The EPA Small Business Innovation Research (SBIR) Program presents:

EPA SBIR Sustainable Materials Technologies Webinar

Wednesday April 13, 2022

Webinar Agenda

- 2:00 Introduction
 - April Richards, EPA SBIR
 - Timonie Hood, EPA R9
- 2:10 Technology presentations (~5 minutes each)
 - 7 small businesses
- 3:00 Q&A

Introduction

EPA Mission:

Protect human health and the environment

EPA SMM priorities:

 Fulfilling human needs and prospering, while using less materials, reducing toxics and recovering more of the materials used

EPA SBIR:

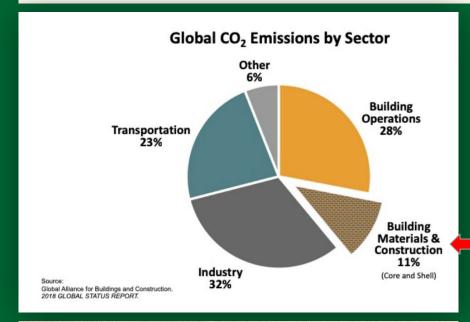
- Seed technology innovations to meet Agency's mission
- One of 11 federal agencies with SBIR
- Focus is commercialization

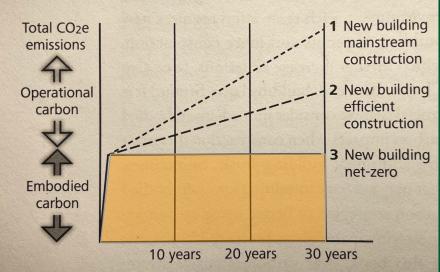
EPA SBIR Sustainable Materials Projects

- Anthony Dente <u>Verdant Structural Engineers</u> (Berkeley, CA): Straw structural insulated panel (SIP)
 alternatives for homes and buildings to improve energy efficiency and have reduced embodied impacts.
- Marianne Clayton <u>IsoTruss Inc.</u> (Provo, UT): Reinforced concrete foundation for telecommunications towers to increase resiliency to natural disasters.
- CeCe Smith Rheaply, Inc. (Chicago, IL): Novel software technology to empower material reuse and embodied carbon reporting in the built environment.
- Kathleen Draper <u>Cinterest LLC</u> (East Rochester, NY): Low embodied carbon wallboard made with biochar.
- Jacob Kumpon <u>KLAW Industries LLC</u> (Binghamton, NY): Process to reuse waste glass for high performance, low carbon concrete.
- Ella Csuka Ecotune, Inc. (Irvine, CA): Fully compostable packaging film made from renewable resources.
- Alison Rogers <u>USEFULL Inc.</u> (Boston, MA): Tech-enabled circular economy solution designed to eliminate single-use food and beverage products.

Disclaimer

 The views expressed in this presentation are those of the speaker(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.


Carbon Storing Straw Structural Insulated Panel (S-SIP) for Wide Scale Application


 $\bullet \bullet \bullet$

Verdant Structural Engineers

Green Engineering is good engineering.

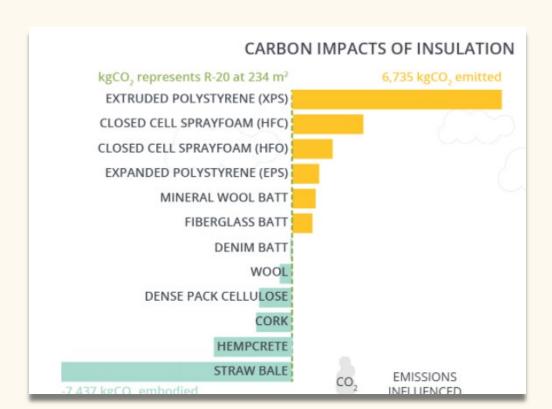
Problem: Building Material Carbon Emissions

• Embodied carbon:

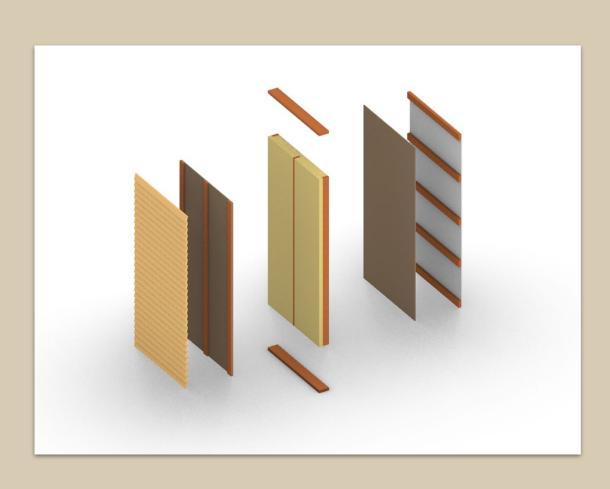
Greenhouse gas emissions associated with materials and construction processes

Embodied Carbon will be responsible for almost half of the total new construction emissions between now and 2050.1

Existing Insulations


Prefab: Foam SIP's

- High manufacturing energy
- Difficult end-of-life disposal
- Petroleum product
- Carbon impacts from blowing agents
- R-values degrade as blowing agents diffuse
- Extremely flammable when exposed


Site Built: Fiberglass & Mineral Wool

- High manufacturing energy
- Protective gear required for installation
- R-Values of Fiberglass decrease in cold
- Difficult end-of-life disposal

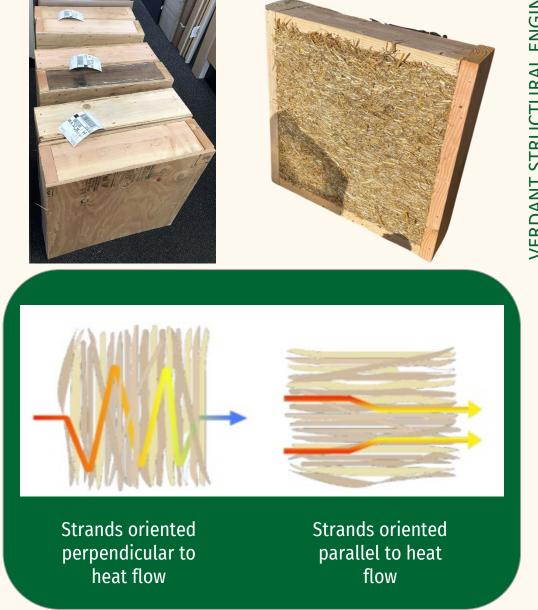
The Best Solution:

