

State and Local Climate and Energy Program

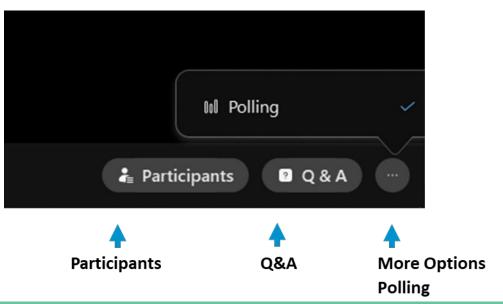
U.S. Environmental Protection Agency's (EPA's) CO-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping Tool

February 22, 2022 | 3 PM Eastern

Three audio options:

- 1. Listen via computer
- 2. Use the "Call Me" feature
- 3. Dial 1-415-655-0002 or 1-855-797-9485; Event number: 2434 711 7855

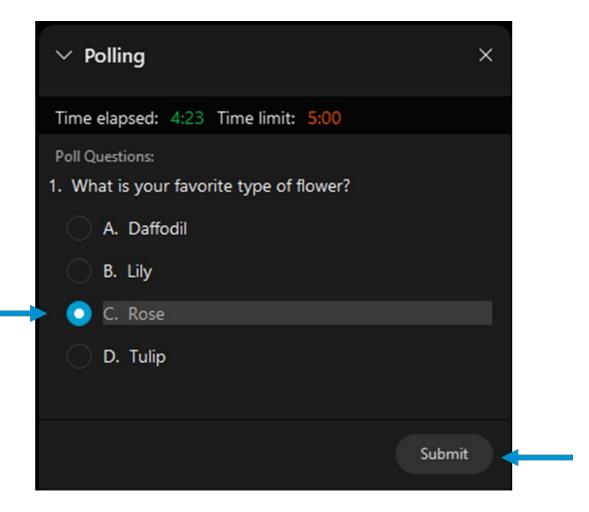
Webinar Panels


We'll use three panels

- Participants, Polling, and Question & Answer (Q&A)
- Use the arrow to expand or collapse the panels

Adding Panels

- If some panels don't appear, hover over the bottom of the screen and select the desired panels
- Select More Options (...) for additional panels
- Highlighted backgrounds indicate active panels


Polling and Feedback

Polling

- We'll ask several poll questions during the webinar
- The polling panel will appear when we open the first poll
- Select your desired response and hit "Submit"

Webinar Feedback

A feedback form will pop-up when you exit today's webinar

Q&A

- Participants are muted
- Questions will be moderated at the end
- To ask a question:
 - Select "All Panelists" from the drop-down menu
 - 2. Enter your question in the Q&A box
 - 3. Hit "Enter"

\sim	Q & A	×
_	All (0)	
Ask:	All Panelists	~
Hov	w can I get a copy of the slides?	

• EPA will post final materials on the Webinar Series page:

www.epa.gov/statelocalenergy/state-local-and-tribal-webinar-series

Today's Speakers

Emma Zinsmeister

Master of Public Health (MPH)

Senior Health Analyst

U.S. EPA

David Cooley

Master of Environmental Management (MEM)

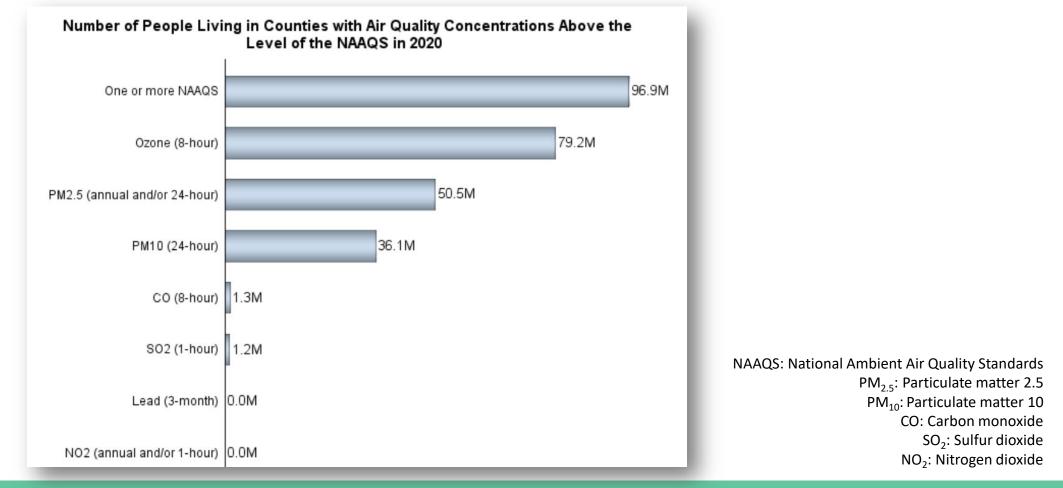
Senior Associate

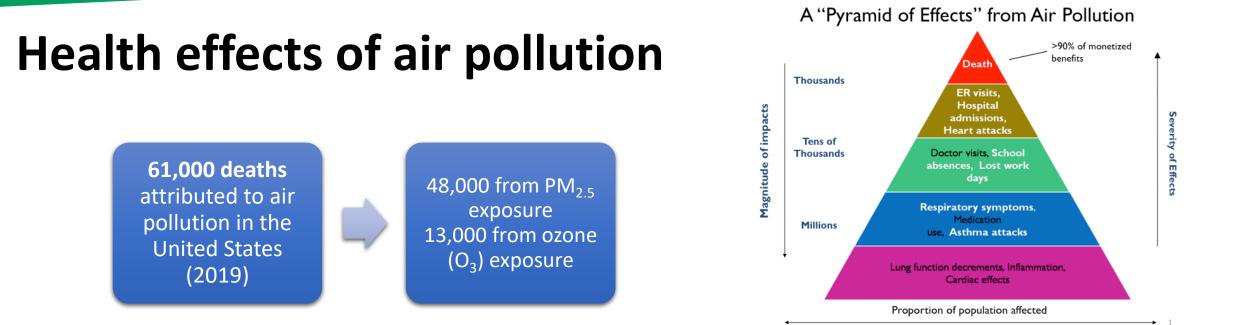
Abt Associates

- Welcome to COBRA (25 mins)
 - How COBRA works
 - Comparison of Desktop and Web Edition
 - How COBRA has been used
- Live demonstration (15 mins)
 - 100-megawatt (MW) utility solar in Tennessee
- Questions and discussion (15 mins)
- Appendix A: Web Edition step-by-step
- Appendix B: Desktop Edition step-by-step

Our Tools and Resources Support State, Local and Tribal Stakeholders on Climate and Energy

and Energy Program





State and Local Climate and Energy Program

Welcome to COBRA

Air pollution remains a concern across the United States

Percentage of Deaths (by Cause) Attributed to Air Pollution in the United States in 2019

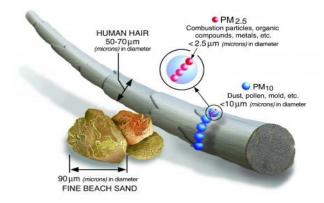
deaths 6 percent of diabetes deaths

3 percent of ischemic heart disease deaths

4 percent of lung cancer deaths

3 percent of lower-respiratory infection deaths

COPD: Chronic obstructive pulmonary disease


Fine PM 2.5

Primary PM_{2.5}

- Emitted directly into the atmosphere
- Sources:
 - Smokestacks
 - Construction sites
 - Unpaved roads
 - Fields
 - Fires

Secondary PM_{2.5}

- Formed through complex atmospheric reactions of
 - SO₂
 - Nitrogen oxides (NO_x)
 - Ammonia (NH₃)
 - Volatile organic compounds (VOCs)
- Sources:
 - Pollutants emitted from power plants, industries and automobiles

Energy choices matter

- Reduces total electricity demand
- Reduces demand for transportation-related fossil fuels
- Displaces (or replaces) fossil fuel electricity sources with clean distributed generation or renewable energy sources
- Displaces (or replaces) fossil fuel transportation sources with renewable energy sources or low emission sources

Energy Efficiency, Renewable Energ, Low Emission Fuels

Reduce Erhissions

- Reduces air pollution
- Improves air quality and human health
- Reduces premature death and illnesses

- People avoid costly illnesses
- Businesses benefit from increased worker productivity, fewer employee absences
- Children miss fewer school days

Deliver Societal Benefits

What is COBRA?

