

# How to Build Resilience of Your Wastewater Utility to Disasters using EPA's Free Tools

David Goldbloom-Helzner EPA Office of Water

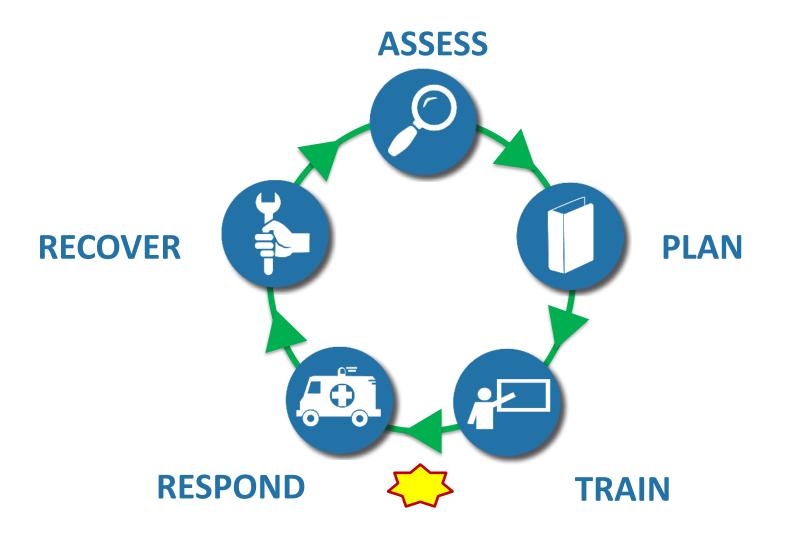
Goldbloom-Helzner.David@epa.gov



# **Disasters and Wastewater Utilities**







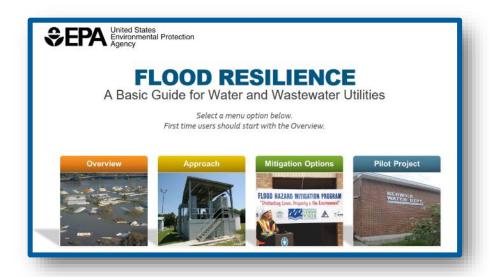






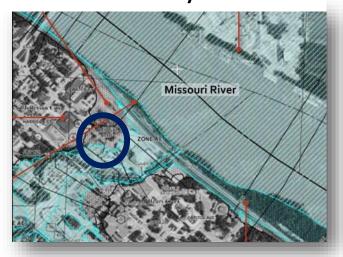

# **Resilience Framework**











# Tools to <u>Assess</u> Risk/Resilience (both water and wastewater utilities)

- Resilience Guides
  - Floods
  - Earthquakes
  - Drought
  - Power
  - Malevolent Acts



- Vulnerability Self-Assessment Tool
- Climate Resilience Evaluation and Awareness Tool (CREAT)
  - heavier precipitation, drought, sea level rise, etc. (presentation in July)

# FEMA Flood maps: 100 and 500-year flood

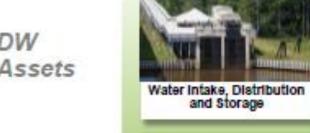


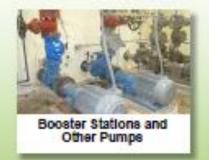
### **Elevation Survey**

100000 0000 0 100 0 100



#### Determine Critical Assets that are Priority for Mitigation


|                              | V                                                         | ulnerability                               |                                                      |                                            | С                                      | onsequences                                                                                                                                                                | Prio       | rity for Mitiga | ation⁵      |
|------------------------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-------------|
| 1                            | 2                                                         | 3                                          | 4                                                    | 5                                          | 6                                      | 7                                                                                                                                                                          |            | 8               |             |
| Asset/<br>Operation          | Height<br>of Asset<br>Above<br>Floor<br>(ft) <sup>1</sup> | Elevation<br>of Asset<br>(ft) <sup>2</sup> | Elevation<br>of Flood<br>Threat<br>(ft) <sup>3</sup> | Vulnerable<br>to<br>Flooding?<br>(Yes/No)4 | Replacement<br>Costs (\$) for<br>Asset | Impact to Facility<br>Operations from Asset<br>Failure                                                                                                                     | Low<br>(√) | Moderate<br>(√) | High<br>(√) |
| Raw Water<br>Pump            | 0.5                                                       | 238.5                                      | 240                                                  | Yes                                        | 20,000                                 | Inability to feed raw water to<br>the process tanks will render<br>the facility inoperable.                                                                                |            |                 | ✓           |
| Air<br>Compressor            | 0.75                                                      | 238.75                                     | 240                                                  | Yes                                        | 15,000                                 | Inability to provide high air<br>pressure will limit the<br>operation of pneumatic<br>valves on the treatment<br>process systems. This will<br>render facility inoperable. |            |                 | 1           |
| Automatic<br>Transfer Switch | 2.5                                                       | 240.5                                      | 240                                                  | No                                         | 5,000                                  | If water damaged the<br>Automatic Transfer Switch,<br>the facility would be<br>inoperable.                                                                                 | <b>√</b>   |                 |             |
| Electrical Outlets           | 2.5                                                       | 240.5                                      | 240                                                  | No                                         | 5,000                                  | The outlets for general use<br>are not critical to facility<br>operations and they are<br>located above the 500-year<br>flood elevation.                                   | <b>√</b>   |                 |             |



