Table of Contents

CHEMICALS SECTOR (NON-FLUORINATED) ... 2
 Highlights .. 2
 About this Sector .. 2
 Who Reports? ... 2
 Reported Emissions .. 5
 Chemical Sector: Emissions Trends 2011 to 2020 ... 8
 Emission Calculation Methods Available for Use ... 14
 Emission Calculation Methodologies for Process Emissions Sources ... 14
 Emission Calculation Methodologies for Stationary Fuel Combustion Units 15
 Data Verification and Analysis ... 15
 Other Information ... 15
 Glossary ... 16
CHEMICALS SECTOR (NON-FLUORINATED)

All emissions presented here are as of 8/7/2021 and exclude biogenic carbon dioxide (CO₂). All greenhouse gas (GHG) emission data displayed in units of carbon dioxide equivalent (CO₂e) reflect the global warming potential (GWP) values from Table A-1 of 40 CFR 98, which is generally based on the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4).

Highlights

- The Chemicals Sector has the 3rd-largest greenhouse gas (GHG) emissions among sectors reporting to the Greenhouse Gas Reporting Program (GHGRP).
- The GHG emissions in this sector are emitted predominantly from facilities located in Texas and Louisiana.
- Emissions from the Chemicals Sector were 177.7 million metric tons of carbon dioxide equivalent (MMT CO₂e) in 2020.
- Emissions from this sector increased by 1% from 2019 to 2020, while the number of reporters decreased.

About this Sector

The Non-fluorinated Chemical Manufacturing Sector, hereafter referred to as the Chemicals Sector, consists of facilities that emit GHGs from the manufacturing of organic or inorganic chemicals. For this summary, the Chemicals Sector comprises facilities that produce Adipic Acid, Ammonia, Hydrogen (both merchant and captive plants), Nitric Acid, Petrochemicals, Phosphoric Acid, Silicon Carbide, and Titanium Dioxide. In addition to emissions from these chemical production processes, this sector includes combustion emissions from facilities that produce pesticides, fertilizer, pharmaceuticals, and other organic and inorganic chemicals.

Who Reports?

In 2020, 436 facilities in the Chemicals Sector submitted GHG reports. Total reported emissions were 177.7 MMT CO₂e. In 2020, the Chemicals Sector represented about 6% of the facilities reporting direct emissions to the GHGRP, and 2.7% of total U.S. GHG emissions. Table 1 shows the reporting schedule and GHGRP coverage by subpart as of 2012. When the program began in 2011, for all of the subsectors except Hydrogen Production and Other Chemicals, all US facilities reported to the GHGRP. Due to the GHGRP off-ramping provisions, some facilities may have qualified to discontinue reporting. Table 2 shows the number of reporters from 2011 to 2020 for each subsector. Figure 1 shows the percentage of emissions by subsector for 2020.

Table 1: Chemicals Sector - Reporting Schedule and GHGRP Coverage by Subpart

<table>
<thead>
<tr>
<th>Subpart</th>
<th>Source Category</th>
<th>Applicability</th>
<th>First Reporting Year</th>
<th>Estimated Percent of Industry Facilities Covered by GHGRPa</th>
<th>Estimated Percent of Industry Emissions Covered by GHGRPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Adipic Acid Production</td>
<td>All facilities</td>
<td>2010</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>G</td>
<td>Ammonia Manufacturing</td>
<td>All facilities</td>
<td>2010</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>P</td>
<td>Hydrogen Production</td>
<td>Facilities emitting greater than or equal to 25,000 metric tons CO\textsubscript{2}e/year</td>
<td>2010</td>
<td>78%b</td>
<td>90%c</td>
</tr>
<tr>
<td>V</td>
<td>Nitric Acid Production</td>
<td>All facilities</td>
<td>2010</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>X</td>
<td>Petrochemical Production</td>
<td>All facilities</td>
<td>2010</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Z</td>
<td>Phosphoric Acid Production</td>
<td>All facilities</td>
<td>2010</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>BB</td>
<td>Silicon Carbide Production</td>
<td>All facilities</td>
<td>2010</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>EE</td>
<td>Titanium Dioxide Production</td>
<td>All facilities</td>
<td>2010</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>C</td>
<td>Other Chemicals</td>
<td>The subset of facilities that emit greater than or equal to 25,000 metric tons CO\textsubscript{2}e/yr, reported only under Subpart C (stationary fuel combustion) and that reported North American Industry Classification System (NAICS) codes starting with 325 (except for 325193, 3252XX, 325510, and 325920)</td>
<td>2010</td>
<td>N/Ad</td>
<td>N/Ad</td>
</tr>
</tbody>
</table>

a Coverage is provided as of Reporting Year 2012.

