TECHNICAL MEMORANDUM

 TO: Docket for Rulemaking, "Proposed Federal Implementation Plan Addressing Regional Ozone Transport for the 2015 Ozone National Ambient Air Quality Standards" (EPA-HQ-OAR-2021-0668)
 DATE: February 28, 2022
 SUBJECT: Screening Assessment of Potential Emissions Reductions, Air Quality Impacts, and Costs from Non-EGU Emissions Units for 2026

Note: EPA originally posted this document on March 11, 2022. This document, posted on March 29, 2022, corrects inadvertent errors referencing a filename on page 9 and in Table 5 on page 16.

I. Introduction

The EPA developed an analytical framework to facilitate decisions about industries, emissions unit types, and cost thresholds for including emissions units in the non-electric generating unit "sector" (non-EGUs) in a federal implementation plan (FIP) proposal for the 2015 ozone national ambient air quality standards (NAAQS) transport obligations. Using this analytical framework, we prepared a screening assessment for the year 2026.

This memorandum presents the analytical framework and summarizes the screening assessment the EPA prepared to identify industries and emissions unit types to include in proposed rules to obtain NOx emissions reductions from non-EGUs. Sections VII.A.2. and VII.C. of the proposal preamble include discussions of the non-EGU NOx emissions limits, compliance timing, and other related-rule requirements for the industries and emissions unit types identified through the screening assessment.

The remainder of this memorandum includes the following sections:

- II. Background on Analytical Framework
- III. The Analytical Framework
 - o Step 1 -- Identifying Potentially Impactful Industries in 2023
 - Step 2a -- Identifying a Cost Threshold to Evaluate Emissions Reductions in Potentially Impactful Industries for 2023
 - Step 2b -- Assessing Non-EGU Emission Reduction Potential and Estimated Air Quality Impacts in Potentially Impactful Industries in 2023
 - Step 2c Refining Tier 2 by Identifying Potentially Impactful Boilers in 2023
- IV. Modifying the Analytical Framework for the Screening Assessment for 2026
- Screening Assessment Results for 2026 -- Estimated Total Emissions Reductions, Air Quality Improvements, and Annual Total Costs for Emissions Units in Tier 1 Industries and Impactful Boilers in Tier 2 Industries
- VI. Request for Comment and Additional Information

II. Background on Analytical Framework

The number of different industries and emissions unit categories and types, as well as the total number of emissions units that comprise the non-EGU "sector"¹ makes it challenging to define a single method to identify impactful emissions reductions. We incorporated air quality information as a first step in the analytical framework to help determine potentially impactful industries to focus on for further assessing emission reduction potential, air quality improvements, and costs. Given the lengthy decision-making and analysis schedules for the FIP

¹ The non-EGU "sector" includes non-electric generating emissions units in various manufacturing industries and does not include municipal waste combustors (MWC), cogeneration units, or <25 MW EGUs. For a discussion of MWCs, cogeneration units, and EGUs <25 MW, see Section VI.B.3. of the proposed rule preamble.

proposal, we developed the analytical framework using inputs from the air quality modeling for the Revised CSAPR Update (RCU) for 2023², as well as the projected 2023 annual emissions inventory from the 2016v2 emissions platform that was used for the air quality modeling for the proposed rule.

Using the RCU modeling for 2023, we identified upwind states linked to downwind nonattainment or maintenance receptors using the 1% of the NAAQS threshold criterion, which is 0.7 ppb (1% of a 70 ppb NAAQS). In 2023 there were 27 linked states for the 2015 NAAQS: AL, AR, CA, DE, IA, IL, IN, KY, LA, MD, MI, MN, MO, MS, NJ, NY, NV, OH, OK, PA, TN, TX, UT, VA, WI, WV, and WY.

To analyze non-EGU emissions units, we aggregated the underlying projected 2023 emissions inventory data into industries defined by 4-digit NAICS.³ Then for the linked states, we followed the 2-step process below:

- 1. **Step 1** -- We identified industries whose potentially controllable emissions are estimated, by applying the analytical framework, to have the greatest ppb impact on downwind air quality, ⁴ and
- Step 2 We determined which of the most impactful industries and emissions units had the most emissions reductions that would make meaningful air quality improvements at the downwind receptors at a marginal cost threshold we determined using underlying control device efficiency and cost information.

Additional details on these steps are presented in the Section III below.

Finally, the EPA concluded, based on the most recent information available from the CSAPR Update Non-EGU TSD,⁵ that controls on all of the non-EGU emissions units cannot be installed by the 2023 ozone season.⁶ As such, we modified the analytical framework slightly and applied it for a screening assessment estimating potential emissions reductions, air quality improvements, and costs for the year 2026.

III. The Analytical Framework

Step 1 - Identifying Potentially Impactful Industries in 2023

The analytical framework starts with identifying industries whose potentially controllable emissions may contribute to downwind receptors. To identify industries that have large, meaningful air quality impacts from potentially controllable emissions, we estimated air quality contribution by 4-digit NAICS-based industry for 2023. To estimate the contributions by 4-digit NAICS at each downwind receptor, we used the 2023 state-receptor specific RCU ppb/ton values and the RCU calibration factors used in the air quality assessment tool (AQAT) for control analyses in 2023.⁷

² We used the RCU air quality modeling for this screening assessment because the air quality modeling for the proposed rule was not completed in time to support this assessment.

³ North American Industry Classification System (<u>https://www.census.gov/naics/</u>).

⁴ To identify industries, we reviewed emissions units with >= 100tpy emissions units in the 2023 inventory in those industries in the upwind states.

⁵ Final Technical Support Document (TSD) for the Final Cross-State Air Pollution Rule for the 2008 Ozone NAAQS, Assessment of Non-EGU NO_x Emissions Controls, Cost of Controls, and Time for Compliance Final TSD ("CSAPR Update Non-EGU TSD"), August 2016, available at <u>https://www.epa.gov/csapr/assessment-non-egu-NO_x-emission-controls-cost-controls-and-timecompliance-final-tsd</u>.

⁶ Note that information on control installation timing as detailed in the 2016 CSAPR Update Non-EGU TSD is not complete or sufficient to serve as a foundation for timing estimates for this proposed FIP.

⁷ The calibration factors are receptor-specific factors. For the RCU, the calibration factors were generated using 2016 base case and 2023 base case air quality model runs. These receptor-level ppb/ton factors are discussed in the Ozone Transport

We focused on assessing emissions units that emit >100 tpy of NOx.⁸ By limiting the focus to potentially controllable emissions, well-controlled sources that still emit > 100 tpy are excluded from consideration. Instead, the focus is on uncontrolled sources or sources that could be better controlled at a reasonable cost. As a result, reductions from any industry identified by this process are more likely to be achievable and to lead to air quality improvements.

Based on the industry contribution data, we prepared a summary of the estimated total, maximum, and average contributions from each industry and the number of receptors with contributions >= 0.01 ppb from each industry. We evaluated this information to identify breakpoints in the data, as described in detail in Appendix A. These breakpoints were then used to identify the most impactful industries to focus on for the next steps in the analysis.⁹

A review of the contribution data indicated that we should focus the assessment of NOx reduction potential and cost primarily on four industries. These industries each (1) have a maximum contribution to any one receptor of >0.10 ppb and (2) contribute >= 0.01 ppb to at least 10 receptors. We refer to these four industries identified below as comprising **"Tier 1"**.

- Pipeline Transportation of Natural Gas
- Cement and Concrete Product Manufacturing
- Iron and Steel Mills and Ferroalloy Manufacturing
- Glass and Glass Product Manufacturing

In addition, the contribution data suggests that we should include five additional industries as a second tier in the assessment. These industries each either have (1) a maximum contribution to any one receptor >=0.10 ppb but contribute >=0.01 ppb to fewer than 10 receptors, or (2) a maximum contribution <0.10 ppb but contribute >=0.01 ppb to at least 10 receptors. We refer to these five industries identified below as comprising **"Tier 2"**.

- Basic Chemical Manufacturing
- Petroleum and Coal Products Manufacturing
- Metal Ore Mining
- Lime and Gypsum Product Manufacturing
- Pulp, Paper, and Paperboard Mills

Policy Analysis Final Rule TSD found here: <u>https://www.epa.gov/sites/default/files/2021-03/documents/ozone transport policy analysis final rule tsd 0.pdf</u>.

⁸ In the non-EGU emission reduction assessment prepared for the Revised Cross State Air Pollution Rule Update

⁽https://www.regulations.gov/document/EPA-HQ-OAR-2020-0272-0014), we reviewed emissions units with >150 tpy of NOx emissions. In this screening assessment, we broadened the scope to include emissions units with >=100 tpy of NOx emissions. We believe that emissions units that are smaller may already be controlled and reductions from these smaller units are likely to be more costly.

⁹ The air quality contribution data and the R code that processed these data are available upon request.