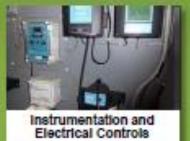

# 

### Identify Mitigation Measures for your Assets

DW Assets








DW & WW Assets





Storage

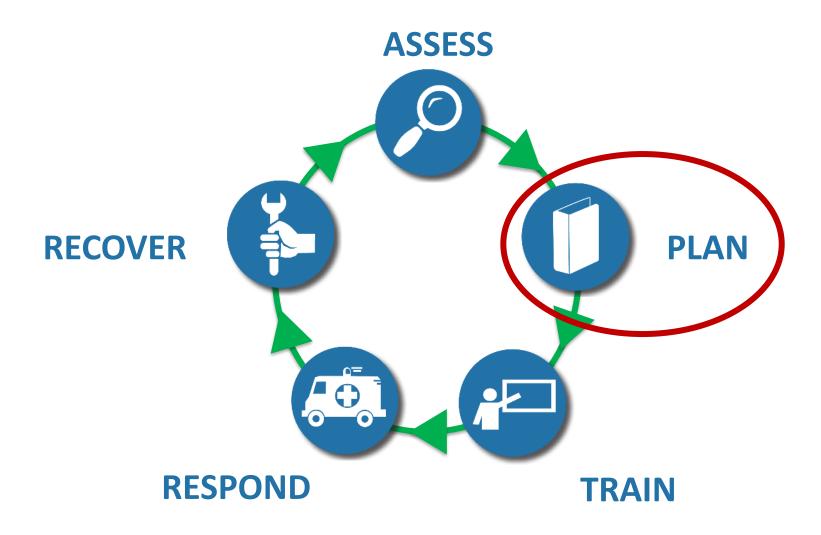




WW Assets










| $\checkmark$ | Mitigation Options for Collection System Lift Stations                                                                                                                                                                | Cost      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1. Pro       | event lift stations from flooding.                                                                                                                                                                                    |           |
|              | Procure temporary flood barriers (e.g., sandbags) for use in minor floods.                                                                                                                                            | \$        |
|              | <ul> <li>Extend vent lines above anticipated flood stage to prevent floodwater from entering<br/>the lift station.</li> </ul>                                                                                         | \$-\$\$   |
|              | <ul> <li>Install gates and backflow prevention devices on influent and emergency overflow<br/>lines to prevent inundation of the lift station by the collection system and the<br/>overflow.</li> </ul>               | \$        |
|              | d. Install permanent physical barriers (e.g., flood walls, levees, sealed doors).                                                                                                                                     | \$\$      |
|              | <ul> <li>e. Install green infrastructure to attenuate or divert flood water and storm surges away<br/>from lift stations.</li> </ul>                                                                                  | \$\$      |
| 2. Pro       | otect critical components if lift stations do flood.                                                                                                                                                                  |           |
|              | <ul> <li>Install unions in the conduit system to reduce the time required to repair damaged<br/>sections.</li> </ul>                                                                                                  | \$        |
|              | <ul> <li>During upgrades or design of new equipment, develop capability to temporarily<br/>remove and safely store vulnerable components before a flood when there is<br/>enough advanced notice to do so.</li> </ul> | \$-\$\$\$ |

1000 Joseph 2000000





# Wastewater Utility Emergency Response Plan (ERP): Template and Instructions New!

#### TABLE OF CONTENTS

| 1. UTI | LITY INFORMATION                                  |
|--------|---------------------------------------------------|
| 1.1    | Utility Overview                                  |
|        | Personnel Information                             |
|        | Utility Components                                |
|        | Industry Chemical Handling and Storage Facilities |
|        |                                                   |
|        | Safety                                            |
| 1.6    | Response Resources                                |

1.7 Key Local Services .....

- 2 RESILIENCE STRATEGIES ......
  - 2.1 Emergency Response Roles .....
  - 2.2 Incident Command System (ICS) Roles ......

AWIA also requires an emergency response plan for water systems

| 2.3 Communication                             |
|-----------------------------------------------|
| 2.3.1 Internal Communication                  |
| 2.3.2 External Response Partner Communication |
| 2.3.3 Critical Customer Communication         |
| 2.3.4 Communication Equipment Inventory       |
|                                               |
| 2.4 Media Outreach                            |
| 2.5 Public Notification Templates             |
| 3 EMERGENCY PLANS AND PROCEDURES              |
| 3.1 Core Response Procedures                  |
| 2.2 Insident Cassifia Decampas Broandures     |
| 3.2 Incident-Specific Response Procedures     |
| 4 MITIGATION ACTIONS                          |
| 4.1 Storage and Treatment Mitigation Actions  |
| 4.0. OH NEC-E A-E                             |
| 4.2 Other Mitigation Actions                  |
| 5 DETECTION STRATEGIES                        |





#### 2.1 Emergency Response Roles

Describe the roles and responsibilities for key utility and external response partner personnel in the tables below. You can add, edit, or delete rows as necessary.

|                        | Wastewater                 | r Utility and Partner Roles                                             |
|------------------------|----------------------------|-------------------------------------------------------------------------|
| Name/Title             | Emergency Response<br>Role | Responsibilities                                                        |
| Wendy Smith, Deputy    | Emergency Response         | Responsible for all incident response activities, including             |
| Superintendent         | Lead                       | developing strategies and tactics and ordering and releasing resources. |
| John Doe, Operations   | Alternate Emergency        | Perform duties as assigned by ER Lead; assumes duties listed            |
| Chief                  | Response Lead              | above when ER Lead is not available.                                    |
| Jim Rogers, County     | Public Information         | Responsible for leading the public information effort based on          |
| Public Affairs Officer |                            | information supplied by either the ER or Alternate ER Lead.             |
| Jane Kelly, Chief of   | Security                   | Will provide incident security as needed once notified by ER            |
| Police                 |                            | Lead.                                                                   |
| Other                  |                            |                                                                         |
| Other                  |                            |                                                                         |
| Other                  |                            |                                                                         |

#### 5 DETECTION STRATEGIES

This section contains strategies that can be used to aid in the detection of malevolent acts or natural hazards that threaten the security or resilience of the system.

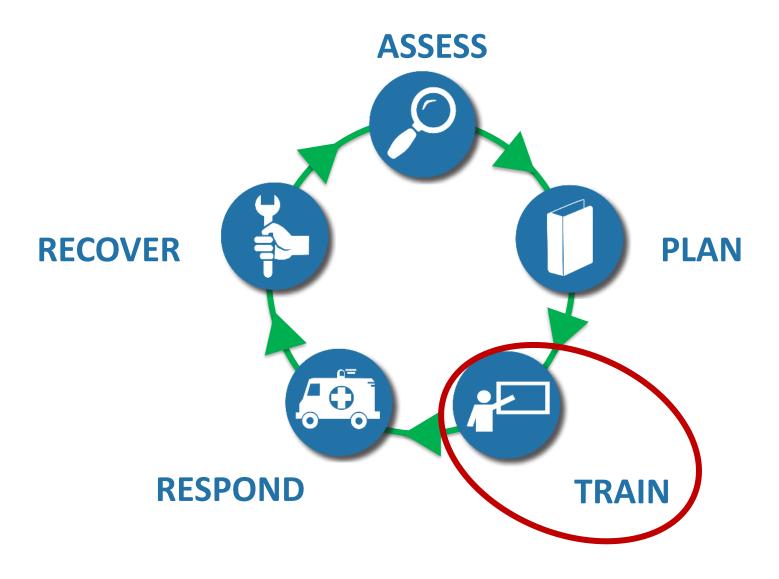
List the detection strategies and methods your utility uses to aid in the detection of malevolent acts or natural hazards. Also list the corresponding procedure to be used if the threat is detected.

|                               | Detection Strategies                                                                                                 |                                                                                                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Threat                        | Detection Method                                                                                                     | Plan/Procedure                                                                                 |
| Unauthorized entry            | Alarm from intrusion detection system                                                                                | Call 911                                                                                       |
| Influent contamination        | Notification from 911 for releases<br>resulting from transportation accidents                                        | Influent Contamination Incident Response<br>Plan                                               |
| Cyber intrusion               | Automated IT and operation technology (OT) system intrusion detection monitoring     Notification from utility staff | Cybersecurity Response Plan, Cyber<br>Incident Action Checklist                                |
| Hazardous chemical<br>release | Chlorine gas in air monitors                                                                                         | Call Fire Department, Chlorine Leak<br>Response Plan, Exposure and Planned<br>Entry Procedures |
| Hurricane                     | Weather Service alerts                                                                                               | Hurricane Response Plan, Hurricane<br>Incident Action Checklist                                |
| Flood                         | Notification from National Weather<br>Service                                                                        | Flood Response Plan, Flood Incident Action<br>Checklist                                        |
| Power outage                  | Notification from energy provider     Alarm from line power sensor                                                   | Commercial Power Outage Response Plan,<br>Generator Start-up Checklist                         |
| Other                         |                                                                                                                      |                                                                                                |



#### **Besides an ERP:**

 Join Mutual Aid – Water/Wastewater Agency Response Network (WARN)