b Estimate of size of industry is based on the following source: Hydrogen Analysis Resource Center, Pacific National Laboratory. "Merchant Hydrogen Plant Capacities in North America" and “Captive, On-Purpose, Refinery Hydrogen Production Capacities at Individual U.S. Refineries” available at: https://h2tools.org/hyarc/hydrogen-production. Facilities with no Hydrogen Production capacity were not counted.

c Estimate of size of industry emissions is based on the above sources, considering the cumulative capacity as indicator of GHG emissions.

d Due to the diversity of facilities and products within the Other Chemicals subsector, the U.S. population of all facilities in this subsector is not available.
Table 2: Chemicals Sector - Number of Reporters (2011-2020)*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Chemicals Sector</td>
<td>442</td>
<td>452</td>
<td>457</td>
<td>449</td>
<td>450</td>
<td>441</td>
<td>443</td>
<td>441</td>
<td>437</td>
<td>436</td>
</tr>
<tr>
<td>Adipic Acid Production</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ammonia Manufacturing</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>26</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td>105</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>110</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>112</td>
<td>114</td>
</tr>
<tr>
<td>Nitric Acid Production</td>
<td>36</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Petrochemical Production</td>
<td>64</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td>67</td>
<td>69</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>Phosphoric Acid Production</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Silicon Carbide Production</td>
<td>1</td>
</tr>
<tr>
<td>Titanium Dioxide Production</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Other Chemicals</td>
<td>215</td>
<td>220</td>
<td>226</td>
<td>219</td>
<td>215</td>
<td>204</td>
<td>207</td>
<td>204</td>
<td>202</td>
<td>198</td>
</tr>
</tbody>
</table>

*The total number of reporters is less than the sum of the number of reporters in each individual source category because some facilities report to more than one source category.
Reported Emissions

Figure 1: 2020 Total Reported Emissions from Chemicals Sector, by Subsector

Click here to view the most current information using the Facility Level Information on Greenhouse Gases Tool (FLIGHT).
Figure 2: Chemicals Sector - Emissions by Range and Location (2020)

Figure 2 shows the locations of chemical facilities in the continental U.S. Sizes of circles correspond to the quantity of emissions reported by the facility. There are also chemical facilities located in Alaska, Hawaii, and Puerto Rico [https://www.epa.gov/ghgreporting/ghgrp-power-plants].

Readers can identify the largest emitting facilities by visiting the FLIGHT website [http://ghgdata.epa.gov/ghgp/main.do].

As shown in Figure 3, a large percentage of emissions from the Chemicals Sector originate in Texas and Louisiana. In 2020, the emissions from these two states totaled 98.3 MMT CO₂e, which is 55% of the total emissions from the Chemicals Sector. Eight of the nine subsectors are represented in these two states. Only Silicon Carbide Production, which has one reporter, is not represented in Texas or Louisiana. The Petrochemical Production subsector is especially concentrated, with about 86% of facilities and 90% of GHG emissions from the subsector located in these two states.
Figure 3: Direct Emissions by State from the Chemicals Sector (2020)a

a Represents total emissions reported to the GHGRP from this sector. States not shown had no chemicals sector emissions reported to the GHGRP in 2020. Additional emissions may occur at facilities that have not reported, such as those below the reporting threshold.

Click here to view the most current information using FLIGHT.
Chemical Sector: Emissions Trends 2011 to 2020

Emissions from the Chemicals Sector increased by 0.9 MMT CO$_2$e from 2019 to 2020 (a 0.5% increase). The subsector with the biggest change in emissions from 2019 to 2020 was Adipic Acid Production with a 42.5% increase. The cause of these changes is discussed in the longer-term emission trends section below.

