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DISCLAIMER 
 
This document has been reviewed and approved for publication by the Office of Pollution 
Prevention and Toxics, U.S. Environmental Protection Agency (U.S. EPA/OPPT). Approval 
does not signify that the contents necessarily reflect the views and policies of all 
Offices/Divisions in the Environmental Protection Agency, nor does the mention of trade names 
or commercial products constitute endorsement or recommendation for use. 
 
The ECOlogical Structure-Activity Relationship (ECOSAR) model and underlying methodology 
presented in this document have been developed over a period of 30 years by U.S. EPA/OPPT, 
U.S. EPA contractors, and/or others in the scientific and technical community to screen 
chemicals in the absence of data. U.S. EPA/OPPT has made this screening-level model, along 
with many other tools, available to industry and other stakeholders in the hopes that use of the 
models in the early stages of research and development or prior to submission of notifications to 
the Agency will result in safer chemicals entering commerce. 
 
Other chemical screening methodologies have been developed and are in use by other Agencies, 
chemical companies and other stakeholders. The U.S. EPA recognizes that other models are 
available and that these models can also be of value in chemical assessment efforts. Models 
provide estimations with an inherent degree of uncertainty and therefore, valid measured data are 
always preferred over estimated data. If no measured or analogue data are available, models such 
as the ECOSAR Class Program may be used to predict toxicity values that can be used to 
indicate which chemicals may need further testing or characterization. 
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1. INTRODUCTION TO THE U.S. EPA NEW CHEMICALS PROGRAM UNDER THE 
TOXIC SUBSTANCES CONTROL ACT (TSCA)  

 
The U.S. Environmental Protection Agency’s (U.S. EPA’s) methodology for hazard and risk 
assessment of new chemicals, which integrates quantitative structure-activity relationship 
(QSAR) models and expert systems into the hazard and exposure analysis, has been used for 
30 years and reflects several specific regulatory requirements that define the framework under 
which the U.S. EPA must operate. 
 
Section 5 of TSCA requires manufacturers and importers of new industrial chemicals to submit a 
Premanufacture Notice (PMN) to U.S. EPA/OPPT 90 days before they intend to begin 
manufacturing or importing a new chemical. U.S. EPA/OPPT must evaluate the chemicals for all 
aspects of health and safety and determine whether the substance may present an unreasonable 
risk of injury to human health or the environment. OPPT must make a risk-based decision on the 
regulatory outcome of the chemical within these 90 days. The PMN can otherwise be 
manufactured or imported. 
 
In addition to this demanding 90-day review period, another constraint is that of the several 
hundreds of PMN chemicals submitted each year, a minority include environmental toxicity data. 
In response to this data-poor situation, U.S. EPA/OPPT developed “estimation methods” that are 
used to fill data gaps where little or no experimental measured data exist. These approaches 
include analogue analysis, chemical class analogy, mechanisms of toxicity, QSARs, and 
professional judgment. In order to quickly complete an assessment for each new chemical, the 
Agency uses computerized QSAR models and expert systems to make estimates for physical/
chemical properties, environmental fate, ecological toxicity, human health toxicity, and chemical 
releases and exposures in an effort to fill data gaps (U.S. EPA 2003a). These estimates are used 
to support the U.S. EPA/OPPT chemical management decisions within the TSCA framework and 
to assist the Agency in determining the most appropriate regulatory decisions for each new 
chemical based on the potential risks. 
 
This technical reference manual focuses on the scientific approach and underlying methodology 
for the assessment of aquatic hazards using the U.S. EPA/OPPT computerized QSAR tool called 
the ECOSAR (ECOlogical Structure-Activity Relationship) Class Program. 
 
2. U.S. EPA DEVELOPMENT OF ECOTOXICITY QSARS AND THE ECOSAR CLASS 

PROGRAM 
 
During the 1970s, many investigators began examining the relationships between chemical 
properties and toxicity to aquatic and terrestrial organisms. Among the leaders in this area was 
the U.S. EPA’s Office of Research and Development, National Health and Environmental 
Effects Research Laboratory (NHEERL) in Duluth, MN (NHEERL-Mid-Continent Ecology 
Division [NHEERL-MED]; formerly known as the Environmental Research Laboratory-Duluth). 
In the mid-1970s, researchers at this U.S. EPA laboratory developed and later published a QSAR 
for predicting the bioconcentration of neutral organic chemicals in fish based upon the 
octanol/water partition coefficient (Kow) (Veith et al. 1979). In 1979, a long-term research 
program was initiated to develop aquatic toxicity QSARs for industrial organic chemicals (Veith 
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et al., 1983). Between 1981 and 1983, U.S. EPA/OPPT supported development of additional 
QSARs and the New Chemicals Program staff evaluated and adopted 13 of these equations for 
use in predicting toxicity to fish, aquatic invertebrates, and green algae. Over time and with 
continued support from OPPT, the Office of Research and Development (ORD) scientists 
measured the toxicity of over 800 chemicals in fathead minnows (Russom et al., 1997). From 
this research, U.S. EPA developed additional QSARs for assessing acute effects for at least a 
dozen classes of chemicals for both freshwater and marine fish toxicity. In subsequent years, 
emphasis was shifted toward QSARs for chronic toxicity. Based on this early research at U.S. 
EPA and other data evaluation efforts (Konemann 1981, Hermens et al., 1984), it became 
apparent that the Kow was the major physical-chemical attribute correlating a chemical structure 
to a toxic effect for nonreactive neutral organic chemicals. The most frequently used relationship 
is the logarithm of the Kow value versus the median toxicity (LC50 and EC50) value. 
 
The initial development of the computerized version of ECOSAR released in the early 1990s 
focused on log Kow-based predictions for neutral organics based on the early research from the 
U.S. EPA. Over the years as U.S. EPA/OPPT gained assessment experience and new toxicity 
data through the New Chemicals Program, many new QSARs were developed for additional 
chemical classes addressing both acute and chronic effects. Expansion of the ECOSAR program 
has continued in U.S. EPA/OPPT to assist scientific staff in developing a complete standard 
toxicity profile for each chemical reviewed to characterize the potential aquatic hazard concerns. 
This standard profile consists of: 
 

Acute Effects: 
Fish 96-hr LC50  
Daphnid 48-hr EC50  
Algae 72- or 96-hr EC50 

 
Chronic Effects:  
Fish ChV  
Daphnid ChV  
Algae ChV 

 
The ChV, or Chronic Value, is defined as the geometric mean of the no-observed-effect 
concentration (NOEC) and the lowest-observed-effect concentration (LOEC). This can be 
mathematically represented as: ChV = 10^([log (LOEC × NOEC)]/2) 
 
Toxicity to these surrogate species (fish, aquatic invertebrates, and aquatic plants) is used to 
predict toxicity to a general aquatic community. U.S. EPA/OPPT has focused resources on 
models for aquatic toxicity to freshwater organisms because most releases of industrial chemicals 
go to freshwater bodies. Although some terrestrial and marine species data were available in 
some cases and programmed into ECOSAR, terrestrial and marine species are only evaluated on 
a case-by-case basis depending on the manufacturing, processing, and use of the chemicals. The 
current version of ECOSAR strives to provide estimates for all six standard freshwater aquatic 
toxicity endpoints listed above for each class programmed into ECOSAR. The methods 
employed to derive these estimates are discussed within this manual for the purposes of model 
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transparency and is intended to accompany the ECOSAR Class Program, which has been 
developed by U.S. EPA for use on a personal computer. 
 
ECOSAR version 2.2 (and updates) can be downloaded from the EPA’s website at: 
https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-
predictive-model. 
 
3. CHEMICAL CLASSES WITHIN ECOSAR 
 
ECOSAR contains a library of class-based QSARs for predicting aquatic toxicity, overlaid with 
an expert decision tree for selecting the appropriate chemical class based on chemical structure. 
ECOSAR version 2.2 is programmed to identify 111 chemical classes and allows access to 
704 QSARs for numerous endpoints and organisms1. This manual presents information on how 
ECOSAR derives toxicity values for the following three general types of chemicals.  

 
(1) Neutral Organics: Neutral organic chemicals are nonionizable and nonreactive and act 

via simple nonpolar narcosis generally thought of as a reversible, drug-induced loss of 
consciousness (general anesthesia). This general narcosis is often referred to as baseline 
toxicity (Franks and Lieb 1990, Veith and Broderius 1990). The types of chemicals that 
are known to present general narcosis include, but are not limited to, alcohols, ketones, 
ethers, alkyl halides, aryl halides, aromatic hydrocarbons, aliphatic hydrocarbons, 
cyanates, sulfides, and disulfides. 

 
(2) Organic Chemicals with Excess Toxicity: Some types of organic chemicals present a 

more specific mode of toxicity based on the presence of reactive functional groups 
(Hermens 1990). These chemicals can be more toxic than predicted by baseline toxicity 
equations to one or more aquatic organisms. Chemicals that exhibit excess toxicity 
include, but are not limited to, acrylates, methacrylates, aldehydes, anilines, beta-
diketones (linear forms), benzotriazoles, esters, phenols, aziridines, and epoxides. 
Separate QSARs have been developed for several chemical classes identified as 
presenting excess toxicity to at least one or more species. It should be noted that some 
organisms are more sensitive to certain classes of compounds than others (i.e., 
herbicide-like chemicals may present significant toxicity only to green algae), so the 
designation of “excess toxicity” may not pertain to all organisms. For a full list of the 
current classes of excess toxicity programmed within ECOSAR, see Appendix 1. 

 
(3) Surfactant (Surface-Active) Organic Chemicals: A surfactant is briefly defined as a 

material that can greatly reduce the surface tension of water when used in very low 
concentrations. Surfactants do not typically dissolve in water; instead, they form 
micelles (dispersed aggregates of the surfactant molecules). Many different types of 
chemicals have surfactant properties and there is no sharp distinction between those 
that do and those that don’t. In general, a compound with a polar functional group (e.g., 
carboxylate or sulfonate) with a long (>8 carbon) nonpolar chain can be considered a 

 
1In an earlier version (1.11) of ECOSAR, the fish 14-day QSAR equations in all cases, except the epoxides, poly 
class, were removed. 
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surfactant. Types of chemicals often designed with surfactant properties are detergents, 
wetting agents, and emulsifiers. Within ECOSAR, the surfactants are grouped by total 
charge into four general divisions: anionic (net negative charge), cationic (net positive 
charge), nonionic (neutral), and amphoteric (positive and negative localized charges) 
surfactants. The QSARs for surfactants can be linear or parabolic and the toxicity is 
often related to the size of the hydrophobic component (i.e., number of carbons) or the 
number of repeating hydrophilic components (i.e., ethoxylates). See Appendix 2 for 
further discussion of these types of chemicals. 
 

(4) Polymers: Polymers are broadly defined as materials made up of smaller repeating 
subunits linked together by chemical bonds. Low molecular weight (<1000) polymers 
and monomers can generally be assessed the same as neutral organics or other organic 
chemicals with excess toxicity. Polymers are categorized by relative molecular weight 
compositions. See Appendix 2 for further discussion of these types of chemicals. 