Straw Structural Insulated Panel (S-SIP)

- Modular Panelized Prefabricated Wall Units
- Carbon Storing
- Non-Toxic Materials
- Non off-gassing
- Less manufacturing/on-site waste
- Circular economy: farming + construction
- Biobased: waste stream agricultural product
- Strong Insulator
- Simple = Fast to Market

Thermal and Moisture Performance of Straw

R-VALUE TESTING


Intertek Labs in Pennsylvania

STRAW AS AN INSULATIVE MATERIAL

- Straw bales are 90% air voids = good insulator
- Bales achieve R-1.8 per inch
- Existing S-SIP panels achieve R-2.2 to R-2.8 per inch
- Laboratory studies support that, R-3 to R-4 per inch is achievable

Moisture

Straw systems are "vapor open," meaning moisture is able to move through the wall. A higher perm rating is desirable for breathable systems.

Manufacturing Process

From Farm to Building

Straw Processing:

- Cleaning
- Chopping
- Collected into bale form

Panel Construction:

- Localized Manufacturing Facility
- Frame assembly
- Addition of Processed Straw
- Sheathing

Shipping:

- Placement of Competed Panels in Shipping configuration
- Panel configuration on truck
- Panel Storage On-Site
- Panel Placement

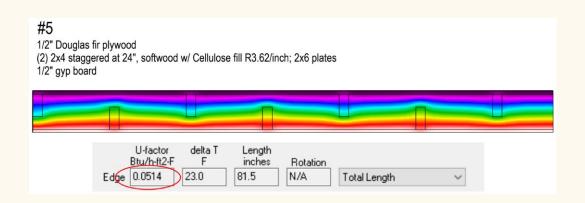
PBA Model:Efficiently cuts large panels and

beams

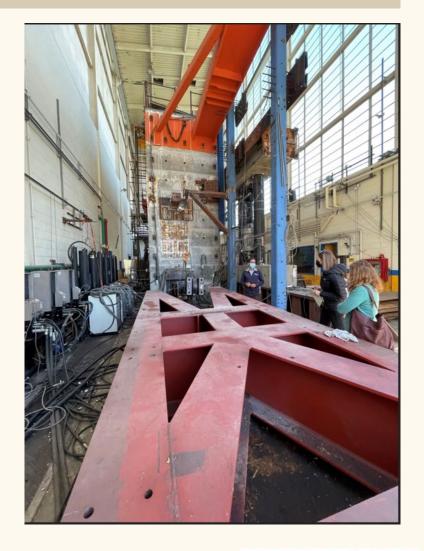
WEINMANN MACHINES

FRAMETEQ: Framing station that can be integrated into a production line **MOVETEQ:** Transporting, clamping, aligning, turning, and setting up elements

WALLTEQ: Fastening, formatting and cutting all openings in the element


Structural Design

Model 1 Design


- Plywood shear walls
- Stud bearing system
- Testing happening next week at UC Berkeley Richmond Field Station

Key Design Considerations

- Thermal bridging
- Buildability
- Blend with conventional framing
- Design software & guidelines

Verdant Structural Engineers Over 100 Custom Straw Bale Buildings

Firm Principal Project Lead

Massey Burke
Co-Director of CASBA
Natural Materials Specialist

Firm Principal
Straw Bale Code Author

MA of Mngt Innovation and Entrepreneurship

Verdant Structural Engineers Prefab Straw Bale

Anthony Dente

Firm Principal Project Lead

Massey Burke

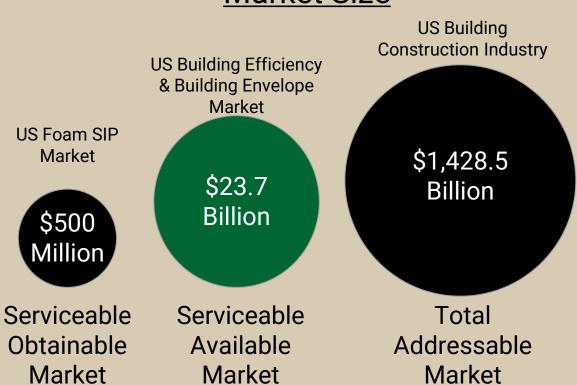
Co-Director of CASBA Natural Materials Specialist