Longer-term emissions trends for the Chemicals Sector are shown in Table 3 and Figure 4 below. The three sectors with the largest percentage change in emissions from 2011 to 2020 are Ammonia Manufacturing, Silicon Carbide Production, and Phosphoric Acid Production, respectively.

Reported emissions from the non-fluorinated chemicals sector increased from 163.1 million metric tons (MMT) CO$_2$e to 177.7 MMT CO$_2$e (9.0 percent) from 2011 to 2020. After a slight decrease from 2011 to 2012, emissions steadily increased by 1 to 5 percent per year through 2018, before decreasing by 3.4 percent for 2019, and then increasing by 0.5 percent for 2020. Adipic Acid Production, Ammonia Manufacturing, Hydrogen Production, and Petrochemical Production were the four largest contributors to emissions changes from the non-fluorinated chemicals sector between 2019 and 2020, as detailed below. The large increase in emissions from Adipic Acid Production was balanced out by the large decrease in emissions from Hydrogen Production. The increase in emissions from Ammonia Manufacturing was balanced out by the overall combined decrease in emissions from Nitric Acid Production, Silicon Carbide Production, Titanium Dioxide Production, and Other Chemicals Production. Therefore, the bulk of the 2019 to 2020 emissions increase was due to a slight increase in emissions from Petrochemical Production.

Adipic Acid Production. Reported emissions from the Adipic Acid Production subsector have varied greatly between 2011 and 2019, with the highest emissions in 2011 and 2018. Between 2019 and 2020, the emissions from Adipic Acid Production increased by 42.5 percent. This change is due to one facility that employs a nitrous oxide abatement device but varies the percent of time that the device is in service. The higher the percentage of time that the abatement device is in service, the lower the nitrous oxide emissions. The nitrous oxide abatement device was in service for less time in 2020 than in 2019, resulting in an increase in emissions between the two years. This facility has acknowledged the variation in emissions is due to the nitrous oxide abatement device and has verified that the emissions are correct.

Ammonia Manufacturing. While somewhat variable from year to year, reported emissions from Ammonia Manufacturing increased by 46.8 percent from 2011 to 2020. This is mostly due to an increase in the number of Ammonia Manufacturing facilities, from 22 in 2011 to 29 in 2020. New Ammonia Manufacturing facilities were opened in 2013, 2016, and 2017 (one in 2013, four in 2016, and two in 2017). The number of facilities has not changed since 2017 but there was an increase in emissions of 3.9% from 2019 to 2020, due to an increase in market demand for ammonia between 2019 and 2020.

Hydrogen Production. Reported emissions from the Hydrogen Production subsector increased by 9.9 percent from 2011 to 2020. The overall increase in emissions is at least partly driven by increased demand for hydrogen by petroleum refineries due to an expansion of the scope of engines required to use low sulfur and ultra-low sulfur diesel fuel. Lowering the sulfur content of diesel fuel is achieved by increasing hydro-treating capacity of fluid catalytic crackers and requires additional inputs of hydrogen at refineries. Emissions from Hydrogen Production decreased by 6.5 percent from 2019 to 2020. One facility with 2019 emissions of 1.0 MMT CO$_2$e stopped reporting Hydrogen Production in 2020 due to a merger with a neighboring Petrochemical Production
facility. The remaining emissions reduction is likely due to a drop in hydrogen demand during the COVID-19 pandemic, as hydrogen is used in oil refining, steel production and chemicals production.

Petrochemical Production. Reported emissions from the Petrochemical Production subsector increased by 11.5 percent from 2011 to 2020. Most of the emissions increase occurred from 2017 to 2018 as a result of new process units at 2 Petrochemical Production facilities. Emissions from 2019 to 2020 increased slightly by 1.4 percent, which is primarily due to a significant increase in flaring at one facility, startup of two new process units in 2020, increased production in 2020 of one process unit that started up in 2019, and the merged Hydrogen Production and Petrochemical Production facility reporting the integrated process emissions under the Petrochemical Production subsector.

