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Abstract 

Leaded fuel used by piston-engine aircraft is the largest source of airborne lead emissions in the United 

States. Previous studies have found higher blood lead levels in children living near airports where leaded 

aviation fuel is used. However, little is known about health effects on adults. This study is the first to 

examine the association between exposure to leaded aviation fuel and adult cardiovascular mortality. 

We estimate the association between annual piston-engine air traffic and cardiovascular mortality 

among adults ages 65 and older near 40 North Carolina airports during 2000 to 2017. We use several 

strategies to minimize the potential for bias due to omitted variables and confounding from other health 

hazards at airports, including coarsened exact matching, location-specific intercepts, and adjustment for 

jet-engine and other air traffic that does not use leaded fuel. We find that cardiovascular mortality rates 

within a few kilometers of single-runway airports were significantly higher in years with more piston-

engine air traffic. We do not consistently find a statistically significant association between 

cardiovascular mortality rates and piston-engine air traffic near multi-runway airports, where there is 

greater uncertainty in our measure of the distance between populations and aviation exposures. These 

results suggest that (i) reducing lead emissions from aviation could yield substantial health benefits for 

adults, and (ii) more refined data are needed to obtain more precise estimates of these benefits.  
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Cardiovascular Mortality and Leaded Aviation Fuel: Evidence from Piston-Engine Air Traffic in North 

Carolina1  

Lead is a neurotoxin that damages multiple systems in the body. While neurodevelopmental effects in 

children are well documented, adults are also adversely affected by lead exposure (EPA 2013).  Of 

particular concern is the increased risk of cardiovascular morbidity and mortality in adults (EPA 2013; 

Lamas et al. 2021).  

Piston-engine aircraft operations using leaded fuel (termed aviation gasoline, or avgas) currently 

represent the largest source of airborne lead in the U.S., contributing 70% of lead emissions (EPA 

2021a). While jet-engine aircraft (which do not use leaded fuel) dominate commercial air traffic, smaller 

piston-engine aircraft are widely used for non-commercial purposes that fall under the heading of 

general aviation, including commuting, recreation, flight instruction, and agriculture. There are roughly 

13,000 airports nationwide, most of which include piston-engine airplane traffic (EPA 2020a). 

The United States Environmental Protection Agency (EPA) estimates that over 5 million people live in 

Census blocks located within 500 meters of a runway at an airport with piston-engine aircraft (EPA 

2020b). Previous studies have found an association between exposure to leaded aviation fuel and 

children’s blood lead levels (BLLs) (Miranda et al., 2011; Zahran et al., 2017; Mountain Data Group, 

2021). There is also a growing literature examining the association between lead exposure and adult 

cardiovascular mortality (Aoki et al. 2016, Lanphear et al. 2018, Menke et al. 2006, Ruiz-Hernandez et al. 

2017). However, to our knowledge, no studies have examined how exposure to leaded aviation fuel 

emissions affects cardiovascular mortality.  

We address this gap in the literature by estimating the effects of year-to-year changes in piston-engine 

and general aviation aircraft operations on cardiovascular mortality rates among older adults from 2000 

to 2017 in North Carolina. Our study uses a quasi-experimental research design that examines the 

association between piston-engine operations and annual cardiovascular mortality rates among 

individuals age 65 and older living in Census block groups closer to airports (the “treated” group) and 

farther away from airports (the “control” group). We use coarsened exact matching (Iacus et al. 2012) to 

ensure that our treated and control groups are similar in terms of observable socioeconomic 

characteristics that could affect cardiovascular mortality. We address the potential for confounding of 

leaded fuel exposure from other health hazards at airports by controlling for different types of aircraft 

operations that do not emit lead but do generate noise and other pollutants such as particulate matter 

and volatile organic compounds associated with cardiovascular disease. We include block group 

1 The authors thank the Children’s Environmental Health Initiative (CEHI) at the University of Notre Dame, 
including CEHI Director Marie Lynn Miranda and Claire Osgood, for their generosity in sharing the data and 

providing technical support; as well as Wes Austin, US EPA National Center for Environmental Economics; Adam 

Theising, US EPA Office of Pollution Prevention and Toxics; Juleen Lam, California State University, East Bay; 

Howard Chang, Emory University; Stephanie Deflorio-Barker, US EPA Office of Research and Development;  and 

Kimberly Bertrand, Boston University School of Medicine; for their comments and suggestions. We also thank 

Brian Murphy and Doug Sage from the Federal Aviation Administration for providing access to historical FAA 

airport master records. The protocol for this study was approved by the University of Notre Dame Institutional 

Review Board. The views expressed in this paper are those of the authors and do not necessarily represent those 

of the U.S. EPA. 
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intercepts to control for unobserved determinants of cardiovascular mortality at the neighborhood level 

that remain stable over time.  

