ANNEX 6 Additional Information

6.1. Global Warming Potential Values

Global warming potential (GWP) is intended as a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas. It is defined as the cumulative radiative forcing–both direct and indirect effects– integrated over a specific period of time from the emission of a unit mass of gas relative to some reference gas (IPCC 2007). Carbon dioxide (CO₂) was chosen as this reference gas. Direct effects occur when the gas itself is a greenhouse gas. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases. The relationship between kilotons (kt) of a gas and million metric tons of CO₂ equivalents (MMT CO₂ Eq.) can be expressed as follows:

Equation A-71: Calculating CO₂ Equivalent Emissions

MMT CO₂ Eq. = (kt of gas)×(GWP)× $\left(\frac{MMT}{1,000 \text{ kt}}\right)$

where,

MMT CO ₂ Eq.	=	Million metric tons of CO ₂ equivalent
kt	=	kilotons (equivalent to a thousand metric tons)
GWP	=	Global warming potential
MMT	=	Million metric tons

GWP values allow policy makers to compare the impacts of emissions and reductions of different gases. According to the IPCC, GWP values typically have an uncertainty of \pm 40 percent, though some GWP values have larger uncertainty than others, especially those in which lifetimes have not yet been ascertained. In the following decision, the countries who are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have agreed to use consistent GWP values from the *IPCC Fourth Assessment Report* (AR4), based upon a 100-year time horizon, although other time horizon values are available (see Table A-237). While this Inventory uses agreed-upon GWP values according to the specific reporting requirements of the UNFCCC, described below, unweighted gas emissions and sinks in kilotons (kt) are provided in the Trends chapter of this report (Table 2-2) and users of the Inventory can apply different metrics and different time horizons to compare the impacts of different greenhouse gases.

...the global warming potential values used by Parties included in Annex I to the Convention (Annex I Parties) to calculate the carbon dioxide equivalence of anthropogenic emissions by sources and removals by sinks of greenhouse gases shall be those listed in the column entitled "Global warming potential for given time horizon" in table 2.14 of the errata to the contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, based on the effects of greenhouse gases over a 100-year time horizon...¹⁸⁸

Greenhouse gases with relatively long atmospheric lifetimes (e.g., CO₂, CH₄, N₂O, HFCs, PFCs, SF₆, and NF₃) tend to be evenly distributed throughout the atmosphere, and consequently global average concentrations can be determined. However, short-lived gases such as water vapor, carbon monoxide, tropospheric ozone, other indirect greenhouse gases (e.g., NO_x and NMVOCs), and tropospheric aerosols (e.g., SO₂ products and black carbon) vary spatially, and consequently it is difficult to quantify their global radiative forcing impacts. GWP values are generally not attributed to

¹⁸⁸ United Nations Framework Convention on Climate Change; <u>http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf</u>; 31 January 2014; Report of the Conference of the Parties at its nineteenth session; held in Warsaw from 11 to 23 November 2013; Addendum; Part two: Action taken by the Conference of the Parties at its nineteenth session; Decision 24/CP.19; Revision of the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention; p. 2. (UNFCCC 2014).

these gases that are short-lived and spatially inhomogeneous in the atmosphere. See Annex 6.2 for a discussion of GWPs for ozone depleting substances.

Gas	Atmospheric Lifetime	100-year GWP ^a	20-year GWP	500-year GWP
Carbon dioxide (CO ₂)	See footnote ^b	1	1	1
Methane (CH ₄) ^c	12 ^d	25	72	7.6
Nitrous oxide (N ₂ O)	114 ^d	298	289	153
HFC-23	270	14,800	12,000	12,200
HFC-32	4.9	675	2,330	205
HFC-41	2.4	92	323	28
HFC-125	29	3,500	6,350	1,100
HFC-134a	14	1,430	3,830	435
HFC-143a	52	4,470	5,890	1,590
HFC-152a	1.4	124	437	38
HFC-227ea	34.2	3,220	5,310	1,040
HFC-236fa	240	9,810	8,100	7,660
HFC-43-10mee	15.9	1,640	4,140	500
HFC-245fa	7.6	1,030	3,380	314
HFC-365mfc	8.6	794	2,520	241
CF ₄	50,000 ^d	7,390	5,210	11,200
C_2F_6	10,000	12,200	8,630	18,200
C ₃ F ₈	2,600	8,830	6,310	12,500
$C_4 F_6^e$	1.1	0.003	NA	NA
c-C₅F ₈ ^e	31	1.97	7.0	NA
C ₄ F ₁₀	2,600	8,860	6,330	12,500
c-C ₄ F ₈	3,200	10,300	7,310	14,700
C ₅ F ₁₂	4,100	9,160	6,510	13,300
C ₆ F ₁₄	3,200	9,300	6,600	13,300
SF ₆	3,200	22,800	16,300	32,600
NF ₃	740	17,200	12,300	20,700

 Table A-237: IPCC AR4 Global Warming Potentials (GWP) and Atmospheric Lifetimes

 (Years) of Gases Used in this Report

NA (Not Available)

^a GWP values used in this report are calculated over 100-year time horizon.

^b For a given amount of CO₂ emitted, some fraction of the atmospheric increase in concentration is quickly absorbed by the oceans and terrestrial vegetation, some fraction of the atmospheric increase will only slowly decrease over a number of years, and a small portion of the increase will remain for many centuries or more.

^c The methane GWP includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

^d Methane and N₂O have chemical feedback systems that can alter the length of the atmospheric response, in these cases, global mean atmospheric lifetime (LT) is given first, followed by perturbation time (PT), but only the perturbation time is listed here and not the atmospheric residence time.

^e See Table A-1 of FR 40 CFR Part 98.

Source: IPCC (2007)

The IPCC published its *Fifth Assessment Report* (AR5) in 2013 and its Sixth Assessment Report (AR6) in 2021, providing the most current and comprehensive scientific assessments of climate change (IPCC 2013; IPCC 2021). Within this report, the GWP values were revised relative to the IPCC's *Fifth Assessment Report* (AR5) (IPCC 2013). Although the AR4 GWP values are used throughout this Inventory report in line with UNFCCC inventory reporting guidelines, it is informative to review the changes to the 100-year GWP values and the impact they have on the total GWP-weighted emissions of the United States. All GWP values use CO₂ as a reference gas; a change in the radiative efficiency of CO₂ thus impacts the GWP of all other greenhouse gases. Since the *Second Assessment Report* (SAR) and *Third Assessment Report* (TAR), the IPCC has applied an improved calculation of CO₂ radiative forcing and an improved CO₂ response function. The GWP values are drawn from IPCC (2007), with updates for those cases where new laboratory or radiative transfer results have been published. Additionally, the atmospheric lifetimes of some gases have been recalculated, and updated background concentrations were used. Table A-238 shows how the GWP values of the other gases relative to CO₂ tend to be larger in

AR4, AR5, and AR6 because the revised radiative forcing of CO₂ is lower than in earlier assessments, taking into account revisions in lifetimes. Comparisons of GWP values are based on the 100-year time horizon required for UNFCCC inventory reporting. However, there were some instances in which other variables, such as the radiative efficiency or the chemical lifetime, were altered that resulted in further increases or decreases in particular GWP values in AR5 and AR6, including addressing inconsistencies with incorporating climate carbon feedbacks. In addition, the values for radiative forcing and lifetimes have been calculated for a variety of halocarbons. Updates in some well-mixed HFC compounds (including HFC-23, HFC-32, HFC-134a, and HFC-227ea) for AR4 result from investigation into radiative efficiencies in these compounds, with some GWP values changing by up to 40 percent; with this change, the uncertainties associated with these well-mixed HFCs are thought to be approximately 12 percent.

It should be noted that the use of IPCC AR4 GWP values for the current Inventory applies across the entire time series of the Inventory (i.e., from 1990 to 2020). As such, GWP comparisons throughout this chapter are presented relative to AR4 GWPs. Updated reporting guidelines under the Paris Agreement which require the United States and other countries to shift to use of *IPCC Fifth Assessment Report* (AR5) (IPCC 2013) 100-year GWP values (without feedbacks) take effect for national inventory reporting in 2024.¹⁸⁹

¹⁸⁹ See <u>https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-paris-agreement</u>.