- COBRA is a free, easy-to-use, peer reviewed screening model that quickly:
 - Estimates county-level health impacts from changes in criteria air pollutants that affect PM_{2.5} concentrations;
 - Monetizes the economic value of those benefits; and
 - Presents results via tables and maps that facilitate visualization of the results.
- COBRA uses approaches and assumptions consistent with EPA's standard practices.
- It is intended to enrich the discussion of co-benefits and foster balanced decision-making that considers both the costs and health benefits of policy choices, especially related to energy.

How does COBRA work?

USER INPUTS = Change in Emissions (2016, 2023, or 2028) - Primary PM_{2.5}, SO₂, NO_x, NH₃, VOCs

COBRA

Quantifies Changes in Air Quality (Source-Receptor Matrix for PM_{2.5})

> **Calculates Change in Health Outcomes** (Health impact functions for PM_{2.5} changes)

> > Calculates Monetary Value of Health Outcomes (Economic valuation functions)

> > > **OUTPUTS =** Tables and maps of changes in morbidity and mortality and related economic value

What are the options for running COBRA?

 Downloads to your • Runs in your internet Edition Editio computer browser • Runs on Windows only • Windows + Mac compatible • Baseline data for 2016, • Baseline data for 2023 2023, 2028 Web esktop only • Full suite of advanced • Streamlined features features • Run time depends on • Runs quickly in the your processor cloud

> Same methodology and data sources Results available as tables and maps

Where do the emissions baseline data come from?

- COBRA contains detailed emissions inventories for the years 2016 and 2023, and 2028 derived from EPA's 2016v1 Air Emissions Modeling Platform.
 - Reflect federal and state measures (promulgated or under reconsideration) as of May 2018.
- The 2016, 2023, and 2028 base cases include:
 - Electrical generating unit emissions (reflecting the implementation of the Cross State Air Pollution Rule Update);
 - The Mercury and Air Toxics Rule (MATS);
 - The Standards of Performance for Greenhouse Gas Emissions from New, Modified, and Reconstructed Stationary Sources;
 - Mobile emissions (reflecting changes in activity data and the impacts the Tier 3 Motor Vehicle Emission and Fuel Standards Rule and local inspection and maintenance programs); and
 - Base year-specific fire data for 2016.

How does COBRA quantify PM_{2.5}-related air quality changes?

- COBRA translates air pollution emissions changes into changes in ambient
 PM_{2.5} using a reduced form air quality model, the Source-Receptor (S-R) Matrix.
- The S-R Matrix consists of fixed transfer coefficients that reflect the relationship between annual average PM_{2.5} concentration values at a single receptor in each county and the contribution by PM_{2.5} species to this concentration from each emission source.
- Since the S-R Matrix is not a sophisticated model, COBRA is most appropriately used as a **screening tool**.

What human health effects are included?

• COBRA estimates the number of health incidences avoided AND the related economic value for:

Adult Mortality	Infant Mortality	Non-fatal Heart Attacks	Respiratory Hospital Admissions
Cardiovascular- related Hospital Admissions	Acute Bronchitis	Upper Respiratory Symptoms	Lower Respiratory Symptoms
Asthma Exacerbations (attacks, shortness of breath, & wheezing)	Asthma Emergency Room visits	Minor Restricted Activity Days	Work Loss Days

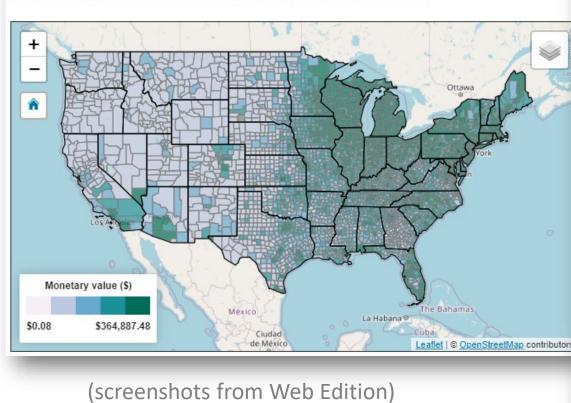
How does COBRA quantify and monetize health impacts?

- Uses a range of health impact functions to translate changes in ambient PM_{2.5} into health incidences.
- Includes estimates of baseline incidence rates and prevalence rates for the health effects.
- Uses population and income projections based on U.S. Census of Population & Housing and forecasting models developed by Woods & Poole.
- Applies economic valuation functions and discount rates to develop dollar estimates.

Which epidemiological studies are used to estimate adverse health impacts of PM_{2.5}?

Endpoint	Author	Age
Mortality, All Cause	Krewski et al. (2009)	30-99
Mortality, All Cause	Lepeule et al. (2012)	25-99
Mortality, All Cause	Woodruff et al. (1997)	Infant
Acute Myocardial Infarction, Nonfatal	Peters et al. (2001)	18-99
Acute Myocardial Infarction, Nonfatal	Pope et al. (2006)	18-99
Acute Myocardial Infarction, Nonfatal	Sullivan et al. (2005)	18-99
Acute Myocardial Infarction, Nonfatal	Zanobetti and Schwartz (2006)	18-99
Acute Myocardial Infarction, Nonfatal	Zanobetti et al. (2009)	18-99
HA, All Cardiovascular (less Myocardial Infarctions)	Bell et al. (2008)	65-99
HA, All Cardiovascular (less Myocardial Infarctions)	Moolgavkar (2000b)	18-64
HA, All Cardiovascular (less Myocardial Infarctions)	Peng et al. (2008)	65-99
HA, All Cardiovascular (less Myocardial Infarctions)	Peng et al. (2009)	65-99
HA, All Cardiovascular (less Myocardial Infarctions)	Zanobetti et al. (2009)	65-99
HA, All Respiratory	Zanobetti et al. (2009)	65-99
HA, All Respiratory	Kloog et al. (2012)	65-99
HA, Asthma	Babin et al. (2007)	0-17
HA, Asthma	Sheppard (2003)	0-17
HA, Chronic Lung Disease	Moolgavkar (2000a)	18-64
Emergency Room Visits, Asthma	Mar et al. (2010)	0-99
Emergency Room Visits, Asthma	Slaughter et al. (2005)	0-99
Emergency Room Visits, Asthma	Glad et al. (2012)	0-99
Acute Bronchitis	Dockery et al. (1996)	8-12
Asthma Exacerbation, Cough	Mar et al. (2004)	6-18
Asthma Exacerbation, Cough	Ostro et al. (2001)	6-18
Asthma Exacerbation, Shortness of Breath	Mar et al. (2004)	6-18
Asthma Exacerbation, Shortness of Breath	Ostro et al. (2001)	6-18
Asthma Exacerbation, Wheeze	Ostro et al. (2001)	6-18
Minor Restricted Activity Days	Ostro and Rothschild (1989)	18-64
Lower Respiratory Symptoms	Schwartz and Neas (2000)	7-14
Upper Respiratory Symptoms	Pope et al. (1991)	9-11
Work Loss Days	Ostro (1987)	18-64

For full citations see the COBRA user manual at <u>www.epa.gov/cobra</u>.


What are the unit values of the health effects estimated in COBRA?

Health Incidence Avoided	Economic Value in 2023 (2017\$)				
Health Incluence Avolueu	3% discount rate	7% discount rate			
Adult Mortality*	\$9,748,682	\$8,682,996			
Infant Mortality	\$10,866,012	\$10,866,012			
Non-Fatal Heart Attacks*	\$39,174 - \$309,825	\$37,038 - \$297,494			
Hospital Admissions	\$17,655 - \$47,581	\$17,655 - \$47,581			
Asthma ER Visits	\$457 - \$547	\$457 - \$547			
Acute Bronchitis	\$550	\$550			
Respiratory Symptoms (upper + lower)	\$24 - \$38	\$24 - \$38			
Asthma Exacerbations	\$66	\$66			
Minor Restricted Activity Days	\$78	\$78			
Work Loss Days	\$178	\$178			


*Discounted due to time lag between PM_{2.5} exposure and health outcome; low and high values based on assumptions of how sensitive outcomes are to unit change in PM_{2.5} exposure What methods are used to determine the economic value of different health effects?