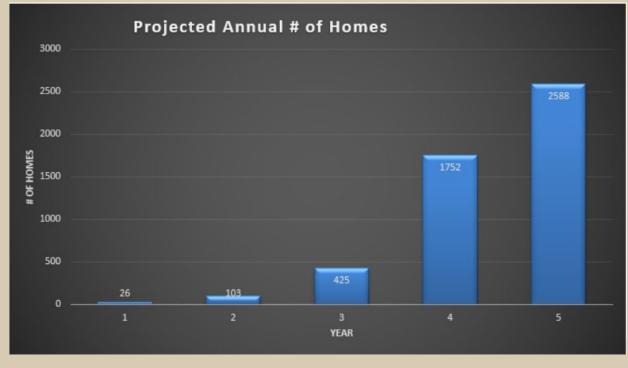
Kevin Donahue

Firm Principal
Straw Bale Code Author

Elli Terwiel

MA of Mngt Innovation and Entrepreneurship


Market **Potential**



Market Size

Sales Projections: 5000 homes in first 5 years

Market

US Foam SIP

Market

\$500

Million

^{*}Acumen Research, 2020

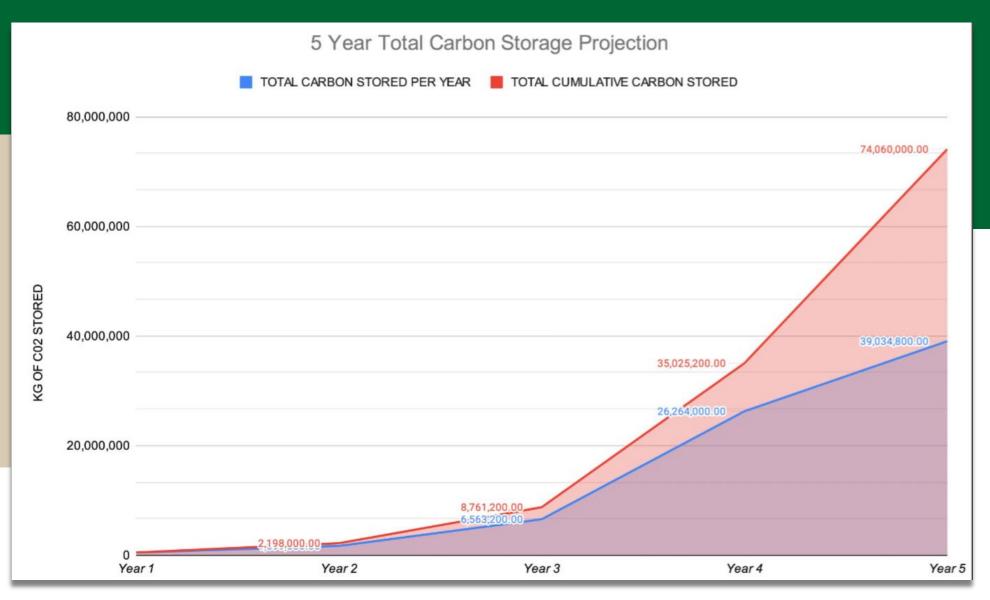
REVENUE POTENTIAL

Comparison of different building construction methods on value propositions

Material	Cost (\$/sq.ft.)	High Carbon- Storing Potential
Prefab	\$13-\$65	
Stick (Wood) Frame	\$7-\$16	
SIP	\$4-\$18	
Existing S-SIP	\$18-\$40	✓
VSE S-SIP	\$13-\$18	✓
Custom Straw Bale	Varies widely	✓

Sales Projections: 5000 homes in first 5 years

		Year 1		Year 2		Year 3		Year 4		Year 5		Total	
Gross Revenue	\$	748,800	\$	2,966,400	\$	12,240,000	\$	50,457,600	\$	74,534,400	\$	140,947,200	
Cost of Goods	\$	331,809.60	\$	1,283,720.80	\$	4,518,650.00	\$	18,135,185.84	\$	26,452,388.92	\$	50,721,755.15	
Gross Margin	\$	416,990.40	\$	1,682,679.20	\$	7,721,350.00	\$	32,322,414.16	\$	48,082,011.08	\$	90,225,444.85	
Operating Expenses													
General & Administrative	\$	107,766.60	\$			347,758.00	\$	3,091,275.82	121	4,388,435.61		8,126,466.43	
Engineering & Development	\$	629,124.88	\$,		841,536.00		1,340,903.89		1,396,473.94		4,708,902.88	
Marketing & Sales	\$	485,336.64	\$,	\$, ,	\$	2,948,686.72	-	3,828,007.68	\$	9,509,490.24	
Total Operating Expenses	\$:	1,222,228.12	\$	1,619,625.76	\$	2,509,222.00	\$	7,380,866.43	\$	9,612,917.23	\$	22,344,859.54	
Operating Margin	\$	(805,237.72)	\$	63,053.44	\$	5,212,128.00	\$	24,941,547.73	\$	38,469,093.85	\$	67,880,585.31	
Interest Expense	\$	12,412.09	\$	33,484.49	\$	15,615.18	\$	14,840.54	\$	7,913.60	\$	84,265.89	
Other Income/Expenses	\$	4,870.32	\$	768.46	\$	8,789.95	\$	97,028.91	\$	286,509.46	\$	397,967.10	
Earnings Before Taxes	\$	(812,779.50)	\$	30,337.42	\$	5,205,302.77	\$	25,023,736.11	\$	38,747,689.72	\$	68,194,286.51	
Income Taxes	\$	-	\$	-	\$	1,901,830.10	\$	10,760,206.53	\$	16,661,506.58	\$	29,323,543.20	
Net Income	\$	(812,779)	\$	30,337	\$	3,303,473	\$	14,263,530	\$	22,086,183	\$	38,870,743	


VSE estimates a
6" thick 4'x8'
panel will store
56 kgs of CO2.

Over the first five years, the S-SIP product could store 74,060,000 kg of CO₂ (81,638 US ton of CO₂)

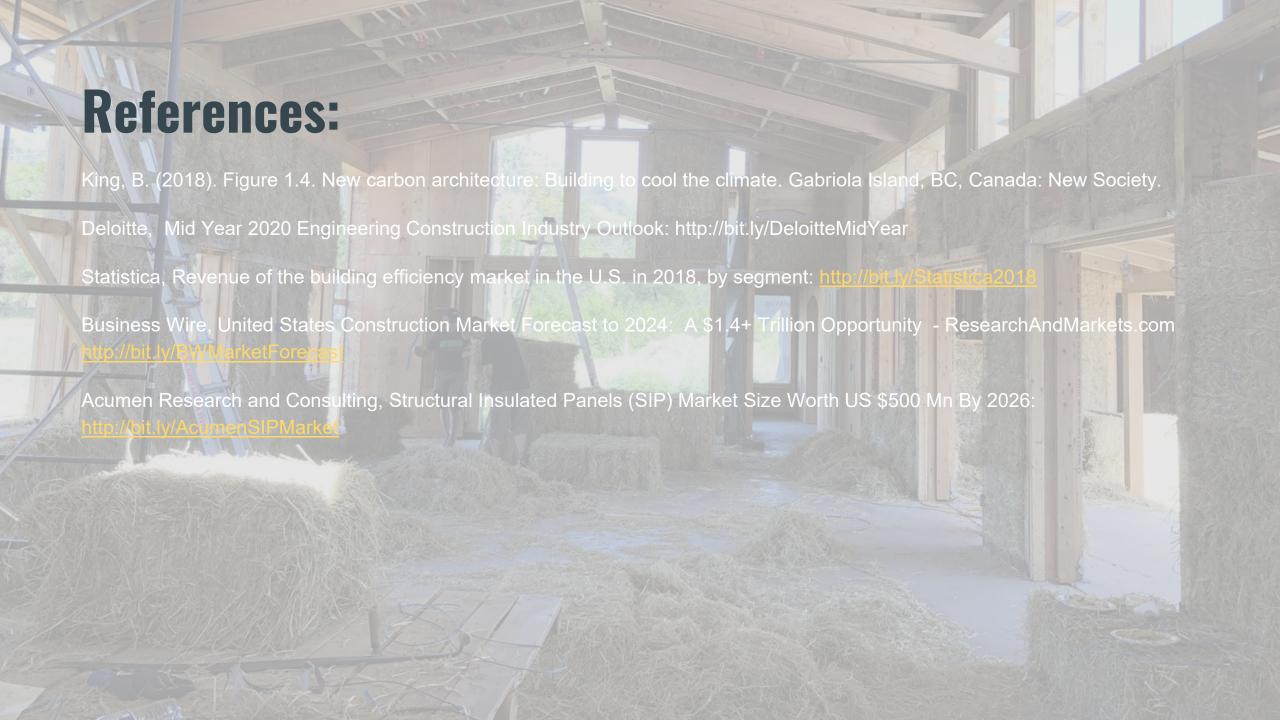
Equivalent to saving 8,333,521 Gallons of gasoline from being consumed