	Life	time (years	5)		GWP (10	00 year)		Difference in GWP (Relative to AR4)					
						AR5 with				AR5 with	AR5 with		
Gas	AR4	AR5	AR6	AR4	AR5ª	feedbacks ^b	AR6 ^c	AR5ª	AR5 (%)	feedbacks ^b	feedbacks ^b (%)	AR6	AR6 (%)
Carbon dioxide (CO ₂)	d	e	е	1	1	1	1	NC	NC	NC	NC	NC	NC
Methane (CH ₄) ^f	8.7/12 ^g	12.4	11.8	25	28	34	27	3	12%	9	36%	2	12%
Nitrous oxide (N ₂ O)	120/114 ^g	121	109	298	265	298	273	(33)	-11%	0	0%	(25)	-8%
Hydrofluorocarbons													
HFC-23	270	222	228	14,800	12,400	13,856	14,600	(2,400)	-16%	(944)	-6%	(200)	-1%
HFC-32	4.9	5.2	5.4	675	677	817	771	2	+%	142	21%	96	14%
HFC-41	NA	2.8	2.8	NA	116	141	135	NA	NA	NA	NA	43	47%
HFC-125	29	28.2	30	3,500	3,170	3,691	3,740	(330)	-9%	191	5%	240	7%
HFC-134a	14	13.4	14	1,430	1,300	1,549	1,530	(130)	-9%	119	8%	100	7%
HFC-143a	52	47.1	51	4,470	4,800	5 <i>,</i> 508	5,810	330	7%	1,038	23%	1,340	32%
HFC-152a	1.4	1.5	1.6	124	138	167	164	14	11%	43	35%	40	32%
HFC-227ea	34.2	38.9	36	3,220	3,350	3,860	3,600	130	4%	640	20%	380	12%
HFC-236fa	240	242	213	9,810	8,060	8,998	8,690	(1,750)	-18%	(812)	-8%	(1,120)	-11%
HFC-245fa	7.6	7.7	7.9	1,030	858	1,032	962	(172)	-17%	2	+%	(68)	-7%
HFC-365mfc	8.6	8.7	8.9	794	804	966	914	10	1%	172	22%	120	15%
HFC-43-10mee	15.9	16.1	17	1,640	1,650	1,952	1,600	10	1%	312	19%	(40)	-2%
Fully Fluorinated Species													
SF ₆	3,200	3,200	About 1,000	22,800	23,500	26,087	25,200	700	3%	3,287	14%	2,400	11%
CF ₄	50,000	50,000	50,000	7,390	6,630	7,349	7,380	(760)	-10%	(41)	-1%	(10)	-+%
C_2F_6	10,000	10,000	10,000	12,200	11,100	12,340	12,400	(1,100)	-9%	140	1%	200	2%
C_3F_8	2,600	2,600	2,600	8,830	8,900	9,878	9,290	70	1%	1,048	12%	460	5%
C_4F_{10}	2,600	2,600	2,600	8,860	9,200	10,213	10,000	340	4%	1,353	15%	1,140	13%
c-C ₄ F ₈	3,200	3,200	3,200	10,300	9,540	10,592	10,200	(760)	-7%	292	3%	(100)	-1%
c-C₅F ₈	NA	31	NA	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA
C_5F_{12}	4,100	4,100	4,100	9,160	8,550	9,484	9,220	(610)	-7%	324	4%	60	1%
C_6F_{14}	3,200	3,100	3,100	9,300	7,910	8,780	8,620	(1,390)	-15%	(520)	-6%	(680)	-7%
C ₄ F ₆	1.1	NA	NA	0.003	NA	NA	NA	NA	NA	NA	NA	NA	NA
C ₄ F ₈ O	NA	NA	3,000	NA	NA	NA	13,900	NA	NA	NA	NA	NA	NA
NF ₃	740	500	569	17,200	16,100	17,885	17,400	(1,100)	-6%	685	4%	200	1%

Table A-	238: Com	parison of G	WP values a	nd Lifetimes	Used in	the AR4,	AR5,	and AR	6°

+ Does not exceed 0.5 percent.

NC (No Change)

NA (Not Applicable)

^a The GWP values presented here are the ones most consistent with the methodology used in the AR4 report. See footnote e for more information on GWPs for methane of fossil origin.

^b The GWP values presented here from the AR5 report include climate-carbon feedbacks for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime.

^c The 100-year GWPs from AR6 are prepublication values based on the Working Group 1 report published in August 2021. As the report is finalized for full publication, in the final editing process, these values may be updated in corrigenda and EPA will update this analysis to reflect the final value.

^d For a given amount of CO₂ emitted, some fraction of the atmospheric increase in concentration is quickly absorbed by the oceans and terrestrial vegetation, some fraction of the atmospheric increase will only slowly decrease over a number of years, and a small portion of the increase will remain for many centuries or more. See footnote e for more information on GWPs for methane of fossil origin.

^e No single lifetime can be determined for CO₂ (see IPCC 2007).

^f The methane GWP includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. Additionally, the AR5 reported separate values for fossil versus biospheric methane in order to account for the CO₂ oxidation product. The GWP associated with methane of fossil origin is not shown in this table. Per AR5, the GWP for methane of fossil origin is 30 versus 28 using methodology most consistent with AR4. If using methodology to include climate carbon feedbacks, per the AR5 report, the value is higher by 2 for GWP for methane of fossil origin, so would be 36 versus 34.

^g Methane and N₂O have chemical feedback systems that can alter the length of the atmospheric response, in these cases, global mean residence time is given first, followed by perturbation time.

Note: Parentheses indicate negative values. Source: IPCC (2021), IPCC (2013), IPCC (2007). The choice of GWP values between the AR4, AR5, and AR6 with or without climate-carbon feedbacks has an impact on both the overall emissions estimated by the Inventory, as well as the trend in emissions over time. To summarize, Table A-239 shows the overall trend in U.S. greenhouse gas emissions, by gas, from 1990 through 2020 using the four GWP sets. The table also presents the impact of AR5 and AR6 100-year GWP values with or without feedbacks on the total emissions for 1990 and for 2020.

	Differen	ce in Emiss	ions Betwe	en 1990						
Gas	and	d 2020 (Rel	ative to 199	90)	Revisio	(Relative to	o AR4)			
					AR5 ^a	AR5 ^b	AR6	AR5 ^a	AR5 ^b	AR6
	AR4	AR5 ^a	AR5 ^b	AR6 ^c		1990			2020	
CO ₂	(406.8)	(406.8)	(406.8)	(406.8)	NC	NC	NC	NC	NC	NC
CH ₄	(130.4)	(146.0)	(177.3)	(140.8)	93.7	281.1	62.5	78.1	234.2	52.0
N ₂ O	(24.4)	(21.7)	(24.4)	(22.4)	(49.9)	NC	(37.8)	(47.2)	NC	NC
HFCs, PFCs, SF _{6,}	89.5	87.7	107.7	79.9						
and NF_3					(9.0)	1.3	1.9	(10.9)	19.5	(7.6)
Total	(472.1)	(486.9)	(500.8)	(490.1)	34.8	282.4	26.6	20.0	253.7	44.4
Percent Change	-7.3%	-7.5%	-7.4%	-7.6%	0.5%	4.4%	0.4%	0.3%	4.2%	0.1%

Table A-239:	Effects on U.S.	Greenhouse Gas	Emissions U	lsing AR4,	AR5, and A	4R6° (GWP
values (MMT	CO ₂ Eq.)						

NC (No Change)

^a The GWP values presented here are the ones most consistent with the methodology used in the AR4 report.

^b The GWP values presented here from the AR5 report include climate-carbon feedbacks for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, for methane the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product and that is not shown on this table. See footnotes to Table A-237.

^c The 100-year GWPs from AR6 are prepublication values based on the Working Group 1 report published in August 2021. As the report is finalized for full publication, in the final editing process, these values may be updated in corrigenda and EPA will update this analysis to reflect the final value.

Notes: Totals may not sum due to independent rounding. Excludes sinks. Parentheses indicate negative values.