Step 2a - Identifying a Cost Threshold to Evaluate Emissions Reductions in Potentially Impactful Industries for 2023

To identify an annual cost threshold for evaluating potential emissions reductions in the Tier 1 and Tier 2 industries, the EPA used the Control Strategy Tool (CoST)¹⁰, the Control Measures Database (CMDB)¹¹, and the projected 2023 emissions inventory to prepare a listing of potential control measures, and costs, applied to non-EGU emissions units in the projected 2023 emissions inventory. Using this data, we plotted curves for Tier 1 industries, Tier 2 industries, Tier 1 and 2 industries, and all industries at \$500 per ton increments. Figure 1 indicates there is a "knee in the curve" at approximately \$7,500 per ton.¹² We used this marginal cost threshold to further assess estimated emissions reductions, air quality improvements, and costs from the potentially impactful industries. Note that controls and related emissions reductions are available at several estimated cost levels up to the \$7,500 per ton threshold. The costs do not include monitoring, recordkeeping, reporting, or testing costs.

Figure 1. Ozone Season NOx Reductions and Costs per Ton (CPT) for Tier 1, Tier 2 Industries, and Other Industries

¹⁰ Further information on CoST can be found at the following link: <u>https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-analysis-modelstools-air-pollution</u>.

¹¹ The CMDB is available at the following link: <u>https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-analysis-modelstools-air-pollution</u>.

¹² The CoST run results, the CMDB, and the R code that generated the curves are available upon request.

Step 2b - Assessing Non-EGU Emission Reduction Potential and Estimated Air Quality Impacts in Potentially Impactful Industries in 2023

Next, using the marginal cost threshold of \$7,500 per ton, to estimate emissions reductions and costs the EPA processed the CoST run using the maximum emission reduction algorithm^{13,14} with known controls.¹⁵ We identified controls for non-EGU emissions units in the Tier 1 and Tier 2 industries that cost up to \$7,500 per ton. Note that \$7,500 per ton represents a marginal cost, and controls and related emissions reductions are available at several estimated costs up to the \$7,500 per ton threshold. The costs do not include monitoring, recordkeeping, reporting, or testing costs.

We then calculated air quality impacts associated with the estimated reductions for the 27 linked states in 2023 following the steps below.

- 1. We binned the estimated reductions by 4-digit NAICS code into the Tier 1 and Tier 2 industries.
- 2. We used the 2023 state-receptor specific RCU ppb/ton values and the RCU calibration factors used in the AQAT for control analyses in 2023. We multiplied the estimated non-EGU reductions by the ppb/ton values and by the receptor-specific calibration factor to estimate the ppb impacts from these emissions reductions.¹⁶

Note that we did not include the impact of reductions in the "home state" even if the "home state" was linked to receptor(s) in another state. That is, we <u>only</u> looked at the impact of NOx emissions reductions from upwind states. Furthermore, for each receptor we included impacts from states that are upwind to any receptor, not just those states that are upwind to that particular receptor.

Step 2c – Refining Tier 2 by Identifying Potentially Impactful Boilers in 2023

In 2023 because boilers represent the majority emissions unit in the Tier 2 industries for which there were controls that cost up to \$7,500 per ton (see Table 1 below), we targeted emissions reductions and air quality improvements in Tier 2 industries by identifying potentially impactful industrial, commercial, and institutional (ICI) boilers.

¹³ The maximum emission reduction algorithm assigns to each source the single measure (if a measure is available for the source) that provides the maximum reduction to the target pollutant. For more information, see the CoST User's Guide available at the following link: https://www.cmascenter.org/cost/documentation/3.7/CoST%20User's%20Guide/. ¹⁴ The maximum emission reduction CoST run results and CMDB are available upon request.

¹⁵ *Known controls* are well-demonstrated control devices and methods that are currently used in practice in many industries. *Known controls* do not include cutting edge or emerging pollution control technologies.

¹⁶ The 2023 state-receptor specific RCU ppb/ton values, the RCU calibration factors used in AQAT for control analyses in 2023, the R code that processed the CoST run results using the maximum emission reduction algorithm, and the summaries of the air quality improvements are available upon request.

	Number of Emissions Units by Type					
		Internal	Industrial			
Tier 2 Industries	Boiler	Combustion Engine	Processes			
Metal Ore Mining		1	15			
Pulp, Paper, and Paperboard Mills	49	1				
Petroleum and Coal Products	37	4	48			
Manufacturing						
Basic Chemical Manufacturing	46	8	13			
Lime and Gypsum Product Manufacturing			1			
Totals 132 14 77						

Table 1. Number of Emissions Unit Types in Tier 2 Industries

To identify potentially impactful boilers, using the projected 2023 emissions inventory in the linked upwind states we identified a universe of boilers with >100 tpy NOx emissions that had <u>any</u> contributions at downwind receptors.^{17,18} We refined the universe of boilers to a subset of impactful boilers by sequentially applying the three criteria below to each boiler. This approach is similar to the overall analytical framework and was tailored for application to individual boilers.^{19,20}

- <u>Criterion 1</u> -- Estimated maximum air quality contribution at an individual receptor of >=0.0025 ppb *or* estimated total contribution across downwind receptors of >=0.01 ppb.
- <u>Criterion 2</u> -- Controls that cost up to \$7,500 per ton.
- <u>Criterion 3</u> -- Estimated maximum air quality improvement at an individual receptor of >=0.001 ppb.

IV. Modifying the Analytical Framework for the Screening Assessment for 2026

EPA concluded, based on the most recent information available from the CSAPR Update Non-EGU TSD, that controls on all of the non-EGU emissions units cannot be installed by the 2023 ozone season. As such, we prepared a screening assessment for the year 2026 by generally applying the analytical framework detailed above. Specifically, we

- Retained the impactful industries identified in Tier 1 and Tier 2, the \$7,500 cost per ton threshold, and the methodology for identifying impactful boilers,
- Modified the framework to address challenges associated with using the projected 2023 emissions inventory by using the 2019 emissions inventory, and
- Updated the air quality modeling data by using data for 2026.

Using the projected 2023 emissions inventory introduced challenges associated with the application of new source performance standards (NSPS).²¹ Some of the projected emissions inventory records reflected percent

¹⁷ We used the 2023fj non-EGU point source inventory files from the 2016v2 emissions platform.

¹⁸ MD, MO, NV, and WY did not have boilers with >100 tpy NOx emissions.

¹⁹ For the impactful boiler assessment, the estimated air quality contributions and improvements were not based on modeling of individual emissions units or emissions source sectors. The air quality estimates were derived by using the 2023 state/receptor specific RCU ppb/ton values and the RCU calibration factors used in AQAT. The results are intended to provide a general indication of the relative impact across sources.

²⁰ For the impactful boiler assessment, the 2023 state-receptor specific RCU ppb/ton values, the RCU calibration factors used in the AQAT for ozone for control analyses in 2023, and the R code that processed the CoST run results are available upon request.

²¹ Using the projected inventory also introduced challenges associated with the growth of emissions at sources over time. EPA determined that the 2019 inventory was appropriate because it provided a more accurate prediction of potential near-

reductions associated with the application of current NSPS (e.g., Reciprocating Internal Combustion Engine, Natural Gas Turbines, Process Heaters NSPS). Applying NSPSs during the emissions projections process includes estimating the number of modifications/replacements that would trigger NSPS requirements. None of the existing sources, as they currently exist, would install a control because of a NSPS. But some of those sources might modify and become subject to the NSPS. Because we do not know which sources might become subject to an NSPS by modifying, across-the-board percent reductions from unknown control measures are applied to all of the sources.²² As a result, CoST replaced some of the unknown control measures with a control measure that it concluded was more efficient. However, we do not know if a control would be applied to a particular source in response to the NSPS rules and if so, what that control would be. Therefore, we do not know if CoST is correctly replacing those unknown control measures. To address this challenge, we used a current, not projected, emissions inventory along with the latest air quality modeling information for 2026. Specifically, we used the 2019 inventory for information on emissions, emissions units, and estimated emissions reductions in concert with the emissions sector-specific (non-EGU-specific) ppb/ton factors for 2026 and 2026 AQAT calibration factors to estimate the impacts on future air quality from reductions at emissions units as those units currently exist.²³

V. Screening Assessment Results for 2026 -- Estimated Total Emissions Reductions, Air Quality Improvements, and Annual Total Costs for Emissions Units in Tier 1 Industries and Impactful Boilers in Tier 2 Industries

This screening assessment is not intended to be, nor take the place of, a unit-specific detailed engineering analysis that fully evaluates the feasibility of retrofits for the emissions units, potential controls, and related costs. We used CoST to identify emissions units, emissions reductions, and costs to include in a proposed FIP; however, CoST was designed to be used for illustrative control strategy analyses (e.g., NAAQS regulatory impact analyses) and not for unit-specific, detailed engineering analyses. The estimates from CoST identify proxies for (1) non-EGU emissions units that have emission reduction potential, (2) potential controls for and emissions reductions from these emissions units, and (3) control costs from the potential controls on these emissions units.

See Sections VII.A.2. and VII.C. of the proposal preamble for discussions of the NOx emissions limits, compliance timing, and other related rule requirements for the industries and emissions unit types identified through this screening assessment.

To prepare the screening assessment for 2026, we applied the analytical framework detailed in the sections above with the modifications discussed in the previous section. The assessment includes emissions units from the Tier 1 industries and impactful boilers from the Tier 2 industries. Using the latest air quality modeling for 2026, we identified upwind states linked to downwind nonattainment or maintenance receptors using the 1% of the NAAQS threshold criterion, or 0.7 ppb. In 2026 there are 23 linked states for the 2015 NAAQS: AR, CA, IL, IN, KY, LA, MD, MI, MN, MO, MS, NJ, NY, NV, OH, OK, PA, TX, UT, VA, WI, WV, and WY.