 
4. ECOSAR METHODS FOR DERIVING EQUATIONS 

4.1 Traditional QSAR Development using Experimentally-Measured Data 
 
The QSARs in ECOSAR for both neutral organics and classes with excess toxicity are based on 
a linear mathematical relationship between the predicted log Kow values and the corresponding 
log of the measured toxicity values (mmol/L) for a suite of training set chemicals within each 
class of interest. The studies collected for the training set chemicals in ECOSAR undergo an 
extensive data validation step to ensure appropriateness for inclusion in the model. ECOSAR 
study criteria articulate that the toxicity should be measured at pH 7 (approximating 
environmental conditions), total organic carbon content should not exceed 2 mg/L, water 
hardness should be approximately 150 mg/L CaCO3, results should be adjusted to, or measured 
at, 100% active ingredient, and flow-through measured is preferred over static nominal, etc. Data 
received or identified in the open literature that are not accompanied with full study details to 
confirm conditions are often not considered appropriate for model development. Therefore, 
many measured ecotoxicity data points can be found in the open literature that are not considered 
suitable for inclusion in the ECOSAR model. 
 
When collecting studies for inclusion in the training sets, standard test species were preferred as 
identified in the U.S. EPA Office of Chemical Safety and Pollution Prevention (OCSPP) 
guidelines for aquatic toxicity testing (https://www.epa.gov/aboutepa/about-office-chemical-
safety-and-pollution-prevention-ocspp). For freshwater fish data, species frequently include 
bluegill sunfish (Lepomis macrochirus), common carp (Cyprinus carpio), fathead minnow 
(Pimephales promelas), guppy (Poecilia reticulate), rainbow trout (Oncorhynchus mykiss), red 
killifish (Oryzias latipes), or zebrafish (Brachydanio rerio). For freshwater invertebrates, species 
frequently include Daphnia magna or Daphnia pulex. For freshwater algae, species frequently 
include Desmodesmus subspicatus or Pseudokirchneriella subcapitata. Therefore, the equations 
in ECOSAR are derived from surrogate species of fish, zooplankton, and phytoplankton. While 
these surrogate species can comprise several genera as well as families, the equations are not 
intended to assess toxicity to only those species, but rather to the general trophic levels that they 
represent (fish, aquatic invertebrates, and aquatic plants). 
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In the latest version of ECOSAR, the log Kow values for each training set chemical is predicted 
using the KOWWIN program from U.S. EPA’s Estimation Programs Interface Suite (EPI 
Suite™) model (Meylan and Howard 1995). Previous versions of ECOSAR (up to model version 
0.99g) used Kow values as calculated by Biobyte’s CLogP program. All QSARs were derived 
using predicted log Kow values for the training set chemicals to minimize potential measurement 
variability that may arise from inconsistent laboratory test conditions, inaccurate measurements 
for chemicals with higher Kow values (whose log Kow value is often hard to measure), or where 
pH conditions can affect a chemical’s partitioning based on pKa considerations among other 
issues. There were also many cases where log Kow values were not available for chemicals that 
had measured toxicity data. Therefore, log Kow values had to be estimated in order to use the 
chemicals within the training sets of the model. Although ECOSAR will accept user-entered log 
Kow values and recalculate the estimates on-the-fly, when there is uncertainty in reliability of 
available measured values for a query chemical, it is recommended that the predicted log Kow 
values be used. After collecting the training set information for each chemical, including 
estimated log Kow and valid toxicity results, regression techniques are applied to the class-
specific data sets to derive mathematical relationships between log Kow and toxicity (often called 
the resulting algorithm). These resulting class-specific equations typically take the form of y = 
mx + b, where “y” represents the toxic effect concentration (i.e., log LC50 in mmol/L) and “x” 
represents the log Kow value. Using these resulting linear equations, toxicity values (mmol/L) for 
untested chemicals may then be calculated in a three-step process: (1) select the appropriate class 
using the ECOSAR class definitions, (2) input the measured or estimated log Kow value of the 
molecule into the mathematical regression equation to estimate the toxic effect concentration 
(mmol/L), and (3) use molecular weight of the subject chemical to convert the estimated effect 
concentration from mmol/L to mg/L for use in aquatic toxicity hazard profiles. The computerized 
ECOSAR program is designed to automatically complete all three steps when providing 
estimates based on the user’s chemical input. However, if a user is manually deriving toxicity 
estimates using the equations provided in the ECOSAR chemical class QSAR files (in the 
Helpful file downloaded with the executable), then the resulting estimate in mmol/L must be 
multiplied by the molecular weight of the substance to convert the toxicity value to mg/L. 
 
In reviewing the QSAR Equation Documents provided in the ECOSAR SAR files for each 
chemical class, it can be noted that some equations have a greater number of training set 
chemicals than others. For example, the neutral organic 96-hour fish LC50 QSAR was based on 
toxicity values for 296 chemicals. In contrast, the fish 96-hour LC50 QSAR for haloketones 
(2 free H) was based on only 5 toxicity values. The differences come from a lack of aquatic 
toxicity data and knowledge base for many of the classes with excess toxicity. In all cases, as 
new data for these classes become available either through the New Chemicals Program or in the 
open literature, every effort is made to integrate valid data into each training set and refine the 
equations and classes as needed. 

4.2 QSAR Development for Data Poor Chemical Classes with Excess Toxicity 
 
As discussed previously, the mode of toxic action for non-reactive, non-electrolytic neutral 
organic chemicals is narcosis; however, some chemical classes have been identified as having a 
more specific mode of toxic action following review of measured data submitted under the New 
Chemicals Program. For these chemicals, toxicity is again correlated to the log Kow values of the 
chemicals. For these classes, data show that the amount of excess toxicity to one or more 
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organisms will generally decrease with increasing log Kow values (decreasing solubility). A 
visual representation of this relationship using fish 96-hour LC50 data for the neutral organics and 
acrylates classes is presented in Figure 1. 
 

Figure 1: Example Class with Excess Toxicity 

 
 

The plot shows that at a certain log Kow, resulting toxicity values for the class with excess 
toxicity and the neutral organic class converge. This convergence relationship holds true for most 
classes presenting excess toxicity where data and information have been collected in the New 
Chemicals Program. If the equation for neutral organics is plotted against equations for other 
classes with excess toxicity, the data indicate that excess toxicity decreases with increasing log 
Kow. This means that chemicals tend to act more like neutral organics at higher log Kow values 
(Hermens 1990). Above the convergence point, data generally indicate that the hydrophobicity of 
the molecules leads to “no effects at saturation,” otherwise known as the log Kow cutoff. In 
general, the log Kow cutoff for QSARs predicting acute effects is equal to 5.0 (or 6.4 in the case 
of algae). Above the log Kow cutoff value, the decreased solubility of these lipophilic chemicals 
results in “no effects at saturation” during a 48- to 96-hour test. For chronic exposures, the 
applicable log Kow range is extended up to 8.0. The difference in log Kow cutoffs between acute 
and chronic tests is expected as the hydrophobic nature of a test substance might not allow 
equilibrium to be achieved within the standard exposure durations for acute tests, but may 
ultimately be achieved during chronic studies. See Figure 2 for a visual representation of this 
relationship for a subset of classes using acute fish 96-hour data sets. 
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Figure 2: Plot of Octanol-Water Partition Coefficient vs. Fish Acute Toxicity for 
Several Chemical Classes 

 
 

Reference: Octanol-Water Partition Coefficient (log P) Cut-Offs and Predicted Magnitude of 
Fish Acute Toxicity (expressed as median lethal concentration, LC50) for Several Chemical 
Classes Using Equations from: Clements, R.G., Nabholz, J.V., ECOSAR: A Computer Program 
for Estimating the Ecotoxicity of Industrial Chemicals Based on Structure Activity 
Relationships, U.S. EPA, OPPT (7403), Technical Publication, 748-R-93-002, 1994. 

 
Drawing upon this relationship, QSARs can be created for data-poor classes whose limited 
measured data indicate that the class is, in fact, presenting excess toxicity. In the absence of a 
robust data set, the neutral organic low Kow cutoff data point may be used in addition to a single 
measured toxicity value for a data-poor class to give a 2-point regression equation. This 
technique is similar to applying read-across by interpolation between two measured analogue 
values. These techniques were employed for data-poor classes within ECOSAR that have an 
N = 1 (representing the single data point) + 1 (representing the NO cutoff data point) 
designation in the QSAR Equation Documents provided in the ECOSAR chemical class SAR 
files (in the QSARs folder in the Helpful file downloaded with the program), but show data for 
only one chemical in the data table. It can be inferred that the second point used in the equation 
is that for the neutral organics log Kow cutoff. As discussed in the previous paragraph, at this log 
Kow cutoff point, almost all classes of chemicals will tend to act like neutral organics. In cases 
where this relationship was used to derive QSARs within ECOSAR, chemicals with low log 
Kow values ranging from -2 to 3 were preferred in order to increase the confidence in the slope 
of the line; however, these values were not always available. This technique could also be 
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applied when only two or three data points are available for a class of compounds at very close 
log Kow intervals giving rise to uncertainty in the true slope of the equation. An example of this 
type of ECOSAR QSAR is shown in Figure 3 and Table 1. 

 
Figure 3: Two-Point QSAR Example 

 
 

Table 1: Data Table for Phenol Amines Algal 96-hr EC50 QSAR Equation 

CAS No. Chemical Name M.W. 
log Kow 
(CLogP) 

log Kow 
(EPI ) 

log 
Kow 
(M) 

Algal 
96-h EC50 

(mg/L) 

Log Algal 
96-h EC50 
(mmol/L) 

Reference (Meas 
log Kow) 

Reference 
(Algal 96-h 

EC50) 

NK 2-Amino-4-
methylphenol 123 1.1 1.1 1.16 4.6 -1.43 

Debnath, AK et al. 
1992 

DUL 

 Kow Limit  6.4 6.4   -3.97 NO Cutoff NO SAR 

          

SAR data not included in 
Regression Equation: 

       

         

Data not included in SAR:         

          

      *no effects at saturation   

 

4.3 Application of Acute-to-Chronic Ratios (ACRs) in ECOSAR 
 
The techniques described in this section are estimation methods used by OPPT for filling some 
data gaps. ECOSAR version 1.11 used these techniques in an effort to complete a standard 
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freshwater aquatic toxicity profile and to provide assessors with an indication of potential 
toxicity using the best available knowledge in the absence of experimentally measured data for a 
chemical or class. This methodology is continued in the current ECOSAR version 2.2. Results 
from this type of analysis should, if possible, be considered in a weight-of-evidence approach or 
with data on analogous chemicals. As new data become available either through the U.S. EPA’s 
New Chemicals Program or identified in open literature, the QSARs will be updated by the 
addition of new training set chemicals and associated data. 
 
The techniques described in this section are employed by ECOSAR when measured data are 
lacking within a class to derive empirically-based QSARs for a standard toxicity profile (e.g., 
actual toxicity data for a green alga were not available to derive a ChV QSAR). In order to use 
this technique to estimate toxicity for an acute or chronic endpoint with little or no supporting 
measured data, the corresponding acute or chronic toxicity values or an empirically-derived 
QSAR equation must be available, respectively, for the same class and the same species. From 
that empirical data, established ACRs can be applied, along with consideration of the trends in 
toxicity related to log Kow values to derive a QSAR equation for an endpoint with limited 
supporting data. The following example illustrates this approach. However, if no acute or chronic 
measured data were available within a class for a particular species, then the following methods 
could NOT be applied for that class, resulting in an endpoint gap in the ECOSAR output file for 
those endpoints. 