Health Incident Avoided	Source of Value
Adult Mortality	Value of a statistical life (VSL)*
Infant Mortality	VSL*
Non-Fatal Heart Attacks	Cost of Illness (COI) = Direct medical costs, opportunity cost (OC)
Hospital Admissions	COI = Hospital charges, OC
Asthma Emergency Room Visits	COI = Costs to the hospital
Acute Bronchitis	Willingness To Pay (WTP) = Coughing and chest tightness (CT) or restricted activity day
Respiratory Symptoms	WTP = Symptoms such as coughing, head/sinus congestion, eye irritation, CT, coughing up phlegm, and/or wheeze
Asthma Exacerbations	WTP = Bad asthma day
Minor Restricted Activity Days	WTP = Combination of coughing, throat congestion, and sinusitis
Work Loss Days	WTP = Median annual earnings divided by (5 × 52)

How are results displayed? Tables & maps

Displaying: Total Health Benefits (\$, low estimate)

÷

All counties

Results for: All Contiguous U.S. States

All contiguous U.S. states

Export: All results | Current filter

Health Endpoint 🚯	Change in Inc (cases, ar	-	Monetary Value 🕦 (dollars, annual)	
	Low	High	Low	High
Mortality *	0.435	0.984	\$4,757,095	\$10,765,302
Nonfatal Heart Attacks *	0.045	0.415	\$7,136	\$66,308
Infant Mortality	0.002	0.002	\$24,826	\$24,826
Hospital Admits, All Respiratory	0.084	0.084	\$4,806	\$4,806
Hospital Admits, Cardiovascular **	0.094	0.094	\$3,395	\$3,395
Acute Bronchitis	0.550	0.550	\$339	\$339
Upper Respiratory Symptoms	9.930	9.930	\$424	\$424
Lower Respiratory Symptoms	6.985	6.985	\$189	\$189
Emergency Room Visits, Asthma	0.189	0.189	\$107	\$107
Asthma Exacerbation	10.375	10.375	\$770	\$770
Minor Restricted Activity Days	292.579	292.579	\$25,649	\$25,649
Work Loss Days	49.376	49.376	\$9,885	\$9,885
😍 Total Health Effects			\$4,834,620	\$10,901,999

* The Low and High values represent differences in the methods used to estimate some of the health impacts in COBRA. For example, high and low results for avoided premature mortality are based on two different endemicilences that is not of the impact of BMA - on expertisive in the United States.

What do the results represent?

- Results represent the annual change in average PM_{2.5} microgram per cubic meter (µg/m³) concentration, health incidence, and monetary value (2017 \$) for the year of analysis (2016, 2023, or 2028).
- Incidence refers to the number of new cases of a health outcome over a specified time period. The change in incidence is not necessarily a whole number because COBRA calculates small **statistical risk reductions** that are then aggregated over the entire population.

What do the results represent?

- COBRA calculates low and high values because two different sets of health impact functions are used to estimate adult mortality and nonfatal heart attacks based on assumptions of the sensitivity of these outcomes to PM_{2.5} concentrations.
- COBRA uses a discount rate to express future economic values in present terms because not all health effects and associated economic values occur in the year of analysis. COBRA assumes changes in adult mortality and non-fatal heart attacks occur over a 20-year period.

What should you keep in mind when using either the Desktop or Web Edition?

Consistent with EPA's standard practices

Strengths

- Enriches discussion of co-benefits
- Free, easy, and quick to run

Visually maps results

Screening tool, not a highly sophisticated model

Reduced-form air quality model

Relies upon inputs generated elsewhere

Limitations

How has COBRA been used?

State-level Climate Action Plans

• Maryland, New York, and Oregon

Renewable energy policies and programs

- Renewable policies in Illinois
- Solar installations in Long Island, NY

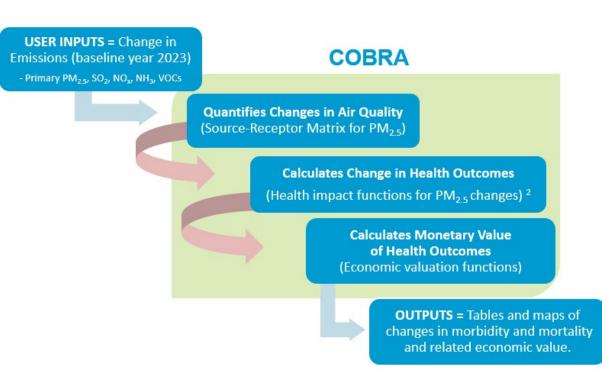
Energy efficiency policies and programs

- North Carolina's Clean Energy Plan
- Illinois Energy Efficiency Portfolio Standard

Transportation policies

- Analysis of reduced vehicle trips in Utah
- Public transit program in Nevada

Other analyses


- Impacts of prescribed fires
- Benefits of urban tree planting

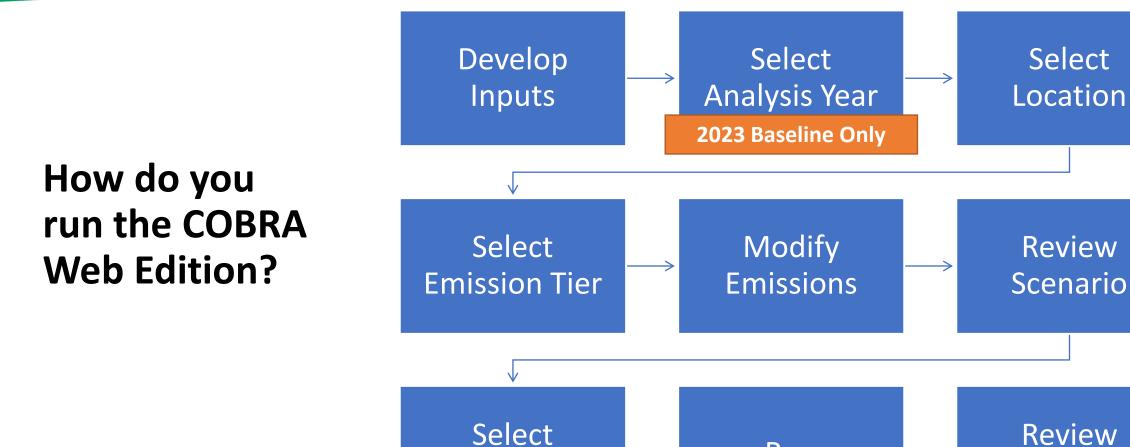
More than 130 citations as of February 2022

Pop Quiz

Q: What makes COBRA a screening-level tool?

- a) The source-receptor matrix for $PM_{2.5}$
- b) The health impact functions
- c) The economic valuation functions
- d) All the above

State and Local Climate and Energy Program


Live Demonstration

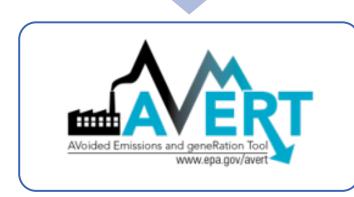
www.epa.gov/cobra

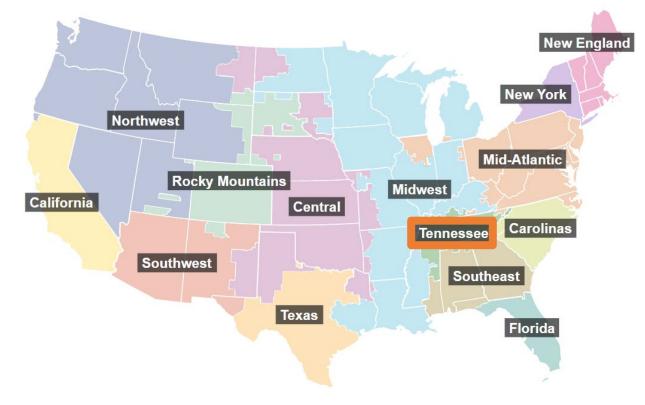
Demo: Assessed with COBRA Web Edition

What are the air quality and health impacts of a <u>100 MW utility solar</u> installation in <u>Nashville,</u> <u>Tennessee</u>?