Table A-240 and Table A-241 show the comparison of emission estimates using AR5 GWP values relative to AR4 GWP values without climate-carbon feedbacks for the non-CO₂ gases, on an emissions and percent change basis. Table A-242 and Table A-243 show the comparison of emission estimates using AR5 GWP values with climate-carbon feedbacks. The use of AR5 GWP values without climate-carbon feedbacks¹⁹⁰ results in an increase in emissions of CH₄ and SF₆ relative to AR4 GWP values, but a decrease in emissions of other gases. The use of AR5 GWP values with climate-carbon feedbacks does not impact CO₂ and N₂O emissions; however, it results in an increase in emissions of CH₄, SF₆, and NF₃ relative to AR4 GWP values, and has mixed impacts on emissions of other gases. Overall, these comparisons of AR4 and AR5 GWP values do not have a significant effect on calculated U.S. emissions, resulting in an increase in emissions of less than 1 percent using AR5 GWP values, or approximately 4 percent when using AR5 GWP values with climate-carbon feedbacks. The percent change in emissions is equal to the percent change in the GWP for each gas; however, in cases where multiple gases are emitted in varying amounts the percent change is variable over the years, such as with Substitution of Ozone Depleting Substances.

Table A-244 and Table A-245 show the comparison of emission estimates using AR6 GWP values relative to AR4 GWP values for the non-CO₂ gases, on an emissions and percent change basis. When the GWP values from the AR6 are applied to the emission estimates presented in this report, total emissions for the year 2020 are 5,990.0 MMT CO₂ Eq., as compared to the official emission estimate of 5,981.4 MMT CO₂ Eq. using AR4 GWP values (i.e., the use of AR6 GWPs results in a 0.1percent increase relative to emissions estimated using AR4 GWPs). As with the comparison of AR4 and AR5 GWP values presented above, the percent change in emissions is equal to the percent change in the GWP for each gas or varies by year based on the mix of gases (i.e., HFCs and PFCs).

¹⁹⁰ The IPCC AR5 report provides additional information on emission metrics. See <u>https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf</u>.

i coubacito ite		- Talaco	(97			
Gas	1990	2005		2016	2017	2018	2019	2020
CO ₂	NC	NC		NC	NC	NC	NC	NC
CH ₄	93.7	83.7		78.9	79.7	80.5	80.3	78.1
N ₂ O	(49.9)	(50.2)		(49.7)	(49.2)	(50.7)	(50.6)	(47.2)
HFCs	(7.5)	(10.9)		(9.8)	(10.2)	(10.1)	(10.5)	(10.6)
PFCs	(2.4)	(0.6)		(0.4)	(0.4)	(0.5)	(0.4)	(0.4)
SF ₆	0.9	0.4		0.2	0.2	0.2	0.2	0.2
NF ₃	(+)	(+)		(+)	(+)	(+)	(+)	(+)
Total	34.8	22.2		19.1	19.9	19.4	18.9	20.0

Table A-240: Change in U.S. Greenhouse Gas Emissions Using AR5^a without Climate-Carbon Feedbacks Relative to AR4 GWP Values (MMT CO₂ Eq.)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

NC (No Change)

^a The GWP values presented here are the ones most consistent with the methodology used in the AR4 report. The AR5 report has also calculated GWP values (shown in Table A-238) where climate-carbon feedbacks have been included for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, for methane the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product and that is not shown on this table. See footnotes to Table A-237.

Notes: Total emissions presented without LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values.

Table A-241: Change in U.S. Greenhouse Gas Emissions Using AR5 ^a without Climate-Carl	bon
Feedbacks Relative to AR4 GWP Values (Percent)	

Gas/Source	1990	2005	2016	2017	2018	2019	2020
CO ₂	NC	NC	NC	NC	NC	NC	NC
CH ₄	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%
N ₂ O	(11%)	(11%)	(11%)	(11%)	(11%)	(11%)	(11%)
SF ₆	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%	3.1%
NF ₃	(6.4%)	(6.4%)	(6.4%)	(6.4%)	(6.4%)	(6.4%)	(6.4%)
HFCs	(16.1%)	(8.6%)	(5.8%)	(6.0%)	(5.9%)	(6.0%)	(5.9%)
PFCs	(10.0%)	(9.6%)	(9.5%)	(9.5%)	(9.6%)	(9.6%)	(9.7%)
Total	0.5%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%

NC (No Change)

^a The GWP values presented here are the ones most consistent with the methodology used in the AR4 report. The AR5 report has also calculated GWP values (shown in Table A-238) where climate-carbon feedbacks have been included for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product.

^b HFC-23 emitted.

^c Emissions from HFC-23, CF₄, C₂F₆, C₃F₈, C₄F₈, C₄F₆, CH₂F₂, CH₃F, CH₂FCF₃, C₂H₂F₄ and C₅F₈, , as well as other HFCs and PFCs used as heat transfer fluids.

^d Zero change in beginning of time series since emissions were zero.

^e PFC emissions from CF₄ and C₂F_{6.}

^f PFC emissions from CF₄.

Note: Total emissions presented without LULUCF. Parentheses indicate negative values. Totals may not sum due to independent rounding.

i ccubacito		 		· · · · · · · · · · · · · · · · · · ·			
Gas	1990	2005	2016	2017	2018	2019	2020
CO ₂	NC	NC	NC	NC	NC	NC	NC
CH ₄	281.1	251.1	236.7	239.0	241.6	240.8	234.2
N ₂ O	NC	NC	NC	NC	NC	NC	NC
HFCs	(2.9)	9.4	17.9	17.7	17.9	18.3	18.7
PFCs	+	+	+	+	+	+	+
SF ₆	4.2	1.7	0.9	0.8	0.8	0.8	0.8
NF ₃	+	+	+	+	+	+	+
Total	282.4	262.2	255.6	257.6	260.4	259.9	253.7

Table A-242: Change in U.S. Greenhouse Gas Emissions Using AR5 with Climate-Carbon Feedbacks^a Relative to AR4 GWP Values (MMT CO₂ Eq.)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

NC (No Change)

^a The GWP values presented here from the AR5 report include climate-carbon feedbacks for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, for methane the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product and that is not shown on this table. See footnotes to Table A-237.

Notes: Total emissions presented without LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values.

Table A-243: Change in U.S. Greenhouse Gas Emissions Using AR5 with Climate-Carbon Feedbacks^a Relative to AR4 GWP Values (Percent)

Gas/Source	1990	2005	2016	2017	2018	2019	2020
CO ₂	NC	NC	NC	NC	NC	NC	NC
CH ₄	36.0%	36.0%	36.0%	36.0%	36.0%	36.0%	36.0%
N ₂ O	NC	NC	NC	NC	NC	NC	NC
SF ₆	14.4%	14.4%	14.4%	14.4%	14.4%	14.4%	14.4%
NF ₃	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%
HFCs	(6.2%)	7.4%	10.6%	10.3%	10.5%	10.4%	10.5%
PFCs	0.2%	0.5%	0.7%	0.7%	0.6%	0.5%	0.5%
Total	4.4%	3.5%	3.9%	4.0%	3.9%	4.0%	4.2%

NC (No Change)

^a The GWP values presented here from the AR5 report include climate-carbon feedbacks for the non-CO₂ gases in order to be consistent with the approach used in calculating the CO₂ lifetime. Additionally, for methane the AR5 reported separate values for fossil versus biogenic methane in order to account for the CO₂ oxidation product and that is not shown on this table. See footnotes to Table A-237.

^b HFC-23 emitted.

^c Emissions from HFC-23, CF₄, C₂F₆, C₃F₈, C₄F₈, C₄F₆, CH₂F₂, CH₃F, CH₂FCF₃, C₂H₂F₄ and C₅F₈, , as well as other HFCs and PFCs used as heat transfer fluids.

^d Zero change in beginning of time series since emissions were zero.

^e PFC emissions from CF₄ and C₂F₆.

^f PFC emissions from CF₄.

Notes: Total emissions presented without LULUCF. Parentheses indicate negative values. Excludes Sinks.