4.3.1 Step 1: Determine the Appropriate ACR to Apply 
 
The ACR is an empirically derived ratio of acute values to chronic values (acute value/chronic 
value), which is class-specific in some cases. The most accurate ACRs are derived when the 
acute and chronic toxicity values are measured in the same study or concurrent studies done by 
the same investigator, with the same species, using the same batch of chemical, and under similar 
test conditions. ACRs reported in the literature vary broadly. In most cases, it is difficult to 
calculate class-specific ACRs because only a small number of comparable tests are available or 
the validity of literature data could not be checked. To date, valid experimental data for 
developing a universally accepted class-specific ACR model is limited because rarely are such 
data available (Ahlers et al. 2006, Raimondo et al. 2007). In general, accepted ACRs for fish and 
daphnid are set at 10 within the U.S. EPA/OPPT New Chemicals Program. Studies on ACRs 
have been conducted within the European Union (EU) using only test results in accordance with 
the EU Technical Guidance Document (TGD) for environmental risk assessment and they have 
determined ACR values of 10.5 for fish and 7 for daphnid (Ahlers et al. 2006). Others have 
calculated ACRs using same-species pairs of acute and maximum allowable toxicant 
concentration (MATC) values and found the median value for fish and aquatic invertebrates to 
be 8.3 (Raimondo et al. 2007). All of these values are considered to be in general agreement. 
Information obtained from analyzed databases indicates that the ACRs are lower for algae and 
other aquatic plants than for fish and invertebrates. Algae/plant EC50 values are not actually 
based on lethality, but rather on growth rate or biomass productions. For the case of unicellular 
algae, which usually constitute the most common information, the tests from which EC50 values 
(acute) and ChVs (chronic) endpoints are derived are shorter-duration studies typically lasting 
3-4 days. These data cover several generations, and in most cases, acute and chronic values are 
obtained from the same study. The ACR for algae that is currently used in the U.S. EPA/OPPT 
New Chemicals Program is 4. The derivation of this value is based on direct comparison of the 
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1999 neutral organics green algae 72-/96-hour EC50 equation to that of the 1999 neutral organics 
green algae ChV equation within ECOSAR. ACR research for green algae is limited compared 
to that for fish and invertebrates. Studies on ACRs have been conducted using only test results in 
accordance with the EU TGD for environmental risk assessment indicating that appropriate 
median ACRs for green algae are closer to 5.4 (Ahlers et al. 2006). The difference between the 
U.S. EPA/OPPT algal ACR value of 4 and those calculated using EU TGD methods may be 
explained by EU TGD’s use of the NOEC to set a chronic toxicity value, whereas the U.S. 
EPA/OPPT uses the ChV (geometric mean of the LOEC and NOEC) to characterize chronic 
toxicity. This leads to a slight difference in the calculated ACR for algae, but as with fish and 
invertebrates, both are generally in agreement. 
 
There are a few class-specific ACRs employed in ECOSAR version 2.2. ACRs can range from 
1 to 26 depending on species, chemical class, and available measured data. Multiple ACRs 
measured for one species and one class of chemical, or many species for one class of chemical 
are log normally distributed; therefore, the ACR for the species and/or for the chemical class is 
the geometric mean of the available ACRs. If a measured ACR is known for a class, then the 
measured ACR is used. If an ACR is not known for a chemical class, then an ACR of 10 is 
generally applied for fish and daphnid, and an ACR of 4 is used for green algae. The ACRs used 
in ECOSAR are shown in Table 2. 
 

Table 2: ACRs for Chemical Classes by Species 
 ACR 

Class Fish Daphnid Green Algae 

Neutral organics 10 10 4 

Classes with excess toxicity 10 10 4 

Polycationic polymers* 18 14 4 

Nonionic surfactants† 5 5 4 

Anionic surfactants 6.5 6.5 4 

*Currently, no computerized QSARs are programmed in ECOSAR; see Appendix 2. 
†For all nonionic surfactants except alcohol ethoxylates. 
 

It has been discussed that the use of fixed ratios to extrapolate from acute to chronic toxicity can 
be problematic, because some chemicals may show different modes-of-action under short- and 
long-term conditions. Also, data indicate that ACRs for chemical classes may be related to a 
chemical’s log Kow value. That is, as log Kow decreases within a class, the ACR increases (or as 
log Kow increases, the ACR decreases). ACRs for most chemicals with lower log Kow values are 
expected to be roughly 10 for fish (10 being the fixed ratio for fish), but decrease to 1 as log Kow 
values increase to ≥8 (Nabholz et al. 1993a). The steps described below for derivation of a 
predicted QSAR will consider not only the application of ACRs to predict endpoints, but also the 
expected trends between log Kow and associated ACRs. 

4.3.2 Step 2: Determine the Estimated Toxicity Value from the Measured QSAR 
Equation 

 
ACRs can be applied directly to a given toxicity value to determine the corresponding acute or 
chronic value on a case-by-case basis, if measured data are available. ACRs can also be used to 
derive an endpoint-specific QSAR equation within a chemical class when the corresponding 
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empirically derived QSAR equation and ACR for that class are available. The corresponding 
measured QSAR equation must have been developed for the same species (e.g., daphnid), and 
must be from the same class (e.g., pyrroles/diazoles chemical class). The pyrroles/diazoles 
QSAR for D48 and DChV will be used to illustrate this QSAR development approach used in 
ECOSAR. Figure 4 presents the D48 QSAR equation as derived from the measured data for the 
pyrroles/diazoles class graphed with the neutral organics line. 
 

Figure 4: Acid Halide F96 QSAR Equation 

 
 
From this Acid Halide F96-hour equation, the log of the estimated toxicity value (LC50) is 
determined assuming a log Kow value of 0 (x = 0). 
 

Equation 1: Log F96(Kow = 0) LC50 = (-0.4869*0) - 0.2329 = -0.2329 mmol/L 
 

Next, the ACR is applied to the resulting F96(Kow = 0) value (F96/ACR) to derive the FChV(Kow = 0) 

 
[Note: log (F96 LC50/10) = log F96 LC50 - log 10, where log 10 = 1] 
 

Equation 2: log FChV(Kow = 0) = log F96 LC50 - log 10 = -0.2329 - log 10 = -1.2329 mmol/L 
 
Note: If an acute value was to be calculated from a chronic value, then log 10 would have been 
added instead of subtracted (e.g., log (FChV*10) = log FChV + log 10). 
 

*
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In the example above, the resulting toxicity value (-1.2329 mmol/L) is the log of the estimated 
chronic toxicity value corresponding to log Kow of 0, which can then be used as the first data 
point. Figure 5 shows this data point graphed with the neutral organics line. In general, this 
approach makes the basic assumption that the chronic toxicity is 1/10 of the acute toxicity value 
for a given chemical class. 
 

Figure 5: Estimated FChV Point (0, -1.2329) Graphed with the Neutral Organics 
Line 

 

4.3.3 Step 3: Regression through Neutral Organics Convergence Point to Create 
Estimated QSAR Equation 

 
After the log chronic toxicity value (log FChV) in mmol/l at log Kow = 0 is determined from 
step 2, the third step is to derive a QSAR equation for the class using analogue analysis 
procedures, which are often employed in the U.S. EPA New Chemicals Program when data are 
lacking for a particular endpoint. Discussion in Section 3 (Chemical Classes within ECOSAR) 
stated that the mode of toxic action for most neutral organic chemicals is assumed to be narcosis. 
However, some organic chemical classes have been identified as having a more specific mode of 
toxicity. For these chemicals, the toxicity was typically related to the Kow value of the chemical 
and as the Kow value increased, the toxicity decreased. At a given Kow value, the toxicity of those 
chemicals was not significantly different from the toxicity of the equivalent neutral organic with 
similar log Kow. This convergence point for chronic effects to all aquatic organisms was typically 
seen at 8.0, though some exceptions exist. Using this convergence relationship and the estimated 
chronic data point derived above, a line can be regressed from the chronic data point through the 
neutral organics chronic log Kow cutoff of 8.0 to create a resulting estimated QSAR equation. 
Calculating the chronic effect at log Kow = 0 minimizes the potential uncertainty in the slope of 
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the line, which could potentially increase if values closer to the log Kow cutoff (8.0) were used 
for development of the equation. 
 
Using the estimated FChV(Kow = 0) and the neutral organic chronic log Kow cutoff of 8, the line is 
regressed and an equation is determined as depicted in Figure 6. 
 

Figure 6: Final FChV QSAR For Acid Halides 

 
 

Table 3 represents an example data table that will be presented for a QSAR when this technique 
is used to derive an equation. The summary paragraph provided for each QSAR will include 
information on the estimation technique, and the results provided in the ECOSAR output file will 
be flagged with a note to the user. 
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Table 3: Data Table for the Acid Halide FChV QSAR Equation 

CAS 
No. 

Chemical 
Name M.W. 

log Kow 
(CLogP) 

log 
Kow 
(EPI ) 

log 
Kow 
(M) 

Fish ChV 
(mg/L) 

Log Fish 
ChV 

(mmol/L) 
Reference 

(Meas. Kow) 
Reference 
(Fish ChV) 

   0 0   -1.18  1/10 F48 Acid 
Halide SAR 

 Kow Limit  8 8   -6.20 NO Cutoff NO SAR 
          
SAR Data Not Included in 
Regression Equation: 

       

         
Data Not Included in 
SAR: 

        

          
      * indicates no effects at saturation 

 

To date, 548 QSARs have been developed based on training sets with empirically measured data, 
and 161 QSARs have been derived using one or more of the techniques described above for a 
total of 111 classes of organic chemicals. The chemical class SAR files (in the QSARs folder in 
the Helpful file downloaded with the program) in the ECOSAR Class Program contains QSAR 
Equation image files for all QSARs within each chemical class to provide transparency in the 
QSAR methods and supporting measured data. Most of the QSARs are for acute and chronic 
toxicity to fish, daphnids, and green algae; however, acute and chronic QSARs have been 
developed for other organisms where data were available such as mysid shrimp, sea urchin, and 
earthworms. 
 
5. INTERPRETING ESTIMATES FROM ECOSAR AND EVALUATING TOXICITY 

RESULTS 
 
Selection of the appropriate QSAR within ECOSAR is based on a variety of information 
depending on the chemical class. This includes factors like the chemical structure, chemical 
class, log Kow, molecular weight, physical state, water solubility, number of carbons or 
ethoxylates (or both), and percent amine nitrogen or number of cationic charges (or both) per 
1000 molecular weight. The most important factor for selecting an appropriate QSAR is the 
chemical class, since the QSARs in ECOSAR are class-specific. 
 
To estimate the toxicity to aquatic organisms of neutral organics and organic classes with excess 
toxicity, the log Kow and molecular weight are required. In general, when the log Kow is ≤5.0 for 
fish and daphnid, or ≤6.4 for green algae, ECOSAR provides reliable quantitative (numeric) 
toxicity estimates for acute effects. If the log Kow exceeds those general limits, empirical data 
indicate that the decreased solubility of these lipophilic chemicals results in “no effects at 
saturation” during a 48- to 96-hour test. For chronic exposures, the applicable log Kow range to 
derive reliable quantitative (numeric) values is extended up to log Kow 8.0. If the log Kow of the 
chemical exceeds 8.0, which generally indicates a poorly soluble chemical, “no effects at 
saturation” are expected in saturated solutions even with long-term exposures (Tolls et al. 2009). 
Some specific classes may have slightly different acute toxicity upper limits, but in general, a log 
Kow of 8.0 is the standard cut-off for chronic effects. The class-specific log Kow limits are 
presented in the ECOSAR output files. The user should always review these limits to determine 
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when “no effects at saturation” are expected for a query chemical. ECOSAR does not perform 
this comparison within the model. 
 