Discount Rate

Run


Results


Develop Inputs

- When are the emissions changes taking place?
- Where are the emissions changes occurring?
- What is the source of the emissions?
- What emissions are changing and by how much?

Generate emissions inputs

100 MW Utility Solar in Tennessee

Select "Tennessee" region

Emissions estimates from AVERT

State	SO ₂ (lb)	NO _X (lb)	CO ₂ (tons)	PM _{2.5} (lb)	VOCs (lb)	NH ₃ (lb)
Alabama	-90	-1,400	-10,010	-390	-130	-750
Kentucky	-59,240	-43,600	-26,250	-3,140	-1,000	-510
Mississippi	-230	-6,000	-24,400	-2,760	-980	-2,600
Tennessee	-82,440	-53,870	-83,620	-14,400	-3,340	-3,780

Annual State Emission Changes: Tennessee Region

Convert from pounds (lbs) to tons (2,000 lbs = 1 ton)

State	SO ₂ (tons)	NO _x (tons)	PM _{2.5} (tons)	VOCs (tons)	NH₃ (tons)	
Alabama	-0.05	-0.7	-0.2	-0.07	-0.38	
Kentucky	-29.62	-21.8	-1.57	-0.5	-0.26	
Mississippi	-0.12	-3	-1.38	-0.49	-1.3	
Tennessee	-41.22	-26.94	-7.2	-1.67	-1.89	

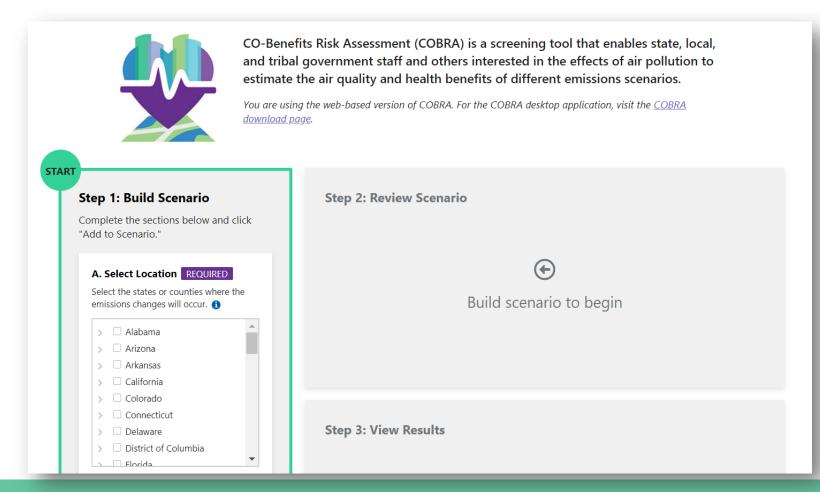
AVoided Emissions and geneRation Tool (AVERT) – COBRA connection

Direct Connection to COBRA

EPA's CO-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping Tool is a free tool that quantifies the air quality, human health, and health-related economic benefits from reductions in emissions that result from clean energy policies and programs. Outputs from AVERT can serve as inputs to COBRA. The button below will open a new browser tab and load your AVERT results directly into the COBRA Web Edition.

Submit Results to COBRA

Data Download


Download monthly displacement data for each county, state, and region in this analysis, in CSV format.

Download County Level Results

Download formatted outputs for use in EPA's COBRA Screening and Mapping Tool.

Download COBRA Results

Demo of COBRA Web Edition

Results

Total Health Benefits	Low, 3% (2017\$)	High, 3% (2017\$)
Nationwide	3,254,497	7,350,807
Alabama	103,466	233,807
Kentucky	169,617	383,457
Mississippi	68,497	154,562
Tennessee	532,747	1,211,078
Davidson County	13,815	31,358

You are viewing results for all contiguous U.S. states. This is because changes 0 in air quality can impact health endpoints in multiple locations due to the transportation of emissions across state and county lines.

Use the filters below to see health effects for a specific state or county.

¢

1. Filter by state:

2. Filter by county: (optional) All counties

All contiguous U.S. states

¢

Results for: All Contiguous U.S. States

Export: All results | Current filter

Health Endpoint 🚯	Change in Inc (cases, ar		Monetary Value 🚯 (dollars, annual)		
	Low	High	Low	High	
Mortality *	0.292	0.662	\$3,197,199	\$7,240,122	
Nonfatal Heart Attacks *	0.040	0.368	\$6,438	\$59,826	
Infant Mortality	0.002	0.002	\$19,037	\$19,037	
Hospital Admits, All Respiratory	0.091	0.091	\$3,327	\$3,327	
Hospital Admits, Cardiovascular **	0.091	0.091	\$4,650	\$4,650	
Acute Bronchitis	0.345	0.345	\$213	\$213	
Upper Respiratory Symptoms	6.244	6.244	\$267	\$267	
Lower Respiratory Symptoms	4.390	4.390	\$119	\$119	
Emergency Room Visits, Asthma	0.137	0.137	\$77	\$77	
Asthma Exacerbation	6.529	6.529	\$484	\$484	
Minor Restricted Activity Days	186.819	186.819	\$16,377	\$16,377	
Work Loss Days	31.517	31.517	\$6,309	\$6,309	
😍 Total Health Effects			\$3,254,497	\$7,350,807	

* The Low and High values represent differences in the methods used to estimate some of the health impacts in COBRA. For example, high and low results for avoided premature mortality are based on two different epidemiological studies of the impacts of PM25 on mortality in the United States. ** Except heart attacks.

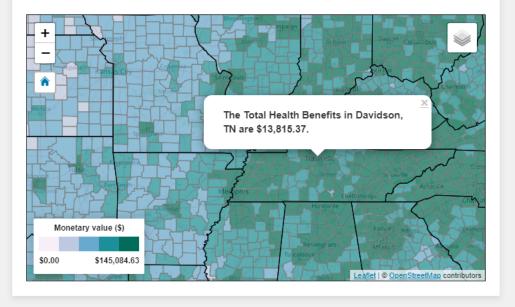
Results

B. Map of Health Effects and Air Quality Results

Below is a map showing health effects and air quality data based on your scenario.

Use the filter below to change the map's data layer. Click on a county on the map to explore the data.

Select the map's data layer:

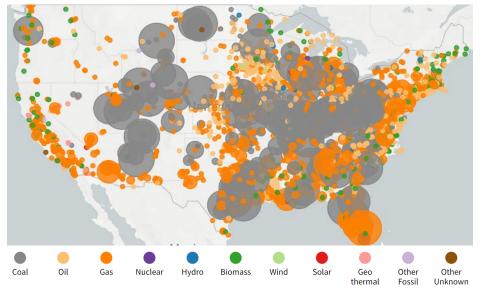

Total Health Benefits (\$, low estimate)

How to get a screen capture:

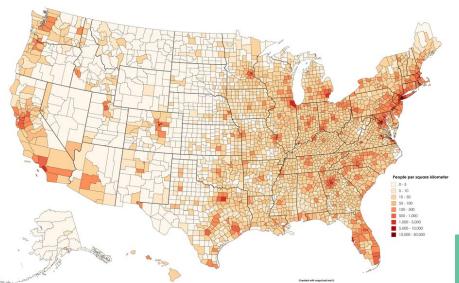
Ctrl+PrtSc (Windows)

Shift+Command+3 (Mac)

Displaying: Total Health Benefits (\$, low estimate)



\$


What's driving the results?

- Regional emissions sources & changes
- Airshed dynamics
- Population density
- Population proximity to emissions sources
- Sensitivity of health outcomes to emissions changes
- Other factors?