 

This study finds a significant adverse association between piston-engine air traffic and cardiovascular 

mortality near single-runway airports. The magnitude of this association declines monotonically from 1 

km to 4 km from airport runways. Our primary estimate suggests that a 10 percent reduction in piston-

engine air traffic is associated with a 2 percent reduction in cardiovascular mortality for populations age 

65 and older living within 2 km of an airport runway. If this reduction in piston-engine aircraft were 

offset by an equal increase in small jet or turbine flights that do not use leaded fuel, then the net effect 

within 2 km would be a 0.9 percent reduction in cardiovascular mortality. This 1.1 percent reduction 

may better isolate the effects of reduced lead exposure, because similarly sized small jet and turbine 

flights may present similar levels of noise and other pollutants that could contribute to mortality. We do 

not find consistent statistically significant adverse effects from changes in annual piston-engine 

operations near multi-runway airports, where there is greater uncertainty about which runways and 

block groups experienced exposures to leaded fuel emissions. Such spatial precision is important in 

contexts like this one, where the disamenity is very localized. The statistically significant adverse effects 

are also limited to Instrument Flight Rules (IFR) piston-engine flights, which are explicitly tracked by FAA 

computer systems. We do not find statistically significant effects for general aviation flights for which 

the FAA data are less reliable. The results suggest that (i) reducing lead emissions from aviation could 

yield substantial health benefits for adult populations, and (ii) more refined data are needed, 

particularly in terms of smaller general aviation flights and the intra-airport location of emissions.   

 

Background on Leaded Aviation Gasoline 

 

Tetraethyl lead is added to aviation gasoline to boost octane and prevent engine knock. Since the 1970s, 

piston-engine aircraft have predominantly used a grade of avgas called one hundred octane low lead 

(100LL) containing 2.12 grams of lead per gallon (NAS 2021). Alternatives with lower lead levels are not 

widely available, and unleaded fuels that meet the octane requirements for high-performance piston-

engine aircraft have not yet been developed (NAS 2021). Piston-engine helicopters, which are not the 

focus of our study, also use leaded fuel.2 In contrast, jets, military planes, and other turbine-engine 

aircraft use unleaded fuel.  

 

Piston-engine aircraft lead emissions occur throughout the phases of a flight, including start-up, idling, 

taxiing, run-up, takeoff, cruising, and landing. Lead emissions are highly concentrated during ground-

based run-up operations conducted prior to takeoff, next to the end of the runway, making this area the 

maximum impact site for lead air concentrations at airports (EPA 2020a). Releases also occur in 

maintenance and refueling areas. Piston-engine airplanes typically take off in the direction of the wind, 

so the maximum impact site can change with wind direction, particularly at airports with more than one 

runway.  

 

 
2 Piston-engine helicopters comprise two percent of the approximately 144,000 piston-engine aircraft currently 
active in the U.S. and account for four percent of hours flown (NAS 2021). EPA’s (2020a) limited characterization of 
lead emissions from helicopters suggests that they generate lower air lead concentrations than fixed-wing 
airplanes, particularly during takeoff and landing.  
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EPA (2010) has discussed considerations in the determination of whether aircraft lead emissions 

endanger public health or welfare but has not yet issued a proposed determination evaluating 

endangerment. In 2008 and 2010, EPA established new monitoring requirements for sources emitting 

lead. As a result, state and local agencies were required to monitor lead at airports where emissions 

estimates exceeded one ton per year and at a subset of airports that met certain criteria (EPA 2015). The 

3-month average lead concentrations at the airport monitors ranged from 0.01 to 0.33 µg/m3, with the 

range in concentrations largely explained by monitor location relative to the end of the runway. 