Key Performance Indicators

Total Carbon Stored over 5-Year Span

More straw in buildings = Less carbon in the atmosphere.

Thank you for the opportunity.


verdantstructural.com admin@verdantstructural.com

Instagram: @verdantstructural

Facebook: Verdant Structural Engineers

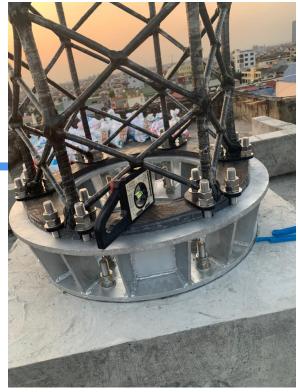
LinkedIn: Verdant Structural Engineers

IsoTruss-Reinforced Concrete Foundations for Increased Resiliency to Natural Disasters

EPA SBIR Phase I 2021

IsoTruss: The Technology

- Optimized lattice design to take full advantage of composite materials
- Excellent mechanical properties with reduced weight / material usage
- No corrosion, rot, rust
- Extended product lifetime
- 70% reduced carbon emissions



The Problem

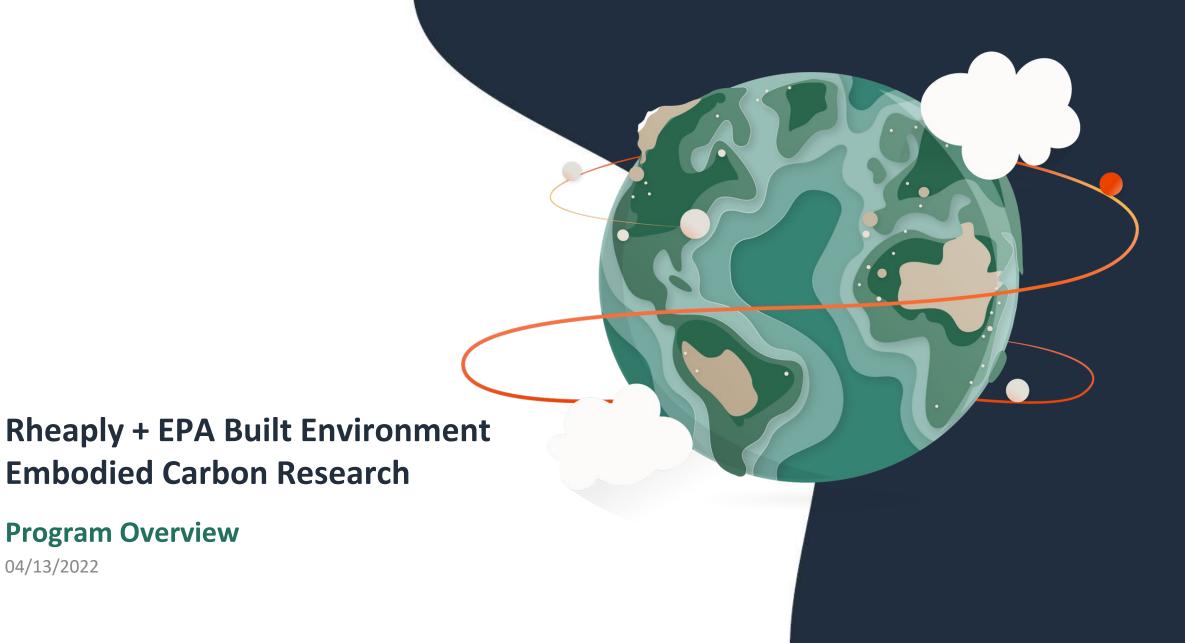
- As natural disasters increase in intensity, infrastructure must become more resilient
- Standard foundations are expensive, timeintensive, and use large amount of concrete
- Benefits of composite towers such as easier installation and corrosion resistance are reduced with metal connections

The Innovation

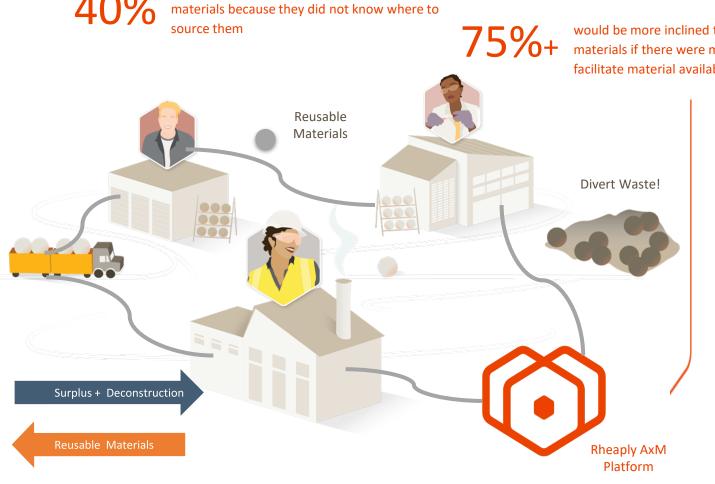
- Resilient to natural disasters
 - Reduced wind load
 - Stiffer for same strength
 - No corrosion/water damage
- Only 2 materials (CFRP and concrete) for simpler debris cleanup
- Faster installation with less equipment