We re-ran CoST with known controls, the CMDB, and the 2019 emissions inventory. We specified CoST to allow replacing an existing control if a replacement control is estimated to be >10 percent more effective than the

term emissions reductions. For additional discussion of the 2019 inventory, please see the *2019 National Emissions Inventory Technical Support Document: Point Data Category* available in the docket. In switching to the 2019 inventory, however, we did not account for any growth or decrease in emissions that might occur at individual units. Because the controls applied by CoST have efficiencies, or percent reductions, this means we could be over- or under-estimating the emission reductions and their ppb impacts.

²² For additional information on the 2016v2 inventory and the projected 2023 emissions inventory, please see the September 2021 *Technical Support Document Preparation of Emissions Inventories for 2016v2 North American Emissions Modeling Platform* in the docket or available at the following link: <u>https://www.epa.gov/system/files/documents/2021-09/2016v2 emismod tsd september2021.pdf</u>.

²³ For this proposed FIP, the EPA used the ozone AQAT, which is described in detail in *Ozone Policy Analysis Proposed Rule TSD* in the docket. The receptor-state specific calibration factors for 2026 were derived using the following air quality modeling runs: 2026 base case and 2026 control case with 30 percent across-the-board NOx emissions cuts.

existing control. We did not replace an existing control if the 2019 emissions inventory indicated the presence of that control, even if the CMDB reflects a greater control efficiency for that control. Also, we removed six facilities from consideration because they are subject to an existing consent decree, are shut down, or will shut down by 2026. See Appendix B for a summary of the facilities removed.

For the emissions units in the Tier 1 industries and the impactful boilers in the Tier 2 industries, the estimated emissions reductions, air quality improvements, and costs are summarized below and in Tables 2 through 5 that follow. The cost estimates do not include monitoring, recordkeeping, reporting, or testing costs.²⁴ As shown in Table 2, the total estimated ozone season emissions reductions are 47,186 tons, the estimated total ppb improvement across all downwind receptors is 5.16 ppb, and the estimated total cost is \$410.8 million annually. The estimated ozone season reductions, total ppb improvements, and total cost are representative of single year impacts and not cumulative impacts.

Table 3 presents estimated ppb improvements at receptors grouped by region. For the coastal Connecticut/New York City nonattainment area receptors, total ppb improvements from Tier 1 and Tier 2 range from 0.247 to 0.356 ppb; for the receptors near Chicago, total ppb improvements range from 0.261 to 0.375 ppb; for the receptors along the western shoreline of Lake Michigan in Wisconsin, total ppb improvements range from 0.284 to 0.472 ppb; and for the western receptors, ppb improvements range from 0.001 to 0.056 ppb. There are far fewer emissions reductions from western states because there are far fewer states and impacted emissions units in the west, and the resulting air quality improvements are noticeably lower.

For Tier 1 industries and the impactful boilers in the Tier 2 industries, Table 4 provides by state and by industry estimated emissions reductions and costs; Table 4a provides by state, estimated emissions reductions and costs. New Jersey and Nevada are not included in these tables because they did not have any estimated non-EGU reductions from the Tier 1 industries and boilers in Tier 2 industries that cost up to \$7,500 per ton. In addition, Figure 2 shows the geographical distribution of ozone season reductions.

Table 5 provides by industry and east/west, the number and type of emissions units, total estimated emissions reductions, total ppb improvements, and costs. There are 489 emissions units contributing to the total estimated reductions of 47,186 ozone season tons and total estimated ppb improvements of 5.16 ppb.²⁵

Table 6 includes by industry, the emissions source group, control technology, number of emissions units, ozone season emissions reductions, and annual total cost for the emissions units in the screening assessment. Lastly, Tables 7, 8, and 9 provide summaries of estimated ozone season emissions reductions, annual total cost, and average cost per ton by the control technologies CoST applied (i) across all non-EGU emissions units, (ii) across non-EGU emissions units grouped by the Tier 1 industries and impactful boilers in Tier 2 industries, and (iii) across non-EGU emissions units grouped by the seven individual Tier 1 and 2 industries.

²⁴ EPA submitted an information collection request (ICR) to OMB associated with the proposed monitoring, calibrating, recordkeeping, reporting and testing activities required for non-EGU emissions units -- *ICR for the Proposed Rule, Federal Implementation Plan Addressing Regional Ozone Transport for the 2015 Primary Ozone National Ambient Air Quality Standard: Transport Obligations for non-Electric Generating Units*, EPA ICR No. 2705.01. The ICR is summarized in Section XI.B.2 of the proposed rule preamble. The ICR includes estimated monitoring, recordkeeping, reporting, and testing costs of approximately \$11.45 million per year for the first three years. These costs are not reflected in the cost estimates presented in Tables 2 through 9.

²⁵ While the number of units listed in Table 5 sums to 491, the emissions inventory records for two of the units in Tier 1 industries include SCCs for both boilers and industrial processes. As a result, those units appear twice in the counts.

For the Excel workbooks with Tables 2 through 9, see *Transport Proposal – NonEGU Results – 03-16-2022.xlsx* and *Non-EGU Analysis Controls – 11-15-2021.xlsx* in the docket.²⁶

²⁶ The R code that processed the CoST run results, the sector-specific (non-EGU-specific) ppb/ton values, and the 2026 AQAT calibration factors used to prepare these tables are available upon request.

All costs are in 2016\$ and do not include monitoring, recordkeeping, reporting, or testing costs.

Option	Ozone Season Emissions Reductions (East/West)	Total PPB Improvement Across All Downwind Receptors	Max PPB Improvement Across All Downwind Receptors	Annual Total Cost (million \$) (Avg Annual Cost per Ton)	Industries (# of emissions units > 100 tpy in identified industries)
Tier 1 Industries with Known Controls that Cost up to \$7,500/ton	41,153 (37,972/3,181)	4.352	0.392	\$356.6 (\$3,610)	Cement and Concrete Product Manufacturing (47), Glass and Glass Product Manufacturing (44), Iron and Steel Mills and Ferroalloy Manufacturing (39), Pipeline Transportation of Natural Gas (307)
Tier 2 Industry Boilers with Known Controls that Cost up to \$7,500/ton	6,033 (5,965/68)	0.809	0.169	\$54.2 (\$3,744)	Basic Chemical Manufacturing (17), Petroleum and Coal Products Manufacturing (10), Pulp, Paper, and Paperboard Mills (25)

Table 2. Estimated Emissions Reductions (ozone season tons), Maximum PPB Improvements, and Costs

The estimated ozone season reductions, total ppb improvements, and total cost are representative of single year impacts and not cumulative impacts.

Receptor ID	State	Receptor Name	Average/Max PPB Improvement Needed to Attain	Home State PPB Contribution	Tier 1	Tier 2	Total
90010017	СТ	Greenwich	0.6/1.3	9.3	0.231	0.016	0.247
90013007	СТ	Stratford	1.9/2.8	4.1	0.332	0.024	0.356
90019003	СТ	Westport	3.7/3.9	2.9	0.314	0.022	0.336
90099002	СТ	Madison	-/1.5	3.9	0.323	0.023	0.346
170310001	IL	Chicago/Alsip	-/1.6	19.4	0.196	0.065	0.261
170310032	IL	Chicago/South	-/0.8	16.6	0.299	0.076	0.375
170310076	IL	Chicago/ComEd	-/0.4	18.7	0.229	0.060	0.289
170314201	IL	Chicago/Northbrook	-/1.5	21.4	0.262	0.069	0.332
170317002	IL	Chicago/Evanston	-/1.1	18.9	0.307	0.049	0.356
550590019	WI	Kenosha/Water Tower	0.8/1.7	5.8	0.325	0.035	0.360
550590025	WI	Kenosha/Chiwaukee	-/0.2	2.6	0.392	0.051	0.443
551010020	WI	Racine/Racine	-/1.2	10.8	0.353	0.044	0.397
480391004	ТΧ	Houston/Brazoria	-/0.3	29.3	0.302	0.169	0.472
482010024	ТΧ	Houston/Aldine	3.3/4.8	29.7	0.186	0.098	0.284
40278011	AZ	Yuma	-/0.9	2.8	0.027	0.001	0.028
60070007	CA	Butte	-/-0.8	23.5	0.000	0.000	0.000
60170010	CA	El Dorado #1	4.1/6.5	26.7	0.000	0.000	0.000
60170020	CA	El Dorado #2	2.3/4.1	28.7	0.000	0.000	0.000
60190007	CA	Fresno #1	8.6/10.4	29.1	0.001	0.000	0.001
60190011	CA	Fresno #2	11/11.9	31.1	0.002	0.000	0.002
60195001	CA	Fresno #3	11.8/14.5	30.2	0.002	0.000	0.002
60570005	CA	Nevada	6.3/9.6	25.4	0.000	0.000	0.000
60610003	CA	Placer #1	5/7.7	29.8	0.000	0.000	0.000
60610004	CA	Placer #2	0/5.1	24	0.000	0.000	0.000
60670012	CA	Sacramento	2.7/3.4	30.8	0.000	0.000	0.000
60990005	CA	Stanislaus	3.8/4.7	29.2	0.001	0.000	0.001
80350004	CO	Denver/Chatfield	-/0.2	15.6	0.055	0.001	0.056
80590006	CO	Rocky Flats	0.8/1.4	17.3	0.042	0.000	0.042
80590011	CO	Denver/NREL	1.7/2.4	17.6	0.044	0.001	0.044
490110004	UT	SLC/Bountiful	0.8/3	8	0.037	0.002	0.038
490353006	UT	SLC/Hawthorne	1.6/3.2	8.3	0.036	0.002	0.038
490353013	UT	SLC/Herriman	2.6/3.1	8.9	0.018	0.001	0.019
490570002	UT	SLC/Ogden	-/0.8	6.1	0.034	0.001	0.035

Table 3. Estimated PPB Improvements at Receptors Grouped by Region*

*Home state emission reductions are not assumed in this analysis.