Monitoring values exceeded the National Ambient Air Quality Standard (NAAQS) for lead of 0.15 µg/m3 

over a rolling 3-month average at two of the airports. In 2020, EPA (2020a) extrapolated air quality 

modeling results to estimate 3-month average lead concentrations at U.S. airports nationwide and 

found that they ranged from 0.0075 µg/m3 to 0.475 µg/m3 at the maximum impact site and up to 500 

meters downwind. In most cases, values were not estimated to exceed the NAAQS. However, modeling 

showed that it is possible for levels to exceed the NAAQS at the maximum impact site at airports with 

relatively high numbers of piston-engine aircraft operations, particularly those with a higher proportion 

of multi-engine aircraft. In early 2022, EPA announced plans to issue a proposed endangerment finding. 

 

Literature review 

 

Previous studies have examined the effect of exposure to aviation fuel on children’s blood lead levels. A 

study of six counties in North Carolina found higher BLLs among children living within 1.5 kilometers of 

airport boundaries after controlling for other lead exposure risk factors including socioeconomic status 

and housing age (Miranda et al. 2011). A study in Michigan found higher BLLs among children in Census 

tracts up to 3 kilometers from airports, and up to 4 kilometers from airports for which data on monthly 

aviation traffic were available from the Federal Aviation Administration (FAA) (Zahran et al. 2017). That 

study also found higher BLLs downwind of airports and during months with more piston-engine air 

traffic. In addition, Zahran et al. found a drop in BLLs corresponding to the grounding of air traffic after 

the Sept. 11, 2001, terrorist attacks. A recent report examining an airport in Santa Clara County, 

California, found higher children’s BLLs closer to the airport, downwind of the airport, and in months 

with more piston-engine air traffic (Mountain Data Group 2021). Wolfe et al. (2016) did not conduct an 

empirical analysis of children’s BLL, but instead used air quality modeling and existing statistical 

relationships between air lead concentrations, blood lead levels, and children’s IQ to estimate the social 

costs of leaded avgas emissions. They estimated that aircraft-related emissions cause over $1 billion in 

losses annually due to cognitive damages that reduce children’s lifetime earnings.  

 

We are aware of only one peer-reviewed study examining occupational exposure to lead from avgas.3 A 

study of aircraft maintenance workers in the Republic of Korea found significantly higher BLLs among 

maintenance crews at air bases where leaded avgas was used compared to air bases where jet fuel was 

used (Park et al. 2013). Workers’ BLLs also increased with time spent near runways where avgas was 

used.    

 

 
3 A gray literature report on an investigation of potential lead exposures at an aircraft repair and flight school 
facility found that workers’ BLLs did not exceed 10 micrograms per deciliter (the CDC “level of concern” at that 
time), nor did air lead levels exceed occupational exposure limits (Chen and Eisenberg 2013). The investigation did 
not assess whether worker BLLs were significantly higher than those of the general population of adults.  
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Empirical studies have also shown increases in air and soil lead levels near airports. Carr et al. (2011)’s 

study of Santa Monica Airport found air lead concentrations above background levels within 450 meters 

of the airport boundaries when averaging over a rolling 3-month period, and up to 900 meters 

downwind of the airport on individual days. A study of soil lead concentrations near three Oklahoma 

airports found elevated lead levels near refueling stations, runways, taxiways, and at downwind 

locations (McCumber and Strevett 2017). Higher soil lead levels were also found near the two single-

runway airports, possibly because emissions may have been less dispersed than at the multi-runway 

airport.  

 

The EPA’s (2013) Integrated Science Assessment for Lead found robust evidence of a causal relationship 

between lead exposure and coronary heart disease and hypertension in adults. Lead affects 

cardiovascular function through multiple mechanisms, including increased oxidative stress, endothelial 

dysfunction, atherosclerosis, and hypertension, as well as decreased heart rate variability (Navas-Acien 

2021). Several studies have shown a statistically significant relationship between adult BLLs and 

cardiovascular mortality in U.S. populations with mean BLLs < 5 µg/dL, while controlling for other risk 

factors including age, sex, race, body mass index, and smoking (Aoki et al. 2016, Lanphear et al. 2018, 

Menke et al. 2006, Ruiz-Hernandez et al. 2017). This literature has not examined the sources of lead 

exposure, though these cohorts were likely to have been exposed to high levels of ambient lead in air 

prior to the phaseout of lead in road gasoline.  