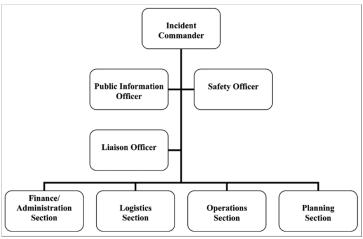

0000 0000

- o utilities helping utilities
- Need personnel (repair crews), equipment (pipe, pumps, generators)

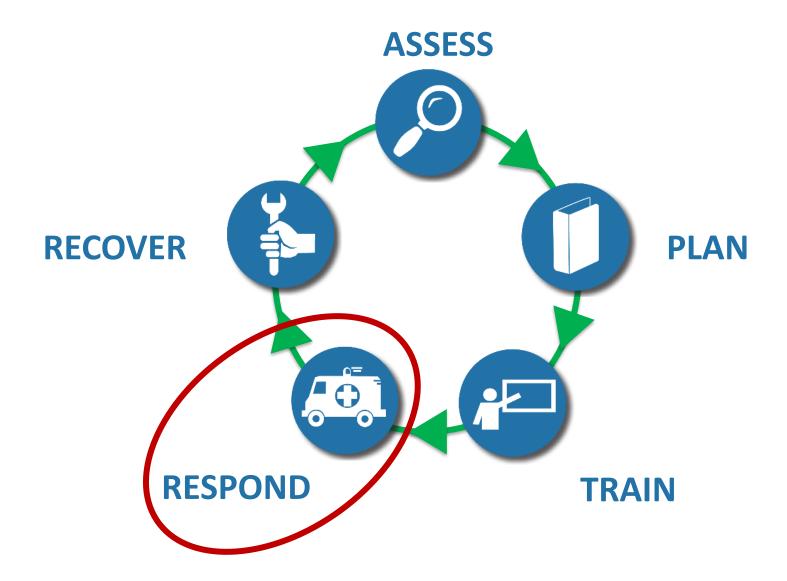
 https://www.epa.gov/waterutilityresponse/mutual-aid-and-assistance-drinkingwater-and-wastewater-utilities

- Identify your response partners
- Develop Crisis Communication Plan
- Get involved in local Hazard Mitigation Planning









## **Opportunities for Training**

- Emergency Response Plan
- Emergency Exercises
  - Tabletop Exercise Tool (TTX tool)
  - 12 Scenarios
  - https://www.epa.gov/waterresiliencetraining/develop-andconduct-water-resilience-tabletop-exercise-water-utilities
- Incident Command System Training
  - Remote and in-person
  - On-line at https://www.epa.gov/waterresiliencetraining/emergency -management-training-water-and-wastewater-utilities









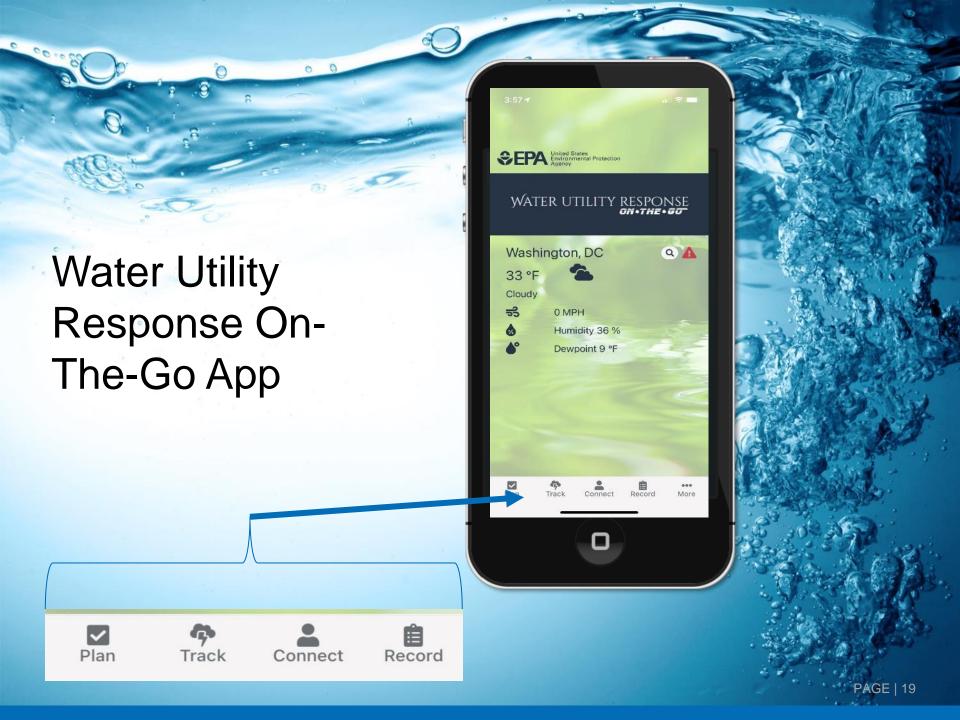


# **Response Tools**

- Incident Action Checklists
- Water Utility Response On-The-Go App

•Wastewater Response Protocol Toolbox




#### **EPA Water Sector Incident Action Checklists**

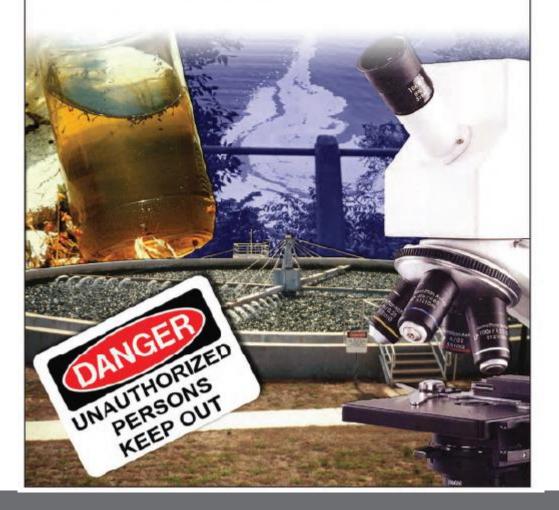
Drought, Earthquake, Extreme Cold, Winter Storms, Extreme Heat, Flood, HAB, Hurricane, Tornado, Tsunami, Volcano, Wildfire, Cyber, Power, and Pandemic



#### PRINT OUT THE CHECKLISTS YOU NEED AND BE READY TO TAKE ACTION:

http://water.epa.gov/infrastructure/watersecurity/emerplan/index.cfm#pp29








# Wastewater Response Protocol Toolbox:

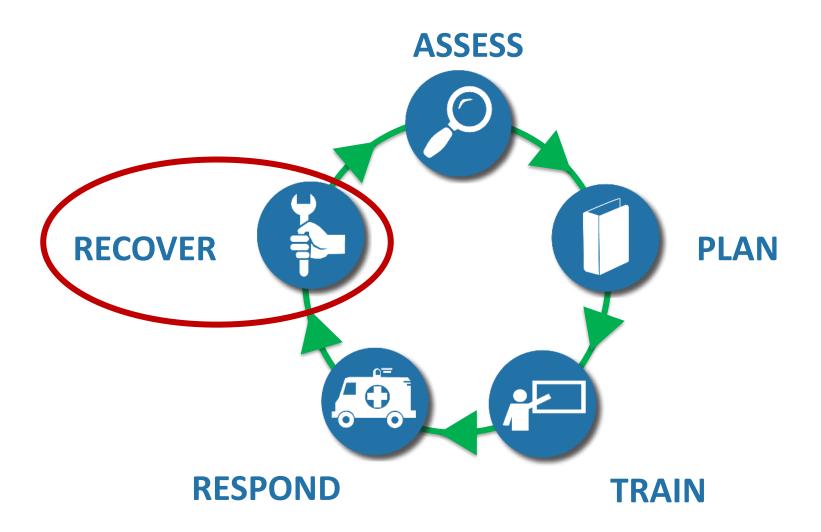
Planning For and Responding To Wastewater Contamination Threats and Incidents