Commercialization

- IsoTruss towers currently in production
 - Customers in US and Philippines
 - Focus on rural and coastal areas
- Foundation design ready for testing validation and beta deployments
- Manufacturing in US (operational) and Philippines (under construction)
- Recently closed Series A funding



South Carolina, USA


Philippines

Rheaply

Leveraging Rheaply Technology to Empower Material Reuse and Embodied Carbon Reporting in the Built Environment

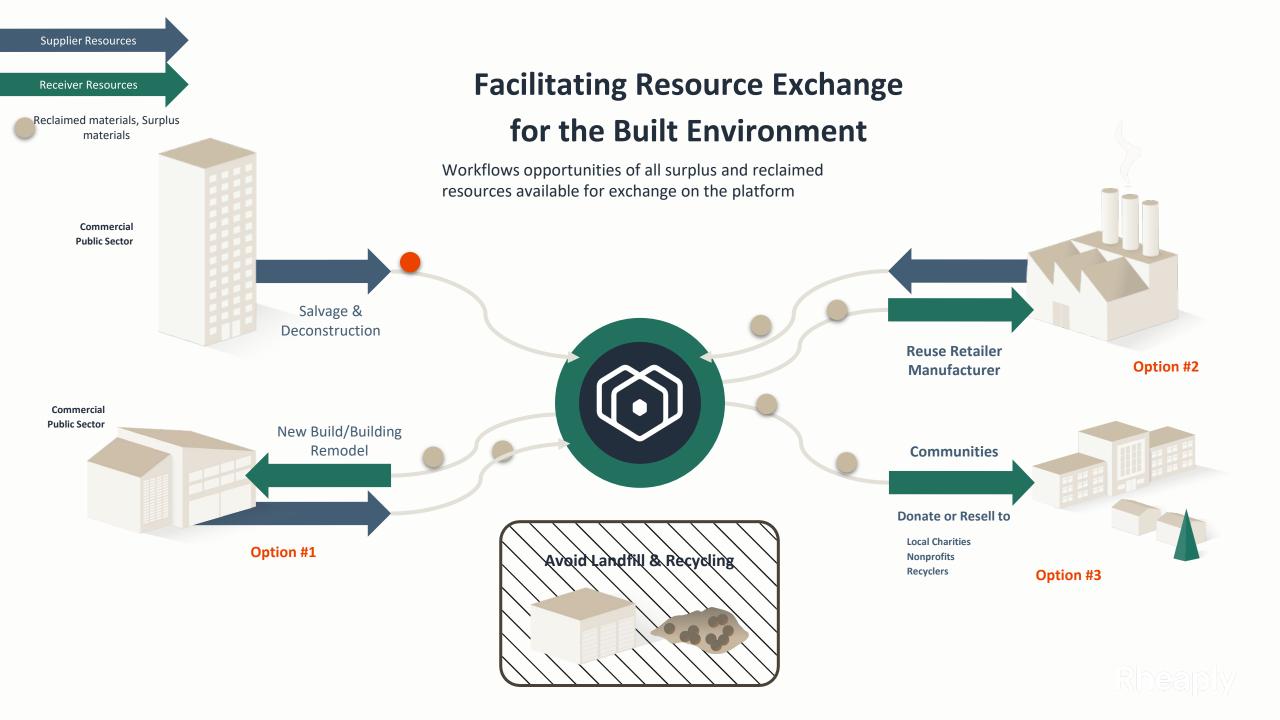
of U.S. architecture firms have not used salvaged

would be more inclined to use salvaged materials if there were more resources to facilitate material availability

Connect Built Environment & Reuse Stakeholders

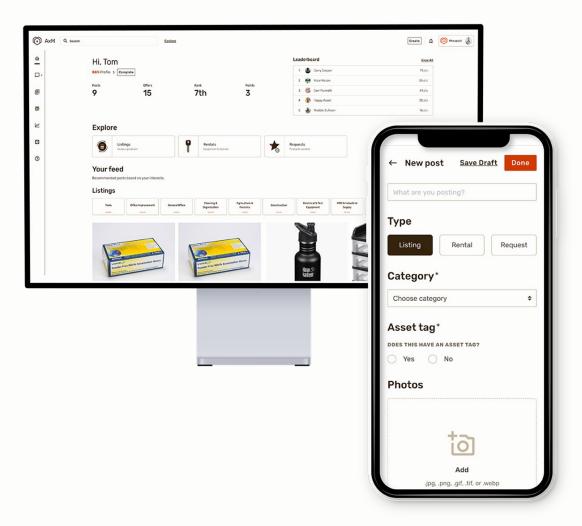
ENVIRONMENTAL INNOVATION

Enable & Empower Suppliers



Leverage Data to Facilitate

Demand for Reusable Materials



Leverage Technology to Derive Embodied Carbon Reporting

Marketplace Features

- ✓ Categorize Building Product & Surplus Inventory
 - Receivers are notified based on their interests.
- √ Collect Product Stories & Data
 - Obtain the data Receivers need from Suppliers:
 - Product Manufacturing & Design Specifications
 - Product History Story
- √ Generate Reports
 - Estimated cost savings through salvage workflows
 - Value diverted from landfill (in lbs)
 - Supply and Demand by Product Category
 - Embodied Carbon Reduction (coming soon!)