Table 4. For Tier 1 Industries and Impactful Boilers in Tier 2 Industries, By State And By Industry, Estimated Emissions Reductions (ozone season tons*) and Costs

		Tier 1		Tier 2		
		Ozone Season	Annual Total Cost (million	Ozone Season	Annual Total Cost (million	
State	Industry	Emissions	\$) (Avg Annual Cost per	Emissions	\$) (Avg Annual Cost per	
		Reductions	Ton)	Reductions	Ton)	
AR	Basic Chemical Manufacturing	-	-	87	\$1.1 (\$5,113)	
AR	Glass and Glass Product Manufacturing	47	\$0.2 (\$2,046)	-	-	
AR	Iron and Steel Mills and Ferroalloy Manufacturing	6	\$0.0 (\$631)	-	-	
AR	Pipeline Transportation of Natural Gas	868	\$10.1 (\$4,852)	-	-	
AR	Pulp, Paper, and Paperboard Mills	-	-	646	\$6.1 (\$3,967)	
CA	Cement and Concrete Product Manufacturing	1,162	\$3.6 (\$1,279)	-	-	
CA	Glass and Glass Product Manufacturing	299	\$0.9 (\$1,293)	-	-	
CA	Petroleum and Coal Products Manufacturing	-	-	68	\$0.4 (\$2,349)	
CA	Pipeline Transportation of Natural Gas	137	\$1.5 (\$4,718)	-	-	
IL	Cement and Concrete Product Manufacturing	234	\$0.7 (\$1,279)	-	-	
IL	Glass and Glass Product Manufacturing	901	\$2.6 (\$1,180)	-	-	
IL	Pipeline Transportation of Natural Gas	1,316	\$13.7 (\$4,348)	-	-	
IN	Cement and Concrete Product Manufacturing	468	\$1.4 (\$1,279)	-	-	
IN	Glass and Glass Product Manufacturing	338	\$1.7 (\$2,046)	-	-	
IN	Iron and Steel Mills and Ferroalloy Manufacturing	1,829	\$16.0 (\$3,653)	-	-	
IN	Petroleum and Coal Products Manufacturing	-	-	388	\$2.8 (\$2,989)	
IN	Pipeline Transportation of Natural Gas	152	\$2.0 (\$5,457)	-	-	
KY	Pipeline Transportation of Natural Gas	2,291	\$28.7 (\$5,213)	-	-	
LA	Basic Chemical Manufacturing	-	-	1,611	\$15.2 (\$3,939)	
LA	Glass and Glass Product Manufacturing	206	\$1.9 (\$3,770)	-	-	
LA	Petroleum and Coal Products Manufacturing	-	-	477	\$4.0 (\$3,498)	
LA	Pipeline Transportation of Natural Gas	3,915	\$44.3 (\$4,720)	-	-	
LA	Pulp, Paper, and Paperboard Mills	-	-	561	\$5.2 (\$3,830)	
MD	Pipeline Transportation of Natural Gas	45	\$0.3 (\$3,042)	-	-	
MI	Cement and Concrete Product Manufacturing	371	\$1.1 (\$1,279)	-	-	
MI	Glass and Glass Product Manufacturing	50	\$0.3 (\$2,661)	-	-	
MI	Iron and Steel Mills and Ferroalloy Manufacturing	38	\$0.4 (\$4,194)	-	-	
MI	Pipeline Transportation of Natural Gas	2,272	\$25.9 (\$4,747)	-	-	
MN	Glass and Glass Product Manufacturing	115	\$0.6 (\$2,288)	-	-	
MN	Pipeline Transportation of Natural Gas	558	\$7.3 (\$5,452)	-	-	
MO	Cement and Concrete Product Manufacturing	1,296	\$4.0 (\$1,279)	-	-	
MO	Glass and Glass Product Manufacturing	227	\$1.1 (\$1,992)	-	-	
MO	Pipeline Transportation of Natural Gas	1,581	\$20.2 (\$5,338)	-	-	
MS	Pipeline Transportation of Natural Gas	1,577	\$19.0 (\$5,009)	-	-	
MS	Pulp, Paper, and Paperboard Mills	-	-	184	\$1.4 (\$3,243)	
NY	Cement and Concrete Product Manufacturing	142	\$0.4 (\$1,279)	-	-	
NY	Glass and Glass Product Manufacturing	141	\$0.5 (\$1,572)	-	-	
NY	Pipeline Transportation of Natural Gas	106	\$1.2 (\$4,697)	-	-	
NY	Pulp, Paper, and Paperboard Mills	-	-	111	\$1.2 (\$4,486)	

ОН	Cement and Concrete Product Manufacturing	116	\$0.4 (\$1,279)	-	-
OH	Glass and Glass Product Manufacturing	451	\$2.2 (\$1,998)	-	-
ОН	Iron and Steel Mills and Ferroalloy Manufacturing	847	\$7.6 (\$3,763)	-	-
ОН	Pipeline Transportation of Natural Gas	1,198	\$14.6 (\$5,062)	-	-
ОН	Pulp, Paper, and Paperboard Mills	-	-	179	\$2.3 (\$5,303)
ОК	Cement and Concrete Product Manufacturing	586	\$1.8 (\$1,279)	-	-
ОК	Glass and Glass Product Manufacturing	190	\$1.2 (\$2,550)	-	-
ОК	Pipeline Transportation of Natural Gas	2,799	\$34.1 (\$5,083)	-	-
PA	Cement and Concrete Product Manufacturing	888	\$2.8 (\$1,336)	-	-
PA	Glass and Glass Product Manufacturing	1,379	\$3.8 (\$1,133)	-	-
PA	Iron and Steel Mills and Ferroalloy Manufacturing	438	\$6.1 (\$5,823)	-	-
PA	Petroleum and Coal Products Manufacturing	-	-	98	\$0.6 (\$2,349)
PA	Pipeline Transportation of Natural Gas	427	\$4.1 (\$3,994)	-	-
PA	Pulp, Paper, and Paperboard Mills	-	-	54	\$0.9 (\$7,019)
ТΧ	Cement and Concrete Product Manufacturing	1,234	\$7.8 (\$2,624)	-	-
ТΧ	Glass and Glass Product Manufacturing	1,470	\$3.9 (\$1,109)	-	-
ТΧ	Pipeline Transportation of Natural Gas	1,736	\$20.7 (\$4,966)	-	-
UT	Cement and Concrete Product Manufacturing	520	\$1.6 (\$1,279)	-	-
UT	Pipeline Transportation of Natural Gas	237	\$2.7 (\$4,718)	-	-
VA	Cement and Concrete Product Manufacturing	398	\$1.2 (\$1,279)	-	-
VA	Glass and Glass Product Manufacturing	174	\$0.9 (\$2,154)	-	-
VA	Iron and Steel Mills and Ferroalloy Manufacturing	92	\$1.0 (\$4,357)	-	-
VA	Pipeline Transportation of Natural Gas	801	\$10.5 (\$5,457)	-	-
VA	Pulp, Paper, and Paperboard Mills	-	-	98	\$1.4 (\$5,903)
WI	Glass and Glass Product Manufacturing	677	\$2.5 (\$1,517)	-	-
WI	Pulp, Paper, and Paperboard Mills	-	-	1,472	\$11.7 (\$3,307)
WV	Cement and Concrete Product Manufacturing	230	\$0.7 (\$1,279)	-	-
WV	Pipeline Transportation of Natural Gas	751	\$6.5 (\$3,612)	-	-
WY	Cement and Concrete Product Manufacturing	446	\$1.4 (\$1,279)	-	-
WY	Pipeline Transportation of Natural Gas	380	\$4.9 (\$5,349)	-	-
	Grand Total	41,153	\$356.6 (\$3,610)	6,033	\$54.2 (\$3,744)

*Ozone season tons are calculated as tpy from the NEI multiplied by 5/12.

Note that New Jersey and Nevada did not have any estimated non-EGU reductions that cost up to \$7,500 per ton from the Tier 1 industries and boilers in Tier 2 industries.