Gas	1990	2005	2016	2017	2018	2019	2020
CO ₂	NC						
CH ₄	62.5	55.8	52.6	53.1	53.7	53.5	52.0
N ₂ O	(37.8)	(38.0)	(37.7)	(37.3)	(38.4)	(38.3)	(35.7)
HFCs	(0.6)	(7.9)	(9.3)	(9.4)	(9.5)	(9.9)	(10.2)
PFCs	(0.5)	(0.1)	1.4	1.6	1.8	1.8	2.0
SF ₆	3.0	1.2	0.6	0.6	0.6	0.6	0.6
NF ₃	+	+	+	+	+	+	+
Total	26.6	10.9	7.7	8.6	8.2	7.7	8.6

Table A-244: Change in U.S. Greenhouse Gas Emissions Using AR6 Relative to AR4 GWP Values (MMT CO₂ Eq.)

+ Absolute value does not exceed 0.05 MMT CO₂ Eq.

NC (No Change)

Notes: Total emissions presented without LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values.

Table A-245:	Change in U.S.	Greenhouse Gas	Emissions Using	AR6 Relative to	AR4 GWP
Values (Perce	ent)		-		

Gas/Source	1990	2005	2016	2017	2018	2019	2020
CO2	NC						
CH₄	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%
N ₂ O	(8%)	(8%)	(8%)	(8%)	(8%)	(8%)	(8%)
SF ₆	10.5%	10.5%	10.5%	10.5%	10.5%	10.5%	10.5%
NF ₃	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%	1.2%
HFCs	(1.3%)	(6.2%)	(5.5%)	(5.5%)	(5.6%)	(5.6%)	(5.7%)
PFCs	(2.0%)	(2.2%)	32.0%	37.7%	38.0%	38.9%	44.4%
Total	0.4%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%

NC (No Change)

+ Does not exceed 0.05 percent.

^a HFC-23 emitted.

^b Emissions from HFC-23, CF₄, C_2F_6 , C_3F_8 , C_4F_8 , C_4F_6 , CH₂F₂, CH₃F, CH₂FCF₃, $C_2H_2F_4$ and C_5F_8 , , as well as other HFCs and PFCs used as heat transfer fluids.

^c Zero change in beginning of time series since emissions were zero.

^d PFC emissions from CF_4 and C_2F_6 .

^e PFC emissions from CF₄.

Notes: Total emissions presented without LULUCF. Parentheses indicate negative values. Excludes Sinks.

6.2. Ozone Depleting Substance Emissions

Ozone is present in both the stratosphere, ¹⁹¹ where it shields the earth from harmful levels of ultraviolet radiation, and at lower concentrations in the troposphere, ¹⁹² where it is the main component of anthropogenic photochemical "smog." Chlorofluorocarbons (CFCs), halons, carbon tetrachloride, methyl chloroform, and hydrochlorofluorocarbons (HCFCs), along with certain other chlorine and bromine containing compounds, have been found to deplete the ozone levels in the stratosphere. These compounds are commonly referred to as ozone depleting substances (ODSs). If left unchecked, stratospheric ozone depletion could result in a dangerous increase of ultraviolet radiation reaching the earth's surface. In 1987, nations around the world signed the Montreal Protocol on Substances that Deplete the Ozone Layer. This landmark agreement created an international framework for limiting, and ultimately eliminating, the production of most ozone depleting substances. ODSs have historically been used in a variety of industrial applications, including refrigeration and air conditioning, foam blowing, fire extinguishing, sterilization, solvent cleaning, and as an aerosol propellant.

In the United States, the Clean Air Act Amendments of 1990 provide the legal instrument for implementation of the Montreal Protocol controls. The Clean Air Act classifies ozone depleting substances as either Class I or Class II, depending upon the ozone depletion potential (ODP) of the compound.¹⁹³ The production of CFCs, halons, carbon tetrachloride, and methyl chloroform—all Class I substances—has already ended in the United States. However, large amounts of these chemicals remain in existing equipment,¹⁹⁴ and stockpiles of the ODSs, as well as material recovered from equipment being decommissioned, are used for maintaining the existing equipment. As a result, emissions of Class I compounds will continue, albeit generally in decreasing amounts, for many more years. Class II designated substances, all of which are HCFCs, have been, or are being, phased out at later dates than Class I compounds because they have lower ODPs. These compounds served as interim replacements for Class I compounds in many industrial applications. The use and emissions of HCFCs in the United States is anticipated to continue for several decades as equipment that use Class II substances are retired from use. Under current Montreal Protocol controls, however, the production for domestic use of all HCFCs as an ODS substitute in the United States must end by the year 2030.

In addition to contributing to ozone depletion, CFCs, halons, carbon tetrachloride, methyl chloroform, and HCFCs are also potent greenhouse gases. However, the depletion of the ozone layer has a cooling effect on the climate that counteracts the direct warming from tropospheric emissions of ODSs. Stratospheric ozone influences the earth's radiative balance by absorption and emission of longwave radiation from the troposphere as well as absorption of shortwave radiation from the sun; overall, stratospheric ozone has a warming effect.

The IPCC has prepared both direct GWP values and net (combined direct warming and indirect cooling) GWP ranges for some of the most common ozone depleting substances (IPCC 2007). Table A-246 presents direct GWP values for ozone depleting substances. Ozone depleting substances directly absorb infrared radiation and contribute to positive radiative forcing; however, their effect as ozone-depleters also leads to a negative radiative forcing because ozone itself is a potent greenhouse gas. There is considerable uncertainty regarding this indirect effect; direct GWP values are shown, but AR4 does provide a range of net GWP values for ozone depleting substances. The *2006 IPCC Guidelines* and the UNFCCC do not include reporting instructions for estimating emissions of ODSs because their use is being phased out under the Montreal Protocol (see note below Table A-246). The effects of these compounds on radiative forcing are not addressed in this report.

¹⁹¹ The stratosphere is the layer from the top of the troposphere up to about 50 kilometers. Approximately 90 percent of atmospheric ozone is within the stratosphere. The greatest concentration of ozone occurs in the middle of the stratosphere, in a region commonly called the ozone layer.

¹⁹² The troposphere is the layer from the ground up to about 11 kilometers near the poles and 16 kilometers in equatorial regions (i.e., the lowest layer of the atmosphere, where humans live). It contains roughly 80 percent of the mass of all gases in the atmosphere and is the site for weather processes including most of the water vapor and clouds.

¹⁹³ Substances with an ozone depletion potential of 0.2 or greater are designated as Class I. All other designated substances that deplete stratospheric ozone but which have an ODP of less than 0.2 are Class II.

¹⁹⁴ Older refrigeration and air-conditioning equipment, fire extinguishing systems, and foam products blown with CFCs/HCFCs may still contain Class I ODS.

Gas	Direct GWP
CFC-11	4,750
CFC-12	10,900
CFC-113	6,130
HCFC-22	1,810
HCFC-123	77
HCFC-124	609
HCFC-141b	725
HCFC-142b	2,310
CH₃CCI₃	146
CCI ₄	1,400
CH₃Br	5
Halon-1211	1,890
Halon-1301	7,140

Table A-246: 100-year Direct Global Warming Potentials for Select Ozone Depleting Substances

Note: Because these compounds have been shown to deplete stratospheric ozone, they are typically referred to as ODSs. However, they are also potent greenhouse gases. Recognizing the harmful effects of these compounds on the ozone layer, in 1987 many governments signed the Montreal Protocol on Substances that Deplete the Ozone Layer to limit the production and importation of a number of CFCs and other halogenated compounds. The United States furthered its commitment to phase-out ODSs by signing and ratifying the Copenhagen Amendments to the Montreal Protocol in 1992. Under these amendments, the United States committed to ending the production and importation of halons by 1994, and CFCs by 1996, and HCFCs by 2030. Source: IPCC (2007).