 

EPA (2013) noted that there is uncertainty about the timing, frequency, and duration of lead exposure 

causing adverse cardiovascular effects. Because adult BLLs reflect a combination of recent lead exposure 

and past exposure due to endogenous release of lead stored in bone, the studies mentioned above did 

not disentangle the contributions of contemporaneous versus past exposures to adverse health effects. 

Recent evidence, however, suggests that reductions in adult lead exposure can lead to near-term 

improvements in cardiovascular outcomes. A national-level study of the 2007 voluntary phaseout of 

leaded gasoline in U.S. auto racing found an immediate decline in annual cardiovascular mortality 

among those age 65 and older in counties with a racetrack compared to counties without a racetrack 

(Hollingsworth and Rudik 2021). A clinical trial of chelation therapy to remove lead and other heavy 

metals from patients with severe cardiovascular morbidity caused rapid improvements in cardiovascular 

function (Navas-Acien 2021).    

 

While we are unaware of existing research on the impact of leaded aviation fuel on cardiovascular 

health, several studies have examined the health effects of aviation noise and other pollutants. A study 

of 89 major U.S. airports found that hospitalization for cardiovascular disease was significantly 

associated with modeled zip-code aircraft noise (Correia et al. 2013). Studies in Europe have reported 

associations between aviation noise and adverse cardiovascular effects (Peters et al. 2018). A literature 

review found adverse health effects in occupationally exposed and residential populations near airports 

(Bendtsen et al. 2021). A study of residential populations within 10 km of California’s 12 largest airports 

found a significant contemporaneous increase in respiratory and heart-related hospital admissions 

among those age 65 and older from aviation-related carbon monoxide exposure (Schlenker and Walker 

2016). Elevated concentrations of fine and ultrafine particulates and other criteria pollutants have been 

found in residential areas and downwind areas up to several kilometers from major airports (Hudda et 

al. 2014; Hudda et al. 2020; Riley et al. 2021). 
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Studies have also examined whether populations living near airports have different sociodemographic 

characteristics than those living farther away. EPA’s (2020b) analysis of populations living within 500 

meters of airports nationwide found, on average, a higher proportion of White residents, a lower 

proportion of residents of color, and a slightly lower proportion of children eligible for free or reduced-

price lunch near airports compared to the total U.S. population. However, a study of major airport hubs 

found larger increases in the proportions of residents of color and rental housing units near these 

airports over time compared to trends in their respective metropolitan regions (Woodburn 2017). A 

recent working paper on residential property markets near airports with piston-engine air traffic found 

that neighborhoods immediately downwind had lower median incomes and a higher proportion of Black 

residents than other neighborhoods near these airports (Theising 2021).4 Thus, previous literature 

suggests that it is important to address potential confounding from other airport disamenities and to 

control for neighborhood sociodemographic trends to identify the effect of leaded aviation fuel on 

cardiovascular outcomes.  

 

Data 

 

We compiled a comprehensive statewide panel dataset of cardiovascular mortality rates among the 

population of individuals age 65 and older in North Carolina from 2000 to 2017. The unit of observation 

is each 2010 Census block group in each year. Mortality records from the North Carolina State Center for 

Health Statistics were obtained through an agreement with the Children’s Environmental Health 

Initiative (CEHI) at the University of Notre Dame. The analysis was conducted the analysis according to a 

research protocol approved by the University of Notre Dame’s Institutional Review Board. We used 

individual mortality records from North Carolina from 2000 to 2017 (N = 1,436,194). The mortality 

records included the individual’s date of birth, date of death, residential address at the time of death, 

sex, race, and cause of death as indicated by ICD-10 codes. CEHI used residential address to geocode 

each record and spatially link it with the corresponding 2010 Census block group identifier.  We dropped 

records for individuals not living in North Carolina at the time of death, records not matched to a Census 

block group, and duplicate records (134,003 observations). Because this study focuses on cardiovascular 

mortality among older adults, we further restricted the sample to individuals age 65 or older at the time 

of death with a disease of the circulatory system listed as the primary cause of death (ICD-10 codes I00-