U.S. Power Plant Emissions by Source, 2020

2020 Population Distribution in The United States

Poll Question

- What types of policies or programs do you plan to analyze using COBRA? (select all that apply)
 - GHG mitigation / climate action plans
 - Renewable energy
 - Energy efficiency
 - Vehicle electrification
 - Building electrification
 - Waste sector
 - Industrial sector
 - Wildfire emissions

State and Local Climate and Energy Program

Contact us: <u>cobra@epa.gov</u> Join our Office Hours: Feb. 24, 2-3pm (ET) Register at epa.gov/statelocalenergy/state-local-and-tribal-webinar-series

References

Slide 6

• U.S. EPA. Air Quality National Summary. www.epa.gov/air-trends/air-quality-national-summary

Slide 7

• Health Effects Institute. 2020. State of Global Air 2020. Special Report. Boston, MA: Health Effects Institute.

Slide 14

• E.H. Pechan & Associates Inc. (1994). Development of the OPPE Particulate Program Implementation Evaluation System. Springfield, VA: Prepared for Christopher Knopes, U.S. Environmental Protection Agency, Office of Policy, Planning and Evaluation.

Slide 24

- Maryland Department of the Environment. 2021. 2030 Greenhouse Gas Reduction Act Plan. <u>https://mde.maryland.gov/programs/Air/ClimateChange/Pages/Greenhouse-Gas-Emissions-Reduction-Act-(GGRA)-Plan.aspx</u>
- New York State Climate Action Council. 2021. Meeting Minutes, Meeting 16, October 14, 2021. https://climate.ny.gov/-/media/Migrated/CLCPA/Files/2021-10-14-CAC-Meeting-presentation.ashx
- State of Oregon Department of Environmental Quality. 2021. Modeling Study on Program Options to Reduce Greenhouse Gas Emissions. Portland, Oregon. www.oregon.gov/deq/ghgp/Pages/modelingstudy.aspx
- Meier, P., & Holloway, T. 2021. Illinois Health Impacts from Transitioning to 100% Carbon-Free Electricity. The Holloway Group @ SAGE. Madison, WI: University of Wisconsin.
- Price, J., Delach, A., Leu, K., Morris, C., Schelly, C., & Thapaliya, R. 2021. Long Island Solar Roadmap: Advancing Low Impact Solar in Nassau and Suffolk Counties. Arlington, VA: The Nature Conservancy and Defenders of Wildlife.
- Gold, R., Cohn, C., Hoffmeister, A., & Molina, M. 2020. How Energy Efficiency Can Help Rebuild North Carolina's Economy. Washington, DC: American Council for an Energy-Efficient Economy.
- Hartley, E. and Caplan, A.J. 2021. Measuring the Social Net Benefits of COVID-19 Restrictions: The Case of Reduced Vehicle Use in a Pollution-Prone Region of Utah. Journal of Environmental Protection, 12, 887-902.
- Olawepo, J., Chen, A. 2019. Health Benefits from Upgrading Public Buses for Cleaner Air: A Case Study of Clark County, Nevada and the United States. International Journal of Environmental Research and Public Health 16: 720.
- Afrin, S., & Garcia-Menendez, F. 2021. Potential impacts of prescribed fire smoke on public health and socially vulnerable populations in a Southeastern US state. Science of The Total Environment, 794: 148712.
- McDonald, R., Aljabar, L., Aubuchon, C., Birnbaum, H., Chadler, C., Toomey, B., Daley, J., Jimenez, W., Trieschman, E., Paque, J., Zeiper, M. 2017. Funding Trees for Health: An Analysis of Finance and Policy Actions to Enable Tree Planting for Public Health. Arlington, VA: Nature Conservancy.

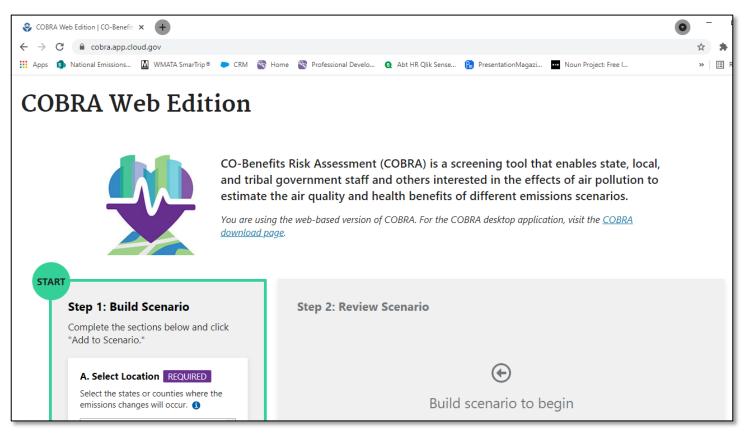
Slide 36

- U.S. Environmental Protection Agency. 2022. Emissions and Generation Resource Integrated Database, Data Explorer. www.epa.gov/egrid/data-explorer
- U.S. Census Bureau. 2021. Population and Housing Estimates. <u>www.census.gov/programs-surveys/popest.html</u>

State and Local Climate and Energy Program

Appendix A

COBRA Web Edition Step-by-Step


Step 0. Develop Your Inputs

Part 1: Woodstove Changeouts	Part 2: 440 kW Solar Photovoltaic (PV)
Location: Wisconsin	Location: Wisconsin
Sector: Fuel Combustion Other; Residential	Sector: Fuel Combustion Electric Utility
Wood; Woodstoves	Emissions Changes:
 Emissions Changes: PM_{2.5}: Reduce by 31.5 tons VOCs: Reduce by 80.7 tons 	 PM_{2.5}: Reduce by 1.7 tons SO₂: Reduce by 9.2 tons
	- NO_x : Reduce by 6.5 tons
	- VOCs: Reduce by 1.2 tons
Discount Rate: 3%	Discount Rate: 3%

Target completion date: 2024

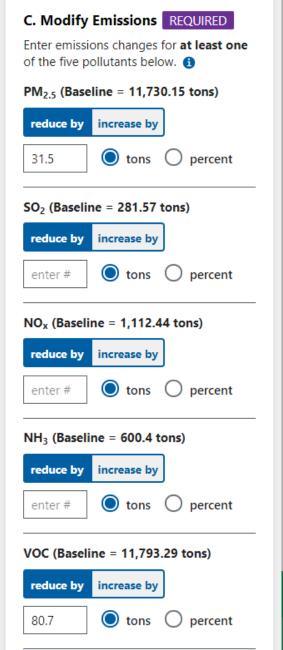
kW: Kilowatt

Step 1. Access COBRA

The new COBRA Web Edition can be accessed at: www.epa.gov/cobra

Step 2. Select Location

Scroll through the list of locations to select the one you are interested in. Check the box to make a selection.


Step	1: Build Scenario		
	ete the sections below and	click	
'Add t	o Scenario."		
A. 5	Select Location REQUIRED		
	ct the states or counties where		
emis	ssions changes will occur. 🚯		
>	South Dakota	•	
>	Tennessee		
>	Texas		
>	🗌 Utah		
>	Vermont		
>	🗌 Virginia		
>	Washington		
	West Virginia		
>			

STAF

Step 3. Select Sector

Select the sector you are interested in from the dropdown menu.