Although the IPCC emission inventory guidelines do not require the reporting of emissions of ozone depleting substances, the United States believes that the inventory presents a more complete picture of climate impacts when EPA includes these compounds. Emission estimates for several ozone depleting substances are provided in Table A-247.

able A-247: Emissions of Ozone Depleting Substances (Kt)								
Compound	1990	2005		2016	2017	2018	2019	2020
Class I								
CFC-11	29	12		6	6	6	6	6
CFC-12	136	23		3	2	1	1	+
CFC-113	59	17		0	0	0	0	0
CFC-114	4	1		0	0	0	0	0
CFC-115	8	2		+	+	+	+	+
Carbon								
Tetrachloride	4	0		0	0	0	0	0
Methyl Chloroform	223	0		0	0	0	0	0
Halon-1211	2	2		1	1	1	1	1
Halon-1301	2	+		+	+	+	+	+
Class II								
HCFC-22	31	74		54	51	47	43	40
HCFC-123	0	1		1	1	1	1	1
HCFC-124	0	2		+	+	+	+	+
HCFC-141b	1	4		8	7	7	7	7
HCFC-142b	1	4		3	3	4	5	5
HCFC-225ca/cb	0	+		+	+	+	+	+

Table A-247:	Emissions	of Ozone	Depleting	Substances	(kt)
	LIIII33IUII3	OI OZOIIC	Depicting	Jubstances	(NC)

Methodology and Data Sources

Emissions of ozone depleting substances were estimated using the EPA's Vintaging Model. The model, named for its method of tracking the emissions of annual "vintages" of new equipment that enter into service, is a "bottom-up" model. It models the consumption of chemicals based on estimates of the quantity of equipment or products sold, serviced, and retired each year, and the amount of the chemical required to manufacture and/or maintain the equipment. The Vintaging Model makes use of this market information to build an inventory of the in-use stocks of the equipment in each of the end-uses. Emissions are estimated by applying annual leak rates, service emission rates, and disposal emission rates to each population of equipment. By aggregating the emission and consumption output from the different end-uses, the model produces estimates of total annual use and emissions of each chemical. Please see Annex 3.9, Methodology for Estimating HFC and PFC Emissions from Substitution of Ozone Depleting Substances, of this Inventory for a more detailed discussion of the Vintaging Model.

Uncertainty Assessment

Uncertainties exist with regard to the levels of chemical production, equipment sales, equipment characteristics, and end-use emissions profiles that are used by these models. Please see the Substitution of Ozone Depleting Substances section of this report for a more detailed description of the uncertainties that exist in the Vintaging Model.

6.3.	Complete List of Source and Sink Categories	
------	---	--

Chapter/Source/Sink	Gas(es)
Energy	· ·
Fossil Fuel Combustion	CO ₂
Non-Energy Use of Fossil Fuels	CO ₂
Stationary Combustion (excluding CO ₂)	CH ₄ , N ₂ O
Mobile Combustion (excluding CO_2)	CH ₄ , N ₂ O
Coal Mining	CO_2, CH_4
Abandoned Underground Coal Mines	CH ₄
Petroleum Systems	CO ₂ , CH ₄ , N ₂ O
Natural Gas Systems	CO ₂ , CH ₄ , N ₂ O
Abandoned Oil and Gas Wells	CO ₂ , CH ₄
Incineration of Waste	CO ₂ , CH ₄ , N ₂ O
Industrial Processes and Product Use	
Cement Production	CO ₂
Lime Production	CO ₂
Glass Production	CO ₂
Other Process Uses of Carbonates	CO ₂
Ammonia Production	CO ₂
Urea Consumption for Non-Agricultural Purposes	CO ₂
Nitric Acid Production	N ₂ O
Adipic Acid Production	N ₂ O
Caprolactam, Glyoxal, and Glyoxylic Production	N ₂ O
Carbide Production and Consumption	CO ₂ , CH ₄
Titanium Dioxide Production	CO ₂
Soda Ash Production	CO ₂
Petrochemical Production	CO ₂ , CH ₄
HCFC-22 Production	HFC-23
Carbon Dioxide Consumption	CO ₂
Phosphoric Acid Production	CO ₂
Iron and Steel Production & Metallurgical Coke Production	CO ₂ , CH ₄
Ferroalloy Production	CO ₂ , CH ₄
Aluminum Production	CO ₂ , CF ₄ , C ₂ F ₆
Magnesium Production and Processing	CO ₂ , HFCs, SF ₆
Lead Production	CO ₂
Zinc Production	CO ₂
Electronics Industry	N_2O , HFCs, PFCs, ^a SF ₆ , NF ₃
Substitution of Ozone Depleting Substances	HFCs, PFCs ^o
Electrical Transmission and Distributing	SF ₆ , CF ₄
N ₂ O from Product Uses	N ₂ O
Agriculture	
Enteric Fermentation	CH ₄
Manure Management	CH ₄ , N ₂ O
Rice Cultivation	
Urea Fertilization	
Field Burning of Agricultural Residues	CH ₄ , N ₂ O
Agricultural Soil Management	N ₂ O
Land Use, Land-Use Change, and Forestry	
Forest Land Remaining Forest Land	CO_2, CH_4, N_2O_2
Lanu Converteu to Forest Land	
Cropianu Kemaining Cropianu	
Lanu Converted to Cropiand Crassland Remaining Crossland	
Land Converted to Grassland	
Lanu Converteu to Grassianu Watlanda Pamaining Watlanda	
weudrus Remaining Wetlands	
Lanu Converteu to Wetlands	CO2, CH4

Settlements Remaining Settlements	CO ₂ , N ₂ O
Land Converted to Settlements	CO ₂
Waste	
Landfills	CH ₄
Wastewater Treatment	CH ₄ , N ₂ O
Composting	CH ₄ , N ₂ O
Anaerobic Digestion at Biogas Facilities	CH ₄

^a Includes HFC-23, CF₄, C₂F₆, C₃F₈, C₄F₈, C₄F₆, C₅F₈, CH₂F₂, CH₃F, CH₂FCF₃, and C₂H₂F₄, as well as a mix other HFCs and PFCs used as heat transfer fluids.

^b Includes HFC-23, HFC-32, HFC-125, HFC-134a, HFC-143a, HFC-236fa, CF₄, HFC-152a, HFC-227ea, HFC-245fa, HFC-365mfc, HFC-4310mee, HCFO-1233zd(E), HFO-1234yf, HFO-1234ze, HFO-1336mzz(Z), C₄F₁₀, and PFC/PFPEs.

^c The LULUCF Sector includes CH₄ and N₂O emissions to the atmosphere and net carbon stock changes. The term "flux" is used to describe the exchange of CO₂ to and from the atmosphere, with net flux being either positive or negative depending on the overall balance. Removal and long-term storage of CO₂ from the atmosphere is also referred to as "carbon sequestration."

6.4. Constants, Units, and Conversions

Metric Prefixes

Although most activity data for the United States is gathered in customary U.S. units, these units are converted into metric units per international reporting guidelines. Table A-248 provides a guide for determining the magnitude of metric units.

Table A-240. Guide to metric onit Frenkes	Table A-248:	Guide to	Metric	Unit	Prefixes
---	--------------	----------	--------	------	----------

Prefix/Symbol	Factor
atto (a)	10-18
femto (f)	10 ⁻¹⁵
pico (p)	10-12
nano (n)	10 ⁻⁹
micro (μ)	10-6
milli (m)	10-3
centi (c)	10-2
deci (d)	10-1
deca (da)	10
hecto (h)	10 ²
kilo (k)	10 ³
mega (M)	10 ⁶
giga (G)	10 ⁹
tera (T)	1012
peta (P)	1015
exa (E)	1018

Unit Conversions

1 kilogram	=	2.205 pounds
1 pound	=	0.454 kilograms
1 short ton	=	2,000 pounds = 0.9072 metric tons
1 metric ton	=	1,000 kilograms = 1.1023 short tons
A 1.1 .		
1 cubic meter	=	35.315 cubic feet
1 cubic foot	=	0.02832 cubic meters
1 U.S. gallon	=	3.785412 liters
1 barrel (bbl)	=	0.159 cubic meters
1 barrel (bbl)	=	42 U.S. gallons
1 liter	=	0.001 cubic meters
		0.2040
1 foot	=	0.3048 meters
1 meter	=	3.28 feet
1 mile	=	1.609 kilometers
1 kilometer	=	0.621 miles
1 acre	=	43,560 square feet = 0.4047 nectares = 4,047 square meters
1 square mile	=	2.589988 square kilometers
Degrees Celsius	s =	(Degrees Fahrenheit – 32)*5/9