Themes we're exploring

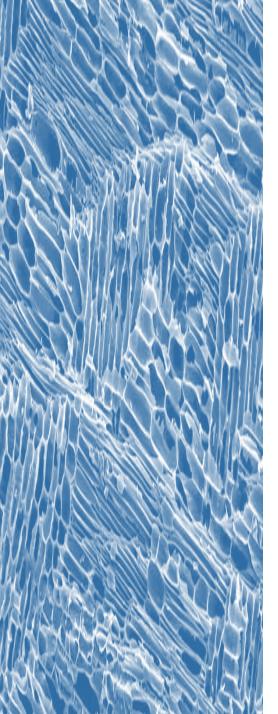
Quantifying Embodied Carbon Avoidance

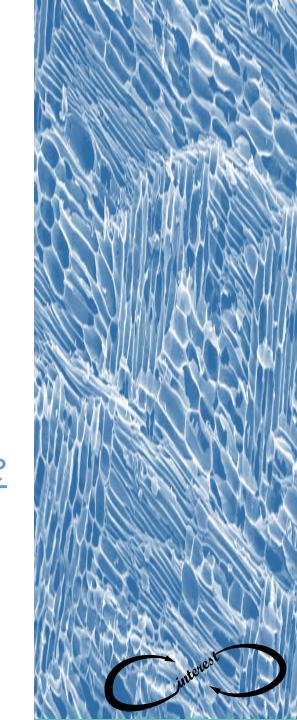
- choosing a reclaimed material vs a new equivalent material
- choosing a reclaimed material vs a recycledcontent material

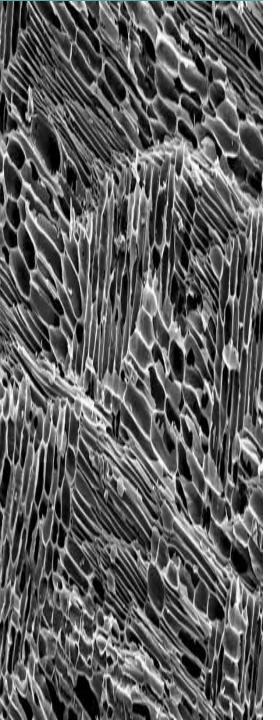
Monitoring Data Quality

Is key reclaimed material data available? How might we collect input data reliably and consistently?

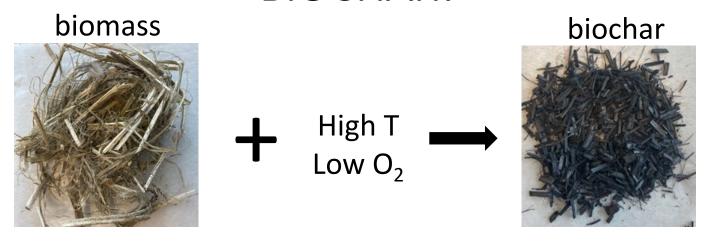
The Role of Technology

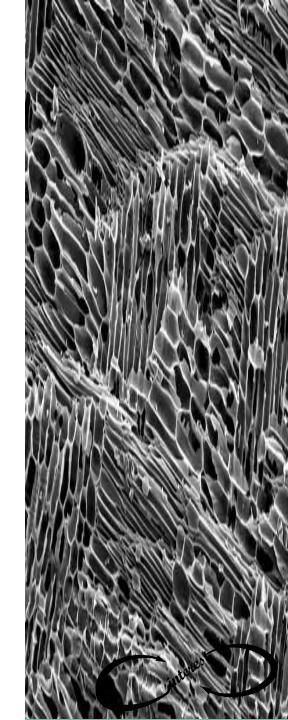

What's the role of BIM and adjacent technologies in empowering data collection and data sharing?


Carbon negative materials for sustainable manufacturing



Advancing climate positive products

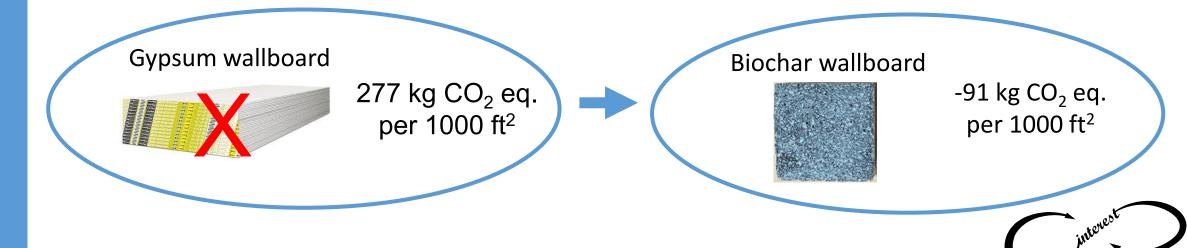

Cinterest aims to displace fossil derived and mined materials with products having <u>net-zero or negative</u> embodied carbon



How do we do this?

With a little something called BIOCHAR!

- One of a handful of carbon removal technologies recognized by the Intergovernmental Panel on Climate Change
- Safe, scalable and shovel-ready!


Initial carbon-negative products

Wall board

- \$37.8 billion actual global sales in 2020
- \$89.59 billion projected global sales by 2028
- CAGR 11.5%

Thermal packaging

- \$14.2 billion actual global sales in
 2020
- \$19.7 billion projected global sales by 2028
- CAGR 5.7%

Cinterest

Questions, comments, Or collaboration opportunities:

Kathleen Draper Cinterest CEO biocharro2@gmail.com Mother Nature has a bank account, and the currency is carbon.

Living off the principal (fossil fuels) is no longer sustainable.

Living off the interest (biomass carbon) is not only good for the planet, it's good for your bottom line.

That's what we call cinteresting!

The Life of a Glass Bottle

Status of Technology



RECYCLING

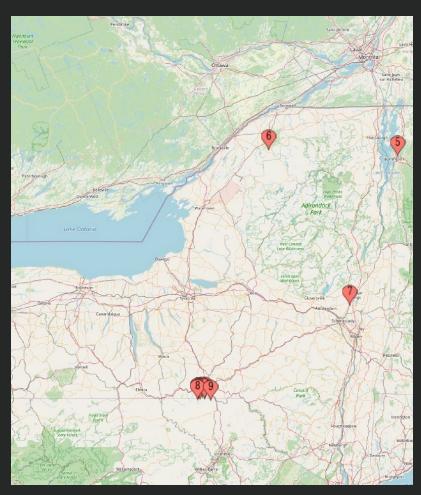
KLAW is paid to take recycled glass

Benefits

- -Low Cost
- -The glass is recycled

OUR PROCESS

Through our patentpending process, we create $\mathsf{Pantheon}^\mathsf{TM}$



PANTHEONTM

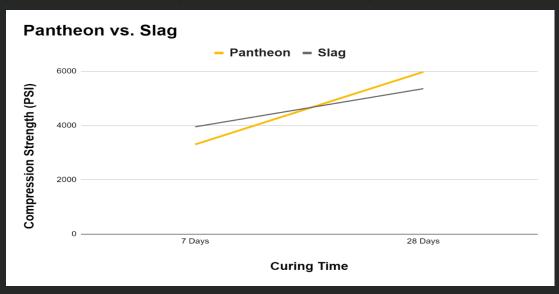
Pantheon™ is a partial replacement for cement **Benefits**

- -Low Cost
- -Environmentally Sustainable
- -Stronger

Environmental Impact

Impact to Date -3,276 kg CO₂e

US Impact


Global Impact -8.1M Ton CO₂e per year -10.8B Ton CO₂e by 2050

Why does the concrete industry care?

