	0.003		0.00976	Pass	
CO Audit level 4	2.6066	2.576	-1.2	-0.03039	Pass	
CO Audit level 4	1.5093	1.495	-1.0	-0.01476	Pass	
CO Audit level 3	0.5511	0.554	0.5	0.00303	Pass	
CO Audit level 2	0.1390	0.143	2.9	0.00402	Pass	
CO Audit level 1	0.0465	0.055	18.2	0.00847	Pass	
Post Zero	-0.0036	0.002		0.00516	Pass	
Oxides of Nitrogen						
Pre Zero	-0.00020	0.00000		0.00020	Pass	
NO Audit Point #1	0.07600	0.07460	-1.8	-0.00140	Pass	
NO Audit Point #2	0.04400	0.04360	-0.9	-0.00040	Pass	
NO Audit Point #3	0.01607	0.01580	-1.7	-0.00027	Pass	
NO Audit Point #4	0.00405	0.00410	1.2	0.00005	Pass	
NO Audit Point #5	0.00136	0.00140	2.9	0.00004	Pass	
Post Zero	-0.00010	0.00000		0.00010	Pass	
Pre Zero	-0.00020	0.00000		0.00020	Pass	
NOx Audit Point #1	0.07732	0.07450	-3.6	-0.00282	Pass	
NOx Audit Point #2	0.04477	0.04340	-3.1	-0.00137	Pass	
NOx Audit Point #3	0.01635	0.01570	-4.0	-0.00065	Pass	
NOx Audit Point #4	0.00412	0.00400	-2.9	-0.00012	Pass	
NOx Audit Point #5	0.00138	0.00130	-5.8	-0.00008	Pass	
Post Zero	-0.00011	0.00000		0.00011	Pass	
Pre Zero	0.00000	-0.00010		-0.00010		
NO2 Audit level 5	0.04930	0.04760	-3.4	-0.00170	Pass	
NO2 Audit level 4	0.01818	0.01690	-7.0	-0.00128	Pass	
NO2 Audit level 2	0.00435	0.00390	-10.3	-0.00045	Pass	
NO2 Audit level 1	0.00159	0.00140	-11.9	-0.00019	Pass	
Post Zero	0.00000	0.00000		0.00000	Pass	
Converter Efficiency NO2 level 5	101.7%				Pass	
Converter Efficiency NO2 level 4	100.6%				Pass	
Converter Efficiency NO2 level 2	102.5%				Pass	
Converter Efficiency NO2 level 1	100.0%				Pass	
Sulfur Dioxide						
Pre Zero	-0.00022	0.0000		0.0003	Pass	
SO2 Audit level 6	0.08235	0.0790	-4.1	-0.0033	Pass	
SO2 Audit level 5	0.04768	0.0455	-4.5	-0.0022	Pass	
SO2 Audit level 4	0.01741	0.0167	-4.3	-0.0007	Pass	
SO2 Audit level 2	0.00439	0.0040	-10.0	-0.0004	Pass	
SO2 Audit level 1	0.00147	0.0014	-5.4	-0.0001	Pass	
Post Zero	-0.00011	0.0001		0.0002	Pass	

FINAL SUMMARY AUDIT REPORT CO BASED EEMS Van-2

Site Name: EPA-R7 - LOW					Audit Date:	10/29/2019
Parameter	NPAP Lab Response (ppm)	Station Response (ppm)	Percent Difference	Actual Difference (ppm)	Pass/Fail	Warning
Ozone						
Pre Zero					_	
Audit Level 6					N/A	
Audit Level 4					N/A	
Audit Level 3					N/A	
Audit Level 2 Post Zero					N/A	
Carbon Monovide						
Pre Zero	0.0011	-0.010		-0.01065	Pass	
CO Audit level 4	2 2014	2 257	2.5	0.05562	Pass	
CO Audit level 4	1.5373	1.550	0.8	0.01272	Pass	
CO Audit level 3	0.6120	0.617	0.8	0.00501	Pass	
CO Audit level 3	0.3315	0.334	0.8	0.00255	Pass	
CO Audit level 1	0.0544	0.064	17.6	0.00960	Pass	
Post Zero	-0.0115	-0.006		0.00532	Pass	
Oxides of Nitrogen			-			
Pre Zero	0.00003	0.0000		0.0000	Pass	
NO Audit Point #1	0.06568	0.0666	1.4	0.0009	Pass	
NO Audit Point #2	0.04586	0.0457	-0.3	-0.0002	Pass	
NO Audit Point #3	0.01826	0.0182	-0.3	0.0000	Pass	
NO Audit Point #4	0.00989	0.0090	-9.0	-0.0009	Pass	
NO Audit Point #5	0.00162	0.0021	29.6	0.0005	Pass	
Post Zero	-0.00034	0.0001		0.0004	Pass	
Pre Zero	0.00003	0.0000		0.0000	Pass	
NOx Audit Point #1	0.06563	0.0665	1.3	0.0009	Pass	
NOx Audit Point #2	0.04583	0.0455	-0.7	-0.0003	Pass	
NOx Audit Point #3	0.01825	0.0180	-1.4	-0.0003	Pass	
NOx Audit Point #4	0.00988	0.0098	-0.8	-0.0001	Pass	
NOx Audit Point #5	0.00162	0.0020	23.5	0.0004	Pass	
Post Zero	-0.00034	0.0000		0.0003	Pass	
Pre Zero	0.00000	-0.00010		-0.00010	Pass	
NO2 Audit level 5	0.04552	0.04530	-0.5	-0.00022	Pass	
NO2 Audit level 4	0.01853	0.01840	-0.7	-0.00013	Pass	
NO2 Audit level 3	0.00694	0.00670	-3.5	-0.00024	Pass	
NO2 Audit level 1	0.00257	0.00350	36.2	0.00093	Pass	
Post Zero	0.00000	-0.00010		-0.00010	Pass	
Converter Efficiency NO2 level 5	99.1%				Pass	
Converter Efficiency NO2 level 4	99.5%				Pass	
Converter Efficiency NO2 level 3	100.0%				Pass	
Converter Efficiency NO2 level 1	103.9%				Pass	Warning
Sulfur Diovido						
	0 00003	0 00006		0 00003	Dace	
SO2 Audit level 6	0.00003	0.00000	20	0.00003	газэ Рэсс	
SO2 Audit level 5	0.04635	0.04638	0.1	0.00003	Paee	
SO2 Audit level 4	0.01845	0.01845	0.0	0.00000	Pass	
SO2 Audit level 4	0.00999	0.00980	-1.9	-0.00019	Pass	
SO2 Audit level 1	0.00164	0.00207	26.2	0.00043	Pass	
Post Zero	-0.00035	0.00004		0.00039	Pass	