Density Conversions¹⁹⁵

Methane	1 cubic meter	=	0.67606 kilogra	ms	
Carbon dioxide	1 cubic meter	=	1.85387 kilogra	ms	
Natural gas liquids	1 metric ton	=	11.6 barrels	=	1,844.2 liters
Unfinished oils	1 metric ton	=	7.46 barrels	=	1,186.04 liters
Alcohol	1 metric ton	=	7.94 barrels	=	1,262.36 liters
Liquefied petroleum gas	1 metric ton	=	11.6 barrels	=	1,844.2 liters
Aviation gasoline	1 metric ton	=	8.9 barrels	=	1,415.0 liters
Naphtha jet fuel	1 metric ton	=	8.27 barrels	=	1,314.82 liters
Kerosene jet fuel	1 metric ton	=	7.93 barrels	=	1,260.72 liters
Motor gasoline	1 metric ton	=	8.53 barrels	=	1,356.16 liters
Kerosene	1 metric ton	=	7.73 barrels	=	1,228.97 liters
Naphtha	1 metric ton	=	8.22 barrels	=	1,306.87 liters
Distillate	1 metric ton	=	7.46 barrels	=	1,186.04 liters
Residual oil	1 metric ton	=	6.66 barrels	=	1,058.85 liters
Lubricants	1 metric ton	=	7.06 barrels	=	1,122.45 liters
Bitumen	1 metric ton	=	6.06 barrels	=	963.46 liters
Waxes	1 metric ton	=	7.87 barrels	=	1,251.23 liters
Petroleum coke	1 metric ton	=	5.51 barrels	=	876.02 liters
Petrochemical feedstocks	1 metric ton	=	7.46 barrels	=	1,186.04 liters
Special naphtha	1 metric ton	=	8.53 barrels	=	1,356.16 liters
Miscellaneous products	1 metric ton	=	8.00 barrels	=	1,271.90 liters

Energy Conversions

Converting Various Energy Units to Joules

The common energy unit used in international reports of greenhouse gas emissions is the joule. A joule is the energy required to push with a force of one Newton for one meter. A terajoule (TJ) is one trillion (10¹²) joules. A British thermal unit (Btu, the customary U.S. energy unit) is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit at or near 39.2 degrees Fahrenheit.

1 TJ =	2.388×10 ¹¹ calories
	23.88 metric tons of crude oil equivalent
	947.8 million Btus
	277,800 kilowatt-hours

Converting Various Physical Units to Energy Units

Data on the production and consumption of fuels are first gathered in physical units. These units must be converted to their energy equivalents. The conversion factors in Table A-249 can be used as default factors, if local data are not available. See Appendix A of EIA's *Monthly Energy Review, November 2021* (EIA 2021) for more detailed information on the energy content of various fuels.

¹⁹⁵ Reference: EIA (2007)

Fuel Type (Units)	Factor
Solid Fuels (Million Btu/Short ton)	
Anthracite coal	22.57
Bituminous coal	23.89
Sub-bituminous coal	17.14
Lignite	12.87
Coal Coke	24.80
Natural Gas (Btu/Cubic foot)	1,037
Liquid Fuels (Million Btu/Barrel)	
Motor gasoline	5.052
Aviation gasoline	5.048
Kerosene	5.670
Jet fuel, kerosene-type	5.670
Distillate fuel	5.825
Residual oil	6.287
Naphtha for petrochemicals	5.248
Petroleum coke	6.024
Other oil for petrochemicals	5.825
Special naphthas	5.248
Lubricants	6.065
Waxes	5.537
Asphalt	6.636
Still gas	6.000
Misc. products	5.796

Table A-249: Conversion Factors to Energy Units (Heat Equivalents)

Note: For petroleum and natural gas, *Monthly Energy Review, February 2022* (EIA 2022). For coal ranks, *State Energy Data Report 1992* (EIA 1993). All values are given in higher heating values (gross calorific values).

6.5. Chemical Formulas

Symbol	Name
Al	Aluminum
Al ₂ O ₃	Aluminum oxide
Br	Bromine
С	Carbon
CH ₄	Methane
C ₂ H ₆	Ethane
C ₃ H ₈	Propane
CF ₄	Perfluoromethane
C ₂ F ₆	Perfluoroethane, hexafluoroethane
c-C₃F ₆	Perfluorocyclopropane
C ₃ F ₈	Perfluoropropane
C ₄ F ₆	Hexafluoro-1,3-butadiene
c-C ₄ F ₈	Perfluorocyclobutane
C ₄ F ₈ O	Octafluorotetrahydrofuran
C ₄ F ₁₀	Perfluorobutane
c-C₅F ₈	Perfluorocyclopentene
C ₅ F ₁₂	Perfluoropentane
C ₆ F ₁₄	Perfluorohexane
CF₃I	Trifluoroiodomethane
CFCl₃	Trichlorofluoromethane (CFC-11)
CF ₂ Cl ₂	Dichlorodifluoromethane (CFC-12)
CF₃CI	Chlorotrifluoromethane (CFC-13)
C ₂ F ₃ Cl ₃	Trichlorotrifluoroethane (CFC-113)*
CCl ₃ CF ₃	CFC-113a*
$C_2F_4Cl_2$	Dichlorotetrafluoroethane (CFC-114)
C ₂ F ₅ Cl	Chloropentafluoroethane (CFC-115)
CHCl ₂ F	HCFC-21
CHF ₂ Cl	Chlorodifluoromethane (HCFC-22)
C ₂ F ₃ HCl ₂	HCFC-123
C ₂ F ₄ HCl	HCFC-124
C ₂ FH ₃ Cl ₂	HCFC-141b
$C_2H_3F_2CI$	HCFC-142b
CF ₃ CF ₂ CHCl ₂	HCFC-225ca
CCIF ₂ CF ₂ CHCIF	HCFC-225cb
CCl ₄	Carbon tetrachloride
CHCICCI ₂	Trichloroethylene
CCl ₂ CCl ₂	Perchloroethylene, tetrachloroethene
CH₃Cl	Methylchloride
CH ₃ CCl ₃	Methylchloroform
CH ₂ Cl ₂	Methylenechloride
CHCl ₃	Chloroform, trichloromethane
CHF ₃	HFC-23
CH ₂ F ₂	HFC-32
CH₃F	HFC-41
C ₂ HF ₅	HFC-125
$C_2H_2F_4$	HFC-134
CH ₂ FCF ₃	HFC-134a
$C_2H_3F_3$	HFC-143*
$C_2H_3F_3$	HFC-143a*
CH ₂ FCH ₂ F	HFC-152*
$C_2H_4F_2$	HFC-152a*