December 2011





# **Wastewater Response Protocol Toolbox**


10.2

- Protect wastewater systems from contamination
- Identify credible incidents and dismiss false alarms
- •From discovery to remediation to normal operations

#### Toolbox Module

- 1. Wastewater Utility Planning Guide
- 2. Contamination Threat Management Guide
- 3. Site Characterization and Sampling Guide
- 4. Analytical Guide
- 5. Public Health and Environmental Impact Response Guide
- 6. Remediation and Recovery Guide







## Recovery

- Major repairs
- Mitigation measures
- Back to full or improved operations or compliance
- Long-term efforts require time and funding





Fund Stori

Explore

opporti Fed FUNDs tool

information tailored to water and wastewater utilities on federal disaster and mitigation fundir Search by type of utility (e.g. public, private non-profit) and see numerous success stories in yo

epa.gov/fedfunds

#### k at

### More Details on Funding

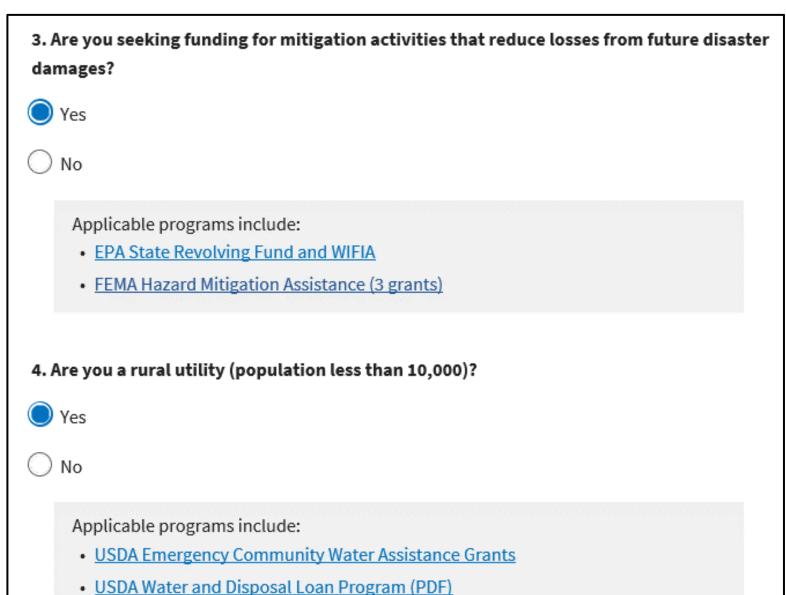


Keys to A








# Search for Right Funding

Answer the questions below to find the best federal disaster funding program(s) for your utility. Click the button to answer the question. The appropriate funding programs will appear and then, click on them to learn more. Additionally, you can print a report of the search results.

| them to learn more. Additionally, you can print a report of the search results.                         |
|---------------------------------------------------------------------------------------------------------|
| 1. Based on the following sectors, how would you classify your water/wastewater utility?                |
| Public                                                                                                  |
| O Private Non-Profit                                                                                    |
| O Private For-Profit                                                                                    |
|                                                                                                         |
| 2. Do you want to learn about funding opportunities to repair damage to your utility from an emergency? |
|                                                                                                         |
| emergency?                                                                                              |

- FEMA Public Assistance
- HUD Community Development Block Grant and Section 108 Loans





-10.8







<u>Explore</u> <u>opporti</u>

information tailored to water and wastewater utilities on federal disaster and mitigation fundir Search by type of utility (e.g. public, private non-profit) and see numerous success stories in yo

epa.gov/fedfunds

#### k at

unding it Funding

### More Details on Funding



- FEMA Public Assistance Grants
- FEMA Hazard Mitigation Assistance
- EPA State Revolving Loans and W FIA
- HUD Community Block Grants and

#### Keys to A



- Reimbursement
- Combine Funding
- Prepare for Fund



# **FEMA Mitigation Funding**







Contact your local grants manager or emergency management agency



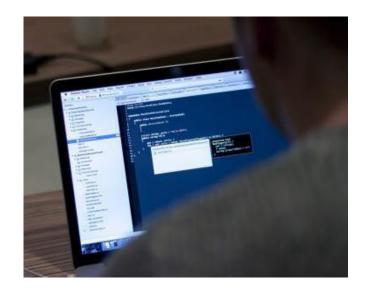
# **EPA Funds**

0000000

- Clean Water State Revolving Funds
- •Water Infrastructure Finance Investment Act



#### •Resilience Uses:


- Relocation/elevation of treatment plants
- Physical flood barriers (e.g., sea walls, levies, dikes, berms)
- Backup generators (new or replacement) and fuel transport/storage
- Wind Resistance
- Drought contingency plans
- Wells additional, replacement, deepening
- o Intakes reposition, relocation, elevation, alternative, backup
- Vulnerability assessments and operational security (cyber)
- Improves performance/reliability and eliminates sanitary sewer overflows



# **Cyber and CWSRF**

Supporting Cybersecurity Measures with the CWSRF See <a href="https://www.epa.gov/sites/production/files/2021-05/documents/cwsrf\_cybersecurity\_fs\_final\_0.pdf">https://www.epa.gov/sites/production/files/2021-05/documents/cwsrf\_cybersecurity\_fs\_final\_0.pdf</a>

- Used to fund cybersecurity practices and measures at POTWs
- Outlines resources for <u>free vulnerability</u> <u>assessments</u> and cybersecurity training





# Rural Utility Serving Population < 10,000 Check out USDA

- Water & Waste Disposal Loan & Grant Program
- Revolving Funds for Water and Wastewater Projects
- Contact local Rural Development Office
  - https://www.rd.usda.gov/page/state-offices





### www.epa.gov/waterresilience

#### Assess



- Conduct a risk assessment
- Create Resilient Water Utilities
- Develop water quality surveillance and response capabilities
- Adopt cybersecurity best practices and see cyber alerts

#### Plan



- Develop emergency response plans
- Build relationships in your community
- Access lab resources
- Build hazard resilience
- Share resources during an emergency

#### Train



- Access the All-Hazards Boot Camp
- Develop a training and exercise plan
- Conduct tabletop exercises
- Find training opportunities

#### Respond



- Response On-The-Go Tool
- Print a checklist to help you respond
- Monitor severe weather

#### Recover



- Find federal funding for your utility
- Decontamination resources
- Get reimbursement tips
- <u>Learn about the Public Assistance</u>
   Program

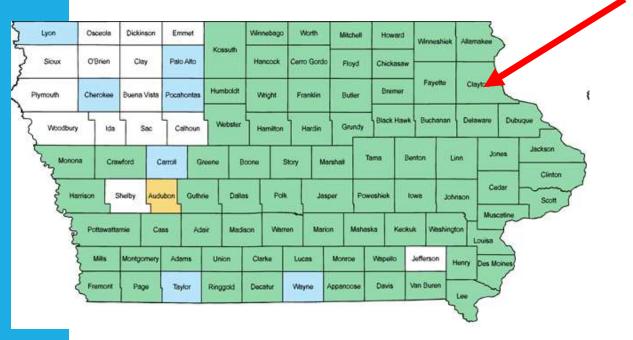




#### **Questions?**

#### **Contact**

- David Goldbloom-Helzner
- EPA Office of Water
- Goldbloom-Helzner.David@epa.gov


