Scoring results

<table>
<thead>
<tr>
<th>ALT(^1)</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>Score</th>
<th>Cost Effectiveness(^2)</th>
<th>Total Capital ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-2</td>
<td>50 mgd conveyance to APTP</td>
<td>35 mgd</td>
<td>8 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>5 mgd</td>
<td>297</td>
<td>18</td>
<td>627</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>50 mgd conveyance to APTP</td>
<td>35 mgd</td>
<td>8 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>10 mgd</td>
<td>287</td>
<td>15</td>
<td>674</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>25 mgd</td>
<td>8 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>269</td>
<td>33</td>
<td>368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-2</td>
<td>35 mgd</td>
<td>20 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>242</td>
<td>22</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-2</td>
<td>35 mgd conveyance to APTP</td>
<td>15 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>230</td>
<td>25</td>
<td>367</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>35 mgd conveyance to APTP</td>
<td>15 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>220</td>
<td>22</td>
<td>346</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>35 mgd</td>
<td>20 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>219</td>
<td>20</td>
<td>372</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>35 mgd</td>
<td>15 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>204</td>
<td>17</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>100 mgd conveyance to APTP</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>200</td>
<td>20</td>
<td>314</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>163 mgd conveyance to APTP</td>
<td>✓</td>
<td>10 mgd</td>
<td>190</td>
<td>21</td>
<td>280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>60 mgd</td>
<td>15 mgd</td>
<td>✓</td>
<td>188</td>
<td>17</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>100 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>179</td>
<td>19</td>
<td>332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>100 mgd conveyance to APTP</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>163</td>
<td>21</td>
<td>248</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) All alternatives contain canyon regrading

\(^2\) Cost effectiveness is calculated by Score/40 yr Lifecycle Cost

\(^3\) Cost estate includes 1.5 contingency factor.
Three Alternatives for Further Evaluation

<table>
<thead>
<tr>
<th>ALT</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>Score²</th>
<th>Cost Effectiveness³</th>
<th>% Reduction (higher is better)</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transboundary flow days in TJR (annual)</td>
<td>Capital ($M)⁴</td>
</tr>
<tr>
<td>I-2</td>
<td>60 mgd</td>
<td>conveyance to APTP</td>
<td>35 mgd</td>
<td>8 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>5 mgd</td>
<td>297</td>
<td>18</td>
<td>76%</td>
<td>95%</td>
</tr>
<tr>
<td>H</td>
<td>25 mgd</td>
<td>8 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>269</td>
<td>33</td>
<td>54%</td>
<td>74%</td>
<td>368</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>E-2</td>
<td>35 mgd</td>
<td>conveyance to APTP</td>
<td>15 mgd</td>
<td>5 mgd</td>
<td>✓</td>
<td>10 mgd</td>
<td>230</td>
<td>25</td>
<td>64%</td>
<td>63%</td>
<td>367</td>
<td>14</td>
</tr>
</tbody>
</table>

1. All alternatives contain canyon regrading
2. Scores have been updated from August 4th meeting materials to reflect more recent data and calculations
3. Cost effectiveness is calculated by Score/40y-yr Lifecycle Cost
4. Cost estimates include 1.5 contingency factor. Costs have been updated from August 4th meeting materials to reflect more recent data and calculations
Alternative I-2
Comprehensive Alternative

Project Components
• 35 MGD expansion of the International Treatment Plant to treat Tijuana and canyon sewage until 2050. Treated effluent would be sent back to Tijuana for reuse
• 60 MGD river diversion and Advanced Primary Treatment Plant in the US to capture and treat Tijuana River flows
• 5 MGD San Antonio de Los Buenos Treatment Plant to treat sewage from Tijuana coastal areas until 2050
• 10 MGD of water reuse and 5 MGD of sewer repairs to reduce Tijuana River flows
• Trash boom in the river to prevent transboundary trash contamination
• Canyon regrading project to reduce pooling of wastewater on the U.S.-side of canyons

Major Expected Impacts
• 76% reduction of transboundary river flow days
• 95% reduction of days with impaired water quality at Imperial Beach (tourist season)
• Provides more U.S. oversight to treat wastewater and ensures the majority of sewage remains out of the river and ocean
• Diverts all dry-weather and some wet-weather transboundary river flows when the existing Mexico-side diversion is failing or has reached its operational threshold
• Reduces sewage pooling in canyons and negative impacts on U.S. Customs and Border Protection
95% reduction in days of impaired water quality during the summer

0 mgd sewage remaining (100% reduction)

36 days transboundary flows (76% reduction)

5 mgd San Antonio de los Buenos Plant (SABTP)

35 mgd Expansion International Treatment Plant (ITP)

60 mgd Advanced Primary Treatment Plant

Future reuse
Alternative H
Wastewater Treatment Alternative

Project Components
• 25 MGD expansion of the International Treatment plant to treat central Tijuana and canyon sewage until 2030
• 10 MGD of water reuse and 5 MGD of sewer repairs to reduce Tijuana River flows
• Trash boom in the river to prevent transboundary trash contamination
• Canyon regrading project to reduce pooling of wastewater on the U.S.-side of canyons

Major Expected Impacts
• 54% reduction of transboundary river flow days
• 74% reduction of days with impaired water quality at Imperial Beach (tourist season)
• Provides more U.S. oversight to treat wastewater and ensures a significant amount of sewage remains out of the river and ocean
• Reduces sewage pooling in canyons and negative impacts on U.S. Customs and Border Protection
25 mgd Expansion International Treatment Plant (ITP)

70 days transboundary flows (54% reduction)

6 mgd sewage remaining (78% reduction)

74% reduction in days of impaired water quality during the summer

Imperial Beach

San Diego

Rodriguez Reservoir

PACIFIC OCEAN

Tijuana

South Bay Ocean Outfall

San Antonio de los Buenos (SAB) Creek

Playas

San Antonio de los Buenos Plant (SABTP)

Canyons

Pump Station 1A

International Collector

PB CILA

Alternative H
Alternative E-2
Hybrid Alternative

Project Components
- 15 MGD expansion of the International Treatment plant to treat majority of current Tijuana sewage
- 35 MGD river diversion and Advanced Primary Treatment Plant in the US to capture and treat Tijuana River flows
- 10 MGD of water reuse and 5 MGD of sewer repairs to reduce Tijuana River flows
- Trash boom in the river to prevent transboundary trash contamination
- Canyon regrading project to reduce pooling of wastewater on the U.S.-side of canyons

Major Expected Impacts
- 64% reduction of transboundary river flow days
- 63% reduction of days with impaired water quality at Imperial Beach (tourist season)
- Provides more U.S. oversight to treat wastewater and ensures a significant amount of sewage remains out of the river and ocean
- Diverts all dry-weather transboundary river flows when the existing Mexico-side diversion is failing or has reached its operational threshold