I99) (N = 321,445).5  

 

The Federal Aviation Administration (FAA) provided data on location and aviation traffic for North 

Carolina airports from a variety of sources (Table 1). We obtained the geographic coordinates of airport 

runways from FAA Airport Master Records (also called 5010 forms).6 These data indicate that there were 

 
4 That study did not find evidence that property prices changed in response to information disclosures about lead 
emissions at airports, except for temporary effects at two airports where lead levels exceeded the NAAQS. 
5 Our use of ICD-10 codes I00-I99 is consistent with analyses of the association between adult BLL and 
cardiovascular mortality by Menke et al. (2006), Aoki et al. (2016), and Lanphear et al. (2018). The most common 
causes of death were ischemic heart diseases (I20-I25), other forms of heart disease (I30-I52), and cerebrovascular 
diseases (I60-I69) (see Appendix Table A1).  
6 FAA does not make historic Airport Master Records available online but shared data for the years 1998 through 
2019 at the authors’ request. We obtained data for 2020 in October 2020 from 
https://www.faa.gov/airports/airport_safety/airportdata_5010/. Geographic coordinates correspond to the 

https://www.faa.gov/airports/airport_safety/airportdata_5010/
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over 400 airports operating in North Carolina during the study period, in addition to heliports and other 

aviation facilities. Airport Master Records also include data on the number of general aviation single- 

and multi-engine aircraft based at the airport and the number of operations (i.e., takeoffs or landings) of 

different flight user classes, including commercial air traffic (air carrier and air taxi), general aviation, and 

military. However, fewer than half of the airports report operations data, and those that do report are 

not required to update the data annually, so the operations data are not always current at the time of 

reporting.7  

 

The FAA Traffic Flow Management System Count (TFMSC) and Air Traffic Activity Data System (ATADS) 

databases provide more detailed aviation traffic data but for fewer airports. TFMSC provides daily 

aircraft operations data by engine type for flights that use Instrument Flight Rules (IFR) and are recorded 

in FAA’s computer system. These data include operations for approximately 2,000 of the largest airports 

in the United States. TFMSC excludes traffic that flies under Visual Flight Rules (VFR) and some low-

altitude IFR traffic. The TFMSC database includes IFR flight records for 72 North Carolina airport 

locations.8 The engine type data provided by TFMSC are particularly useful for our study because only 

piston-engine aircraft use leaded fuel. Zahran et al. (2017) and Mountain Data Group (2021) used TFMSC 

data in their analyses of children’s blood lead levels, and Theising (2021) used these data in his property 

value study.  

 

ATADS includes operations data for approximately 500 US airports with air traffic control towers. ATADS 

includes both IFR and VFR operations, making it a more comprehensive data source than TFMSC in 

terms of number of operations. However, it does not provide engine type; instead, it categorizes 

operations by user class (air carrier, air taxi, general aviation, and military).9 EPA (2020a) estimated that 

roughly 70% of general aviation and 20% of air taxi operations use piston-engine aircraft and hence, 

leaded fuel. The ATADS data indicate that VFR flights comprise close to half of general aviation air traffic 

at these airports. ATADS only includes 11 North Carolina airports (all of which are also included in 

TFMSC). EPA (2020a) has used both ATADS and 5010 data to develop estimates of lead emissions and 

ambient air concentrations from piston-engine air traffic. 

 

For each airport with TFMSC data, we obtained the number of IFR departures and arrivals at each 

airport for each calendar year during 2000-2017 by aircraft engine type (piston, jet, and turbine) and size 

(small equipment and all larger equipment types). Piston engine flights are of primary interest in our 

study because they use leaded aviation fuel. Jet and turbine aviation traffic do not use leaded fuel but 

are important to control for because they generate other pollutants, such as particular matter, volatile 