# PROTECTING YOUR UTILITY FROM DISASTERS - RESILIENCE PART 1 OF 2

JUNE 24, 2021

**ELKADER IOWA'S STORY** 

# ABOUT ELKADER....

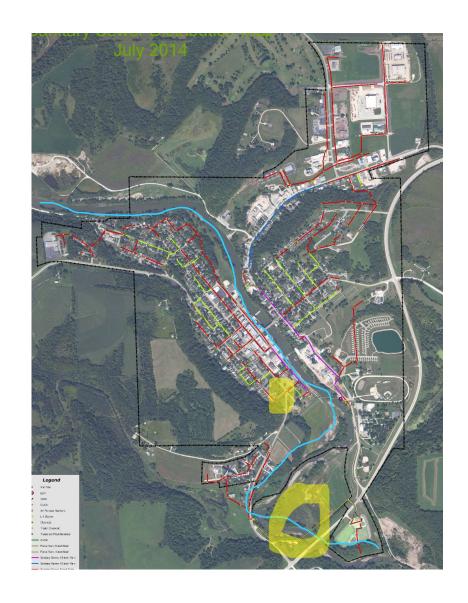
- -Elkader is located in rural NE lowa
- -It is the county seat of Clayton County
- -Population 1,273
- .800 MGD Aeromod Activated Sludge Plant (2010)



We are known for the natural beauty, scenic areas and rolling hills.



The rolling hills provide topographical challenges for our water and wastewater systems.




The Turkey River flows through the heart of the town.



#### **ELKADER'S WASTEWATER SYSTEM**

Highlighted are the two areas of discussion today – the "main" lift station and the wastewater treatment facility. Four of our five lift stations are along the river.



#### **Historic Crests**

- (1) 27.77 ft on 06/10/2008
- (2) 27.32 ft on 06/15/1991
- (3) 25.57 ft on 05/23/2004
- (4) 22.57 ft on 08/26/2016
- (5) 20.65 ft on 09/23/2016
- (6) 20.50 ft on 08/29/1990
- (7) 19.35 ft on 05/17/1999
- (8) 18.90 ft on 04/02/1993
- (9) 18.84 ft on 04/26/2008
- (10) 18.82 ft on 06/21/2014

Post flood of 2008



Main Lift Station — Flood 1999



Main Lift Station — Flood 1999



- Funding from FEMA's Hazard Mitigation Grant Program (HMGP) was secured to:
  - increase the height of an existing berm around the WWTP and lagoons
  - to build a floodwall and install flood resilient doors to protect the main lift station.
- The project was completed in October 2000 at a total cost of \$134,917 (50% from the City and 50% from HMGP funds).
- The City has since experienced major flooding in May 2004, June 2008 and 2016.
- Because of the mitigation measures, the wastewater treatment plant and lift station were not impacted and continued to operate during these floods.
- According to a FEMA Loss Avoidance Study (May 2010), the total losses avoided for the project was over 5 times the total project investment.

SUBGRANTEE:

City of Elkader

PROJECT NUMBERS:

965-22-01 (FEMA's #0003) / 928-22-01 (FEMA's #?????) new

GRANT AGREEMENT NUMBERS:

965-0001

PROJECT TITLE:

Eliter Sewage Project

APPROVED SCOPE OF WORK:

Raise the earthen berm surrounding the City's lagoon

and construct a concrete wall around and install a steel

entry door at the City's pump station at a height of at least

724.5 feet to provide 500-year flood protection

Both projects were completed with expenses under \$150K!

|                                                                          | APPROVED           | BUDGET   |                    | FEMA-965-DR-IA   |                | FEMA-928-DR-IA   |                |
|--------------------------------------------------------------------------|--------------------|----------|--------------------|------------------|----------------|------------------|----------------|
| BUDGET CATEGORIES                                                        | BUDGET<br>(DR 965) | (DR 928) | PROPOSED<br>BUDGET | FEDERAL<br>(50%) | LOCAL<br>(50%) | FEDERAL<br>(50%) | LOCAL<br>(50%) |
| Flood Berm (Lagoons) construction and engineering                        | \$110,000          | \$14,917 | \$124,917          | \$55,000         | \$55,000       | \$7,459          | \$7,458        |
| Flood Wall and Steel Closure (Pump Station) construction and engineering | \$10,000           | \$0      | \$10,000           | \$5,000          | \$5,000        |                  |                |
| TOTALS                                                                   | \$120,000          | \$14,917 | \$134,917          | \$60,000         | \$60,000       | \$7,459          | \$7,458        |

Project approval was received from FEMA Region VII on 6/11/1998 (\$60,000 federal funds under FEMA-965-DR-IA)

Amendment #1 (cost overrun, not a change in SOW) was submitted to FEMA Region VII on 5/17/2001 (\$7,459 federal funds under FEMA-928-DR-IA)

To add protection to the Main Lift they built a wall with gate like this one (still exists) and a wall around the station with a similar gate. The wall of the facility had a vent and window on the river side so the new wall was to protect that.



#### BERM AROUND WWTP

The WWTP was new in 2010 but during that project the berm remained the same. It was not overtopped in the flood of record in 2008.



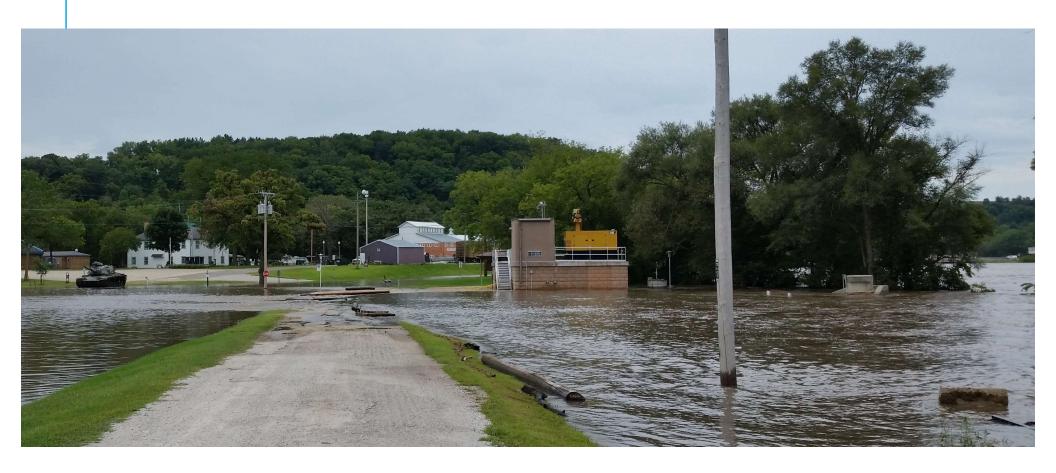
With the Flood of Record in 2008, there were a lot of other issues so we were glad not to have to deal with the WWTP being off-line.