Table 3: Chemicals Sector – Emissions (MMT CO₂e) by Subsector (2011 - 2020)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Chemicals Sector</td>
<td>163.1</td>
<td>158.6</td>
<td>161.2</td>
<td>165.4</td>
<td>166.8</td>
<td>169.6</td>
<td>174.6</td>
<td>183.2</td>
<td>176.8</td>
<td>177.7</td>
</tr>
<tr>
<td>Adipic Acid Production</td>
<td>11.9</td>
<td>7.0</td>
<td>5.7</td>
<td>7.2</td>
<td>6.1</td>
<td>8.8</td>
<td>9.1</td>
<td>12.1</td>
<td>6.9</td>
<td>9.9</td>
</tr>
<tr>
<td>Ammonia Manufacturing</td>
<td>24.9</td>
<td>25.0</td>
<td>24.9</td>
<td>24.2</td>
<td>25.6</td>
<td>28.3</td>
<td>33.1</td>
<td>35.7</td>
<td>35.1</td>
<td>36.5</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td>37.5</td>
<td>40.1</td>
<td>42.0</td>
<td>44.3</td>
<td>43.7</td>
<td>44.5</td>
<td>45.6</td>
<td>45.4</td>
<td>44.1</td>
<td>41.3</td>
</tr>
<tr>
<td>Nitric Acid Production</td>
<td>11.5</td>
<td>11.0</td>
<td>11.2</td>
<td>11.2</td>
<td>11.8</td>
<td>10.4</td>
<td>9.8</td>
<td>9.8</td>
<td>10.2</td>
<td>9.5</td>
</tr>
<tr>
<td>Petrochemical Production</td>
<td>52.7</td>
<td>51.5</td>
<td>52.3</td>
<td>53.5</td>
<td>54.6</td>
<td>53.8</td>
<td>54.2</td>
<td>57.5</td>
<td>57.9</td>
<td>58.7</td>
</tr>
<tr>
<td>Phosphoric Acid Production</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Silicon Carbide Production</td>
<td>0.1</td>
</tr>
<tr>
<td>Titanium Dioxide Production</td>
<td>2.4</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Other Chemicals</td>
<td>20.4</td>
<td>19.9</td>
<td>20.8</td>
<td>20.7</td>
<td>20.8</td>
<td>19.8</td>
<td>19.1</td>
<td>19.1</td>
<td>19.3</td>
<td>18.4</td>
</tr>
</tbody>
</table>

*a These values represent total emissions reported to the GHGRP in these industry subsectors. Additional emissions may occur at facilities that have not reported (e.g., those below the 25,000 MT CO₂e reporting threshold applicable to the Hydrogen Production and Other Chemicals subsectors).

*b Totals might not sum due to independent rounding.
Click here to view the most current information using FLIGHT.