		Tier 1	Tier 2		
	Ozone Season	Annual Total Cost (million	Ozone Season	Annual Total Cost (million	
State	Emissions	\$) (Avg Annual Cost per	Emissions	\$) (Avg Annual Cost per	
	Reductions	Ton)	Reductions	Ton)	
AR	922	\$10.4 (\$4,679)	732	\$7.2 (\$4,102)	
CA	1,598	\$6.0 (\$1,576)	68	\$0.4 (\$2,349)	
IL	2,452	\$17.0 (\$2,890)	-	-	
IN	2,787	\$21.1 (\$3,157)	388	\$2.8 (\$2,989)	
KY	2,291	\$28.7 (\$5,213)	-	_	
LA	4,121	\$46.2 (\$4,673)	2,649	\$24.4 (\$3,837)	
MD	45	\$0.3 (\$3,042)	-	-	
MI	2,731	\$27.7 (\$4,230)	-	-	
MN	673	\$7.9 (\$4,910)	-	_	
MO	3,103	\$25.3 (\$3 <i>,</i> 399)	-	-	
MS	1,577	\$19.0 (\$5,009)	184	\$1.4 (\$3,243)	
NY	389	\$2.2 (\$2,316)	111	\$1.2 (\$4,486)	
ОН	2,611	\$24.7 (\$3,944)	179	\$2.3 (\$5,303)	
ОК	3,575	\$37.1 (\$4,325)	-	-	
PA	3,132	\$16.8 (\$2,237)	152	\$1.5 (\$4,013)	
ТХ	4,440	\$32.4 (\$3,038)	-	-	
UT	757	\$4.3 (\$2,356)	_	-	
VA	1,465	\$13.6 (\$3,861)	98	\$1.4 (\$5,903)	
WI	677	\$2.5 (\$1,517)	1,472	\$11.7 (\$3,307)	
WV	982	\$7.2 (\$3,065)	-	-	
WY	826	\$6.2 (\$3,152)	-	_	

Table 4a. For Tier 1 Industries and Impactful Boilers in Tier 2 Industries, By State, Estimated Emissions Reductions (ozone season tons) and Costs

Figure 2. Geographical Distribution of Ozone Season NOx Reductions and Summary of Reductions by Industry and by State

Non-EGU Ozone Season NOx Reductions

	Cement and Concrete Product Manufacturing	
--	---	--

- Glass and Glass Product Manufacturing
- Iron and Steel Mills and Ferroalloy Manufacturing \bigcirc
- Pipeline Transportation of Natural Gas 0
- High Emitting Equipment from Tier 2 industries

State	Cement and Concrete Product Manufacturing	Glass and Glass Product Manufacturing	Iron and Steel Mills and Ferroalloy Manufacturing	Pipeline Transportation of Natural Gas	High Emitting Equipment from Tier 2 industries	Total
LA	0	206	0	3,915	2,649	6,769
тх	1,234	1,470	0	1,736	0	4,440
OK	586	190	0	2,799	0	3,575
PA	888	1,379	438	427	152	3,284
IN	468	338	1,829	152	388	3,175
MO	1,296	227	0	1,581	0	3,103
ОН	116	451	847	1,198	179	2,790
MI	371	50	38	2,272	0	2,731
IL.	234	901	0	1,316	0	2,452
KY	0	0	0	2,291	0	2,291
WI	0	677	0	0	1,472	2,150
MS	0	0	0	1,577	184	1,761
CA	1,162	299	0	137	68	1,666
AR	0	47	6	868	732	1,654
VA	398	174	92	801	98	1,563
WV	230	0	0	751	0	982
WY	446	0	0	380	0	826
UT	520	0	0	237	0	757
MN	0	115	0	558	0	673
NY	142	141	0	106	111	500
MD	0	0	0	45	0	45

100-500 tons • Under 100 tons

500-1000 tons

>1000 tons

 \bigcirc

 \bigcirc

0

Table 5. By Industry, Number and Type of Emissions Units, Total Estimated Emissions Reductions (ozone season tons), Total PPB Improvements, and Costs

		Nu	mber of Units by 1	Гуре	Ozone Seaso	zone Season Emissions Reductions (tons) by Type of Unit Total PPB Improvement Across Downwind Receptors (Max Improvement At Receptor) Ann		Total PPB Improvement Across Downwind Receptors (Max Improvement At Receptor)		Annual Total Cost	
Industry	Region	Boilers	Internal Combustion Engines	Industrial Processes	Boilers	Internal Combustion Engines	Industrial Processes	East West		(million \$) (Avg Annual Cost per Ton)	
Glass and Glass Product Manufacturing	East	-	-	41	-	-	6,367	0.6962 (0.0865)	0.0015 (0.0004)	\$23.2 (\$1,520)	
	West	-	-	3	-	-	299	0.0009 (0.0001)	0.0332 (0.0066)	\$0.9 (\$1,293)	
Cement and Concrete Product Manufacturing	East	1	-	39	16	-	5 <i>,</i> 948	0.6382 (0.0707)	0.0018 (0.0006)	\$22.4 (\$1,566)	
	West	-	-	8	-	-	2,128	0.0151 (0.0019)	0.1996 (0.0332)	\$6.5 (\$1,279)	
Iron and Steel Mills and Ferroalloy Manufacturing	East	25	-	15	2,044	-	1,207	1.1556 (0.1750)	0.0000 (0.0000)	\$31.2 (\$3,995)	
Pipeline Transportation of Natural Gas	East	-	296	-	-	22,390	-	1.5373 (0.2815)	0.0057 (0.0020)	\$263.2 (\$4,898)	
	West	-	11	-	-	754	-	0.0086 (0.0010)	0.0586 (0.0170)	\$9.1 (\$5,037)	
Basic Chemical Manufacturing	East	17	-	-	1,698	-	-	0.1655 (0.0107)	0.0002 (0.0000)	\$16.3 (\$3,999)	
Petroleum and Coal Products Manufacturing	East	9	-	-	962	-	-	0.2677 (0.0258)	0.0000 (0.0000)	\$7.3 (\$3,176)	
	West	1	-	-	68	-	-	0.0002 (0.0000)	0.0075 (0.0015)	\$0.4 (\$2,349)	
Pulp, Paper, and Paperboard Mills	East	25	-	-	3,305	-	-	0.3678 (0.0117)	0.0002 (0.0000)	\$30.2 (\$3,807)	
Blue highlights reflect western states information.											
Orange highlights reflect Tier 2 industries with impactful bo	oilers.										

Table 6. By Industry, Emissions Source Group, Control Technology, Number of Units, Estimated Emissions Reductions (ozone season tons), and Annual Total Cost

Industry	Emissions Source Group	Control Technology	Number of Units	Ozone Season Emissions Reductions	Annual Total Cost (million \$)
Cement and Concrete Product Manufacturing	Boilers - < 10 Million BTU/hr; Industrial Processes - Kiln	Ultra Low NOx Burner; Selective Non-Catalytic Reduction	1	117	\$0.5
	Industrial Processes - Kiln	Selective Non-Catalytic Reduction	24	3,123	\$9.7
	Industrial Processes - Preheater Kiln	Selective Non-Catalytic Reduction	3	342	\$1.2
	Industrial Processes - Preheater/Precalciner Kiln	Selective Non-Catalytic Reduction	19	4,510	\$17.5
Glass and Glass Product Manufacturing	Industrial Processes - Container Glass: Melting Furnace	Selective Catalytic Reduction	27	1,676	\$8.7
	Industrial Processes - Flat Glass: Melting Furnace	Selective Catalytic Reduction	13	4,674	\$12.7
	Industrial Processes - Furnace: General	Oxygen Enriched Air Staging	1	52	\$0.1
	Industrial Processes - Pressed and Blown Glass: Melting Furnace	Selective Catalytic Reduction	3	264	\$2.7
Iron and Steel Mills and Ferroalloy Manufacturing	Boilers - > 100 Million BTU/hr	Ultra Low NOx Burner and Selective Catalytic Reduction	3	383	\$4.2
	Boilers - > 100 Million BTU/hr	Ultra Low NOx Burner	6	282	\$2.2
	Boilers - > 100 Million BTU/hr	Selective Catalytic Reduction	2	106	\$1.2
	Boilers - > 100 Million BTU/hr; Boilers - Blast Furnace Gas	Ultra Low NOx Burner	1	166	\$1.0
	Boilers - > 100 Million BTU/hr; Boilers - Coke Oven Gas	Ultra Low NOx Burner	6	360	\$2.9
	Boilers - > 100 Million BTU/hr; Boilers - Coke Oven Gas	Selective Catalytic Reduction; Ultra Low NOx Burner and Selective Catalytic Reduction	1	114	\$1.7
	Boilers - Blast Furnace Gas	Ultra Low NOx Burner	1	65	\$0.4
	Boilers - Blast Furnace Gas; Industrial Processes - Sintering:				
	Windbox; Industrial Processes - Blast Furnace:	Ultra Low NOx Burner; Selective Catalytic Reduction; Low NOx			
	Casting/Tapping: Local Evacuation; Industrial Processes - Process Gas: Process Heaters	Burner and Flue Gas Recirculation	1	440	Ş4.4
	Boilers - Coke Oven Gas	Ultra Low NOx Burner and Selective Catalytic Reduction	3	394	\$3.7
	Boilers - Coke Oven Gas; Boilers - > 100 Million BTU/hr	Ultra Low NOx Burner; Ultra Low NOx Burner and Selective Catalytic Reduction	1	116	\$1.6
	Industrial Processes - Basic Oxygen Furnace (BOF): Open Hood Stack	Selective Catalytic Reduction	2	185	\$1.9
	Industrial Processes - Basic Oxygen Furnace (BOF): Open Hood Stack; Industrial Processes - General	Selective Catalytic Reduction; Low NOx Burner	1	172	\$1.7
	Industrial Processes - Basic Oxygen Furnace (BOF): Top Blown Furnace: Primary	Selective Catalytic Reduction	1	50	\$0.5
	Industrial Processes - Blast Furnace: Casting/Tapping: Local Evacuation	Selective Catalytic Reduction	1	38	\$0.4
	Industrial Processes - General	Low NOx Burner	5	191	\$1.7
	Industrial Processes - General; Industrial Processes - Coke Oven or Blast Furnace	Low NOx Burner; Low NOx Burner and Flue Gas Recirculation	1	84	\$1.0
	Industrial Processes - Other Not Classified	Low NOx Burner and Flue Gas Recirculation	2	43	\$0.1
	Industrial Processes - Sintering: Windbox	Selective Catalytic Reduction	1	60	\$0.6
Pipeline Transportation of Natural Gas	Internal Combustion Engines - 2-cycle Clean Burn	Layered Combustion	1	60	\$0.8
	Internal Combustion Engines - 2-cycle Lean Burn	Layered Combustion	136	12,645	\$165.6
	Internal Combustion Engines - 4-cycle Lean Burn	Selective Catalytic Reduction	41	2,656	\$21.6
	Internal Combustion Engines - 4-cycle Rich Burn	Non-Selective Catalytic Reduction	2	147	\$0.2
	Internal Combustion Engines - Reciprocating	Non-Selective Catalytic Reduction or Layered Combustion	94	6,329	\$72.0
	Internal Combustion Engines - Reciprocating	Adjust Air to Fuel Ratio and Ignition Retard	12	193	\$1.1
	Internal Combustion Engines - Reciprocating	Non-Selective Catalytic Reduction or Layered Combustion; Adjust Air to Fuel Ratio and Ignition Retard	1	49	\$0.4
	Internal Combustion Engines - Turbine	Selective Catalytic Reduction and Steam Injection	17	929	\$8.4
	Internal Combustion Engines - Turbine	SCR + DLN Combustion	3	136	\$2.1