- -a sewer main under the river broke
- -a water main under the river broke
- -fire station flooded
- -many businesses and residences flooded

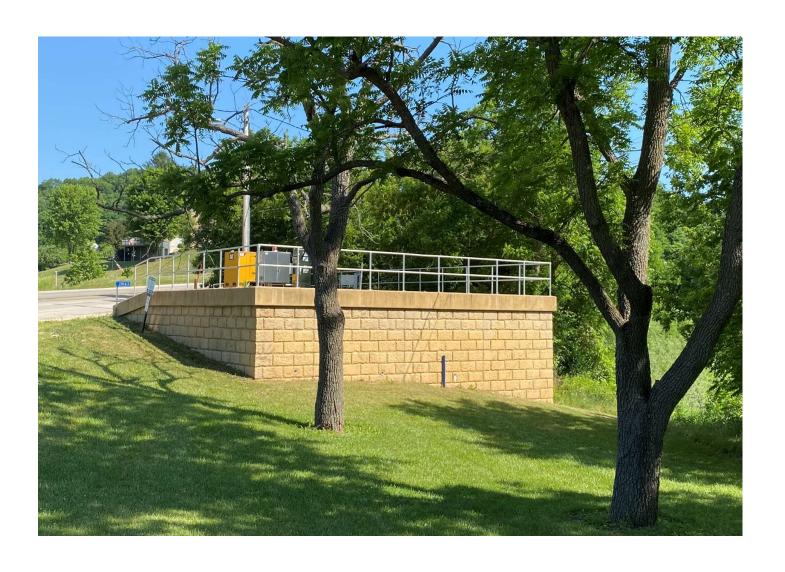


The wastewater treatment facility after the 2008 flood.




#### OTHER FLOODPROOFING PROJECTS:

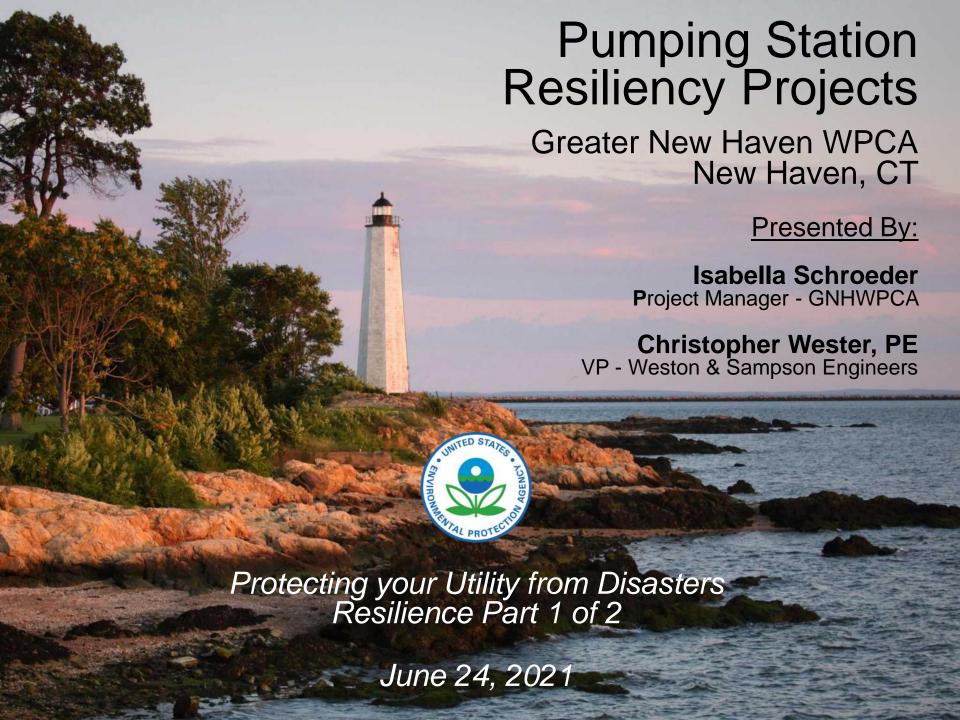
- -updates to entire wastewater system began in 2007 and were completed in 2010
- -new AeroMod treatment system
- -all lift stations and WWTP have independent generators so we don't have to try to get a generator on a trailer to the site.
- -the lift stations most at risk for flooding are elevated.

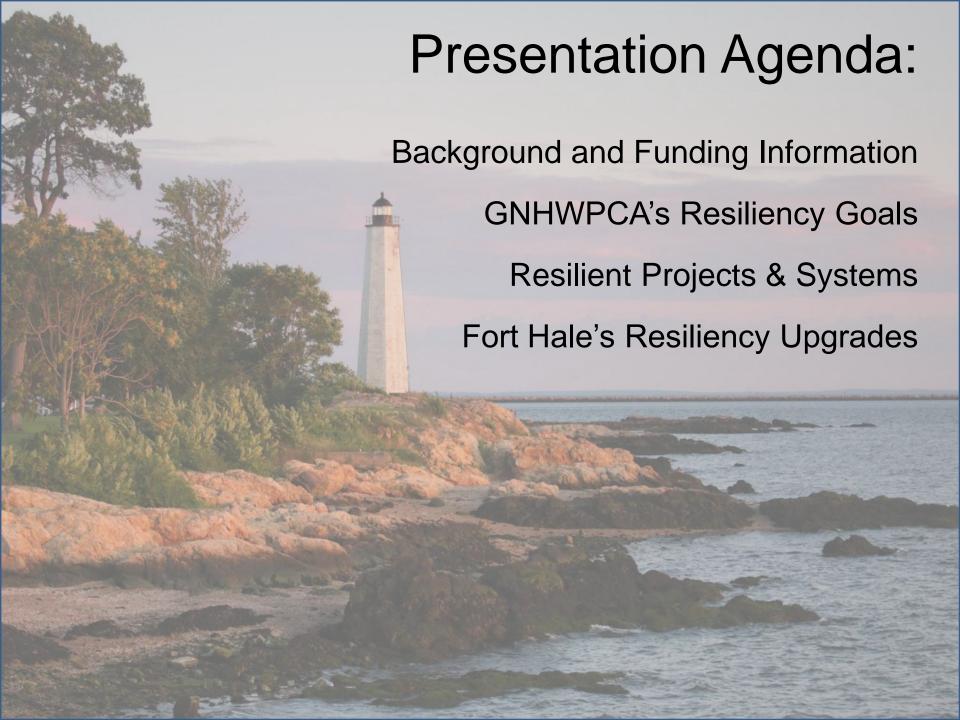

New Main lift station



# MAIN LIFT STATION (2016 FLOOD)




The West Lift station after flood-proofing project.




Even with the planning and improvements, sometimes things happen! In the 2016 "high water event" a hole in a sewer main developed. This main goes directly to the Main Lift station. Mud and sand were sucked in and damaged the step screen. Repairs cost about \$15,000.









# **Resiliency Funding Opportunity**

#### **Background**

- GNHWPCA's greatest business risk: **Storms**
- Many older coastal zone assets
- 13 of 30 pump stations exposed to coastal flooding
- Facility dependency on outside electric utility

#### **Post-Disaster Funding Opportunity**

- Hurricane Irene (8/26/11)
- Superstorm Sandy (10/27/12)
- Emergency Declared by Governor Malloy, CT (2012)
- Disaster Declared by President Obama (2012)
- Damages sustained by some facilities (2011/2012)
- FEMA Hazard Mitigation Grant Program (HMGP)
   Post Disaster Funding Opportunity Becomes
   Available



Emergency preparedness consisted of plywood, sandbags, steel plates, and removal of critical components:

- labor intensive
- dependency on supplies and access
- wastewater service disruptions / damages

Note: The new BRIC (Building Resilient Infrastructure and Communities) Pre-disaster program was not available to us then.