FINAL SUMMARY AUDIT REPORT CO BASED EEMS Van-2

Site Name: EPA-R7 - LOW	=				Audit Date:	10/29/2019
Parameter	NPAP Lab Response (ppm)	Station Response (ppm)	Percent Difference	Actual Difference (ppm)	Pass/Fail	Warning
Ozone						
Pre Zero						
Audit Level 6					N/A	
Audit Level 4					N/A	
Audit Level 3					N/A	
Audit Level 2					N/A	
Post Zero						
Carbon Monoxide						
Pre Zero	0.0011	-0.010		-0.01065	Pass	
CO Audit level 4	2.2014	2.257	2.5	0.05562	Pass	
CO Audit level 4	1.5373	1.550	0.8	0.01272	Pass	
CO Audit level 3	0.6120	0.617	0.8	0.00501	Pass	
CO Audit level 2	0.1275	0.129	1.5	0.00190	Pass	
CO Audit level 1	0.0544	0.064	17.6	0.00960	Pass	
Post Zero	-0.0115	-0.006		0.00532	Pass	
Oxides of Nitrogen						
Pre Zero	0.00003	0.0000		0.0000	Pass	
NO Audit Point #1	0.06568	0.0666	1.4	0.0009	Pass	
NO Audit Point #2	0.04586	0.0457	-0.3	-0.0002	Pass	
NO Audit Point #3	0.01826	0.0182	-0.3	0.0000	Pass	
NO Audit Point #4	0.00380	0.0040	5.3	0.0002	Pass	
NO Audit Point #5	0.00162	0.0021	29.6	0.0005	Pass	
Post Zero	-0.00034	0.0001		0.0004	Pass	
Pre Zero	0.00003	0.000		0 0000	Pass	
NOx Audit Point #1	0.06563	0.0665	1.3	0.0009	Pass	
NOx Audit Point #2	0.04583	0.0455	-0.7	-0.0003	Pass	
NOx Audit Point #3	0.01825	0.0180	-1.4	-0.0003	Pass	
NOx Audit Point #4	0.00380	0.0039	2.6	0.0001	Pass	
NOx Audit Point #5	0.00162	0.0020	23.5	0.0004	Pass	
Post Zero	-0.00034	0.0000	20.0	0.0003	Pass	
Pre Zero	0.00000	-0.00010		-0.00010	Pass	
NO2 Audit level 5	0.04565	0.04530	-0.8	-0.00035	Pass	
NO2 Audit level 4	0.01858	0.01840	-1.0	-0.00018	Pass	
NO2 Audit level 3	0.00697	0.00670	-3.9	-0.00027	Pass	
NO2 Audit level 1		/ -			N/A	
Post Zero	0.00000	-0.00010		-0.00010	Pass	
Converter Efficiency NO2 level 5	99.1%				Pass	
Converter Efficiency NO2 level 4	99.5%				Pass	
Converter Efficiency NO2 level 3	100.0%				Pass	
Converter Efficiency NO2 level 1					N/A	
Sulfur Dioxide						
Pre Zero	0.00003	0.00006		0.00003	Pass	
SO2 Audit level 6	0.06637	0.06771	2.0	0.00134	Pass	
SO2 Audit level 5	0.04635	0.04638	0.1	0.00003	Pass	
SO2 Audit level 4	0.01845	0.01845	0.0	0.00000	Pass	
SO2 Audit level 2	0.00384	0.00380	-1.0	-0.00004	Pass	
SUZ AUGIT IEVEL 1	0.00164	0.00207	26.2	0.00043	Pass	
FUSI 2010	-0.00030	0.00004		0.00039	Pass	

Field Scientist Certification

<u>Eric Hebert</u>

Has satisfactorily completed The US Environmental Protection Agency's "National Performance Audit Program (NPAP) Field Scientist Re-certification Course"

Office of Air Quality Planning and Standards Research Triangle Park, NC Course Dates: October 2-4, 2019

Gregory W. Noah NPAP National Coordinator USEPA, OAQPS, AAMG

Field Scientist Certification

<u>Korey Devins</u>

Has satisfactorily completed The US Environmental Protection Agency's "National Performance Audit Program (NPAP) Field Scientist Re-certification Course"

Office of Air Quality Planning and Standards Research Triangle Park, NC Course Dates: October 2-4, 2019

Gregory W. Noah NPAP National Coordinator USEPA, OAQPS, AAMG

Field Scientist Certification

Martin Valvur

Has satisfactorily completed The US Environmental Protection Agency's "National Performance Audit Program (NPAP) Field Scientist Re-certification Course"

Office of Air Quality Planning and Standards Research Triangle Park, NC Course Dates: October 2-4, 2019

Gregory W. Noah NPAP National Coordinator USEPA, OAQPS, AAMG