Reasonable Potential Analyzer

Facility Name		Santa Rosa			
NPDES Permit Number	NM0024988			Outfall Number	001
Proposed Critical Dilution*	19	%			

*Critical Dilution in draft permit, do not use % sign.

Test Data			Enter data i	n yellow shade	d cells only. Fi	fty percent shou	ld be entered	as 50, not 50%	
Test Data		VERTEBRATE			INVERTEBRATE				
Date (mm/yyyy)	Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU		Sublethal NOEC		Sublethal TU	
Mar-17					25	25	4.00	4.00	
Apr-18					25	25	4.00	4.00	
Oct-18	25	25	4.00	4.00	25	25	4.00	4.00	
Apr-19					25	0	4.00		
Oct-19	25	25	4.00	4.00	25	11	4.00	9.09	
Apr-20					100	100	1.00	1.00	
Oct-20	100	100	1.00	1.00	25	25	4.00	4.00	
Oct-21	25	22.3	4.00	4.48	25	0	4.00		
Oct-17	25	25	4.00	4.00					
~	25	22.3	4.00	4.48	25	0		#DIV/0!	
Count			5	-			8	_	
Mean			3.400	3.497			3.625	4.348	
Std. Dev.			1.342	1.411			1.061	2.615	
CV			0.6	0.6			0.6	0.6	
RPMF		1	2.3	2.3	·		1.9	2.1	
		5 263			cceptance C	riteria			
Vertebrate Le	thal				-		WET mon	tonina but no	WET I.
vertebrate Le	unai	1.748	No Reasc	madie Poten	iiai exists. P	ermit requires	WEI IIIOIII	noring, but no	WEIIII
Vertebrate Su	blethal	1.960	No Reaso	nable Poten	tial exists. P	ermit requires	WET moni	toring, but no	WET li
Invertebrate L	Lethal	1.444	No Reaso	nable Poten	tial exists. P	ermit requires	WET moni	toring, but no	wET li
Invertebrate S	Sublethal	#DIV/0!	#DIV/0!						

Reasonable Potential Analyzer

Determining "Reasonable Potential" for Excursions Above Ambient Criteria Using Effluent Data Only

EPA recommends finding that a permittee has "reasonable potential" to exceed a receiving water quality standard if it cannot be demonstrated with a high confidence level that the upper bound of the lognormal distribution of effluent concentrations is below the receiving water criteria at specified low-flow conditions.

- **Step 1** Determine the number of total observations ("n") for a particular set of effluent data (concentration or toxic units [TUs]), and determine the highest value from that data set.
- Step 2 Determine the coefficient of variation for the data set. For a data set where n<10, the coefficient of variation (CV) is estimated to equal 0.6, or the CV is calculated from data obtained from a discharger. For a data set where n>0, the CV is calculate as standard deviation/mean. For less than 10 items of data, the uncertainty in the CV is too large to calculate a standard deviation or mean with sufficient confidence.
- **Step 3** Determine the appropriate ratio from the table below.
- **Step 4** Multiply the highest value from a data set by the value from the table below. Use this value with the appropriate dilution to project a maximum receiving water concentration (RWC).
- Step 5 Compare the projected maximum RWC to the applicable standard (criteria maximum concentration, criteria continuous concentration [CCC], or reference ambient concentration). EPA recommends that permitting authorities find reasonable potential when the projected RWC is greater than an ambient criterion.