In addition to the log Kow limits, water solubility is an important determinant of the toxicity of a 
chemical, especially for solids. If an organic chemical is a solid at room temperature, then the 
melting point (if known) should be entered into ECOSAR because of the effect that it has on the 
estimation of the water solubility. Assuming that the Kow is constant, the higher the melting point 
of a neutral organic chemical, the lower its water solubility. The water solubility of a chemical 
should be compared with the predicted toxicity value derived for a chemical. If the toxicity value 
is significantly greater than the measured or predicted maximum water solubility, then an effect 
is not expected to occur in a saturated solution. See Figure 7 for the step-by-step procedure for 
determining no effects at saturation for solids, based on water solubility. 
 

Figure 7: No Effect at Saturation for Solids 

 
 
Molecular weight may also be considered to determine the absorption cutoff limit for aquatic 
organisms. As the molecular weight of a chemical increases above 600, passive absorption 
through respiratory membranes decreases significantly. Therefore, for chemicals with molecular 
weights >1000, it has been assumed that such absorption is negligible. Although ECOSAR is not 
recommended for chemicals with molecular weights >1000, there is no restriction on chemical 
input into the system. Therefore, the user must also perform this comparison of molecular weight 
to determine appropriateness of results. For surface active chemicals such as cationic polymers, 
molecular weight is not a limiting factor because the toxic effect is not due to absorption into cell 
interiors. For example, some polycationic polymers with molecular weights in excess of 
1,000,000 are highly toxic because they act directly on the surface of respiratory membranes of 
aquatic organisms. 
 
6. DOMAIN OF ECOSAR EQUATIONS AND INTERPRETING SUPPORTING DATA 

TABLES IN THE QSAR EQUATION DOCUMENTS 
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In the development of the ECOSAR equations for neutral organics and classes with excess 
toxicity, the training sets generally include chemicals with log Kow values in the range of -3.0 to 
8.0 and molecular weights <1000. However, the domain of the model is considered to be larger 
than the descriptor range of the training set of chemicals. As discussed in previous sections, it 
has been determined through empirical data that for acute toxicity endpoints, chemicals with a 
log Kow value >5.0 (6.4 for algae) are generally expected to have no effects at saturation. For 
chronic effects, chemicals with a log Kow value >8.0 are expected to have no effects at saturation. 
Although the individual equations may not have been not built using chemicals with log Kow 
values >5.0 (6.4 for algae) and >8.0 for acute and chronic effects, respectively, the model can 
still make accurate qualitative determination of potential toxicity under environmental conditions 
for chemicals outside the log Kow descriptor domain. For classes where studies were available 
that exceed the log Kow limits, the data have been provided in the QSAR Equation Documents 
under the section labeled “SAR Data not included in Regression Equation.” NOTE: Log Kow 
cutoffs can be class-specific where data indicated a departure from this general trend of 5.0 
(6.4 for algae) for acute effects and 8.0 for chronic effects. The log Kow limits for each class will 
be presented in the output file from ECOSAR. 
 
An example of a technical reference sheet that provides data for chemicals above the log Kow 
limits is provided in Figure 8 for the mono epoxides chemical class, which has a log Kow cutoff 
of 5.0 for 96-hour LC50 data for fish. The “*” in the Table 4 denotes “no effects at saturation,” 
which was the result of the study. When interpreting the QSAR Equation Documents for each 
class/equation, the number of chemicals in the training set is represented by N = x + y where “x” 
equals the number of studies used in actual equation development and “y” equals: (1) log Kow 

cutoff as discussed in Section 4.2; and/or (2) SAR Data Not Included in Regression Equation. 
 
There is also a section in each data table where studies are presented for chemicals that fall 
within the class, but the validity of the test could not be confirmed and the data point was 
therefore not used to support the QSAR. Studies where validity, test conditions, or other 
generally important parameters could not be confirmed are provided under the section “Data Not 
included in SAR”. The studies listed in this section are not counted towards the derivation of N 
as discussed in the previous paragraph. 
 

Figure 8: Supporting Data for Chemical above the Log Kow Cutoff for a QSAR 
 
SAR: Epoxides, Mono 7/2010 
 
ESTIMATED TOXICITY: 
The fish 96-h LC50 values used to develop this SAR were measured and the octanol- water partition 
coefficients (Kow) were calculated using the computer program, KOWWIN (Version 1.67). The SAR 
equation used to estimate toxicity is: 

 

Log 96-h LC50 (mmol/L) = -0.5459 (log Kow) + 0.0922 
 
The LC50 is in millimoles per liter (mM/L); N = 7 + 2; and the Coefficient of Determination (R2) = 0.9448. 
To convert the LC50 from mM/L to mg/L, multiply by the molecular weight of the compound. 
 
Maximum Log Kow: 5.0  
Maximum MW: 1000 
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Table 4: Data Table for the Mono Epoxides 

CAS No. Chemical Name M.W. 
log Kow 
(CLogP) 

log Kow 
(EPI ) 

Log Kow 
(M) 

Fish 96-h 
LC50 

(mg/L) 

Log Fish 
96-h LC50 
(mmol/L) 

Reference 
(Meas. log Kow) Reference (Fish 96-h LC50) 

75-21-8 Ethylene oxide 44 -0.8 -0.05 -0.3 84 0.28 
Hansch et al., 
1995 

Conway et al., 1983 

106-92-3 Allyl glycidyl ether 114 -0.33 0.45  30 -0.58  Bridie et al., 1979 

CBI CBI 156 -0.54 1.1  54 -0.46  P98-___ 

122-60-1 Phenyl glycidyl ether 150 1.1 1.6  43 -0.54  Bridie et al., 1979 

000000-00-0 1,2-Epoxyhexane 330 2.8 3.5  3.2 -2.01  8e-13697 

000000-00-0 1,2-Epoxyoctane 330 2.8 3.5  5.6 -1.77  8e-13697 

CBI CBI 228 3.3 3.7 3.29 5 -1.66 Aster P98-___ 

 Kow Limit  5 5   -2.78 NO Cutoff NO SAR 

          

SAR Data Not Included in Regression Equation: 

CBI CBI 411 4.1 4.5 3.2 * * Not Specified P98-___ 

          

Data Not Included in SAR: 

72-20-8 Endrin 381 2.9 5.5 5.25 0.00041 -5.97 
Debruijn et al., 
1989 

U.S. EPA WQC, 1986; excess 
toxic 

2443-39-2 
9,10-Epoxystearic 
acid 

298 5.1 6.4  1.5 -2.30  Leach and Thakore, 1975 

      * indicates no effects at saturation  
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Due to the programmatic need to make a regulatory decision for all chemicals submitted through 
the EPA/OPPT New Chemicals Program, and because there is currently no consensus on a single 
approach for the evaluation of the domain of applicability, it is the practice of the U.S. 
EPA/OPPT to implement external domain evaluations on a case-by-case basis. In cases where 
the chemicals appear to be outside the domain, the potential uncertainty associated with that 
prediction is not quantified by mathematical and statistical evaluations of domain, but rather, the 
potential uncertainty in the estimate is assessed qualitatively by staff and managers within the 
context of the decision that needs to be made or the regulatory action the decision may support 
(U.S. EPA 2003b). 

 
7. INTERNAL PERFORMANCE OF ECOSAR AND TRAINING SET EQUATIONS 

DOCUMENTS 
 
Ideally, a QSAR model should be accompanied by full disclosure of the internal performance 
information for the training set chemicals including chemical names, structural formula, raw 
data, data for descriptor variables, data quality, data processing methods, methods for selection 
of variables, and any statistical methods employed in the derivation of the QSAR (OECD 2004). 
 
Information specific to the individual QSAR equations are provided in the QSAR Equation 
Documents included in the associated chemical class SAR files (in the QSARs folder in the 
Helpful file downloaded with the program) of ECOSAR. These QSAR Equation Documents 
provide internal performance measures such as coefficient of determination (R2) and all 
descriptor values for each of the QSAR equations programmed into ECOSAR. However, it is not 
possible for U.S. EPA to assemble and release all of the information regarding internal 
performance of ECOSAR in an effort to promote transparency of the model. Some of the 
information contained within the predictive system is confidential business information (CBI) 
collected by U.S. EPA under the New Chemicals Program and is therefore restricted from being 
revealed. Only personnel with TSCA CBI clearance and members of Congress can access the 
information, thereby prohibiting dissemination of the information publicly. However, when CBI 
data were used in the development of a QSAR, this is noted in the technical reference sheet. 
Chemical identity of these chemicals is masked (name and structure) along with the Chemical 
Abstract Service (CAS) number. 
 
8. EXTERNAL PREDICTIVITY OF ECOSAR 
 
An objective external evaluation of the predictive accuracy of a model is always desirable when 
determining its usefulness within a specified framework. However, it is often difficult to perform 
a truly representative evaluation of the predictivity using standard external performance 
measures without first considering the context within which a QSAR model will be used to 
support chemical management decisions. It is important to understand these parameters before 
commencing an external evaluation, as different situations or classification schemes may lead the 
assessor to different conclusions regarding the appropriateness of a particular model. 
 
In its simplest design, an external evaluation uses chemicals not employed in the development of 
the model and takes the form of a direct comparison between the experimental and estimated 
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values for the chemicals. When the predicted endpoint is quantitative (provides a numeric value), 
a regression analysis is performed comparing the experimental and estimated data to ascertain 
the coefficient of determination (R2) for the model. This coefficient of determination is used as a 
surrogate measure for the predictivity. The higher the R2 value, the greater the correlation 
between experimental and estimated values, and the better the predictive accuracy of the model. 
There have been numerous external validation exercises performed on ECOSAR by third parties 
and results are available in the public domain. The R2 is a statistically appropriate measure for 
the predictivity of a model; however, in some cases, it may not reflect the true predictive power 
of a QSAR within a particular decision-making framework. For example, regulatory bodies often 
use a set of preliminary classification criteria to make decisions regarding the potential fate and 
effects of chemicals and may not actually require the use of the discreet experimental or 
estimated values themselves. These classification schemes typically define ranges to allow the 
hazard assessors to make more qualitative calls regarding the chemical of interest. Within the 
U.S. EPA/OPPT New Chemicals Program, QSARs and classification schemes are used in 
screening and priority setting to identify potentially hazardous chemicals of concern that need 
additional resources or scrutiny from the universe of general industrial chemicals. Therefore, 
within the context of this regulatory framework, the predictivity of the model seems more 
appropriately measured when the quantitative values are overlaid on the respective classification 
schemes in order to truly represent how many times the estimates led the hazard assessor to the 
right conclusions within that framework. Unlike the more traditional statistical approaches, this 
classification technique allows the models to be evaluated directly for their applicability within a 
given regulatory/decision-making framework (OECD 2006, Tunkel et al. 2005). A list of 
supporting validation exercises performed in conjunction with U.S. EPA and other stakeholders 
on the ECOSAR model is provided below. 
 
 External Peer Reviews 

An independent peer review of ECOSAR was conducted as part of the development of the 
Organisation for Economic Cooperation and Development’s (OECD) guidance, The 
Principles for Establishing the Status of Development and Validation of (Quantitative) 
Structure-Activity Relationships [(Q)SARs] (OECD 2004). 