## **FEMA HMGP Application**

- Competitive grant process (75% grant, 25% match)
- Requires <u>approved</u> Hazard Mitigation Plan (HMP)
- Prescribed public planning process
- Utilities must be mentioned as "critical infrastructure" in HMP
  - GNHWPCA not able to have own HMP must be addressed in individual town's HMPs
- Must show commitment of Funds for "Local Share"



#### Need to clearly articulate the need:

- Complete Benefit-Cost Analysis (BCA)
- Demonstrate improvements will be lasting/preventative
- Scope terminology can be important (new building vs. elevated utility enclosure)





residential structures re recently revised by



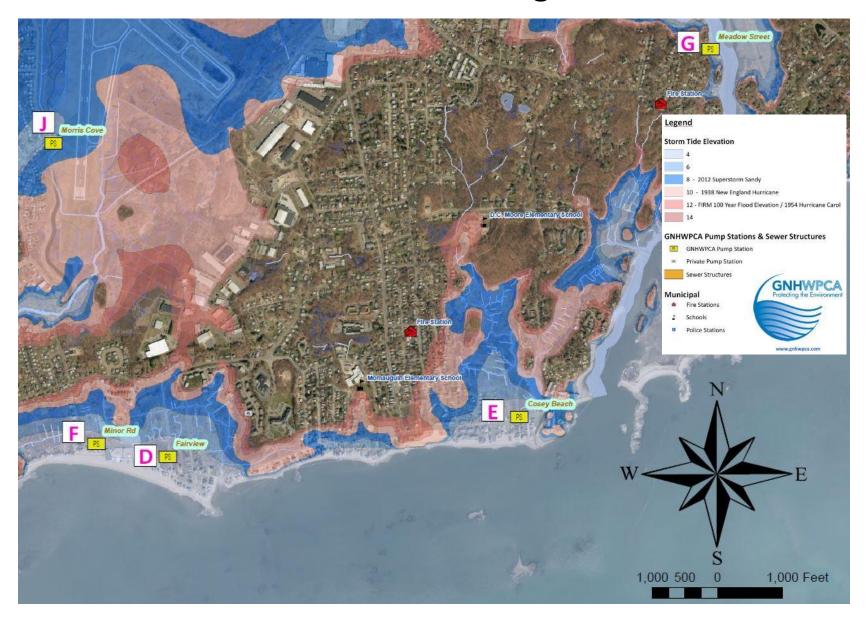
# **Funding Timeline**

- Submitted applications to FEMA Post Disaster
   HMGP for New Haven and East Haven (Dec 2013)
  - BRIC pre-disaster program not available to us at that time
- Awarded 4 Stations in East Haven (Jan 2015)
- East Haven Stations Completed 2018 Delays:
  - scope change from application to preliminary design
  - need to recalculate BCA
  - expiration/approval of updated East Haven HMP
- Awarded 4 Stations in New Haven (Jan 2019)
  - Unspent grant monies from other projects became available
  - Updated scope/application submitted December 2017
  - Project substantial completion May 2021








# **Funding Takeaways**

- Process requires significant upfront planning, communication and scheduling (learning curve) but the benefits are apparent and significant:
  - ✓ Receive 75 cents on every dollar spent
  - ✓ Significantly reduces business vulnerability
  - ✓ Improves emergency preparedness planning/response
  - ✓ Reduces future costs (insurance/operations)
- Scope changes can cause SIGNIFICANT DELAYS
  - ✓ Application vs Design Scope should match
- Conservative estimates avoid delays in contract award/need to revisit BCA
  - √ "contingency" (non-eligible budget item
  - √ "upgrades or replacements" are not eligible\*
  - ✓ "change orders" may not be eligible for reimbursement (have local share funds available)
  - ✓ unit cost breakdowns must be clearly presented
  - ✓ communications / clarifications can provide partial funding (ex. pumps with integrated leads, larger sized generators)
- Proper documentation/close out inspections required
  - ✓ State & FEMA Reps Attend

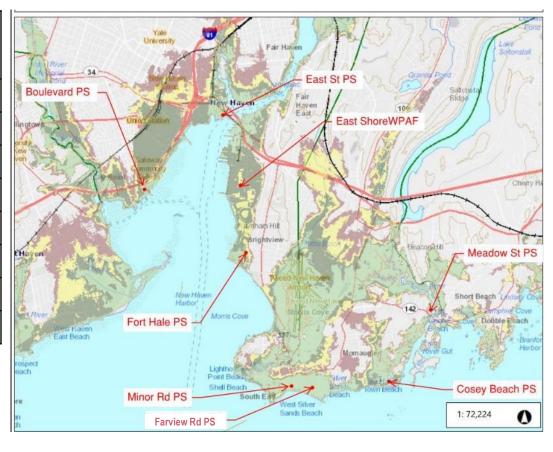
GNHWPCA
Reimbursed
\$4.7M in grant
funds!



#### **GNHWPCA Predicted Storm Surge**



#### **GNHWPCA FEMA HMGP Resiliency Projects**


| Station         | Existing<br>FF | Design Flood<br>Elevation<br>(TR-16) |
|-----------------|----------------|--------------------------------------|
| Boulevard PS    | 10.6           | 15.0                                 |
| Cosey Beach PS  | 8.7            | 16.3                                 |
| East St PS      | 10.6           | 16.0                                 |
| Farview PS      | 7.8            | 15.0                                 |
| Fort Hale PS    | 10.2           | 14.0                                 |
| Meadow St PS    | 9.3            | 13.8                                 |
| Minor Rd        | 7.6            | 15.0                                 |
| East Shore WPAF | 14.5           | 15.0                                 |

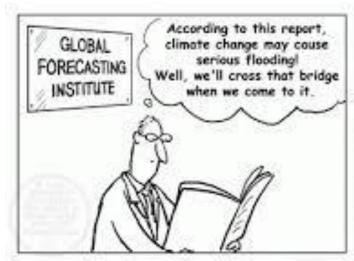


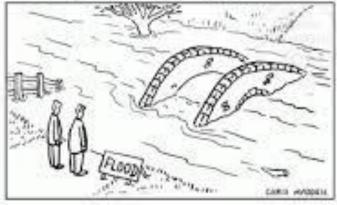











# **Project Goals**

- Protect Coastal Infrastructure
- Dry- and Wet-Floodproofing
- Raise electrical and communications equipment above 500-year flood levels
- Review options to protect equipment that cannot be raised
- Ensure resilient back up power is available
- Provide safe means of egress during a flood event









#### **East Haven Pumping Stations Resiliency Project**











#### **East Haven Pumping Stations Resiliency Project**















### New Haven Pumping Stations Resiliency Project

GNHWPCA WWTP, Boulevard PS and East Street PS 2019-2021











#### **FLOOD WALLS**

Interior and exterior flood walls installed to protect existing large wastewater pumping stations and wastewater treatment plant 2019-2021







# FLOOD WALL CONSTRUCTION

Interior and exterior flood walls installed to protect existing large wastewater pumping stations and wastewater treatment plant 2019-2021