 
Airport Reference Point, a calculation based on the airport runway(s) geodetics (Doug Sage, pers. comm. Nov. 
2020).  
7 Out of 435 North Carolina airports for which we have 5010 reports, only 178 reported general aviation 
operations. At 82 of these airports (46%), reported general aviation operations are the same in every year, 
suggesting that they may have never been updated. For 5010 forms from 2010 on, we have data on the 12-month 
period that the reported operations data represent. These data indicate that there is, on average, a 2-year lag 
between the year of the 5010 form and the year the operations data correspond to. 
8 One airport location in our study changed Location Identifiers (LocIDs) during the study period, so our TMFSC 
data include 73 unique LocIDs representing 72 airports. 
9 Air carrier and air taxi are both types of commercial operations, with air taxi operations using smaller planes and 
make shorter trips than air carrier. General aviation is defined as all civilian, non-commercial aviation activity.   
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organic compounds, and noise, that are associated with adverse cardiovascular morbidity and mortality 

(Bendtsen et al. 2021). Piston-engine aircraft in our sample are almost exclusively categorized as small 

equipment, jet aircraft are mostly larger sizes, and other turbine-engine aircraft are a mix of sizes.10   

 

Table 1. FAA data sources for general aviation and/or piston-engine operations   

Data source Number of North 
Carolina airports 
included 

Engine-type 
information 
available? 

Includes 
Instrument 
Flight Rules 
(IFR) and 
Visual Flight 
Rules (VFR) 
operations? 

Reporting 
frequency 

Earliest 
date 
available 

5010 forms > 400 (but only 178 
have non-missing 
operations data) 

No Yes (but not 
reported 
separately) 

Annually for 
some airports, 
but often less 
frequent 

1998 

Traffic Flow 
Management 
System 
Counts 
(TFMSC) 

72 Yes No (IFR only) Daily 2000 

Air Traffic 
Activity Data 
System 
(ATADS) 

11 No Yes Daily 1990 

 

Although the data are not as detailed, we are also interested in the number of general aviation VFR 

operations at each airport in each year. Because most general aviation activity uses piston-engine 

aircraft, and most other flight types do not (EPA 2020a), we use general aviation operations reported by 

ATADS and 5010 forms as a proxy for piston-engine VFR operations. We obtained the number of annual 

general aviation VFR flights from ATADS data when available. When ATADS data were unavailable, we 

used information from the FAA 5010 forms on general aviation operations. The 5010 forms do not 

distinguish between IFR and VFR general aviation operations, so we subtract the number of piston-

engine IFR operations indicated by TFMSC from the total number of general aviation operations 

reported by the 5010 forms to derive an estimate of general aviation VFR operations at these airports. 

Our data indicate that the number of general aviation IFR operations is highly correlated with the 

number of multi-engine piston aircraft based at airports, while the number of general aviation VFR 

operations is highly correlated with the number of single-engine piston aircraft based at airports. We 

exclude six airports from our analysis where TFMSC data are available, but for which the general 

aviation VFR operations data are missing from the 5010 reports.  

 

 
10 Weight classes in the TFMSC database included heavy, B757, large jet, large commuter, medium commuter, and 
small equipment. We pooled the first five categories together and refer to these equipment types as “large.” For 
our study area and period, 99% of piston-engine operations, 1% of jet operations, and 34% of turbine-engine 
operations were categorized as small equipment.  
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We linked each 2010 Census block group in North Carolina to the closest TFMSC airport using geodesic 

distances calculated from each Census block centroid to the nearest runway at the airport.11 We 

conducted all GIS analyses using ArcMap 10.8.1. The distances for each block were then aggregated to 

the block group level by taking a population-based weighted average. We also recorded the number of 

runways at each airport.  

 

We focus our analysis on forty North Carolina airports that meet the following three criteria: 1) data on 

piston-engine IFR flight operations from TFMSC are available; 2) data on general aviation operations 

from ATADS or 5010 reports are available; and 3) there is at least one Census block group with a 

centroid located within 2 km of the airport runway(s). We focus on airports with populations within 2 

km because past empirical research found effects on children’s BLL to be concentrated within a few 

kilometers of airports. Twenty-four of the forty airports included in the analysis had a single runway, and 

16 had between two and four runways (Figure 1).  Figure 2 shows the trend in annual average piston-

engine IFR operations at single-runway and multi-runway airports during the study period. 