As shown in Table 4, CO₂ is the primary GHG emitted from all chemical production subsectors, with the exception of the Nitric Acid Production and Adipic Acid Production subsectors. N₂O is produced as a by-product of nitric acid and adipic acid processes and is the primary GHG emitted from these two subsectors. Small amounts of methane (CH₄) are emitted from facilities in all subsectors, primarily from the combustion of fossil fuels or process off-gases for energy recovery or to control emissions of volatile organic compounds or organic hazardous air pollutants. Table 5 shows total reported emissions from process emissions and fuel combustion for each subsector.
Table 4: Chemicals Sector - Emissions by GHG (MMT CO₂e)\(^a\)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Facilities</td>
<td>442</td>
<td>452</td>
<td>457</td>
<td>449</td>
<td>450</td>
<td>441</td>
<td>443</td>
<td>441</td>
<td>437</td>
<td>436</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>163.1</td>
<td>158.6</td>
<td>161.2</td>
<td>165.4</td>
<td>166.8</td>
<td>169.6</td>
<td>174.6</td>
<td>183.2</td>
<td>176.8</td>
<td>177.7</td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
</tr>
<tr>
<td>Adipic Acid Production</td>
<td>1.6</td>
<td>1.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Ammonia Manufacturing</td>
<td>24.8</td>
<td>25.0</td>
<td>24.9</td>
<td>24.2</td>
<td>25.6</td>
<td>28.3</td>
<td>33.1</td>
<td>35.7</td>
<td>35.1</td>
<td>36.5</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td>37.5</td>
<td>40.1</td>
<td>42.0</td>
<td>44.3</td>
<td>43.7</td>
<td>44.5</td>
<td>44.5</td>
<td>45.6</td>
<td>45.4</td>
<td>44.1</td>
</tr>
<tr>
<td>Nitric Acid Production</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Petrochemical Production</td>
<td>52.4</td>
<td>51.2</td>
<td>52.0</td>
<td>53.1</td>
<td>54.3</td>
<td>53.5</td>
<td>53.8</td>
<td>57.1</td>
<td>57.5</td>
<td>58.3</td>
</tr>
<tr>
<td>Phosphoric Acid Production</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Silicon Carbide Production</td>
<td>0.1</td>
</tr>
<tr>
<td>Titanium Dioxide Production</td>
<td>2.4</td>
<td>2.1</td>
<td>2.3</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Other Chemicals</td>
<td>20.3</td>
<td>19.9</td>
<td>20.7</td>
<td>20.7</td>
<td>20.8</td>
<td>19.7</td>
<td>19.1</td>
<td>19.1</td>
<td>19.2</td>
<td>18.4</td>
</tr>
<tr>
<td>CH₄</td>
<td></td>
</tr>
<tr>
<td>Adipic Acid Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Ammonia Manufacturing</td>
<td><0.05</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Nitric Acid Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Petrochemical Production</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Phosphoric Acid Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Silicon Carbide Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Titanium Dioxide Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Other Chemicals</td>
<td><0.05</td>
</tr>
<tr>
<td>N₂O</td>
<td></td>
</tr>
<tr>
<td>Adipic Acid Production</td>
<td>10.2</td>
<td>5.3</td>
<td>3.9</td>
<td>5.4</td>
<td>4.3</td>
<td>7.1</td>
<td>7.5</td>
<td>10.5</td>
<td>5.3</td>
<td>8.3</td>
</tr>
<tr>
<td>Ammonia Manufacturing</td>
<td><0.05</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Nitric Acid Production</td>
<td>10.9</td>
<td>10.5</td>
<td>10.7</td>
<td>10.9</td>
<td>11.6</td>
<td>10.1</td>
<td>9.5</td>
<td>9.6</td>
<td>10.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Petrochemical Production</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Phosphoric Acid Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Silicon Carbide Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Titanium Dioxide Production</td>
<td><0.05</td>
</tr>
<tr>
<td>Other Chemicals</td>
<td><0.05</td>
</tr>
</tbody>
</table>