Basic Chemical Manufacturing	Boilers - > 100 Million BTU/hr	Ultra Low NOx Burner and Selective Catalytic Reduction	6	786	\$7.5
	Boilers - > 100 Million BTU/hr	Selective Catalytic Reduction	2	104	\$1.5
	Boilers - 10-100 Million BTU/hr	Ultra Low NOx Burner and Selective Catalytic Reduction	1	133	\$1.0
	Boilers - 10-100 Million BTU/hr	Selective Catalytic Reduction	1	43	\$0.1
	Boilers - Cogeneration	Selective Catalytic Reduction	1	68	\$0.9
	Boilers - Distillate Oil - Grades 1 and 2: Boiler	Selective Catalytic Reduction	1	47	\$0.6
	Boilers - Petroleum Refinery Gas	Ultra Low NOx Burner and Selective Catalytic Reduction	2	293	\$2.8
	Boilers - Petroleum Refinery Gas	Ultra Low NOx Burner	2	138	\$0.8
	Boilers - Subbituminous Coal: Traveling Grate (Overfeed) Stoker	Selective Catalytic Reduction	1	87	\$1.1
Petroleum and Coal Products Manufacturing	Boilers - > 100 Million BTU/hr	Ultra Low NOx Burner	1	41	\$0.2
	Boilers - > 100 Million BTU/hr; Boilers - Blast Furnace Gas	Ultra Low NOx Burner	1	38	\$0.4
	Boilers - Boiler, >= 100 Million BTU/hr	Natural Gas Reburn	1	284	\$1.8
	Boilers - Coke Oven Gas	Ultra Low NOx Burner	1	98	\$0.6
	Boilers - Petroleum Refinery Gas	Ultra Low NOx Burner and Selective Catalytic Reduction	3	433	\$3.8
	Boilers - Petroleum Refinery Gas	Ultra Low NOx Burner	3	137	\$0.9
Pulp, Paper, and Paperboard Mills	Boilers - > 100 Million BTU/hr	Ultra Low NOx Burner and Selective Catalytic Reduction	5	618	\$6.8
	Boilers - > 100 Million BTU/hr	Ultra Low NOx Burner	3	151	\$1.0
	Boilers - > 100 Million BTU/hr	Selective Catalytic Reduction	1	68	\$1.2
	Boilers - 10-100 Million BTU/hr	Ultra Low NOx Burner	2	106	\$0.5
	Boilers - Bituminous Coal: Cyclone Furnace	Selective Catalytic Reduction	2	662	\$3.4
	Boilers - Bituminous Coal: Pulverized Coal: Dry Bottom	Ultra Low NOx Burner and Selective Catalytic Reduction	1	111	\$1.1
	Boilers - Bituminous Coal: Pulverized Coal: Dry Bottom; Boilers - > 100 Million BTU/hr	Low NOx Burner; Selective Catalytic Reduction	1	98	\$1.4
	Boilers - Bituminous Coal: Spreader Stoker	Selective Catalytic Reduction	3	251	\$3.2
	Boilers - Cogeneration	Ultra Low NOx Burner and Selective Catalytic Reduction	2	338	\$2.9
	Boilers - Fluid Catalytic Cracking Unit with CO Boiler: Natura Gas	Ultra Low NOx Burner and Selective Catalytic Reduction	2	289	\$2.7
	Boilers - Subbituminous Coal: Boiler, Spreader Stoker	Selective Catalytic Reduction	2	348	\$3.7
	Boilers - Subbituminous Coal: Spreader Stoker	Selective Catalytic Reduction	1	266	\$2.3

Table 7. Estimated Emissions Reductions (ozone season tons), Annual Total Cost, and Average Cost per Ton by ControlTechnology Across All Non-EGU Emissions Units

			Average Cost
Control Technology	OS NOx Reductions	Annual Total Cost	per Ton
Adjust Air to Fuel Ratio and Ignition Retard	212	\$1,216,435	\$2,393
Layered Combustion	12,706	\$166,398,282	\$5,457
Low NOx Burner	231	\$2,092,579	\$3,773
Low NOx Burner and Flue Gas Recirculation	200	\$2,054,876	\$4,288
Natural Gas Reburn	284	\$1,843,948	\$2,703
Non-Selective Catalytic Reduction	147	\$205,808	\$585
Non-Selective Catalytic Reduction or Layered Combustion	6,359	\$72,383,222	\$4,743
Oxygen Enriched Air Staging	52	\$95,641	\$764
SCR + DLN Combustion	136	\$2,060,943	\$6,301
Selective Catalytic Reduction	12,239	\$74,692,132	\$2,543
Selective Catalytic Reduction and Steam Injection	929	\$8,439,921	\$3,787
Selective Non-Catalytic Reduction	8,076	\$28,782,335	\$1,485
Ultra Low NOx Burner	1,670	\$11,584,405	\$2,890
Ultra Low NOx Burner and Selective Catalytic Reduction	3,946	\$38,959,490	\$4,114

Table 8. Estimated Emissions Reductions (ozone season tons), Annual Total Cost, and Average Cost per Ton by Control Technology Across Non-EGU Emissions Units Grouped by the Tier 1 Industries and Impactful Boilers in Tier 2 Industries

				Average Cost
Tier	Control Technology	OS NOx Reductions	Annual Total Cost	per Ton
Tier 1	Adjust Air to Fuel Ratio and Ignition Retard	212	\$1,216,435	\$2,393
Tier 1	Layered Combustion	12,706	\$166,398,282	\$5 <i>,</i> 457
Tier 1	Low NOx Burner	211	\$1,852,495	\$3,656
Tier 1	Low NOx Burner and Flue Gas Recirculation	200	\$2,054,876	\$4,288
Tier 1	Non-Selective Catalytic Reduction	147	\$205,808	\$585
Tier 1	Non-Selective Catalytic Reduction or Layered Combustion	6,359	\$72,383,222	\$4,743
Tier 1	Oxygen Enriched Air Staging	52	\$95,641	\$764
Tier 1	SCR + DLN Combustion	136	\$2,060,943	\$6,301
Tier 1	Selective Catalytic Reduction	10,219	\$55,575,188	\$2,266
Tier 1	Selective Catalytic Reduction and Steam Injection	929	\$8,439,921	\$3,787
Tier 1	Selective Non-Catalytic Reduction	8,076	\$28,782,335	\$1,485
Tier 1	Ultra Low NOx Burner	962	\$7,172,778	\$3,107
Tier 1	Ultra Low NOx Burner and Selective Catalytic Reduction	946	\$10,362,549	\$4,567
Tier 2	Low NOx Burner	20	\$240,084	\$5,022
Tier 2	Natural Gas Reburn	284	\$1,843,948	\$2,703
Tier 2	Selective Catalytic Reduction	2,020	\$19,116,944	\$3,942
Tier 2	Ultra Low NOx Burner	708	\$4,411,626	\$2,594
Tier 2	Ultra Low NOx Burner and Selective Catalytic Reduction	3,000	\$28,596,941	\$3,972

 Table 9. Estimated Emissions Reductions (ozone season tons), Annual Total Cost, and Average Cost per Ton by Control Technology Across Non-EGU