Select the industry or sector where emissions changes will occur. ()	the	
Sector		
Fuel Combustion: Other	\$	
Subsector (optional)		
Residential Wood	\$	Select any
Subsector (optional)		subsectors you are interested in from the
All subsectors	\$	dropdown menus.
All subsectors		
Fireplaces		
Other		
Woodstoves		

U.S. Environi

Step 4. Modify Emissions

	PM _{2.5} (Baseline = 11,730.15 tons)	
	reduce by increase by	
	31.5 O tons O percent	
	VOC (Baseline = 11,793.29 tons)	
	reduce by increase by	
	80.7 Opercent	Enter your emissions information and select
		ADD TO SCENARIO.
	ADD TO SCENARIO	

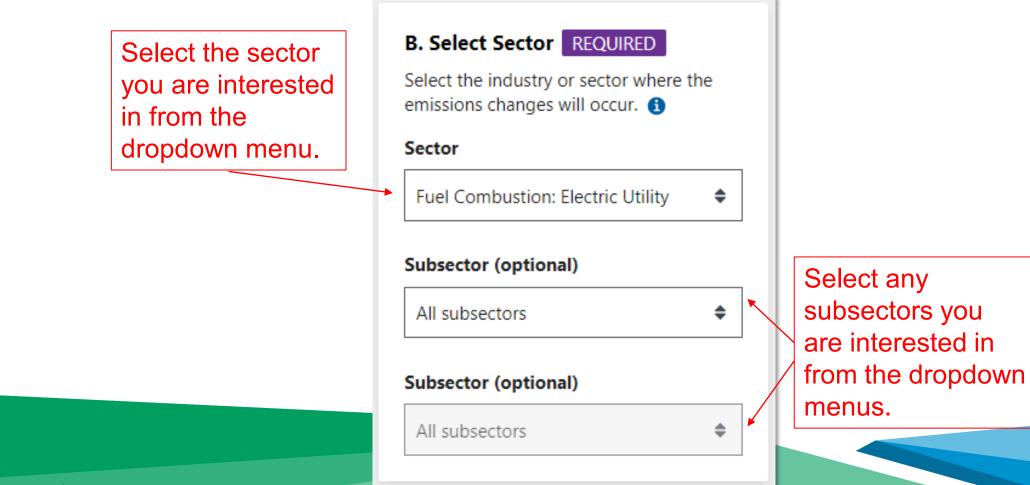
48

Step 5. Review Scenario

Step 2: Review Scenario

Review the scenario below. To add changes to more locations or sectors, repeat Step 1 to continue building your scenario.

Location(s)	Sector	Emissions Modification(s)	
Wisconsin - All Counties	Fuel Combustion: Other Residential Wood	PM _{2.5} reduce by 31.5 tons VOC reduce by 80.7 tons	×
Need to continue ad emissions changes to or sectors? Repeat S Review your s	to locations Step 1.	Discount rate: (1)) 3%) 7%) Custom: enter %	6


Step 6. Add Additional Location Information

Scroll through the list of locations to select the one you are interested in. Check the box to make a selection.

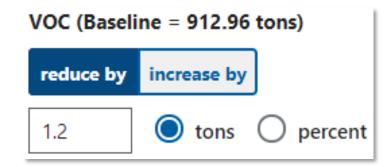
	1: Build Scenario	
	lete the sections below and o to Scenario."	click
A. 9	Select Location REQUIRED	
	ect the states or counties where t ssions changes will occur. 🚯	he
>	South Dakota	
>	Tennessee	
>	Texas	
>	🗌 Utah	
>	Vermont	
>	🗌 Virginia	
>	Washington	
	West Virginia	
>		

STA

Step 7. Add Additional Sector Information

Step 8. Add Additional Emissions Information

PM_{2.5} (Baseline = 1,351.15 tons)



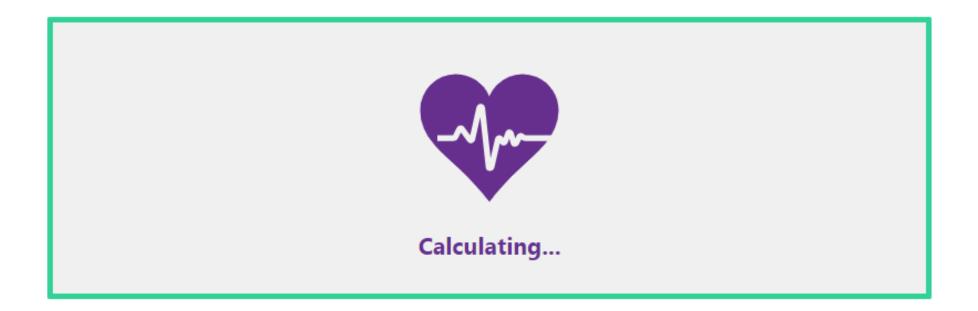
SO₂ (Baseline = 5,795.31 tons)

Enter your emissions information and select ADD TO SCENARIO.

ADD TO SCENARIO

Step 9. Review Scenario

Step 2: Review Scenario


Review the scenario below. To add changes to more locations or sectors, repeat Step 1 to continue building your scenario.

Location(s)	Sector	Emissions Modification(s)	
Wisconsin - All Counties	Fuel Combustion: Other Residential Wood	PM _{2.5} reduce by 31.5 tons VOC reduce by 80.7 tons	×
Wisconsin - All Counties	Fuel Combustion: Electric Utility	PM _{2.5} reduce by 1.7 tons SO ₂ reduce by 9.2 tons NO _x reduce by 6.5 tons VOC reduce by 1.2 tons	>

Review your scenario and ensure the correct discount rate is selected. If you are satisfied with your scenario, select RUN SCENARIO.

 Discount rate: 3% 7% Custom:	
RUN SC	ENARIO

You will see the following screen as your results are calculating...

U.S. Environmental Protection Agency

Step 10. View Results

View the Summary of Health Effects Results. Look to the bottom of the chart to find the Total Health Effects.

Step 5: View Results Build New SCENARIO
A. Summary of Health Effects Results Below is a table with the health effects results based on your scenario.
You are viewing results for all contiguous U.S. states. This is because changes in air quality can impact health endpoints in multiple locations due to the transportation of emissions across state and county lines.
Use the filters below to see health effects for a specific state or county.
1. Filter by state: 2. Filter by county: (optional)
All contiguous U.S. states 🔶 All counties

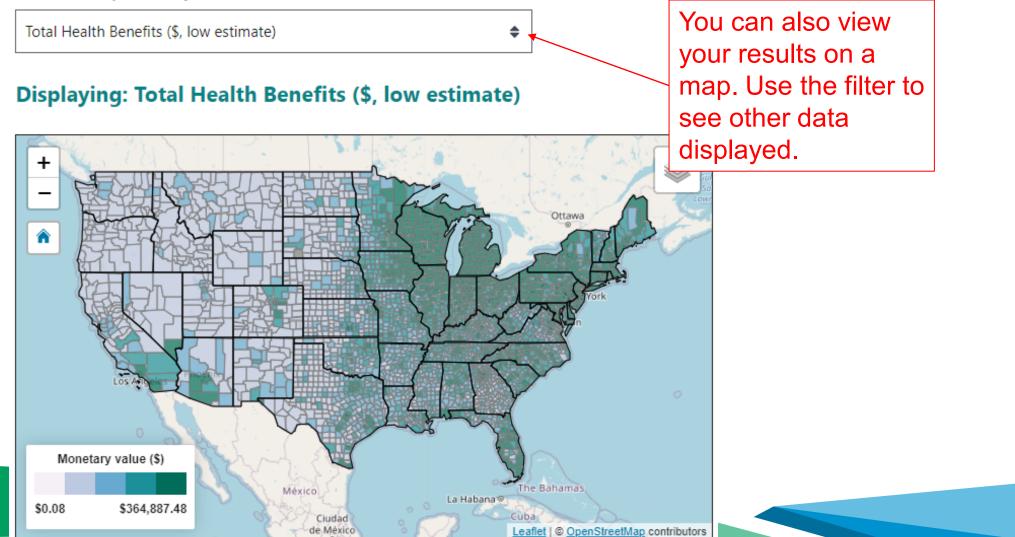
SCENARIO

۵.

Results for: All Contiguous U.S. States

Stop 3: View Results

Health Endpoint 🚯	Change in Inc (cases, ar	-	Monetary Value 🕦 (dollars, annual)		
	Low	High	Low	High	
Mortality *	0.435	0.984	\$4,757,095	\$10,765,302	
Nonfatal Heart Attacks *	0.045	0.415	\$7,136	\$66,30	
Infant Mortality	0.002	0.002	\$24,826	\$24,82	
Hospital Admits, All Respiratory	0.084	0.084	\$4,806	\$4,80	
Hospital Admits, Cardiovascular **	0.094	0.094	\$3,395	\$3,39	
Acute Bronchitis	0.550	0.550	\$339	\$33	
Upper Respiratory Symptoms	9.930	9.930	\$424	\$42	
Lower Respiratory Symptoms	6.985	6.985	\$189	\$18	
Emergency Room Visits, Asthma	0.189	0.189	\$107	\$10	
Asthma Exacerbation	10.375	10.375	\$770	\$77	
Minor Restricted Activity Days	292.579	292.579	\$25,649	\$25,64	
Work Loss Days	49.376	49.376	\$9,885	\$9,88	
😍 Total Health Effects			\$4,834,620	\$10.901.99	


The Low and High values represent differences in the methods used to estimate some of the health impacts in COBRA. For example, high and low results for avoided premature mortality are based on two different epidemiological studies of the impacts of PM_{2.5} on mortality in the United States. ⁵Except heart attacks.

