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Since the inception of major biofuels policy in the United States, the quality
and frequency of land cover data has increased.

e National Agriculture Imagery Program has increased resolution to 1 meter

e Google Earth has become a major platform for open-source land cover
analyses

e Private companies such as Planet acquire high-frequency, high-resolution
imagery

With these data available, what are the complementary roles of LUC GHG
modeling and land cover data in understanding land cover changes and
whether policies targeting biofuels with low life-cycle GHG emissions are
achieving their desired outcomes?
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Data in these models is often used to help parameterize LUC models or evaluate
their results.
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The less grassland in a region, the higher the commission error of the data.
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Examining the Characteristics of the Cropland Data
Layer in the Context of Estimating Land Cover
Change
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Issues with Cropland Data Layer
And Estimating Land Cover
Change

All land in green and red on

the map is land that is being
estimated as change in years

between 2012 and 2017 S — — 3'0%, t
but is not identified as change ilometers
from 2012 to 2017.

Much more land moving
in and out of crop than
consistently indicating
change.



Key conclusions from data source summary

Economic modeling relies heavily on cropland-pasture and/or “marginal lands” yet
data sources diverge on the amounts of these lands that exist

Modeling therefore needs to acknowledge and account for this limited information

Modeling should investigate variation in this land type as an initial condition and a
range of results should be reported along with uncertainty estimates.

Caution is merited when we try to apply these data sets to retrospective analyses of
LUC GHG emissions.

There is an urgent need for improved accuracy in improving tracking of marginal
lands classified as grassland-other, or CRP and wetlands, that are vulnerable to
agricultural expansion



Machine-learning as a tool to interpret high-resolution aerial
imagery - National Agricultural Imagery Project
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Satellite Data to Reduce Uncertainty
Associated with Land Use Management and
Low iLUC Land Identification



Use of Remote Sensing to Determine Land Management

Remote Sensing can inform cover crop, double cropping, soil carbon management,
residue removal for potential consideration in LCA modeling
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|dentification of Cover Crop, Residue Removal, and Double Cropping

* Fall and Spring Imagery from Sentinel-2 is used to identify vegetation
* Further geospatial analysis focused on polygon shape separates cover crop from weeds and buffers.
» After analysis to remove other vegetation types accuracy is 89%.
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* Fall and Spring Imagery from
Sentinel-2 is used to identify
vegetation

e Further geospatial analysis
focused on polygon shape
separates buffers from weeds
and cover crop.

» After analysis to remove other
vegetation types accuracy is
84%

Remote Sensing Source: Ken Copenhaver, CropGrower LLC



Use of Remote Sensing for Low iLUC Risk Lands under CORSIA/EU RED
Ag Land Reclaimed from Coal Mining

Agricultural Production on Reclaimed Surface Coal Mines from 2006-2019:
Southern lllinois Area in Perry and Surrounding Counties
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EU Approach
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Conclusions

®* Land use change modeling should explore sensitivity to choice of data source for initial conditions
(e.g., amount of land in grassland, cropland-pastureland)
®* Land use change modeling should report uncertainty

®* Use of remote sensing data to assess lands for low iLUC risk is possible

° Double cropping, cover crops, residue removal, marginal lands

®* Use of remote sensing to determine land management practices (reduced till, field buffers) has increased in
accuracy over the last decade and can be incorporated into modeling

®* Given the advances in spatial and temporal resolution of remote sensing and aerial imagery data, EPA
should invest in and monitor improvements in Al-based methods for interpreting these data sets

®* The agency should continue to evaluate the possibility of replacing a single LUC GHG estimate for an
individual biofuel with economic modeling to identify high LUC-risk areas and monitoring of those areas with

high-resolution satellite data