 
 Participation in U.S.-EU Validation Exercise 

U.S. EPA participated with the EU in a large-scale verification study of ECOSAR to 
compare SAR predictions with the results of data from testing. That study (OECD 1994, U.S. 
EPA 1994) found ECOSAR methods to be accurate 60-90% of the time depending on the 
endpoint assessed. 

 
 International Collaboration in Development of Effective Predictive Tools 

ECOSAR was included in OECD’s Report on the Regulatory Uses and Applications in 
OECD Member Countries of (Q)SAR Models in the Assessment of New and Existing 
Chemicals (OECD 2006). Subsequently, the OECD solicited U.S. EPA to include ECOSAR 
into the OECD QSAR Application Toolbox, which was developed starting in 2006. Inclusion 
in the OECD Toolbox requires specific documentation, validation, and acceptability criteria 
and subjects ECOSAR to international use and review, providing a means for receiving 
additional and ongoing input for improvements. In an evaluation of a number of predictive 
tools used to profile chemicals and group them together based on similar toxicity, ECOSAR 
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was the top performer (http://www.oecd.org/document/23/0,3343,en_2649_34379_33957015
_1_1_1_1,00.html#Additional_information_on_the_QSARs_Application_Toolbox). 

8.1 Peer-Reviewed Publications Related to Validation, Verification, and Performance of 
the ECOSAR Class Program 

 
Book Chapters or Reports 
 

1. OECD (Organisation for Economic Cooperation and Development). (2006) Report on the 
Regulatory Uses and Applications in OECD Member Countries of (Quantitative) Structure-
Activity Relationships [(Q)SAR] Models in the Assessment of New and Existing 
Chemicals. Organisation for Economic Cooperation and Development, Paris; 
ENV/JM/MONO(2006)25. 

 
2. Eriksson, L; Johansson, E; Wold S. (1997) Quantitative Structure-Activity Relationship 

Model Validation. In: Chen, F; Schuurmann, G; eds. Quantitative Structure-Activity 
Relationships in Environmental Sciences - VII. Pensacola, FL: SETAC Press, pp. 381-397. 

 
3. OECD (Organisation for Economic Cooperation and Development). (2004) The Principles 

for Establishing the Status of Development and Validation of (Quantitative) Structure- 
Activity Relationships [(Q)SARs]. Organisation for Economic Cooperation and 
Development, Paris; ENV/JM/TG(2004)27. 

 
4. OECD (Organisation for Economic Cooperation and Development). (2004) Annex 6: 

ECOSAR. In: Annexes to the Report on the Principles for Establishing the Status of 
Development and Validation of (Quantitative) Structure-Activity Relationships [(Q)SARs]; 
ENV/JM/TG(2004)27/ANN. 

 
5. OECD (Organisation for Economic Cooperation and Development). (2004) Comparison of 

SIDS Test Data with (Q)SAR Predictions for Acute Aquatic Toxicity, Biodegradability and 
Mutagenicity on Organic Chemicals Discussed at SIAM 11-18. Organisation for Economic 
Cooperation and Development, Paris; ENV/JM/TG(2004)26. 

 
6. Posthumus, R; Sloof, W. (2001) Implementation of QSARS in Ecotoxicological Risk 

Assessments. Research for Man and Environment/National Institute of Public Health and 
the Environment (RIVM), Bilthoven, Netherlands; RIVM report 601516003. 

 
7. Zeeman, M; Rodier, D; Nabholz, J. (1999) Ecological Risks of a New Industrial Chemical 

Under TSCA. In: Ecological Risk Assessment in the Federal Government. U.S. White 
House, National Science & Technology Council, Committee on Environment & Natural 
Resources (CENR), Washington, DC; CENR/5-99/001, pp. 2-1 to 2-30. 

 
8. Kaiser, KL; Niculescu, S; Mckinnon, M. (1997) On Simple Linear Regression, Multiple 

Linear Regression, and Elementary Probabilistic Neural Network with Gaussian Kernel’s 
Performance in Modeling Toxicity Values to Fathead Minnow Based on Microtox Data, 
Octanol/Water Partition Coefficient, and Various Structural Descriptors for a 419-
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Compound Dataset. In: Chen, F; Schuurmann, G; eds. Quantitative Structure-Activity 
Relationships in Environmental Sciences-VII, Pensacola, FL: SETAC Press, pp. 285-297. 

 
9. OECD (Organisation for Economic Cooperation and Development). (1994) US EPA/EC 

Joint Project on the Evaluation of (Quantitative) Structure Activity Relationships (QSARS). 
OECD Environment Monographs No. 88. Organisation for Economic Cooperation and 
Development, Paris, France; OECD/GD(94)28. 

 
10. U.S. EPA (Environmental Protection Agency). (1994) US EPA/EC Joint Project on the 

Evaluation of (Quantitative) Structure Activity Relationships (QSARS). U.S. 
Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, 
DC; EPA 743-R- 94-001. 

 
11. OECD (Organisation for Economic Cooperation and Development). (1994) U.S. EPA/EC 

Joint Project on the Evaluation of (Quantitative) Structure Activity Relationships (QSARS). 
OECD Environmental Monographs No. 88. Organisation for Economic Cooperation and 
Development, Paris, France; OECD/GD(94)28. 

 
12. Lynch, DG; Macek, G; Nabholz, J; et al. (1994) Ecological Risk Assessment Case Study: 

Assessing the Ecological Risks of a New Chemical Under the Toxic Substances Control 
Act. In: A Review of Ecological Assessment Case Studies from a Risk Assessment 
Perspective, Volume II. Washington, DC: Risk Assessment Forum, Office of Research and 
Development, U.S. Environmental Protection Agency, pp. 1-1 to 1-B4. 

 
13. Nabholz, JV; Clements, R; Zeeman, M; et al. (1993) Validation of Structure Activity 

Relationships used by the Office of Pollution Prevention and Toxics for the Environmental 
Hazard Assessment of Industrial Chemicals. In: Gorsuch J; Dwyer F; Ingersoll C, et al.; eds. 
Environmental Toxicology and Risk Assessment: 2nd Volume. Philadelphia: American 
Society for Testing and Materials, pp. 571-590. 

 
Scientific Journal Articles 
 
14. Reuschenbach, P; Silvania, M; Dammannb, M; et al. (2008) ECOSAR Model Performance 

with a Large Test Set of Industrial Chemicals. Chemosphere 71(10):1986-1995. 
 
15. Tunkel, J; Mayo, K; Austin, C; et al. (2005) Practical Considerations of the Use of 

Predictive Methods for Regulatory Purposes. Environ Sci Technol 39:2188-2199. 
 
16. Öberg, T. (2004) A QSAR for Baseline Toxicity: Validation, Domain of Application, and 

Prediction. Chem Res Toxicol 7 (12):1630-1637. 
 
17. Moore, D; Breton, R; MacDonald, D. (2003) A Comparison of Model Performance for Six 

QSAR Packages that Predict Acute Toxicity to Fish. Environ Toxicol Chem 22(8):1799- 
1809. 
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18. Cronin, M; Walker, J; Jaworska, J; et al. (2003) Use of QSARs in International Decision- 
Making Frameworks to Predict Ecologic Effects and Environmental Fate of Chemical 
Substances. Environ Health Perspect 111(10):1376-1390. 

 
19. Hulzebos, EM; Posthumus, R. (2003) (Q)SARs: Gatekeepers Against Risk on Chemicals? 

SAR QSAR Environ Res 14: 285-316. 
 
20. Kaiser, KL; Deardon J; Klein W; et al. (1999) Short Communication: A Note of Caution to 

Users of ECOSAR. Water Qual Res J Can 34:179-182. 
 
Abstracts 
 
21. Chun, J; Nabholz, J; Wilson, M. (2002) Comparison of Aquatic Toxicity Experimental Data 

with EPA/OPPT/SAR Prediction on PPG Polymers. Society of Environmental Toxicology 
and Chemistry Annual Meeting, Salt Lake City, UT. 

 
22. Chun, J; Nabholz, J; Wilson, M. (2001) Comparison of Aquatic Toxicity Experimental Data 

with EPA/OPPT SAR Predictions on PPG Polymers. Society of Toxicology Annual 
Meeting, San Francisco, CA. 
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APPENDIX 1: EXISTING ECOSAR QSARS UPDATE MARCH 2015 

 

Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic Sea 
urchin Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Acid halides X X X   1/10 
F96 

1/10 D48 X  X   1/10 
M96 

      

Acrylamides X X X   X X X X X  1/10 
F96 

(SW) 

X       

Acrylates  X X X   X 1/10 D48 X X X  1/10 
F96 

(SW) 

1/10 
M48 

      

Aldehydes (mono) X X X   X X X            

Aldehydes (poly) X X X   1/10 
F96 

X X            

Aliphatic amines X X X   X X X            

Alkoxy silanes X X X   1/10 
F96 

1/10 D48 X            

Amides X X X   X 1/10 D48 X X X   X     X  

Anilines (amino-meta) X X X   1/10 
F96 

X 1/4 
GA96 

           

Anilines (amino-ortho) X X X   1/10 
F96 

1/10 D48 1/4 
GA96 

           

Anilines (amino-para) X X X   1/10 
F96 

1/10 D48 X            

Anilines (hindered) X X X   1/10 
F96 

X X            

Anilines (unhindered) X X X   X X X  X   1/10 
M96 

      

Azides                    

Aziridines X X 4x GChV   1/10 
F96 

1/10 D48 X            

Azonitriles                    

Benzodioxoles X X    X X  X X          

Benzotriazoles X X X   X X X            

Benzoylcyclohexanedione 10x 
FChV 

X X   X X X X X          

Benzyl alcohols X X X   X 1/10 D48 X            

Benzyl amines                    

Benzyl halides X X X   X X X X X          

Benzyl imides X X    1/10 
F96 

1/10 D48             

Benzyl ketones                    
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic Sea 
urchin Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Benzyl nitriles X X X   X X X X X          

Benzyl thiols                    

Bromoalkanes                    

Caprolactams                    

Carbamate esters X X X   1/10 
F96 

1/10 D48 X            

Carbamate esters, oxime X X 4x GA96   X X X X   X        

Carbamate esters, phenyl X X X   X X X            

Carbonyl urea X X X   X X X            

Diazoniums, aromatic X     1/10 
F96 

             

Diketones X X 4x GA96   1/10 
F96 

X X            

Epoxides, mono X X X   X 1/10 D48 X            

Epoxide, mono acid 
substituted 

                   

Epoxides, poly F14d X D X  1/10 
F96 

1/10 D48 D            

Esters X X X X  X X X X X  1/10 
F96(S

W) 

X     X  

Esters, dithiophosphate X X X   X X X            

Esters, imidic                    

Esters, 
monothiophosphate 

X X X   X X 1/4 
GA96 

           

Esters, Phosphates-Inert 
Substitution 

X X X   1/10 
F96 

1/10 D48 1/4 
GA96 

           

Esters, Phosphates-
Withdrawing Substitution 

X X X   X D X X X  X        

Esters, phosphinate X X    1/10 
F96 

1/10 D48  X X  1/10 
F96(S

W) 

1/10 
M96 

      

Esters x 10                    

Halo amines                    

Halo benzamides                    

Halo epoxides X X 4x 
GAChV 

  1/10 
F96 

1/10 D48 X            

Halo esters X X    1/10 
F96 

1/10 D48             
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic Sea 
urchin Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Halo ethers X     1/10 
F96 

             

Halo ketones (2 free H) X X X   X 1/10 D48 1/4 
GA96 

           