 

Figure 1. North Carolina airports with flight operations data available and populations located within 2 

km 

 
 

 

 

 

 
11 A spatially explicit FAA data layer of the runway footprints was obtained from ESRI ArcGIS Online (“Runways”, 
https://services6.arcgis.com/ssFJjBXIUyZDrSYZ/ArcGIS/rest/services/Runways/FeatureServer, accessed 16 July 
2021). 

https://services6.arcgis.com/ssFJjBXIUyZDrSYZ/ArcGIS/rest/services/Runways/FeatureServer
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Figure 2. Annual average piston-engine IFR operations at single-runway and multi-runway airports in 

North Carolina, 2000-2017  

 
Note: Annual averages were calculated using CEM weights assuming a 2 km treatment group (explained 

in Econometric Analysis section). 

 

Out of 6,155 2010 Census block groups in North Carolina, 1,764 fell within 10 km of one of the 40 

airports shown in Figure 1. We focus our analysis on these block groups, which included 92,908 65-and-

over cardiovascular deaths during the study period.  While we hypothesize that any health effects from 

aviation fuel emissions are likely to be concentrated within a few kilometers of airport runways based 

on past literature (Miranda et al. 2011, Zahran et al. 2017), we include more distant block groups out to 

10 km in the analysis as a less-exposed “control” group. No Census block groups in our study were 

within 4 km of more than one TFMSC airport, though 1% of block groups were within 10 km of more 

than one TFMSC airport. 

 

We incorporated demographic and socioeconomic variables for each block group into the analysis using 

data from the 2000 and 2010 Decennial Censuses of Population and Housing and the 2019 American 

Community Survey (ACS) 5-year estimates downloaded from the IPUMS National Historical GIS 

Information System (NHGIS; Manson et al. 2021).12 These variables include total population age 65 and 

 
12 Because ACS 2019 5-year estimates synthesize data from 2015 to 2019, we treat these estimates as 
representative of the 2017 midpoint year. 
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older, share of the population that is Black, share of the population that is Hispanic or Latino, share of 

housing stock that is vacant, share of occupied housing that is renter-occupied, median household 

income, share of the population age 25 and over with a college degree, and share of housing stock built 

before 1950. Pre-1950 housing stock is another potential source of lead exposure due to the widespread 

use of leaded paint and plumbing in older homes.13 We also used data on total population and area of 

each block group to calculate population density. We linearly interpolated these variables from 2000 to 

2010 and from 2010 to 2017 to obtain estimates for each year in our study.14  We control for exposure 

to stationary industrial sources of lead and other air toxics using data from EPA’s Risk-Screening 

Environmental Indicators (RSEI) model.15 For each block group and year in our analysis, the RSEI 

geographic microdata provide lead air concentrations and aggregate toxicity-weighted concentrations of 

other pollutants attributable to emissions from stationary industrial sources that report to the Toxics 

Release Inventory.16 Airport emissions are not included in the Toxics Release Inventory.   

  

We linked each Census block group to non-TFMSC airports and heliports and roadways, which could also 

be sources of lead and other pollutants.17 We also calculated distance to the nearest hospital, since 

access to medical care can affect whether mortality occurs after a myocardial infarction or other life-

threatening emergency (Nicholl et al. 2007; Wei et al. 2008).18 As with our measure of distances to 

airports, we calculated distances for each Census block and then aggregated up to the block group level 

by taking a population-based weighted average. We also constructed a measure of the percent of each 

block group exposed to over 55 decibels of transportation noise from roadways and aviation using the 

2016 National Transportation Noise Map (Bureau of Transportation Statistics 2017).19 We lack temporal 

variation in these variables, so their effects cannot be identified in our primary models that include 

block group intercepts, but we included them in a spatially coarser airport intercept model.  

 

We included two additional county-level control variables that could affect cardiovascular mortality 

trends over time: the unemployment rate and exposure to heat waves, as measured by the number of 