Value Proposition

Curing Time (days)	Slag Strength (PSI)	Pantheon™ Strength (PSI)
7	3953	3303
28	5360	5980

Pilot Project for SBIR Phase I – Barney & Dickenson

Results and CO₂ Impact

Quote from Tim Ruffo

"Utilizing glass as a cement replacement is the cutting edge in the concrete industry and the cost and performance benefits we get, are unmatched as we transition our industries' carbon regulation."

Next Steps

- Secure a Letter of Intent
- Complete pilot plant in Binghamton
- 2000 tons per year

CCOIUMC

Fully Compostable Packaging Film From Microfibrillated Cellulose

EPA SBIR Phase I 2022

Fossil-based

PE PVC
PET PS
PA PP
PC

PBAT PEA

PBS PES

PCL PBSA

PVOH

Non- biodegradable

Bio-PE

Bio-PET

Bio-PA

Bio-PC

Cellulose-based

Starch-based

PHA

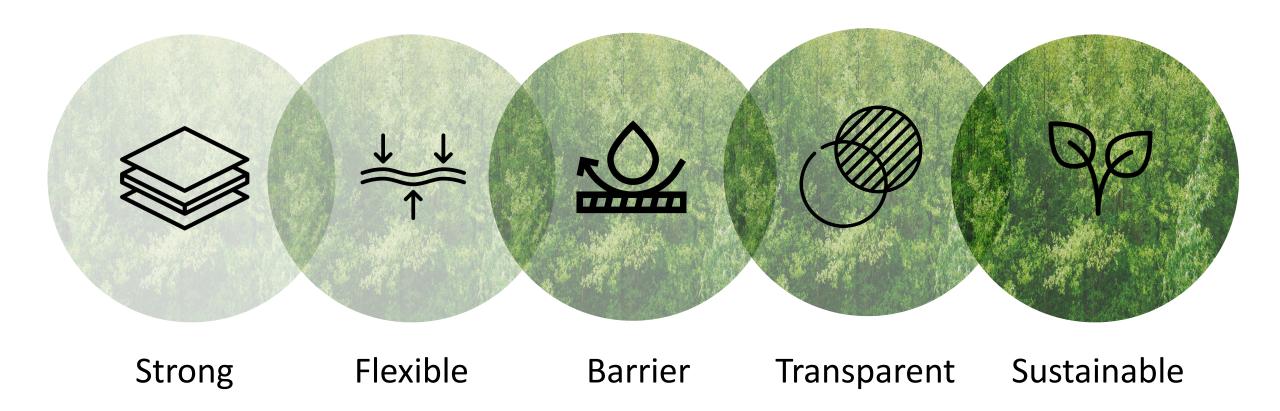
PLA

Bio-based

Biodegradable

Cellulose

 100 <u>billion</u> tons of cellulose are produced by plants every year


 The most abundant organic compound on Earth

Microfibrillated Cellulose

- Nano-scale cellulose fibrils produced from cellulose pulp
- 100% renewable
- High-performance thin films

Developing Advances in Microfibrillated Cellulose Films

Why compostable?

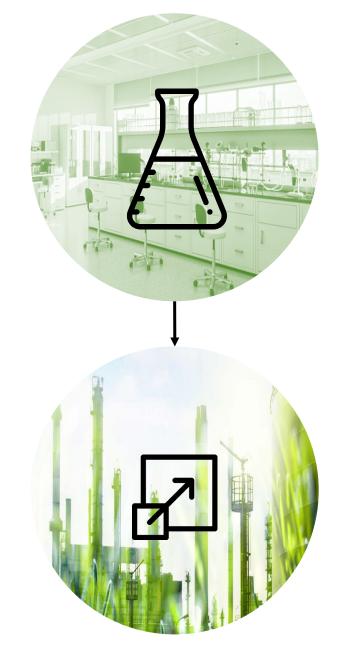
- Compostable fiber-based packaging creates fiberrich, nutrient-filled compost
- Enriches agricultural soil
- Reduces need for chemical fertilizers
- Diverts organic matter away from landfills

Compostable packaging helps to divert food waste

From the landfill ——— To the compost bin

SBIR Phase I:

• Laboratory-scale <u>feasibility</u> and R&D for <u>proof-of-concept</u>



- Continued R&D to improve manufacturing efficiency
- <u>Pilot-scale</u> testing to accelerate commercialization
- Initial <u>life cycle analysis</u> to evaluate environmental impact

Ella Csuka Founder, CEO

ellacsuka@ecotuneinc.com

Ecotune, Inc. Irvine, CA

Alison Rogers

Founder + CEO 410-991-7651 Alison@usefull.us www.USEFULL.us "We enable organizations and communities to make zero waste a reality."

Organizations are under pressure to go zero waste.

Organizations that have tried compostables and plastic reusables are now switching to USEFULL.

USEFULL is fulfilling demand in the market

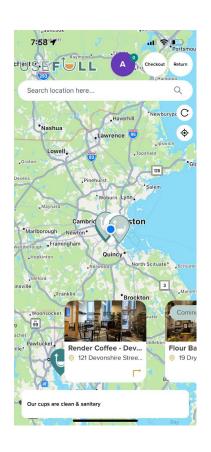
COLLEGES

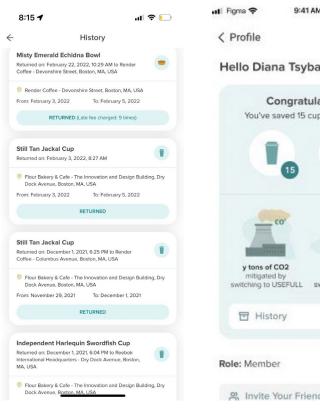
CLOSED LOOP
COMMUNITIES
(e.g. Block Island, Bar Harbor)

CORPORATES

All or nothing.