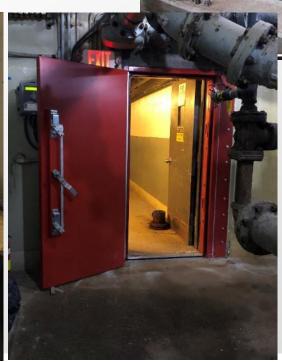











# DOOR AND WINDOW FLOOD BARRIERS

- Deployable Flood Panels

- Steel plates at windows

- Flood swing gates

- Flood Door













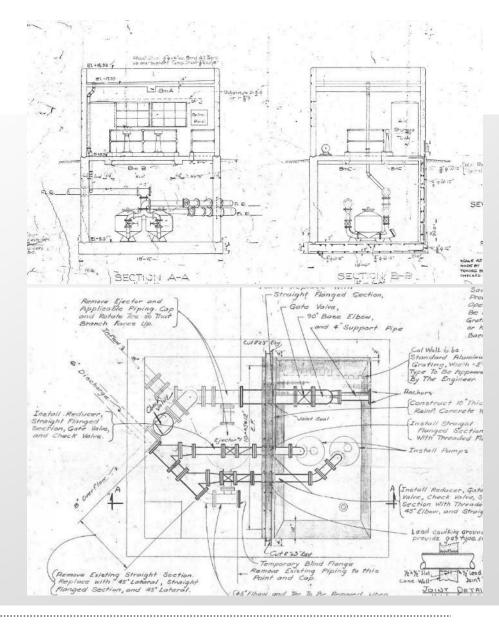


# Fort Hale Pump Station

#### **CRITICAL STATISTICS**

Construction Date - 1946/1967

**Duplex Station** 


Wet well and valve vault below building

Capacity = 300 GPM

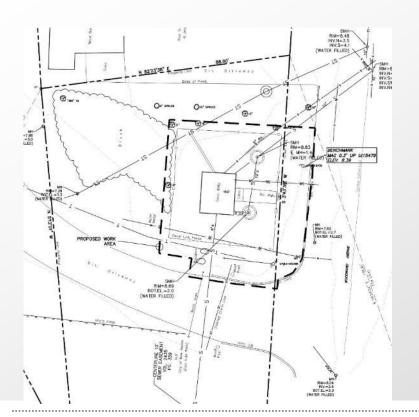
Existing Floor Elevation = 10.2'

**Design Flood Elevation = 14.0**°

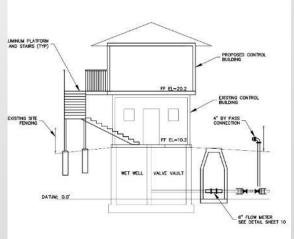






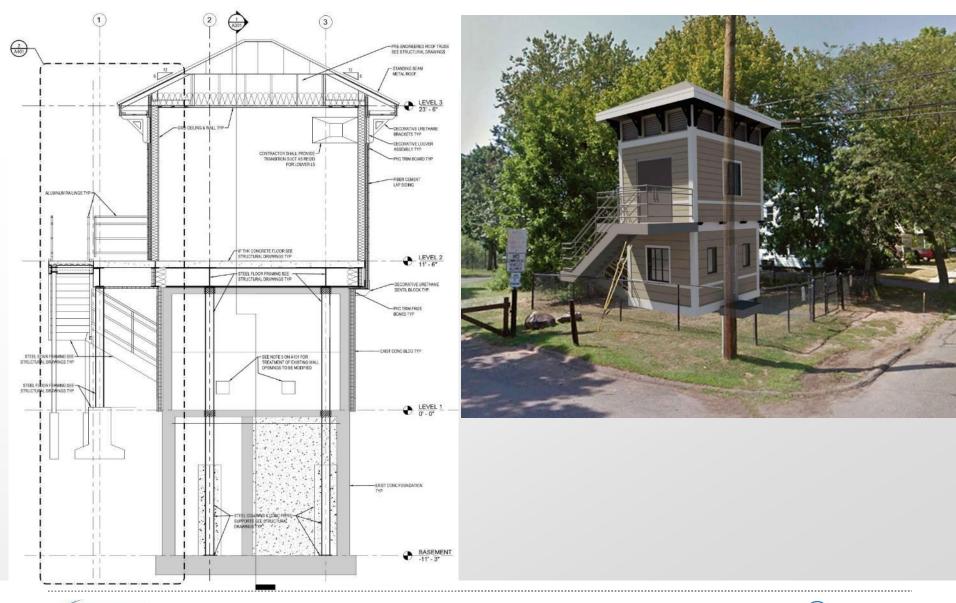



# Client Needs | Wish List


- Fort Hale *Needs*:
  - Flood Resiliency of Proposed Equipment
  - Permanent Standby Generator
  - Upgrade of Existing 208V Electrical Service
  - Limit Confined Space Entry Requirements
- Fort Hale Wish List Items:
  - Building Aesthetics
  - Bypass Piping Connections



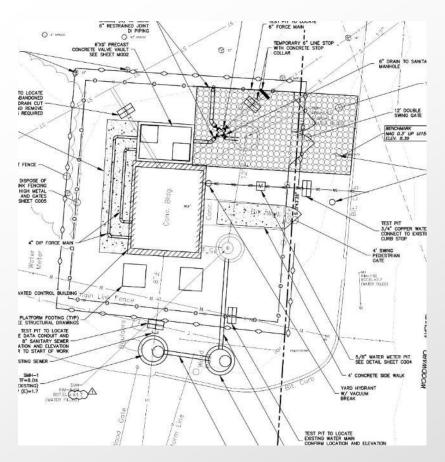
## Preliminary Concept Design
















# Site Prep and Pump Station Bypass













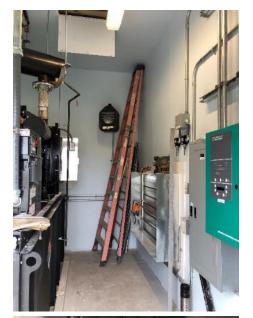




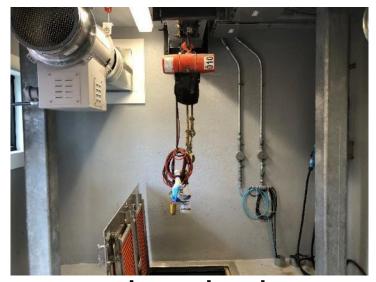






















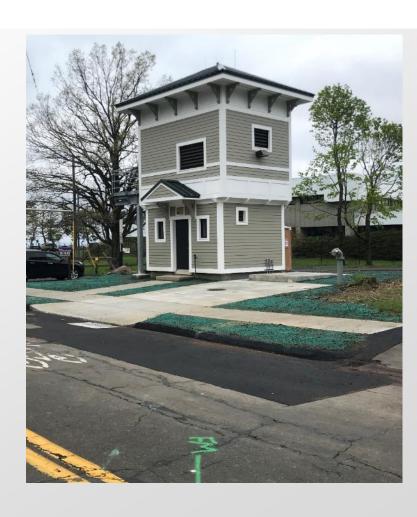

**Lower Level** 














## **The Final Product**

#### **GOALS MET:**

- All sensitive equipment protected
- Permanent stand by generator
- Bypass connection installed
- Beautiful and resilient WWPS





# thank you