 Emissions Units Grouped by the Seven Individual Tier 1 and Tier 2 Industries

				Average Cost
Industry	Control Technology	OS NOx Reductions	Annual Total Cost	per Ton
Cement and Concrete Product Manufacturing	Selective Non-Catalytic Reduction	8,076	\$28,782,335	\$1,485
Cement and Concrete Product Manufacturing	Ultra Low NOx Burner	16	\$169,531	\$4,410
Glass and Glass Product Manufacturing	Oxygen Enriched Air Staging	52	\$95,641	\$764
Glass and Glass Product Manufacturing	Selective Catalytic Reduction	6,615	\$24,062,362	\$1,516
Iron and Steel Mills and Ferroalloy Manufacturing	Low NOx Burner	211	\$1,852,495	\$3,656
Iron and Steel Mills and Ferroalloy Manufacturing	Low NOx Burner and Flue Gas Recirculation	200	\$2,054,876	\$4,288
Iron and Steel Mills and Ferroalloy Manufacturing	Selective Catalytic Reduction	948	\$9,886,092	\$4,345
Iron and Steel Mills and Ferroalloy Manufacturing	Ultra Low NOx Burner	946	\$7,003,247	\$3,085
Iron and Steel Mills and Ferroalloy Manufacturing	Ultra Low NOx Burner and Selective Catalytic Reduction	946	\$10,362,549	\$4,567
Pipeline Transportation of Natural Gas	Adjust Air to Fuel Ratio and Ignition Retard	212	\$1,216,435	\$2,393
Pipeline Transportation of Natural Gas	Layered Combustion	12,706	\$166,398,282	\$5,457
Pipeline Transportation of Natural Gas	Non-Selective Catalytic Reduction	147	\$205,808	\$585
Pipeline Transportation of Natural Gas	Non-Selective Catalytic Reduction or Layered Combustion	6,359	\$72,383,222	\$4,743
Pipeline Transportation of Natural Gas	SCR + DLN Combustion	136	\$2,060,943	\$6,301
Pipeline Transportation of Natural Gas	Selective Catalytic Reduction	2,656	\$21,626,734	\$3,393
Pipeline Transportation of Natural Gas	Selective Catalytic Reduction and Steam Injection	929	\$8,439,921	\$3,787
Basic Chemical Manufacturing	Selective Catalytic Reduction	348	\$4,198,768	\$5,027
Basic Chemical Manufacturing	Ultra Low NOx Burner	138	\$769,564	\$2,317
Basic Chemical Manufacturing	Ultra Low NOx Burner and Selective Catalytic Reduction	1,211	\$11,326,715	\$3 <i>,</i> 896
Petroleum and Coal Products Manufacturing	Natural Gas Reburn	284	\$1,843,948	\$2,703
Petroleum and Coal Products Manufacturing	Ultra Low NOx Burner	313	\$2,110,773	\$2,808
Petroleum and Coal Products Manufacturing	Ultra Low NOx Burner and Selective Catalytic Reduction	433	\$3,762,867	\$3,624
Pulp, Paper, and Paperboard Mills	Low NOx Burner	20	\$240,084	\$5,022
Pulp, Paper, and Paperboard Mills	Selective Catalytic Reduction	1,672	\$14,918,176	\$3,717
Pulp, Paper, and Paperboard Mills	Ultra Low NOx Burner	257	\$1,531,289	\$2,484
Pulp, Paper, and Paperboard Mills	Ultra Low NOx Burner and Selective Catalytic Reduction	1,356	\$13,507,360	\$4,151

VI. Request for Comment and Additional Information

In this screening assessment the EPA used CoST, the CMDB, and the 2019 emissions inventory to assess emission reduction potential from non-EGU emissions units in several industries. We identified emissions units that were uncontrolled or that could be better controlled and then applied control technologies to estimate emissions reductions and costs. As noted above, the cost estimates do not include monitoring, recordkeeping, reporting, or testing costs.

As discussed in Section VI.D.2.a of the proposal preamble, the EPA requests comment on the capital and annual costs of several potential control technologies, and in particular whether ultra-low NO_X burners or low NO_X burners are generally considered part of the process or add-on controls for ICI boilers (and how process changes or retrofits to accommodate controls would affect the cost estimates); the effectiveness of low emissions combustion in controlling NO_X from reciprocating IC engines, compared to other potential NO_X controls for these engines; and whether controls on ICI boilers and reciprocating IC engines are likely to be run all year or only during the ozone season.

The EPA also requests comment on the time needed to install the various control technologies across all of the emissions units in the Tier 1 and Tier 2 industries. In particular, the EPA solicits comment on the time needed to obtain permits, the availability of vendors and materials, and the earliest possible installation times for SCR on glass furnaces; SNCR on cement kilns; ultra-low NO_x burners, low NO_x burners, and SCR on ICI boilers (coal-fired, gas-fired, or oil-fired); low NO_x burners on large non-EGU ICI boilers; and low emissions combustion, layered emissions combustion, NSCR, and SCR on reciprocating rich-burn or lean-burn IC engines.

Finally, with respect to emissions monitoring requirements, the EPA requests comment on the costs of installing and operating CEMS at non-EGU sources without NO_x emissions monitors; the time needed to program and install CEMS at non-EGU sources; whether monitoring techniques other than CEMS, such as predictive emissions monitoring systems (PEMS), may be sufficient for certain non-EGU facilities, and the types of non-EGU facilities for which such PEMS may be sufficient; and the costs of installing and operating monitoring techniques other than CEMS.

APPENDIX A – Analysis of Industry Contribution Data

This appendix describes the analyses performed to help focus the non-EGU analytical framework and resulting screening assessment on the most impactful industries.

To inform this analysis, first using the procedure described in Section III, Step 1 above, we estimated contributions from each of 41 industries to each nonattainment and maintenance receptor in 2023 and used these data to calculate the 5 metrics identified in Table A-1.^{27,28} A summary of the data for each metric for each industry is provided in Table A-3. These metrics were selected to provide air quality information to inform an evaluation of the magnitude and geographic scope of contributions from individual industries. Metrics 1, 2, and 3 provide information on the magnitude of the contribution. Metric 4 provides information on the geographic scope of the downwind impact, whereas Metric 5 provides information on the geographic scope of upwind state contributions. Of the three air quality metrics we chose to analyze the data for Metric 2, the maximum contribution to any downwind receptor, because this metric aligns with the air quality metric used in Step 2 of the four-step interstate transport framework to identify linked upwind states for further review in Step 3 of the interstate transport framework. To examine the geographic breadth of the industry contributions we chose Metric 4 because that metric provides information on the extent of impacts on downwind air quality problems.

Table A-1. Contribution Metrics for Non-EGU Assessment

1	Total contribution to all downwind receptors
2	Maximum contribution to any downwind receptor
3	Average contribution across all receptors
4	Number of receptors with contributions >= 0.01 ppb
5	Number of linked upwind states with highest industry contribution >= 0.01 ppb

Next, we evaluated the maximum downwind contributions to identify the most impactful industries for further analysis. This approach included a semi-quantitative examination of rank-ordered maximum contributions to identify breakpoints in the data that might serve as an initial screen to eliminate non-impactful industries from further analysis of the contribution data. The distribution of maximum contributions provided in Table A-3 indicate that there is a large range in the values across the 41 industries. Specifically, 5 industries individually contribute more than 0.10 ppb, 3 industries contribute between 0.05 ppb and 0.10 ppb, 11 industries contribute between 0.01 and 0.05 ppb, 8 industries contribution between 0.005 and 0.01 ppb, and 14 industries contribute less than 0.005 ppb.

The rank-ordered maximum downwind contributions from individual industries are shown in Figure A-1. In this figure each point represents the maximum contribution to a downwind receptor from a particular industry. Note that the values for the highest contributing industries are not show in the figure in order to provide greater resolution of the shape of the distribution at the lower end of the values. The declining curve in Figure A-1 exhibits a shape similar to a harmonic distribution. Initially, there is a fairly steep drop in contributions with a breakpoint between roughly 0.04 and 0.06 ppb followed by a steady decline to 0.01 ppb. Beyond 0.01 ppb the shape of the distribution is much flatter. The data suggest that perhaps 0.05 ppb or 0.01 ppb could serve as breakpoints in the data. Based on the distribution

²⁷ Receptors in California were not considered in evaluating the impacts of non-EGU sources because EPA's contributions from upwind states to these receptors at Step 2 of the four-step interstate transport framework finds that these monitoring sites are overwhelmingly impacted by in-state emissions to a degree not comparable with any other identified nonattainment or maintenance-only receptors in the country. In this regard, EPA is proposing a determination that California receptors are not sufficiently impacted by interstate transport of ozone to warrant proceeding with a Step 3 evaluation of emissions reduction opportunities.

²⁸ The methods for identifying receptors are described in the Air Quality Modeling TSD for this proposed rule.

of the data we determined that 0.01 ppb provides a meaningful conservative breakpoint for screening out nonimpactful industries from the non-EGU contribution analysis. The specific industries with a maximum downwind contribution >= 0.01 ppb are identified in Table A-2.