Halo-nitros                    

Haloacetamides X X X   X X X X X  X        

Haloacids X X X   1/10 
F96 

X X            

Haloimides X X    X 1/10 D48             

Halonitriles X X X   X 1/10 D48 X X X  1/0 
F96(S

W) 

1/10 
M96 

      

Halopyridines X X    X 1/10 D48             

Hydroquinones X X X   1/10 
F96 

1/10 D48 X            

Hyrdazines X X X   X X X  X  X X       

Imide acids                    

Imides X X X   X X X  X          

Isothiazolones X X X   1/10 
F96 

1/10 D48 X            

Ketone alcohols X X X   1/10 
F96 

1/10 D48 X            

Malonitriles X X X   1/10 
F96 

1/10 D48 X            

Melamines X X X   X 1/10 D48 1/4 
GA96 

           

Methacrylates X X X   X X X            

Neonicitinoid X X X   X X X X X   X       

Nereisotoxin X D X   1/10 
F96 

 X            

Neutral organics X X X  X X X X X X  X X     X  

Nicotinoid X X X   X 1/10 D48 X            

Nitrile alpha-OH X     1/10 
F96 

             

Nitro alcohols X X X   1/10 
F96 

1/10 D48 X            

Nitro-/nitroso-benzamides X     1/10 
F96 

             

Nitrile esters                    
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic Sea 
urchin Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Omadine         X X  1/10 
FChV 
(SW) 

1/10M
ChV 

      

Oxetanes X X X   1/10 
F96 

1/10 D48 X            

Oxyamine X X    1/10 
F96 

1/10 D48             

Peroxides D D D   D D D            

Peroxy acids X X X   X X X            

Peroxy esters X X X   1/10 
F96 

X X            

Phenol amines X X X   1/10 
F96 

X X            

Phenols X X X   X X X X X X     X    

Phenols, poly X X X   X X X            

Phosphine oxide X X    1/10 
F96 

1/10 D48             

Phthalonitriles X X    1/10 
F96 

1/10 D48             

Polyaliphatic nitriles X X X   1/10 
F96 

X X            

Polynitroanilines X X 4x GChV   X X X            

Polynitrobenzenes X X X   X X X X   1/10 
F96 

(SW) 

       

Polynitrophenols X X    X X  X   1/10 
F96(S

W) 

       

Propargyl alcohol X X X   X 1/10 D48 1/4 
GA96 

           

Propargyl amines                    

Propargyl carbamates                    

Propargyl halide X X    X 1/10 D48  D D          

Pyrroles/Diazoles X X X   X X X  X          

Pyrethroids X X D   X X D X X  X X       

Pyridine-α-acid X D X   1/10 
F96 

D X            

Quinones X X X   1/10 
F96 

X 1/4 
GA96 

           

Rosins X X X   1/10 
F96 

1/10 D48 X            
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic Sea 
urchin Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Schiff bases-azomethine X X X   1/10 
F96 

1/10 D48 X X   1/10 
F96 

(SW) 

       

Silamines                    

Substituted ureas X X X   X X X X X  X X       

Sulfonyl ureas X X X   X X X  X   1/10 
M96 

      

Thiazolidinones X X D   1/10 
F96 

1/10 D48 D            

Thiazolidinones-acids X D    1/10 
F96 

D             

Thiocarbamate, di (Fe 
salts) 

                   

Thiocarbamates, di (free 
acid) 

X X X   1/10 
F96 

X X            

Thiocarbamate, di (Mn 
salts) 

                   

Thiocarbamates, di 
(substituted) 

X X X   1/10 
F96 

1/10 D48 X            

Thiocarbamate, di (Na 
salts) 

                   

Thiocarbamate, di (Zn 
salts) 

                   

Thiocarbamates, mono X X X   X X X X X          

Thiocyanates X X X   X X X X X          

Thiols & mercaptans X X X   1/10 
F96 

1/10 D48 X            

Thiomethacrylates D X D   D 1/10 D48 D            

Thiophenes X X X   1/10 
F96 

X X            

Thiophthalimides X X X   X 1/10 D48 X  X          

Thiotetrazoles D D X   D D X            

Thiourea X X X   1/10 
F96 

X X            

Triazines, aliphatic X X X   1/10 
F96 

1/10 D48 X            

Triazinetriones                    

Triazines, aromatic X X X   X X X X X  X X       

Triazole pyrimidine 
sulfonamides 

D X X   D X X            

Triazoles X X X   X X X X X  X X       
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Aquatic 

Terrestrial 

Freshwater Saltwater 

Lemna 
gibba 

Frog 
tadpole 

 Acute Fish 
14-d 

Sediment 
Invert 10-d 

Chronic Acute Chronic Sea 
urchin Chemical Class Fish Daphnid Algae Fish Daphnid Algae Fish Mysid Algae Fish Mysid Algae Earthworm Snail 

Vinyl/Allyl /Propargyl 
Alcohols(Hindered) 

X X X   1/10 
F96 

1/10 D48 X            

Vinyl/Allyl /Propargyl 
Alcohols(Unhindered) 

X X X   X X X            

Vinyl/Allyl/Propargyl 
Aldehydes (Hindered) 

X X X   1/10 
F96 

X X            

Vinyl/Allyl/Propargyl 
Aldehydes (Unhindered) 

X X X   X X X X   1/10 
F96 

(SW) 

       

Vinyl/allyl amines                    

Vinyl/Allyl/Propargyl 
esters 

X X X   1/10 
F96 

1/10 D48 X  D          

Vinyl/Allyl/Propargyl 
ethers 

X X X   1/10 
F96 

1/10 D48 X          X  

Vinyl/Allyl/Propargyl 
halides 

X X X   X X X X X  X 1/10 
M96 

    X  

Vinyl/Allyl/Propargyl 
ketones 

X X X   X 1/10 D48 1/4 
GA96 

X X  X 1/10 
M96 

      

Vinyl/Allyl/ Propargyl 
nitriles 

X X X   X X X            

Vinyl/Allyl/Propargyl 
pyrazole/pyrroles 

X                   

Vinyl/Allyl/Propargyl 
sulfones 

X X X   1/10 
F96 

1/10 D48 X            

Vinyl/allyl thiocarbamates                    

"D" indicates classes with inadequate data to complete a QSAR 
“X” indicates QSARs with adequate empirical data 
"1/X" endpoint or "X" endpoint indicates that an ACR was used 
 

755 Endpoints covered in ECOSAR 
543 Endpoints with empirically derived QSARs  
51 Endpoints with just data and no QSAR 
161 QSARs derived using ACRs 
704 Total Predictive QSARs available from ECOSAR version 1.11 
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APPENDIX 2: GENERAL DISCUSSION ON SURFACTANTS AND POLYMERS   
 
There are a number of publications by U.S. EPA staff discussing the ecological assessment of 
polymers, dyes, and surfactants. Computerized QSARs are currently only available in ECOSAR 
for surfactants and cationic dyes. However, assessment methodologies and rules of thumb do 
exist for ecological assessment of polymers. Methods discussed in Appendix 2 for polymers 
represent a condensed summary of the reference: Boethling, R; Nabholz, JV. (1997) 
Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act. In: 
Hamilton, JD; Sutcliffe, R; eds. Ecological Assessment of Polymers Strategies for Product 
Stewardship and Regulatory Programs. New York, NY: Van Nostrand Reinhold, pp. 187-234. 
For more in-depth information on polymer assessment, interested assessors are encouraged to 
read the full document. 
 
Another useful resource for evaluation of these types of materials is: Nabholz, JV; Miller, P; 
Zeeman, M. (1993b) Environmental Risk Assessment of New Chemicals Under the Toxic 
Substances Control Act (TSCA) Section Five. In: Landis, WG; Hughes, JS; and Lewis, MA; eds. 
Environmental Toxicology and Risk Assessment, ASTM STP 1179. Philadelphia, PA: American 
Society for Testing and Materials. pp. 40-55. 
 
Additionally, information on many of these surfactant and polymer classes can be found within 
the EPA/OPPT New Chemical Category Report posted on the EPA website at: 
https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-
tsca/chemical-categories-used-review-new. 
 

Surfactants 
 
QSARs are available in ECOSAR for four general classes of surfactants. These four general 
classes are categorized by overall charge and include anionic surfactants (such as linear alkyl 
benzene sulfonates), cationic surfactants (such as quaternary ammoniums), nonionic surfactants 
(such as alcohol ethoxylates), and amphoteric surfactants (such as ethoxylated beta-amine 
surfactants). There are four general surfactant groups in the current version of ECOSAR 
(version 2.2). The prior ECOSAR version 1.11 included subgroups for ease of use only; the 
subgroups did not have separate QSARs. All of the subclasses listed under each of the four 
surfactant classes are estimated using the same set of QSARs in version 1.11; therefore, users 
should be aware that subclasses are no longer considered in ECOSAR version 2.0 and higher.  
 
Over the years, U.S. EPA/OPPT began to collect additional subclass-specific data through the 
New Chemicals Program and drafted many new subclass-specific SAR tables. These methods 
have not yet been converted to computerized algorithms for the ECOSAR model, nor have the 
complete SAR tables been published in supporting documentation since much of the data 
includes CBI. Therefore, users of ECOSAR should be aware that U.S. EPA/OPPT may often 
evaluate surfactants submitted under the New Chemicals Program using unpublished SARs that 
are not currently available in this tool. However, descriptions of the surfactant QSARs currently 
programmed into ECOSAR are provided in the following paragraphs. 
 
Anionic Surfactants: The QSARs for anionic surfactants are parabolic, and toxicity is related to 
the size of the hydrophobic component (i.e., number of carbons) when the size of the hydrophilic 
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component remains constant. Toxicity is generally observed to be greatest when the carbon chain 
equals 16. The size of the hydrophobic component, usually a linear alkyl or branched carbon 
chain, can be estimated by simply counting the number of carbons in the hydrophobic alkyl 
chain. If the toxicity of a mixture of anionic surfactants, which vary only in carbon chain length, 
is to be estimated, then the weighted average of carbons in the alkyl chains (for linear alkyl 
benzene sulfonates excluding aromatic benzene ring) should be determined and used as input to 
the model. If you have multiple substitutions (diester), one would enter the total number of 
carbons. However, if the compound being evaluated is a mixture of varying unspecified 
substitutions (e.g., mono and diesters) and varying chain length (e.g., C6-C10), it makes the 
assessment infinitely more complicated due to this parabolic relationship and the myriad of 
potential structures that comprise the mixture. However, without percent composition 
information, it is difficult to know what would actually drive the true toxicity profile for the 
mixture in the environment. In these cases, the hazard assessor might run all potential 
configurations and select the worst case, or the estimated profiles may be supplemented with 
analogue data on the actual mixtures, if available. Anionic classes may include fatty acids (and 
their salts), alkyl benzene sulfonates, alkyl sulfonate and carboxylic acid, phosphinothioic acid 
esters (free acids), phosphorothioic esters, and other general anionic surfactants. Anionic 
surfactants class is also one of the few classes identified as having class-specific ACRs that are 
applied to estimate chronic toxicity values. The current anionic surfactant QSARs are: 
 
Class Organism Endpoint Equations 

ANIONIC SURFACTANT FISH 96 LC50 10^((((AVG_NUM_CARBONS - 16)^2) - 10.643)/12.9346)  

ANIONIC SURFACTANT DAPHNID 48 LC50 10^((((AVG_NUM_CARBONS - 16)^2) – 42.466)/12.9346)  