\(^a^\)Totals might not sum due to independent rounding.
Table 5: Chemicals Sector - Emissions (MMT CO2e) from Industrial Process and Fuel Combustion\(^a\),\(^b\)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipic Acid Production</td>
<td>11.9</td>
<td>7.0</td>
<td>5.7</td>
<td>7.2</td>
<td>6.1</td>
<td>8.8</td>
<td>9.1</td>
<td>12.1</td>
<td>6.9</td>
<td>9.9</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>1.6</td>
<td>1.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Other Processes</td>
<td>10.2</td>
<td>5.3</td>
<td>3.9</td>
<td>5.4</td>
<td>4.3</td>
<td>7.1</td>
<td>7.5</td>
<td>10.5</td>
<td>5.3</td>
<td>8.3</td>
</tr>
<tr>
<td>Ammonia Manufacturing</td>
<td>24.9</td>
<td>25.0</td>
<td>24.9</td>
<td>24.2</td>
<td>25.6</td>
<td>28.3</td>
<td>33.1</td>
<td>35.7</td>
<td>35.1</td>
<td>36.5</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>10.8</td>
<td>10.8</td>
<td>10.5</td>
<td>9.6</td>
<td>11.2</td>
<td>12.7</td>
<td>14.0</td>
<td>15.2</td>
<td>14.4</td>
<td>15.0</td>
</tr>
<tr>
<td>Other Processes</td>
<td>14.0</td>
<td>14.2</td>
<td>14.4</td>
<td>14.6</td>
<td>14.4</td>
<td>15.6</td>
<td>19.1</td>
<td>20.5</td>
<td>20.7</td>
<td>21.5</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td>37.5</td>
<td>40.1</td>
<td>42.0</td>
<td>44.3</td>
<td>43.7</td>
<td>44.5</td>
<td>45.6</td>
<td>45.4</td>
<td>44.1</td>
<td>41.3</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>1.3</td>
<td>1.4</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.3</td>
<td>1.5</td>
<td>1.6</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Other Processes</td>
<td>36.2</td>
<td>38.7</td>
<td>40.4</td>
<td>42.7</td>
<td>42.1</td>
<td>43.2</td>
<td>44.1</td>
<td>43.8</td>
<td>42.8</td>
<td>39.8</td>
</tr>
<tr>
<td>Nitric Acid Production</td>
<td>11.5</td>
<td>11.0</td>
<td>11.2</td>
<td>11.2</td>
<td>11.8</td>
<td>10.4</td>
<td>9.8</td>
<td>9.8</td>
<td>10.2</td>
<td>9.5</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Other Processes</td>
<td>10.9</td>
<td>10.5</td>
<td>10.7</td>
<td>10.9</td>
<td>11.6</td>
<td>10.1</td>
<td>9.5</td>
<td>9.6</td>
<td>10.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Other Chemicals</td>
<td>20.4</td>
<td>19.9</td>
<td>20.8</td>
<td>20.7</td>
<td>20.8</td>
<td>19.8</td>
<td>19.1</td>
<td>19.1</td>
<td>19.3</td>
<td>18.4</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>20.3</td>
<td>19.9</td>
<td>20.7</td>
<td>20.7</td>
<td>20.7</td>
<td>19.7</td>
<td>19.0</td>
<td>19.2</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>Petrochemical Production</td>
<td>52.7</td>
<td>51.5</td>
<td>52.3</td>
<td>53.5</td>
<td>54.6</td>
<td>53.8</td>
<td>54.2</td>
<td>57.5</td>
<td>57.9</td>
<td>58.7</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>43.2</td>
<td>42.0</td>
<td>44.0</td>
<td>43.8</td>
<td>45.2</td>
<td>44.1</td>
<td>43.3</td>
<td>46.3</td>
<td>45.6</td>
<td>45.6</td>
</tr>
<tr>
<td>Other Processes</td>
<td>9.4</td>
<td>9.5</td>
<td>8.3</td>
<td>9.6</td>
<td>9.4</td>
<td>9.7</td>
<td>10.9</td>
<td>11.3</td>
<td>12.3</td>
<td>13.2</td>
</tr>
<tr>
<td>Phosphoric Acid Production</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Other Processes</td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Silicon Carbide Production</td>
<td>0.1</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td><0.05</td>
</tr>
<tr>
<td>Other Processes</td>
<td>0.1</td>
</tr>
<tr>
<td>Titanium Dioxide Production</td>
<td>2.4</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Fuel Combustion</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Other Processes</td>
<td>1.3</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Emission values presented may differ slightly from other publicly available GHGRP data due to minor differences in the calculation methodology. Totals might not sum due to independent rounding and minor emissions from sorbent use and/or miscellaneous use of carbonate included in the totals.

\(^b\) Emissions from fuel combustion are defined here as emissions reported under Subpart C.

Figure 5 displays emissions per reporter in the Chemicals Sector and for the GHGRP program overall.
Figure 5: Average Emissions per Reporter from the Chemicals Sector (2020)

Table 6 and Figure 6 show the number and percentage of reporters within each emission range in MMT CO₂e, respectively. Figure 6 additionally shows a comparison to the GHGRP overall.