Figure A-1. Rank-ordered maximum downwind contributions from individual industries

We then examined the data for Metrics 2 and 4 for each industry that has a maximum contribution ≥ 0.01 ppb. The data for Metric 4, as shown in Figure A-2, suggests that there as a breakpoint between those industries that contribute to 10 or more receptors versus those industries that contribute to fewer than 10 receptors. Table A-2 provides the data for Metrics 2 and 4, ranked by the magnitude of Metric 4. The data show that 8 industries contribute ≥ 0.01 ppb to more than 10 receptors. Of these 8 industries, 5 have a maximum contributions of > 0.10 ppb to one of these receptors. In addition, one industry, Basic Chemical Manufacturing, contributes to only 9 receptors, but the maximum contribution to one of these receptors is > 0.10 ppb. Using this information, we grouped the 9 industries into one of 2 tiers based on considering both the magnitude of the contribution to any one receptor of > 0.10 ppb and (2) a contribution ≥ 0.01 ppb to at least 10 receptors. Tier 2 includes the 5 industries that each have (1) a maximum contribution to any one receptor ≥ 0.01 ppb but contribute ≥ 0.01 ppb to fewer than 10 receptors, or (2) a maximum contribution < 0.10 ppb but contribute ≥ 0.01 ppb to at least 10 receptors.

Figure A-2. Number of downwind receptors with contributions \geq 0.10 ppb for each industry with a maximum downwind contribution \geq 0.01 ppb

Table A-2. Maximum downwind contribution and number of receptors with contributions >= 0.	01 ppb
---	--------

	Max	# Recentors with
Industry	Contribution	Contributions ≥ 0.01 ppb
Cement and Concrete Products	0.231	19
Metal Ore Mining	0.079	15
Lime and Gypsum Products	0.066	13
Pipeline Transportation of Natural Gas	0.287	12
Petroleum and Coal Products	0.098	12
Iron and Steel Mills and Ferroalloy	0.129	11
Glass and Glass Products	0.105	11
Pulp, Paper, and Paperboard Mills	0.043	11
Basic Chemical	0.123	9
Oil and Gas Extraction	0.035	9
Resin, Synthetic Rubber, and Fibers and Filaments	0.027	7
Nonmetallic Mineral Mining and Quarrying	0.035	4
Clay Product and Refractory	0.024	4
Water, Sewage and Other Systems	0.016	4
Pesticide, Fertilizer, and Other Ag	0.044	3
Other Chemical Products	0.024	3
Chemical and Allied Products	0.019	2
Natural Gas Distribution	0.016	1
Pharmaceutical and Medicine	0.011	1

Table A-3. Estimated Total, Maximum, and Average Contributions from Each Industry, and Number of Receptors with Contributions >= 0.01 ppb for 2023

	# Encilition with Unite		Ozono Sooron					# Receptors with	# States with Highest
Industry		# Units > 100 tpy	Emissions	Total Contribution	Max Contribution	Average Con	ntribution Co	ontributions >= 0.01	Contribution >= 0.01
	> 100tpy		EIIIISSIOIIS					ppb	ppb
Pipeline Transportation of Natural Gas	144	399	34,343	1.679	0.287	0.08	34	12	12
Cement and Concrete Product Manufacturing	61	84	36.244	1.871	0.231	0.09	4	19	13
Iron and Steel Mills and Ferroallov Manufacturing	14	43	4.622	0.577	0.129	0.02	9	11	1
Basic Chemical Manufacturing	38	78	9.612	0.293	0.123	0.01	15	9	2
Glass and Glass Product Manufacturing	38	53	12.059	0.695	0.105	0.03	5	11	7
Petroleum and Coal Products Manufacturing	47	94	8.163	0.733	0.098	0.03	37	12	6
Metal Ore Mining	9	21	17,778	0.687	0.079	0.03	34	15	3
Lime and Gypsum Product Manufacturing	31	60	8.856	0.531	0.066	0.02	27	13	3
Pesticide, Fertilizer, and Other Agricultural Chemical Manufacturing	16	27	3,680	0.162	0.044	0.00	8	3	1
Pulp, Paper, and Paperboard Mills	46	73	6,773	0.306	0.043	0.01	15	11	3
Oil and Gas Extraction	59	139	9.150	0.207	0.035	0.01	10	9	2
Nonmetallic Mineral Mining and Quarrying	8	18	3,808	0.167	0.035	0.00	8	4	1
Resin, Synthetic Rubber, and Artificial and Synthetic Fibers and Filaments Manufacturing	10	16	1,779	0.152	0.027	0.00	08	7	2
Other Chemical Product and Preparation Manufacturing	7	8	683	0.074	0.024	0.00)4	3	1
Clay Product and Refractory Manufacturing	1	2	1,098	0.088	0.024	0.00)4	4	1
Chemical and Allied Products Merchant Wholesalers	1	4	573	0.032	0.019	0.00)2	2	1
Natural Gas Distribution	6	17	1,027	0.058	0.016	0.00)3	1	1
Water, Sewage and Other Systems	6	6	375	0.069	0.016	0.00)3	4	1
Pharmaceutical and Medicine Manufacturing	2	2	300	0.057	0.011	0.00)3	1	1
Grain and Oilseed Milling	4	4	376	0.042	0.009	0.00)2	0	0
Lessors of Real Estate	2	2	138	0.037	0.009	0.00)2	0	0
Nonferrous Metal (except Aluminum) Production and Processing	1	4	408	0.025	0.008	0.00)1	0	0
Sugar and Confectionery Product Manufacturing	5	10	1,068	0.043	0.008	0.00)2	0	0
Electric Power Generation, Transmission and Distribution	4	4	296	0.039	0.006	0.00)2	0	0
Engine, Turbine, and Power Transmission Equipment Manufacturing	2	2	112	0.020	0.005	0.00)1	0	0
Agriculture, Construction, and Mining Machinery Manufacturing	1	1	73	0.012	0.005	0.00)1	0	0
Colleges, Universities, and Professional Schools	4	4	263	0.030	0.005	0.00)2	0	0
Coal Mining	5	5	283	0.015	0.004	0.00)1	0	0
Plastics Product Manufacturing	2	2	126	0.012	0.004	0.00)1	0	0
Architectural, Engineering, and Related Services	2	2	117	0.013	0.003	0.00)1	0	0
Motor Vehicle Parts Manufacturing	1	1	62	0.011	0.003	0.00)1	0	0
Advertising, Public Relations, and Related Services	1	1	51	0.009					
Waste Treatment and Disposal	5	5	376	0.010					
National Security and International Affairs	1	1	42	0.002	Legend				
Support Activities for Mining	1	1	56	0.003					# States with
Beverage Manufacturing	1	1	45	0.002		Maximum	# Receptors w	ith	Highest
Veneer, Plywood, and Engineered Wood Product Manufacturing	1	1	9	0.001		Contribution	>=0.01 ppb	Total Contribution	>= 0.01
Scientific Research and Development Services	1	1	78	0.001	Break Points	0.01 to 0.04	> 1 to 9	0.1 to 0.4	> 1 to 9
Alumina and Aluminum Production and Processing	1	1	13	0.000		>= 0.05	>= 10	>= 0.5	>= 10
Other Food Manufacturing	1	1	45	0.000	1at Time of Industrias for Further Analysis Provider AC Constitution				
Office Administrative Services	1	1	5	0.000	1st Tier of Industries for Further Analysis Based on AQ Contributions These industries (1) have a maximum contribution to any one recentor of >0.10 nph			r of >0.10 ppb	
					AND (2) contribute ≥ 0.01 ppb to at least 10 receptors.				. 5, - 5, 10 ppb
Total	591	1,199	164,962	8.77	2nd Tier of Industries for Further Analysis Based on AQ Contributions				
Tier 1 Industries	257	579	87,267	4.82	These industries either have:				
Tier 2 Industries	171	326	51,182	2.55	(1) a maximum contribution to any one receptor >=0.10 ppb but contribute >=0.01 ppb				
Tier 1 Industries (% of Total)	43%	48%	53%	55%	5% (2) a maximum contribution <0.10 ppb but contribute >=0.01 ppb to at least 10 recentors				
Tier 2 Industries (% of Total)	29%	27%	31%	29%					

APPENDIX B – SUMMARY OF FACILITIES REMOVED in the SCREENING ASSESSMENT for 2026

REGION_CD	FACILITY_ID	Reason for Removal	state	county	site_name	naics_code	naics_description	city
24001	7763811	Closure	MD	Allegany	Luke Paper Company	322121	Paper (except Newsprint) Mills	Luke
06029	4789011	Subject to Consent Decree	CA	Kern	LEHIGH SOUTHWEST CEMENT CO.	327310	Cement Manufacturing	MONOLITH
06029	4789311	Subject to Consent Decree	CA	Kern	CALIFORNIA PORTLAND CEMENT CO.	327310	Cement Manufacturing	MOJAVE
06071	4841311	Subject to Consent Decree	CA	San Bernardino	CEMEX - BLACK MOUNTAIN QUARRY PLANT	327310	Cement Manufacturing	APPLE VALLEY
18093	8225311	Units to be replaced by new kiln by 2023	IN	Lawrence	LEHIGH CEMENT COMPANY LLC	32731	Cement Manufacturing	Mitchell
26007	8127411	Subject to Consent Decree	MI	Alpena	Holcim (US) Inc. DBA Lafarge Alpena Plant	327310	Cement Manufacturing	ALPENA