ANIONIC SURFACTANT ALGAE 96 EC50 10^((((AVG_NUM_CARBONS - 16)^2) - 10.643)/12.368)  

ANIONIC SURFACTANT FISH 28 NEC 10^((((AVG_NUM_CARBONS - 16)^2) - 10.643)/12.9346)/6.5  

ANIONIC SURFACTANT DAPHNID 21 NEC 10^((((AVG_NUM_CARBONS - 16)^2) - 10.643)/12.9346)/6.5  

ANIONIC SURFACTANT ALGAE 21 NEC 10^((((AVG_NUM_CARBONS - 16)^2) – 42.466)/12.368)/1.4  

 
Cationic Surfactants: To determine the toxicity of a cationic surfactant, it is necessary to know 
the number of carbon atoms in the hydrophobic chain. The QSARs for cationic surfactants are 
linear and the toxicity potential is related to the size of the hydrophobic component (i.e., the 
number of carbons is >C16, or <C16). Cationic classes may include quaternary aliphatic amines, 
phosphoniums, quaternary ammoniums, sulfoniums, and other general cationic surfactants. The 
current cationic surfactant QSARs are: 
 
 

Class  Organisms Endpoint Equations 

SURFACTANTS, CATIONIC, <C16 FISH 96 LC50 10^(5.43 -0.37) * AVG_NUM_CARBONS) 

SURFACTANTS, CATIONIC, <C16 DAPHNID 48 LC50 10^(2.07 -0.13) * AVG_NUM_CARBONS) 

SURFACTANTS, CATIONIC, >=C16 SNAIL 96 LC50 10^((0.087 * AVE_NUM_CARBONS) - 1.56) 

SURFACTANTS, CATIONIC, >=C16 FISH 96 LC50 10^((0.023 * AVG_NUM_CARBONS) - 0.092) 

SURFACTANTS, CATIONIC, >=C16 DAPHNID 48 LC50 10^((0.115 * AVG_NUM_CARBONS) - 1.64) 
 

Nonionic Surfactants: Toxicity for the nonionic surfactants was calculated in a similar manner 
to the general neutral organics QSAR class, and is based on the modified log Kow. The toxicity 
estimation was affected by the number of carbons, the number of branches occurring in the alkyl 
hydrophobe structure, and the total number of propoxy and ethoxylate repeating units. Therefore, 
the number of ethoxy groups and the average carbon chain length must be known to use these 
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QSARs. These QSARs are designed for chemicals with alkyl chains between C8 and C18, and 
ethoxylate and propoxylate groups between 3 and 15. Surfactants that have complex 
hydrophobic components may be assessed by calculating the Kow of the complex hydrophobic 
component alone and determining which aliphatic alkyl (carbon) chain has an equivalent Kow. 
Toxicity estimates may then be based on this equivalent chemical structure. Nonionic classes 
may include alkyl ethoxylates and other general nonionic surfactants. The current nonionic 
surfactant QSARs are: 
 
Class   Organisms Endpoint Equations 

SURFACTANTS, NONIONIC  FISH 96 LC50 -0.4793 * (Modified log Kow) - 0.0600 

SURFACTANTS, NONIONIC  DAPHNID 48 LC50 -0.5767 * (Modified log Kow) + 0.3280 

SURFACTANTS, NONIONIC  ALGAE 96 EC50 -0.5789 * (Modified log Kow) + 0.3851 

SURFACTANTS, NONIONIC  FISH ChV -0.3699 * (Modified log Kow) - 0.9480 

SURFACTANTS, NONIONIC  DAPHNID ChV -0.4805 * (Modified log Kow) - 0.3460 

SURFACTANTS, NONIONIC  ALGAE ChV -0.6356 * (Modified log Kow) + 0.189 0 

    

Amphoteric Surfactants: The QSARs for amphoteric surfactants are linear. To determine the 
toxicity of an amphoteric surfactant, it is necessary to know the number of carbon atoms in the 
hydrophobic alkyl chain and the number of ethoxylate units present in the molecule. These 
QSARs are designed for chemicals with alkyl chains between C8 and C18. Amphoteric classes 
may include alkyl nitrogen ethoxylates and ethomeen surfactants. The current amphoteric 
surfactant QSARs are: 
 

Class   Organisms Endpoint Equations    

SURFACTANTS AMPH. C8 FISH 96 LC50 10^((0.122 * NUM_ETHOXYLATES) + 1.022) 

SURFACTANTS AMPH. C8 DAPHNID 48 LC50 10^((0.122 * NUM_ETHOXYLATES) + 1.022) 

SURFACTANTS AMPH. C8 ALGAE 96 EC50 10^((0.122 * NUM_ETHOXYLATES) + 1.022) 

SURFACTANTS AMPH. C9 FISH 96 LC50 10^((0.116 * NUM_ETHOXYLATES) + 0.794) 

SURFACTANTS AMPH. C9 DAPHNID 48 LC50 10^((0.116 * NUM_ETHOXYLATES) + 0.794) 

SURFACTANTS AMPH. C9 ALGAE 96 EC50 10^((0.116 * NUM_ETHOXYLATES) + 0.794) 

SURFACTANTS AMPH. C10 FISH 96 LC50 10^((0.112 * NUM_ETHOXYLATES) + 0.553) 

SURFACTANTS AMPH. C10 DAPHNID 48 LC50 10^((0.112 * NUM_ETHOXYLATES) + 0.553) 

SURFACTANTS AMPH. C10 ALGAE 96 EC50 10^((0.112 * NUM_ETHOXYLATES) + 0.553) 

SURFACTANTS, AMPH. C14 FISH 96 LC50 10^((0.086 * NUM_ETHOXYLATES) - 0.348) 

SURFACTANTS, AMPH. C14 DAPHNID 48 LC50 10^((0.086 * NUM_ETHOXYLATES) - 0.348) 

SURFACTANTS, AMPH. C14 ALGAE 96 EC50 10^((0.086 * NUM_ETHOXYLATES) - 0.348) 

SURFACTANTS, AMPH. C15 FISH 96 LC50 10^((0.079 * NUM_ETHOXYLATES) - 0.566) 

SURFACTANTS, AMPH. C15 DAPHNID 48 LC50 10^((0.079 * NUM_ETHOXYLATES) - 0.566) 

SURFACTANTS, AMPH. C15 ALGAE 96 EC50 10^((0.079 * NUM_ETHOXYLATES) - 0.566) 

SURFACTANTS, AMPH. C16 FISH 96 LC50 10^((0.074 * NUM_ETHOXYLATES) - 0.796) 

SURFACTANTS, AMPH. C16 DAPHNID 48 LC50 10^((0.074 * NUM_ETHOXYLATES) - 0.796) 

SURFACTANTS, AMPH. C16 ALGAE 96 EC50 10^((0.074 * NUM_ETHOXYLATES) - 0.796) 

SURFACTANTS, AMPH. C17 FISH 96 LC50 10^((0.069 * NUM_ETHOXYLATES) - 1.057) 

SURFACTANTS, AMPH. C17 DAPHNID 48 LC50 10^((0.069 * NUM_ETHOXYLATES) - 1.057) 

SURFACTANTS, AMPH. C17 ALGAE 96 EC50 10^((0.069 * NUM_ETHOXYLATES) - 1.057) 

SURFACTANTS, AMPH. C18 FISH 96 LC50 10^((0.063 * NUM_ETHOXYLATES) - 1.316) 

SURFACTANTS, AMPH. C18 DAPHNID 48 LC50 10^((0.063 * NUM_ETHOXYLATES) - 1.316) 

SURFACTANTS, AMPH. C18 ALGAE 96 EC50 10^((0.063 * NUM_ETHOXYLATES) - 1.316) 
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Polymers 
 
Average Molecular Weight (MWn), Monomer, and Low Molecular Weight (LMW) 
Material Composition Categories: When assessing LMW polymers that fit into category 1 
above, it may be more relevant to find a discrete representative structure with a molecular weight 
of <1000 and assess this structure using the main ECOSAR Organics Module or other methods 
of aquatic hazards estimation. Polymers that fit into category 2 above may require assessment of 
the polymer itself, but further assessment of the LMW components of the polymer mixture may 
also be needed to fully characterize the aquatic hazard. If no data on the compound are available, 
then ECOSAR or other methods for aquatic hazard estimation can be used to assess the LMW 
components. Polymers that contain large amounts of residual monomers may require assessment 
of the individual monomer as discrete organic compounds to fully characterize the aquatic 
hazards associated with the mixture. 
 
Insoluble, Non-Dispersible Polymers: Polymers that are insoluble and non-dispersible are not 
expected to be toxic unless the material is in the form of finely divided particles. Most often, the 
toxicity of these polymer particles does not depend on a specific reactive structural feature, but 
occurs from occlusion of respiratory organs such as gills. For these polymers, toxicity typically 
occurs only at high concentration; acute toxicity values are generally >100 mg/L and chronic 
toxicity values are generally >10 mg/L. This is generally considered a low concern for aquatic 
hazard. 
 
Nonionic Polymers: These polymers are generally of low concern for aquatic hazard, due to 
negligible water solubility. Two exceptions exist. The first is for nonionic polymers that have 
monomers arranged in such a way as to use the polymer as a surfactant or dispersant, which may 
cause toxicity to aquatic organisms. The second is for nonionic polymers with significant 
oligomer content (i.e., ≥25% with molecular weight <1000; ≥10% with molecular weight <500), 
which may be a concern on the basis of bioavailability of the LMW material. In this case, the 
LMW oligomers, if they are <1000 molecular weight, can be assessed using ECOSAR Organics 
Module or other methods for aquatic hazard assessment. 
 
Anionic Polymers: There are two classes of polyanionic polymers known to be toxic to aquatic 
organisms; polyaromatic sulfonic acids are moderately toxic to aquatic organisms and 
polycarboxylic acids are moderately toxic mainly to green algae. However, the high molecular 
weight of these polymers indicate that they will not be absorbed through the surface membranes 
of these organisms. Toxicity of these chemicals is the result of chelation of nutrient metals and/or 
surface activity. In most cases, the structure and distance between the anionic groups determines 
the level of toxicity. 
 
Polyanionic polymers with MWn >1000 that are soluble or dispersible in water may pose a 
concern for direct or indirect toxicity. These polymers are further divided into two subclasses: 
poly(aromatic acids) and poly(aliphatic acids). 
 

 Poly(aromatic acids): These chemicals are usually poly(aromatic sulfate/carboxylate) 
structures and generally are of moderate hazard concern to aquatic organisms, with acute 
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LC50/EC50 values between 1 and 100 mg/L, depending upon the exact structure of the 
polymer. Monomers associated with toxicity include carboxylated/sulfonated 
diphenolsufones, sulfonated phenols, sulfonated cresols, sulfonated diphenylsulfones, and 
sulfonated diphenylethers. Monomers usually associated with low aquatic toxicity 
concern include sulfonated naphthalene and sulfonated benzene. 

 
The toxicity of this type of polymer appears to be moderate and not affected by water 
hardness. Toxicity can be estimated by an analogue approach using test data available for 
polymers of known composition. A collection of data on polymers of this type is 
available in Boethling and Nabholz (1997; Table 10.4, pp. 207-208). 