Table A-250: Guide to Chemical Formulas

CH ₃ CH ₂ F	HFC-161
C ₃ HF ₇	HFC-227ea
CF ₃ CF ₂ CH ₂ F	HFC-236cb
CF ₃ CHFCHF ₂	HFC-236ea
$C_3H_2F_6$	HFC-236fa
C3H3F5	HFC-245ca
CHF ₂ CH ₂ CF ₃	HFC-245fa
CF ₃ CH ₂ CF ₂ CH ₃	HFC-365mfc
C ₅ H ₂ F ₁₀	HFC-43-10mee
CF ₃ OCHF ₂	HFE-125
CF ₂ HOCF ₂ H	HFE-134
CH ₃ OCF ₃	HFE-143a
CF ₃ CHFOCF ₃	HFE-227ea
CF ₃ CHClOCHF ₂	HCFE-235da2
CF ₃ CHFOCHF ₂	HFE-236ea2
CF ₃ CH ₂ OCF ₃	HFE-236fa
CF ₃ CF ₂ OCH ₃	HFE-245cb2
CHF ₂ CH ₂ OCF ₃	HFE-245fa1
CF ₃ CH ₂ OCHF ₂	HFE-245fa2
$CHF_2CF_2OCH_3$	HFE-254cb2
CF ₃ CH ₂ OCH ₃	HFE-263fb2
CF ₃ CF ₂ OCF ₂ CHF ₂	HFE-329mcc2
CF ₃ CF ₂ OCH ₂ CF ₃	HFE-338mcf2
CF ₃ CF ₂ CF ₂ OCH ₃	HFE-347mcc3
CF ₃ CF ₂ OCH ₂ CHF ₂	HFE-347mcf2
CF ₃ CHFCF ₂ OCH ₃	HFE-356mec3
CHF ₂ CF ₂ CF ₂ OCH ₃	HFE-356pcc3
CHF2CF2OCH2CHF2	HFE-356pcf2
CHF ₂ CF ₂ CH ₂ OCHF ₂	HFE-356pcf3
CF ₃ CF ₂ CH ₂ OCH ₃	HFE-365mcf3
CHF ₂ CF ₂ OCH ₂ CH ₃	HFE-374pcf2
C ₄ F ₉ OCH ₃	HFE-7100
$C_4F_9OC_2H_5$	HFE-7200
CH ₂ CFCF ₃	HFO-1234yf
CHFCHCF ₃	HFO-1234ze(E)
CF ₃ CHCHCF ₃	HFO-1336mzz(Z)
C ₃ H ₂ ClF ₃	HCFO-1233zd(E)
CHF2OCF2OC2F4OCHF2	H-Galden 1040x
CHF ₂ OCF ₂ OCHF ₂	HG-10
CHF2OCF2CF2OCHF2	HG-01
CH ₃ OCH ₃	Dimethyl ether
CH_2Br_2	Dibromomethane
CH₂BrCl	Dibromochloromethane
CHBr ₃	Tribromomethane
CHBrF ₂	Bromodifluoromethane
CH₃Br	Methylbromide
CF ₂ BrCl	Bromodichloromethane (Halon 1211)
$CF_3Br(CBrF_3)$	Bromotrifluoromethane (Halon 1301)
CF ₃ I	FIC-13I1
СО	Carbon monoxide
CO ₂	Carbon dioxide
CaCO ₃	Calcium carbonate, Limestone
CaMg(CO ₃) ₂	Dolomite
CaO	Calcium oxide, Lime
Cl	atomic Chlorine
F	Fluorine

Fe	Iron			
Fe ₂ O ₃	Ferric oxide			
FeSi	Ferrosilicon			
GaAs	Gallium arsenide			
H, H ₂	atomic Hydrogen, molecular Hydrogen			
H ₂ O	Water			
H ₂ O ₂	Hydrogen peroxide			
ОН	Hydroxyl			
N, N ₂	atomic Nitrogen, molecular Nitrogen			
NH ₃	Ammonia			
NH4 ⁺	Ammonium ion			
HNO ₃	Nitric acid			
MgO	Magnesium oxide			
NF ₃	Nitrogen trifluoride			
N ₂ O	Nitrous oxide			
NO	Nitric oxide			
NO ₂	Nitrogen dioxide			
NO3	Nitrate radical			
NO _x	Nitrogen oxides			
Na	Sodium			
Na ₂ CO ₃	Sodium carbonate, soda ash			
Na ₃ AlF ₆	Synthetic cryolite			
O, O ₂	atomic Oxygen, molecular Oxygen			
O ₃	Ozone			
S	atomic Sulfur			
H ₂ SO ₄	Sulfuric acid			
SF ₆	Sulfur hexafluoride			
SF₅CF₃	Trifluoromethylsulphur pentafluoride			
SO ₂	Sulfur dioxide			
Si	Silicon			
SiC	Silicon carbide			
SiO ₂	Quartz			

* Distinct isomers.

6.6. Greenhouse Gas Precursors Cross-Walk of National Emission Inventory (NEI) Categories to the National Inventory Report (NIR)

Emissions of precursor gases (CO, NO_x, NMVOC, and SO₂) occur in all sectors and are summarized in Chapter 2, Section 2.3, presented in sectoral chapters of this Inventory. Emissions of these gases are provided by EPA's National Emissions Inventory (NEI). The categories used in the NEI vary from those presented in this Inventory and included in IPCC guidelines. Table A-251 below indicates how NEI Tier 1/Tier 2 categories were recategorized from NEI source categories to those more closely aligned with National Inventory Report (NIR) categories and CRF categories, based on EPA (2022) and detailed mapping of categories between this Inventory and the NEI. Precursor emissions from Agriculture and LULUCF categories are estimated separately and therefore are not taken from EPA (2021); see Sections 5.7, 6.2, and 6.6.

NEI Category (Tier 1)	NEI Category (Tier 2)	NIR Chapter	NIR Category	CRF Category
Fuel Combustion Electric	Coal	Energy	Fossil Fuel Combustion – Electric Power	1.A.1.a Public Electricity and Heat
Utility			Sector	Production
Fuel Combustion Electric	Gas	Energy	Fossil Fuel Combustion – Electric Power	1.A.1.a Public Electricity and Heat
Utility			Sector	Production
Fuel Combustion Electric	Internal Combustion	Energy	Fossil Fuel Combustion – Electric Power	1.A.1.a Public Electricity and Heat
Utility			Sector	Production
Fuel Combustion Electric	Oil	Energy	Fossil Fuel Combustion – Electric Power	1.A.1.a Public Electricity and Heat
Utility			Sector	Production
Fuel Combustion Electric	Other	Energy	Fossil Fuel Combustion – Electric Power	1.A.1.a Public Electricity and Heat
Utility			Sector	Production
Fuel Combustion Industrial	Coal	Energy	Fossil Fuel Combustion - Industrial	1.A.2.g Other (please specify)
Fuel Combustion Industrial	Gas	Energy	Fossil Fuel Combustion - Industrial	1.A.2.g Other (please specify)
Fuel Combustion Industrial	Internal Combustion	Energy	Fossil Fuel Combustion - Industrial	1.A.2.g Other (please specify)
Fuel Combustion Industrial	Oil	Energy	Fossil Fuel Combustion - Industrial	1.A.2.g Other (please specify)
Fuel Combustion Industrial	Other	Energy	Fossil Fuel Combustion - Industrial	1.A.2.g Other (please specify)
Fuel Combustion Other	Commercial/Institutional Coal	Energy	Fossil Fuel Combustion - Commercial	1.A.4.a Commercial/Institutional
Fuel Combustion Other	Commercial/Institutional Gas	Energy	Fossil Fuel Combustion - Commercial	1.A.4.a Commercial/Institutional
Fuel Combustion Other	Commercial/Institutional Oil	Energy	Fossil Fuel Combustion - Commercial	1.A.4.a Commercial/Institutional
Fuel Combustion Other	Misc. Fuel Combustion (Except	Energy	Fossil Fuel Combustion - Commercial	1.A.4.a Commercial/Institutional
	Residential)			
Fuel Combustion Other	Residential Other	Energy	Fossil Fuel Combustion - Residential	1.A.4.b Residential
Fuel Combustion Other	Residential Wood	Energy	Fossil Fuel Combustion - Residential	1.A.4.b Residential
Petroleum and Related	Asphalt Manufacturing	Energy	Other Energy	1.B.2.d Other
Industries				
Petroleum and Related	Oil & Gas Production	Energy	Petroleum and Natural Gas Systems	1.B.2.d Other
Industries				
Petroleum and Related	Petroleum Refineries & Related	Energy	Petroleum and Natural Gas Systems	1.B.2.d Other
Industries	Industries			
Highway Vehicles	Compressed Natural Gas (CNG)	Energy	Fossil Fuel Combustion - Transportation	1.A.3.b Road Transportation
Highway Vehicles	Diesel Fuel	Energy	Fossil Fuel Combustion - Transportation	1.A.3.b Road Transportation
Highway Vehicles	Electricity	Energy	Fossil Fuel Combustion - Transportation	1.A.3.b Road Transportation
Highway Vehicles	Ethanol (E-85)	Energy	Fossil Fuel Combustion - Transportation	1.A.3.b Road Transportation
Highway Vehicles	Gasoline	Energy	Fossil Fuel Combustion - Transportation	1.A.3.b Road Transportation
Off-Highway	Aircraft	Energy	Fossil Fuel Combustion - Transportation	1.A.3.a Domestic Aviation
Off-Highway	Marine Vessels	Energy	Fossil Fuel Combustion - Transportation	1.A.3.d Domestic Navigation
Off-Highway	Non-Road Diesel	Energy	Fossil Fuel Combustion - Transportation	1.A.3.e Other Transportation
Off-Highway	Non-Road Gasoline	Energy	Fossil Fuel Combustion - Transportation	1.A.3.e Other Transportation
Off-Highway	Other	Energy	Fossil Fuel Combustion - Transportation	1.A.3.e Other Transportation
Off-Highway	Railroads	Energy	Fossil Fuel Combustion - Transportation	1.A.3.c Railways