Table 6: Chemical Sector - Number of Facilities by Emissions Ranges (2020)

<table>
<thead>
<tr>
<th>Emission Range (MMT CO₂e)</th>
<th>0 - 0.025</th>
<th>0.025 - 0.05</th>
<th>0.05 - 0.1</th>
<th>0.1 - 0.25</th>
<th>0.25 - 1</th>
<th>> 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipic Acid Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Ammonia Manufacturing</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td>14</td>
<td>10</td>
<td>13</td>
<td>26</td>
<td>45</td>
<td>6</td>
</tr>
<tr>
<td>Nitric Acid Production</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Petrochemical Production</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>18</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Phosphoric Acid Production</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Silicon Carbide Production</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Titanium Dioxide Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Other Chemicals</td>
<td>33</td>
<td>68</td>
<td>57</td>
<td>26</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>
Emission Calculation Methods Available for Use

Emission Calculation Methodologies for Process Emissions Sources

Chemical facilities must calculate GHG process emissions using one of the following methods:

- **CEMS.** Operate a CEMS to measure CO2 emissions according to requirements specified in 40 CFR Part 98, Subpart C (does not apply to the Adipic Acid Production and Nitric Acid Production subsectors).

- **Carbon mass balance.** Calculate process CO2 emissions based on measurements of the annual mass of process inputs/outputs, and periodic analyses of the weight fraction of carbon in all inputs and outputs.

- **Site-specific emission factor.** Develop an emission factor by conducting performance tests and measuring process feed rates during the tests.

- **Default emission factors.** Use a default emission factor provided in the rule. The default emission factor was calculated as the average emissions for facilities in a source category based on all available data of acceptable quality (i.e., a population average).
• **Alternative method.** For the Adipic Acid Production and Nitric Acid Production subsectors, facilities may submit a request to EPA for approval of an alternative emission estimation method. For ethylene process units (in the Petrochemical Production subsector), facilities can use an alternative method (without prior approval) based on measuring emissions from the combustion of ethylene process off-gas streams.

Emission Calculation Methodologies for Stationary Fuel Combustion Units

For fuel combustion emissions, facilities must generally follow the applicable tier methodology prescribed in Subpart C (general stationary fuel combustion sources) to calculate CO₂, CH₄, and N₂O emissions. The calculation methodologies for Subpart C are explained here.

Data Verification and Analysis

As a part of the reporting and verification process, EPA evaluates annual GHG reports with electronic checks and staff review as needed. EPA contacts facilities regarding potential substantive errors and facilities resubmit reports as errors are identified. Additional information on EPA’s verification process is available here.

Other Information

The EPA currently tracks greenhouse gases and their sources through two complementary programs: GHGRP data and the Inventory of U.S. Greenhouse Gas Emissions and Sinks (Inventory). The Inventory estimates the total greenhouse gas emissions across all sectors of the economy using a “top down” approach generally using aggregated national data, while the GHGRP uses a “bottom up” approach collecting emissions data from the nation’s largest GHG emitting facilities. The processes and industries covered by the Chemicals Sector are also covered by the Inventory, but the emissions are not directly correlated due to differences in coverage and difference in calculation methodologies. More details about the differences between the Inventory and the GHGRP are provided here: https://www.epa.gov/ghgreporting/greenhouse-gas-reporting-program-and-us-inventory-greenhouse-gas-emissions-and-sinks

GHGRP GHG emissions summaries presented here for the Petrochemical Production subsector differs from those presented in the Inventory, due to methodological differences for some petrochemical types. The GHGRP uses a mass balance approach (and assumes all carbon is emitted as CO₂), to determine process emissions from the production of all six petrochemicals covered. Additionally, the GHGRP uses an optional method to determine process emissions from the production of ethylene. Under the optional ethylene combustion methodology, facilities determine process emissions by calculating GHG emissions from the combustion of process off-gas.

In the Inventory, the CO₂ emissions from production of four of the six petrochemicals – carbon black, ethylene, ethylene dichloride and ethylene oxide – were obtained by aggregating facility-level emissions reported under the GHGRP. The CO₂ and CH₄ emissions from acrylonitrile and methanol processes presented in the Inventory were calculated using a basic method based on internationally-accepted guidance (i.e. a “Tier 1” method based on national production of those petrochemicals) due to the confidential nature of reported GHGRP data. For future Inventories, EPA is evaluating alternate data aggregation approaches to possibly allow direct integration of GHGRP data for these additional petrochemical types.
Glossary

Adipic Acid is a white crystalline solid used in the manufacture of synthetic fibers, plastics, coatings, urethane foams, elastomers, and synthetic lubricants. Food-grade adipic acid is used to provide some food products with a tangy flavor.