U.S. Environmental Protection Agency

Step 10. View Results (continued)

Select the map's data layer:

State and Local Climate and Energy Program

Appendix B

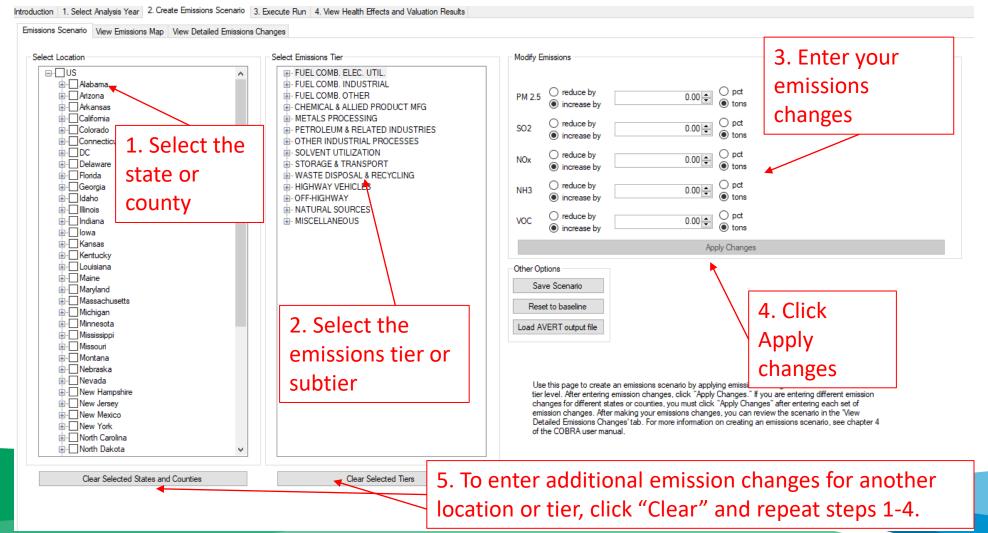
COBRA Desktop Edition Step-by-Step

Step 0. Develop Your Inputs

Part 1: Woodstove Changeouts	Part 2: 440 kW Solar PV	
Location: Wisconsin	Location: Wisconsin	
ctor: Fuel Combustion Other; Residential	Sector: Fuel Combustion Electric Utility	
Wood; Woodstoves	Emissions Changes:	
 Emissions Changes: PM_{2.5}: Reduce by 31.5 tons VOCs: Reduce by 80.7 tons 	 PM_{2.5}: Reduce by 1.7 tons SO₂: Reduce by 9.2 tons NO_x: Reduce by 6.5 tons VOCs: Reduce by 1.2 tons 	
Discount Rate: 3%	Discount Rate: 3%	

Target completion date: 2024

Step 1. Apply Analysis Year


Secobra

File Help

- 0 ×

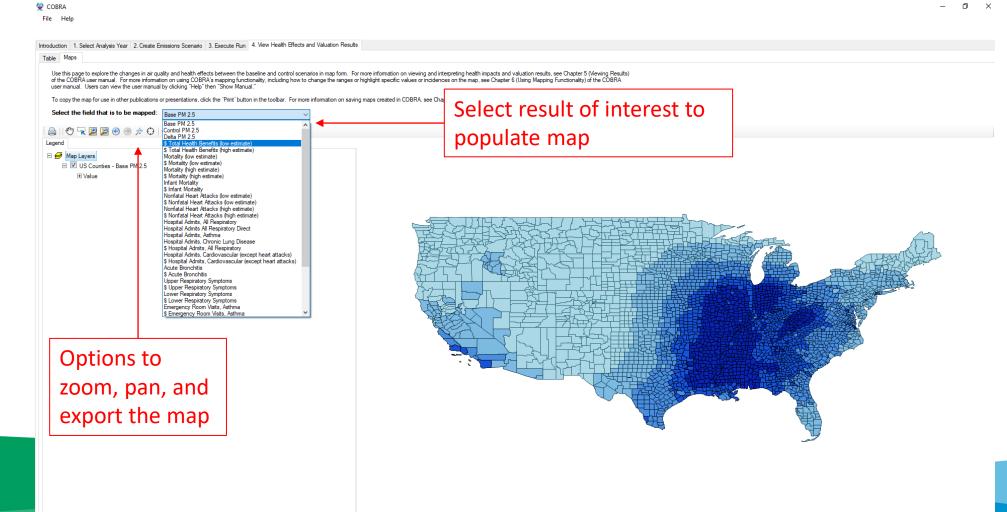
Introduction 1.	Select Analysis Year	2. Create Emissions Sco	enario 3. Execute Run 4	. View Health Effects and	Valuation Results		
Basic Options	Advanced Options						
Choose an	Analysis Year:						
automatic correspon	e year for which you w ally use the baseline e iding to that year. Afte changes.	ould like to estimate hea missions, population, he er clicking "apply analysi	Ith impacts of emissions cha alth incidence, and health ii s year data" you can procee	inges. COBRA will mpact valuation datasets ed to step 2 to enter your			
2016	~		Apply Analysis Year Data				
2016 2023 2028							
2020							