Table A-251: Cross-walk of NEI and NIR Categories for Greenhouse Gas Precursors

Chemical and Allied Product	Agricultural Chemical	IPPU	Chemical Industry	2.B.10 Other - Other non-specified
Chemical and Allied Product	Inorganic Chemical		Chemical Industry	2 B 10 Other - Other non-specified
Manufacturing	Manufacturing	IFFO	chemical industry	2.B.10 Other - Other Holl-specified
Chemical and Allied Product	Paint Varnish Lacquer Enamel	IPPU	Chemical Industry	2 B 10 Other - Other non-specified
Manufacturing	Manufacturing		enemiear modely	
Chemical and Allied Product	Pharmaceutical Manufacturing	IPPU	Chemical Industry	2.B.10 Other - Other non-specified
Manufacturing				
Chemical and Allied Product	Organic Chemical Manufacturing	IPPU	Chemical Industry	2.B.10 Other - Other non-specified
Manufacturing	с с			•
Chemical and Allied Product	Other Chemical Manufacturing	IPPU	Chemical Industry	2.B.10 Other - Other non-specified
Manufacturing	C C		<i>.</i>	•
Chemical and Allied Product	Polymer & Resin Manufacturing	IPPU	Chemical Industry	2.B.10 Other - Other non-specified
Manufacturing				
Metals Processing	Ferrous Metals Processing	IPPU	Metal Industry	2.C.7 Other - Other non-specified
Metals Processing	Metals Processing NEC	IPPU	Metal Industry	2.C.7 Other - Other non-specified
Metals Processing	Non-Ferrous Metals Processing	IPPU	Metal Industry	2.C.7 Other - Other non-specified
Storage & Transport	Bulk Materials Storage	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
Storage & Transport	Bulk Materials Transport	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
Storage & Transport	Bulk Terminals & Plants	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
Storage & Transport	Inorganic Chemical Storage	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
Storage & Transport	Inorganic Chemical Transport	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
Storage & Transport	Petroleum & Petroleum Product	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
	Storage			
Storage & Transport	Petroleum & Petroleum Product Transport	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
Storage & Transport	Service Stations: Breathing &	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
	Emptying			
Storage & Transport	Service Stations: Stage I	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
Storage & Transport	Service Stations: Stage II	IPPU	Other Industrial Processes	2.H.3 Other – Storage and Transport
Solvent Utilization	Degreasing	IPPU	Other Industrial Processes	2.G.4 Other - Degreasing and Dry Cleaning
Solvent Utilization	Dry Cleaning	IPPU	Other Industrial Processes	2.G.4 Other - Degreasing and Dry Cleaning
Solvent Utilization	Graphic Arts	IPPU	Other Industrial Processes	2.G.4 Other - Graphic Arts
Solvent Utilization	Nonindustrial	IPPU	Other Industrial Processes	2.G.4 Other - Nonindustrial
Solvent Utilization	Solvent Utilization NEC	IPPU	Other Industrial Processes	2.G.4 Other - Other non-specified
Solvent Utilization	Other Industrial	IPPU	Other Industrial Processes	2.G.4 Other - Other non-specified
Solvent Utilization	Surface Coating	IPPU	Other Industrial Processes	2.G.4 Other - Surface Coating
Other Industrial Processes	Agriculture, Food, & Kindred Products	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes
Other Industrial Processes	Construction	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes
Other Industrial Processes	Electronic Equipment	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes
Other Industrial Processes	Machinery Products	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes

Other Industrial Processes	Mineral Products	IPPU	Mineral Industry	2.H.3 Other - Other Industrial Processes
Other Industrial Processes	Miscellaneous Industrial Processes	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes
Other Industrial Processes	Rubber & Miscellaneous Plastic Products	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes
Other Industrial Processes	Textiles, Leather, & Apparel Products	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes
Other Industrial Processes	Transportation Equipment	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes
Other Industrial Processes	Wood, Pulp & Paper, &	IPPU	Other Industrial Processes	2.H.3 Other - Other Industrial Processes
	Publishing Products			
Miscellaneous	Agriculture & Forestry	IPPU	NA	NA
Miscellaneous	Health Services	IPPU	Miscellaneous	2.H.3 Other - Other Industrial Processes
Miscellaneous	Catastrophic/Accidental	IPPU	Miscellaneous	2.H.3 Other - Other Industrial Processes
	Releases			
Miscellaneous	Other	IPPU	Miscellaneous	2.H.3 Other - Other Industrial Processes
Miscellaneous	Other Combustion	IPPU	Miscellaneous; NA ^a	2.H.3 Other - Other Industrial Processes
Miscellaneous	Other Fugitive Dust	IPPU	Miscellaneous	2.H.3 Other - Other Industrial Processes
Miscellaneous	Repair Shops	IPPU	Miscellaneous	2.H.3 Other - Other Industrial Processes
Waste Disposal and Recycling	Incineration	Energy	Incineration of Waste	1.A.5.a Stationary
Waste Disposal and Recycling	Open Burning	Energy	Incineration of Waste	1.A.5.a Stationary
Waste Disposal and Recycling	Landfills	Waste	Landfills	5.A.1 Managed Waste Disposal Sites
Waste Disposal and Recycling	POTW	Waste	Wastewater Treatment	5.D.1 Domestic Wastewater
Waste Disposal and Recycling	Industrial Waste Water	Waste	Wastewater Treatment	5.D.2 Industrial Wastewater
Waste Disposal and Recycling	TSDF	Waste	Miscellaneous	5.E Other - Other non-specified
Waste Disposal and Recycling	Other	Waste	Miscellaneous	5.E Other - Other non-specified
Natural Resources	Biogenic	NA	NA	NA
Natural Resources	Geogenic	NA	NA	NA
Natural Resources	Miscellaneous	NA	NA	NA
Wildfires		NA	NA ^b	NA

NA (Not Applicable)

^a Miscellaneous - Other Combustion emissions from Structural Fires and other sources are allocated to the IPPU miscellaneous NIR category. Miscellaneous – Other Combustion emissions from agricultural fires, forest wildfires, and prescribed burning are not from the NEI and calculated separately in the NIR. Miscellaneous – Other Combustion emissions from Slash burning (logging) are not included in the NIR.

^b Wildfire emissions are not from the NEI and calculated separately in the NIR.

References

EIA (2022) Monthly Energy Review, February 2022, Energy Information Administration, U.S. Department of Energy, Washington, D.C. DOE/EIA-0035(2022/02).

EIA (2007) *Emissions of Greenhouse Gases in the United States 2006, Draft Report*. Office of Integrated Analysis and Forecasting, Energy Information Administration, U.S. Department of Energy, Washington, DC. DOE-EIA-0573 (2006).

EIA (1993) *State Energy Data Report 1992*, DOE/EIA-0214(93), Energy Information Administration, U.S. Department of Energy. Washington, DC. December.

EPA (2022) "Crosswalk of Precursor Gas Categories." U.S. Environmental Protection Agency. April 6, 2022.

EPA (2021) "Criteria pollutants National Tier 1 for 1970 - 2020." National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards, March 2021. Available online at: <u>https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data</u>.

IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

IPCC (2013) *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.* [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press. Cambridge, United Kingdom 996 pp.

IPCC (1996) *Climate Change 1995: The Science of Climate Change*. Intergovernmental Panel on Climate Change, J.T.Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.). Cambridge University Press. Cambridge, United Kingdom.