Ammonia is mainly used as fertilizer; directly applied as anhydrous ammonia; or further processed into urea, ammonium nitrates, ammonium phosphates, and other nitrogen compounds. Ammonia also is used to produce plastics, synthetic fibers and resins, and explosives.

Direct emitters are facilities that combust fuels or otherwise put GHGs into the atmosphere directly from their facilities. Alternatively, Suppliers are entities that supply certain fossil fuels or fluorinated gases into the economy that – when combusted, released, or oxidized – emit GHGs into the atmosphere.

FLIGHT refers to EPA's GHG data publication tool, named the Facility Level Information on Greenhouse Gases Tool (https://ghgdata.epa.gov/ghgp/main.do).

GHGRP vs. GHG Inventory: EPA’s Greenhouse Gas Reporting Program (GHGRP) collects and disseminates annual GHG data from individual facilities and suppliers across the U.S. economy. EPA also develops the annual Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHG Inventory) to track total national emissions of GHGs to meet U.S. government commitments to the United Nations Framework Convention on Climate Change. The GHGRP and Inventory datasets are complementary; however, there are also important differences in the data and approach. For more information, please see https://www.epa.gov/ghgreporting/greenhouse-gas-reporting-program-and-us-inventory-greenhouse-gas-emissions-and-sinks.

Hydrogen Production: Hydrogen is mostly used in the production of ammonia and other chemicals or in industrial applications such as hydrocracking or hydrotreating processes during petroleum refining, metals treating, and food processing. Hydrogen Production processes are classified as either captive or merchant. A captive process is owned by the facility that uses the hydrogen in a production process. A merchant plant sells hydrogen to another entity. The GHG emissions from captive hydrogen processes at Ammonia Manufacturing facilities are included in the Ammonia Manufacturing subsector.

MMT means million metric tons.

NAICS means the North American Industry Classification System, the standard used by federal statistical agencies to classify business establishments into industrial categories for collecting and publishing statistical data related to the U.S. economy.

Nitric acid is used in the manufacture of nitrogen-based fertilizers, adipic acid, and explosives. Nitric acid is also used for metal etching and processing of ferrous metals.
The **Other Chemicals** subsector comprises facilities that reported under Subpart C (stationary fuel combustion sources) only and reported NAICS codes starting with 325. This subsector excludes NAICS codes 325193 (ethyl alcohol), 3252XX (synthetic rubber/fibers), 325510 (paints/coatings), and 325920 (explosives), which are included in the sector called “Miscellaneous Combustion Sources.”

The **Petrochemical Production** subsector consists of processes that produce acrylonitrile, carbon black, ethylene, ethylene dichloride, ethylene oxide, or methanol.

- The primary use of acrylonitrile is in the production of synthetic fibers.
- Carbon black is used primarily as a reinforcing agent in tires and other rubber compounds, and also has applications as a pigment.
- Ethylene is used as a feedstock in the production of polyethylene and other chemicals such as ethylene oxide, ethylene dichloride, and ethylbenzene.
- Nearly all ethylene dichloride is used in the production of vinyl chloride monomer, which issued in the production of polyvinyl chloride, a common plastic.
- Ethylene oxide is used as a feedstock in the manufacture of glycols, glycol ethers, alcohols, and amines.
- Methanol is used as a feedstock in the production of acetic acid, formaldehyde, and other chemicals.

Process emissions means the emissions from industrial processes involving chemical or physical transformations other than fuel combustion. For example, the calcination of carbonates in a kiln during cement production or the oxidation of methane in an ammonia process results in the release of process CO₂ emissions to the atmosphere. Emissions from fuel combustion to provide process heat are not part of process emissions, whether the combustion is internal or external to the process equipment.

Phosphoric Acid is used primarily in the manufacture of phosphate fertilizers, but it is also used in food and animal feed additives.

Silicon Carbide is used as an industrial abrasive and to produce ceramics for applications requiring high endurance. Applications of silicon carbide include semiconductors; body armor; brakes; clutches; and the manufacture of Moissanite, a diamond substitute.

Titanium Dioxide is used as a white pigment in paint manufacturing, paper, plastics, and other applications.