Step 2. Create Emissions Scenario

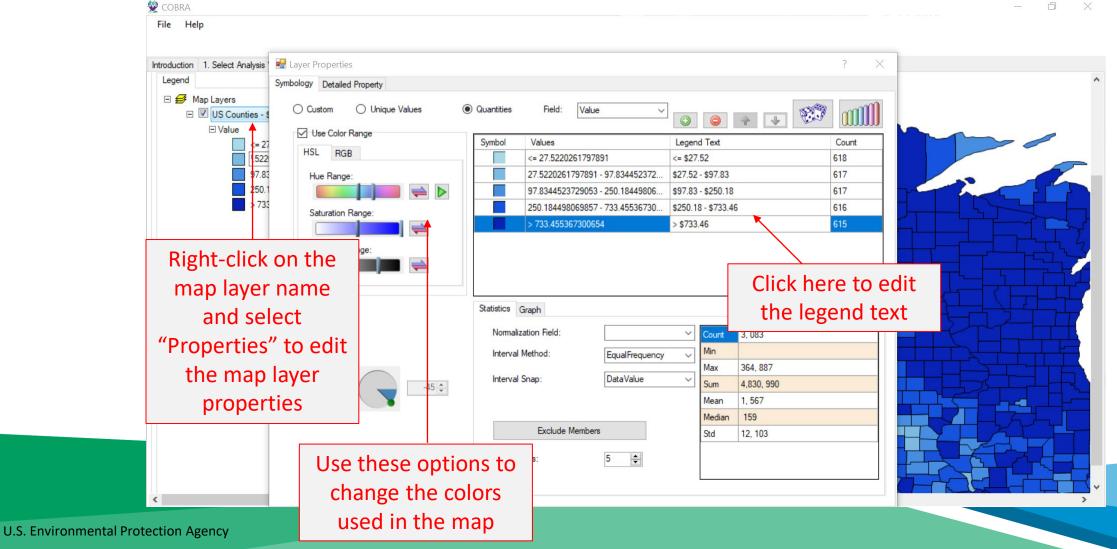
Step 3. Execute Run

👷 COBRA

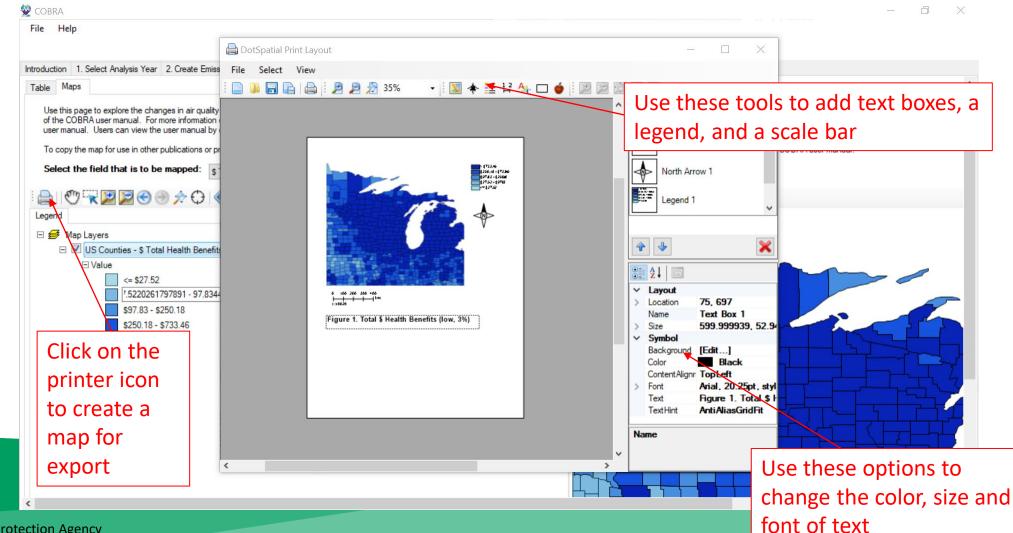
File Help

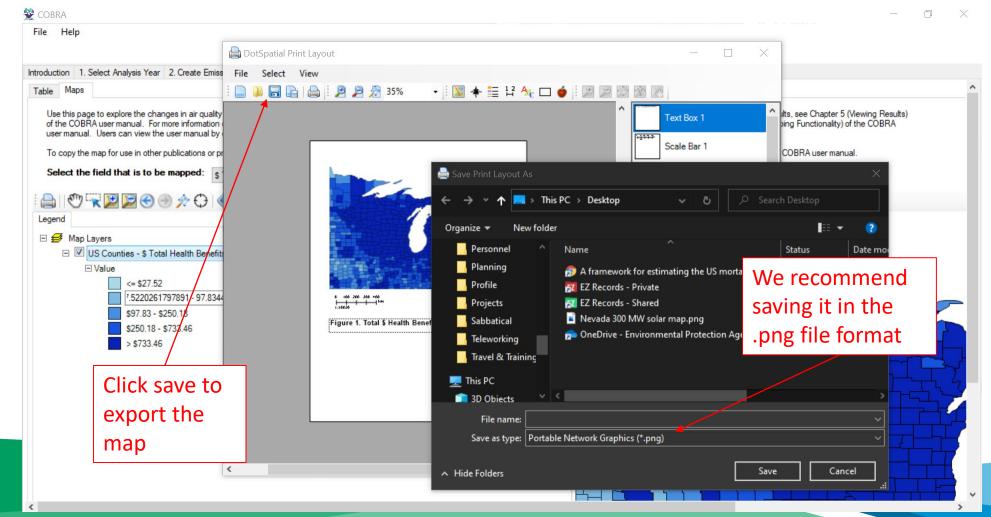

- 0 X

③ 3% 〇 7%	sion.	
	es expected based on emissions reductions in the year 2025. Emission reductions require investments and, like all nother, each with their own set and schedule of expected benefits. To reflect the opportunity costs of the investments are worth today, COBRA users must select a discount rate.	
analysts use a bounding approach to discounting, developing an upper and lower bound		
 - a 3% rate, reflecting the interest rate consumers might earn on Government backed see - a 7% rate, reflecting the opportunity cost of private capital, based on estimates from the 		
NOTE: A higher discount rate favors those investments with immediate benefits and red For more information on discount rates and how EPA uses them in monetizing health ber	luces the value of future benefits more than a lower discount rate, which places a greater value on future benefits to society. nefits, see the User Manual.	
	Select discount rate	
	and click "Run using	
	above option"	
	Run using above option	

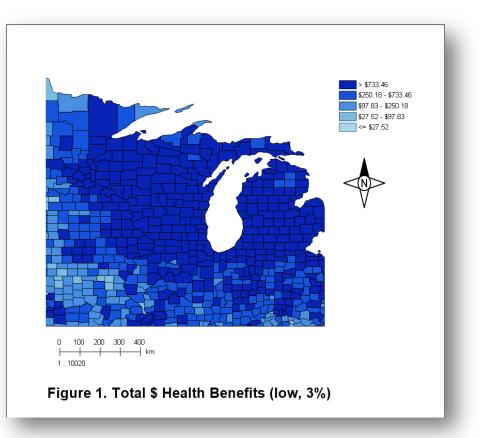

Step 4. View Health Effects and Valuation Results

COBRA										- 0
File Help								Nationwid	e or	
troduction 1.	. Select Analysis	Year 2. Create Emissions Sc	cenario 3. Execute Run	4. View Health	n Effects and Val	uation Results		filtered to	tals	
able Maps										
							/	appear in	blue	
Ехро	ort to CSV	Export to Excel								
FIPS		State	County	Base PM 2.5	Control PM 2.5	Delta PM 2.5	\$ Total Health Benefits (low estimate)	\$ Total Health Benefits (high estimate)	Mortality (low estimate)	\$ Mortality (low a
Contains:	Y Contains:	Y Contains:	7	Equals: 🛛 💡 E	quals: 🛛 🖓	Equals: 🛛 🌱	Equals:	Equals: 💡	Equals: 🛛 🖓	Equals:
							Total: 4,834,619.81	Total: 10,901,998.73	Total: 0.4347	Total: 4,757,0
01001	Alabama	Autauga		8.197	8.197	0	206.16	466.31	C	
01003	Alabama	Baldwin		7.565	7.565	0	955.62	2,161.64	0.0001	
01005	Alabama	Barbour		8.111	8.111	0	91.21	206.28	0	
01007	Alabama	0.bb		8.249	8.249	0	100.11	226.54	Q	
01009	Alabama	Filter by		8.298	8.298	0	274.95	620.96	C	
01011	Alabama	Interby		8.185	8.185	0	33.06	74.82	0	
01013	Alabama	state or		7.923	7.923	0	85.75	193.76	C	
01015	Alabama	State Of		8.714	8.714	0	555.46	1,254.97	0	
01017	Alabama			8.166	8.166	0	155.92	353	C	
01019	Alabama	county of		8.571	8.571	0	168.04	380.17	C	
01021	Alabama			8.221	8.221	0	181.93	410.77	0	
01023	Alabama	interest		7.417	7.417	0	54.97	124.44	C	
01025	Alabama			7.682	7.682	0	100.87	228.23	0	
01027	Alabama	Clay		7.759	7.759	0	56.03	126.77	C	
01029	Alabama	Cleburne		8.418	8.418	0	75.96	171.77	C	
01031	Alabama	Coffee		7.879	7.879	0	163.84	370.73	C	
01033	Alabama	Colbert		7.042	7.042	0	349.22	788.93	C	
01035	Alabama	Conecuh		7.83	7,83	0	51.52	116.62	C	
01037	Alabama	Coosa		8.199	8.199	0	48.43	109.63	0	
01039	Alabama	Covington		7.871	7.871	0	166.45	375.91	C	
01041	Alabama	Crenshaw		7.977	7.977	0	56.67	128.14	C	
01043	Alabama	Cullman		7.741	7.741	0	406.59	920.07		
	Alabama	Dale		7,774	7,774	0	137.16	309.86		


Step 4. View Health Effects and Valuation Results (continued)


Step 4. View Health Effects and Valuation Results (continued)

Step 4. View Health Effects and Valuation Results (continued)


Step 4. View Health Effects and Valuation Results (continued)

Final Results

Table 1. Estimated health benefits of woodstove changeouts and 440 kW solar PV in Wisconsin

Total Health Benefits	Low, 3% (2017\$)	High <i>,</i> 3% (2017\$)
Nationwide	\$4,834,620	\$10,901,999
Nevada	\$2,365,991	\$5,335,684