 
 Poly(aliphatic acids): This type of polymer is made up of repeating carboxylic acid, 

sulfonic acid, and/or phosphinic acid monomers. At pH 7, this polymer type generally 
exhibits low toxicity toward fish and daphnid, with LC50/EC50 values >100 mg/L. 
However, there may be toxicity hazard concerns for green algae; toxicity to algae is 
believed to arise from chelation of nutrients (such as calcium or magnesium). 

 
The toxicity of this type of polymer can be assumed to be low for fish and daphnids. 
Green algae toxicity can be determined using an analogue approach with test data 
collected for similar polymers of known composition. The toxicity is highly dependent on 
the structure of the polymer, with space between repeating acid units and addition of non-
chelating groups affecting toxicity. A collection of data on polymers of this type is 
available in Boethling and Nabholz (1997; Table 10.5, p. 209).  
 
Water hardness has been shown to mitigate the toxicity of poly(aliphatic acid) polymers 
to green algae. As water hardness increases, toxicity tends to decrease. This is due to the 
abundance of chelating cations that “fill” the chelation sites of the polymer, allowing 
more nutrients to remain in the water. In many cases, a mitigating factor can be applied to 
the estimated toxicity values. The appropriate mitigating factor, if any, can be discerned 
from Boethling and Nabholz (1997; Table 10.6, p. 212). 

 
Cationic Polymers: Polycationic polymers that are soluble or dispersible in water may exhibit 
toxicity to aquatic organisms related to overall charge density of the molecule. Cationic groups, 
or those that may be expected to become cationic, are generally those with primary, secondary, 
and tertiary amines and/or quaternary ammoniums; however, phosphonium and sulfonium 
cations may also fall into this category. The molecular descriptor used to predict toxicity for 
these polymers is equivalent charge density as determined from chemical structure. There are 
several factors that influence the estimate of aquatic toxicity in cationic polymers, which are 
discussed below. 

 
 Cationic Atom: The most common atoms that may have net positive charge include, but 

are not limited to, nitrogen (ammonium), phosphorus (phosphonium), and sulfur 
(sulfonium), with nitrogen constituting the cationic atom in >99% of polymers. 

 
 Percent Amine Nitrogen (%A-N): The percent of amine nitrogen (or other cationic 

atom) is used in the cationic nitrogen polymer SARs for estimation of aquatic toxicity. 
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Nitrogens directly substituted to an aromatic ring, nitrogens in an aromatic ring, amides, 
nitriles, nitro groups, and carbodiimides are not counted for determining %A-N.  

 
%A-N can be determined using the following equation: 
 

%A-N = [typical wt% of amine subunit in polymer] × [number of cationic nitrogens in 
subunit] × [atomic weight of N] ÷ [molecular weight of amine subunit] 

 
For smaller polymers, where the total number of nitrogens per polymer molecule is 
known, or non-polymers that may have toxicity similar to cationic polymers, the %A-N 
can be determined as: 
 
%A-N = 100 × [number of amines in compound] × 14.01 [atomic weight of N] ÷ [MWn 

of polymer] 
 

 Polymer Backbone: In addition to the cation-producing group, polymers of this type are 
assessed according to their backbone, which can be carbon-based, silicone-based 
(i.e., Si-O), or natural (chitin, starch, tannin).  

 
The SAR equations in Table A-1 express toxicity as the log of [effect level] as a function of 
%A-N. The equations are organized by species and polymer backbone. In addition, there may 
be different considerations based on the %A-N; at high %A-N, typically 3.5-4.3%, it has been 
found that the aquatic hazard no longer correlates with increasing %A-N and is essentially 
constant. At this point, the aquatic hazard is based on the geometric mean of similar polymers 
with measured data. In many cases, a mitigation factor may apply to the calculated effect levels 
from the SAR equations below. A discussion of the mitigation factor (MF) follows the section 
on amphoteric polymers at the end of this appendix. 
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Table A-1: SAR Equations for Estimating Aquatic Toxicity of Polycationic 
Polymers as a Function of the Polymer Backbone 

 Carbon-based Silicon-based Natural-based 

Fish acute* If %A-N ≤3.5; log [fish 
96-hr LC50] = 1.209 - 
0.462 × %A-N 
 
If %A-N >3.5; fish 96-hr 
LC50 = 0.28 mg/L 

If %A-N ≤3.5; log [fish 96-
hr LC50] = 2.203 - 0.963 × 
%A-N 
 
If %A-N >3.5; fish 96-hr 
LC50 = 1.17 mg/L 

Data indicate that acute 
toxicity toward fish will be 
similar or less than that 
for carbon-based 
backbone polymers. 
SAR analysis should 
employ the nearest 
analogue method. 

Daphnid acute* If %A-N ≤3.5; log 
[daphnid 48-hr LC50] = 
2.839 - 1.194 × %A-N 
 
If %A-N >3.5; daphnid 
48-hr LC50 = 0.10 mg/L 

Data indicate that acute 
toxicity toward daphnids 
will be similar or less than 
that for carbon-based 
backbone polymers. SAR 
analysis should employ 
the nearest analogue 
method. 

If %A-N ≤4.3; log 
[daphnid 48-hr LC50] = 
2.77 - 0.412 × %A-N 
 
If %A-N >4.3; daphnid 
48-hr LC50 = 11 mg/L 

Green algal acute* If %A-N ≤3.5; log [green 
algae 96-hr EC50] = 
1.569 - 0.97 × %A-N 
 
If %A-N >3.5; green 
algae 96-hr EC50 = 
0.040 mg/L 

Data indicate that acute 
toxicity toward green 
algae will be similar or 
less than that for carbon-
based backbone 
polymers. SAR analysis 
should employ the 
nearest analogue 
method. 

Data indicate that acute 
toxicity toward green 
algae will be less than 
that for carbon-based 
backbone polymers. 
SAR analysis should 
employ the nearest 
analogue method. 

Fish chronic* ACR of 18 ACR of 18 ACR of 18 

Daphnid chronic* ACR of 14 ACR of 14 ACR of 14 

Green algal chronic* If %A-N ≤3.5; log [green 
algae ChV] = 1.057 - 1 
× %A-N 
 
If %A-N >3.5; green 
algae ChV = 0.020 mg/L 

Use the SAR for 
methodology above for 
carbon-based backbone 
polymers. 

Data indicate that 
chronic toxicity toward 
green algae will be less 
than that for carbon-
based backbone 
polymers. SAR analysis 
should employ the 
nearest analogue 
method. 

*Conditions for application of mitigation factors (MF) are provided earlier in this appendix. 
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Amphoteric Polymers: These polymers contain both positive and negative charges in the same 
molecule. The toxicity of these polymers is dependent on cation-to-anion ratio (CAR = molar 
ratio of cations to anions in the molecule) and the overall cationic charge density. Determination 
of the CAR can be done by comparing the sum of the mole ratios of all cationic monomers to the 
sum of the mole ratios of all anionic monomers. As with cationic polymers, toxicity increases 
with cationic charge density. In addition, when charge density is constant, toxicity tends to 
increase with increasing CAR. Estimating toxicity is a multistep process for this type of 
structure. First, the %A-N and base toxicity are calculated using similar methodology discussed 
above. Next, the CAR is determined. The CAR is used to calculate the toxicity reduction factor 
(TRF), which is used to adjust the base toxicity to produce the final toxicity effect level. No 
SARs or TRFs currently exist for fish and daphnid chronic effects; however, the effect level can 
be estimated from the corresponding acute effect level using the ACR listed above in the table 
(A-1) for cationic polymers. In this case, the TRF should be applied to the acute effect level 
before using the ACR. 
 
Predicting Amphoteric Polymer Toxicity 
 
Step 1 Calculate base toxicity using appropriate cationic polymer methodology (see Table A-

1). 
 

Step 2 Determine the CAR; this can be done using the following method: 
 
Sum of mole ratio of cationic monomers ÷ sum of mole ratio of anionic monomers 
 

Step 3 Calculate the TRF using the appropriate equation for the species of interest. 
 
Fish Acute TRF (96-hour LC50): Log [TRF] = 1.411 – (0.257 × CAR) 
 
Daphnid Acute TRF (48-hour LC50): Log [TRF] = 2.705 – (0.445 × CAR)  
 
Green Algae Acute TRF (96-hour EC50): Log [TRF] = 1.544 – (0.049 × CAR) 
 
Green Algae Chronic TRF (96-hour ChV): Log [TRF] = 1.444 – (0.049 × CAR) 
 

Step 4 Multiply the base toxicity by the TRF to give the final predicted toxicity effect level. 

 
Note: In cases where chronic endpoints are estimated using an ACR, apply the ACR 
after the TRF is applied to the acute endpoint; no further TRF is applied to the chronic 
endpoint. 

 
As with the effect levels predicted for cationic polymers, these values may be adjusted using a 
MF discussed below. 
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Application of a MF to Account for Organic Content in Surface Waters may Affect the 
Estimated Toxicity of Cationic and Amphoteric Polymers to Aquatic Organisms 
 
It has been shown that dissolved organic content (DOC), particularly humic and other acidic 
chemicals, reduces the toxicity of cationic and amphoteric polymers to the aquatic environment. 
Standard aquatic hazard testing media (OECD) usually has a low total organic content (TOC), 
which may result in artificially high toxicity of cationic and amphoteric polymers in those media. 
Surface waters tend to have higher TOC and DOC than what is used in standard (OECD) aquatic 
toxicity testing media. Due to this, the aquatic hazard may be overestimated in laboratory testing 
of this type of polymer, which is, in large part, what the SAR methods are based on. In order to 
correct for TOC in actual surface water versus that in laboratory testing media, a MF can be 
calculated, based on testing done with standard media compared to testing done with media 
containing a standard 10 mg/L TOC as humic acid, to apply to the aquatic effect levels estimated 
using SAR equations. The MF is dependent on the overall charge density, calculated as %A-N, 
for the polymer. Several conditions and/or structural features have been shown to affect the 
mitigation factor, which are discussed below. 
 

 MFs for polymers that are formed by the random reaction of monomers and have 
minimal oligomer content (i.e., <25% with molecular weight <1000; <10% with 
molecular weight <500): 

 
o For charge density where %A-N is ≥3.5: MF = 110 

 

o For charge density where %A-N is 3.5 - 0.7: Log [MF] = 0.858 + 0.265 × %A-N 
 

o For charge density where %A-N is <0.7: Do not use a MF for these cases; MFs have 
not been established, but are expected to be <7. 

 
 Conditions affecting the MF value: 

 
It has been shown that as the LMW component composition increases, the MF 
decreases. For chemicals with high LMW component compositions, do not apply a MF. 

 
The MF has been shown to be decreased by the addition of ethoxy groups, or ethoxy 
ether groups, substituted directly on the nitrogen (i.e., N(CH2CH2O)n), with the MF 
being decreased for each additional group of this type bonded to the nitrogen. 

 
o If a single ethoxy group is attached, the MF is multiplied by 0.67.  

 
o If two ethoxy groups are attached, the MF is multiplied by 0.33.  

 
o If three ethoxy groups are attached, the MF is essentially 0. 
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Cationic Dyes 
 
Cationic dyes may exhibit toxicity to aquatic organisms in a similar manner to cationic polymers. 
As with cationic polymers, during acute exposure, the toxicity of these dyes is believed to be 
mostly the result of their activity on the surface membrane, while chronic exposure also results in 
systemic toxicity. Dyes with delocalized cationic charges may be more toxic, followed by dyes 
with four localized charges, then three localized charges, etc. Most commercial dyes contain 
impurities that may, in part, be responsible for some of the toxic effects seen in these dyes.  