To be successful, our partners commit to USEFULL being the default to-go packaging option


The process is managed through the app simple, fast, and efficient



Each cup and container has a unique QR code and name. Inventory is checked out to a user via the app. Returns are also tracked via the app.

We're not just selling proprietary cups & containers, we are selling a tech solution

We provide an inventory and account management solution that quantifies impact in real time via TV, website, and app displays

- Tons of waste prevented
- Tons of CO2 emissions prevented
- Tons of plastic avoided

We supply technology and inventory for clients to implement

USEFULL USEFULL's own 16oz cup and 40oz bowl. Vacuum insulated, stackable, washable, durable. Patent pending.

"Stainless steel is the preferred choice... It can be used many more times than reusable plastic and is better for the environment and people all around."

Life Cycle Assessment (LCA) commissioned by UPSTREAM Solutions. Assumes that manufacturing takes place in China (pg. 6)

Three key competitive advantages over other return-based companies

1. CONVENIENCE

Easy checkout via our app. Other programs require a 1 for 1 swap, cash deposit, or give a token when inventory is returned.

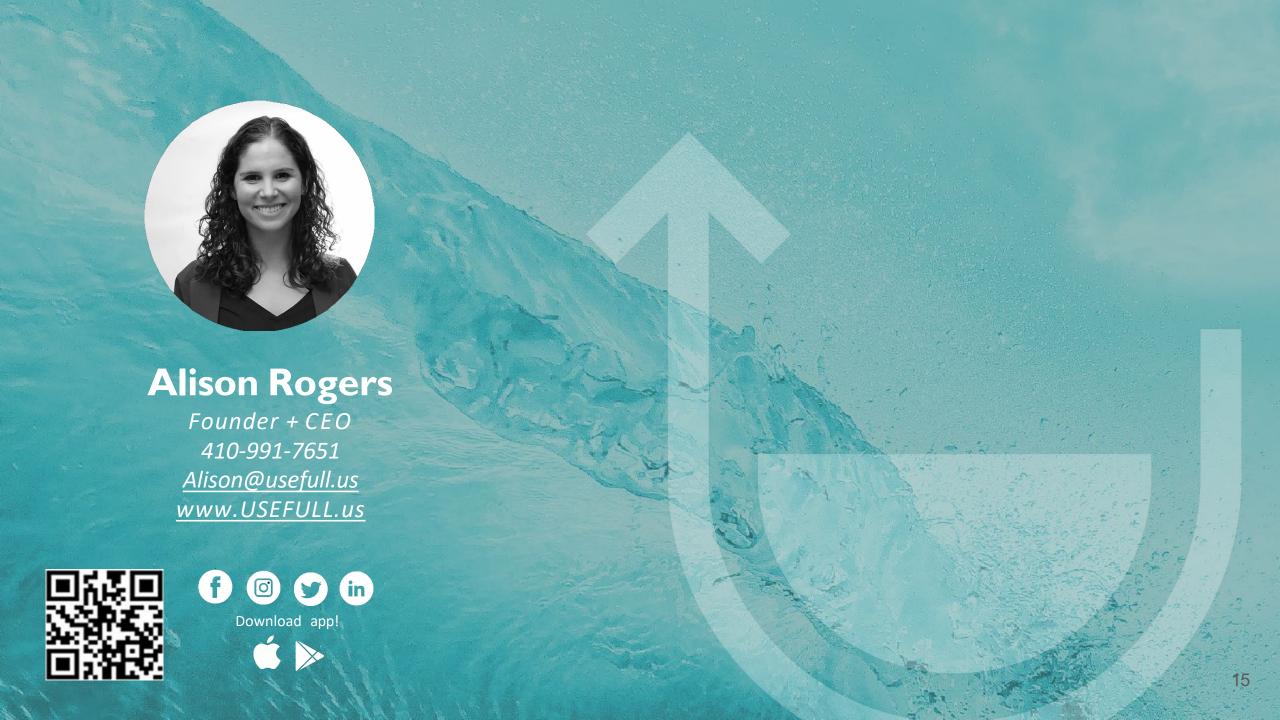
2. ACCOUNTABILITY

Late and lost fees are charged if users don't return within the rental window. No incentive to get inventory back into circulation has resulted in tremendous loss rates for other programs.

3. DESIGNED FOR REUSE

Inventory is premium stainless steel; people don't mistake stainless for trash.

USEFULL vs. No-Tech


USEFULL vs. Plastic

More than just tech & containers

Organizations are marketing their sustainability commitment and saving money on packaging

EPA SBIR Sustainable Materials Projects

- Anthony Dente <u>Verdant Structural Engineers</u> (Berkeley, CA): Straw structural insulated panel (SIP)
 alternatives for homes and buildings to improve energy efficiency and have reduced embodied impacts.
- Marianne Clayton <u>IsoTruss Inc.</u> (Provo, UT): Reinforced concrete foundation for telecommunications towers to increase resiliency to natural disasters.
- **CeCe Smith** Rheaply, Inc. (Chicago, IL): Novel software technology to empower material reuse and embodied carbon reporting in the built environment.
- Kathleen Draper <u>Cinterest LLC</u> (East Rochester, NY): Low embodied carbon wallboard made with biochar.
- Jacob Kumpon <u>KLAW Industries LLC</u> (Binghamton, NY): Process to reuse waste glass for high performance, low carbon concrete.
- Ella Csuka Ecotune, Inc. (Irvine, CA): Fully compostable packaging film made from renewable resources.
- **Alison Rogers** <u>USEFULL Inc.</u> (Boston, MA): Tech-enabled circular economy solution designed to eliminate single-use food and beverage products.

Coming soon

Annual EPA SBIR Solicitation

- Scheduled to open in June 2022
- Plan to include SMM topics
- Informational webinar prior to opening
- Sign up here for to receive announcements:

www.epa.gov/sbir/sbir-listserv

For More Information

EPA SBIR Program Manager: April Richards

richards.april@epa.gov

Website: www.epa.gov/sbir

Listserv: https://www.epa.gov/sbir/sbir-listserv

SBA SBIR website: www.SBIR.gov

Sustainable Materials Management @ EPA:

https://www.epa.gov/smm