 
13 While the federal bans on residential lead paint and lead service lines did not go into effect until 1978 and 1986, 
respectively, these sources are more likely to be present in pre-1950 housing stock (Cornwell et al. 2016, Jacobs et 
al. 2002).  
14 IPUMS NHGIS provides integrated Census data over time for several variables, allowing us to include 2000 
Census block group data in our analysis based on 2010 block group identifiers for all Census variables in our 
analysis except for median household income, percent of the adult population with a college degree, and share of 
housing stock built pre-1950. For these three variables, we imputed values for the years 2000-2009 using the 
predicted values from regressing each variable on year and the other Census variables in our analysis for 2010-
2017.  
15 EPA Risk-Screening Environmental Indicators (RSEI) Model, https://www.epa.gov/rsei, accessed 19 Nov 2021.  
16 Because TRI reporting requirements changed for lead and several other chemicals in 2001, we do not use RSEI 
data for the year 2000 and instead make the simplifying assumption that concentrations in 2000 were equal to 
concentrations in 2001. The measure of aggregate toxicity-weighted air concentrations only includes chemicals 
whose reporting requirements have not changed since 2001. 
17 Non-TFMSC airport and heliport locations are represented by FAA Airport Reference Points. Roadway data came 
from the US Census Bureau’s TIGER/Line files (https://www.census.gov/cgi-bin/geo/shapefiles/index.php, 
accessed 19 May 2020). 
18 The locations of hospitals in North Carolina were obtained from NCOneMap 
(https://www.nconemap.gov/datasets/nconemap::hospitals/about , accessed 22 Feb 2021).  
19 The 2016 National Transportation Noise Map provides modelled estimates of aviation noise at 18 of the 40 
airport locations in our analysis, representing 69% of block groups in the study area.   

https://www.epa.gov/rsei
https://www.census.gov/cgi-bin/geo/shapefiles/index.php
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days exceeding 90 degrees Fahrenheit (e.g., Åström,et al. 2011; Halliday 2014). We obtained annual 

unemployment rate data from the U.S. Bureau of Labor Statistics’ Local Area Unemployment Statistics 

program. We used data on daily temperatures from the National Oceanic and Atmospheric 

Administration's Climate Data Search to construct our measure of days exceeding 90 degrees.20 

 

Other studies of aircraft emissions included measures of wind direction in their analyses (e.g., Zahran et 

al. 2017; Carr et al. 2011; Walker and Schlenker 2016), but we do not do so in our analysis. We obtained 

data on wind direction at 63 North Carolina airports during 2000 to 2017 from Iowa State University’s 

Iowa Environmental Mesonet. An examination of these data showed a bimodal pattern of prevailing 

winds at many North Carolina airports, with winds blowing from the southwest for part of the year, and 

then from the northeast for the other part of the year, making it difficult to identify areas that are 

consistently downwind of airport runways.   

 

Econometric analysis 

 

Our outcome variable is the number of cardiovascular deaths among individuals age 65 and older in 

each block group and year. Our key exposure variables are proximity to the closest TFMSC airport and 

the numbers of piston-engine and general aviation flight operations at the closest TFMSC airport during 

the corresponding year interacted with proximity to the airport.  

 

We use a Poisson model to estimate the relationship between mortality and avgas exposure, adjusting 

for several other explanatory variables (see Table 2). Sixteen percent of the block group-year 

observations in our study have zero cardiovascular deaths among individuals 65 and older. A Poisson 

model is appropriate for count data censored at zero and yields consistent estimates when used with 

fixed effects (Cameron and Trivedi 1998; Wooldridge 1999).21 Ordinary Least Squares is not appropriate 

for such data because it can predict negative and non-integer values. The Poisson regression model and 

the closely related negative binomial regression model have been used in previous studies of 

environmental risk factors and disease incidence (e.g., DeFlorio-Barker et al. 2021; VoPham et al. 2018). 

We use the natural log of the total population age 65 and older in each block group in each year as the 

offset variable. The inclusion of the population offset allows us to interpret our model as estimating the 

cardiovascular mortality rate among the population of interest.  

 

We first estimate a model to examine the association between cardiovascular mortality and proximity to 

the closest TFMSC airport. The model includes several control variables to adjust for other risk factors 

besides leaded aviation fuel emissions. These include the sociodemographic variables discussed above, 

industrial stationary source emissions, and for 18 airports in our sample, a time-invariant measure of 

airport noise. While block group fixed effects would further control for time-invariant socioeconomic 

 
20 Temperature data were missing for seven counties in North Carolina. We imputed values for these counties by 
taking the mean across counties in the same climatic region in North Carolina. We used maps from the State 
Climate Office of North Carolina to define the three climatic regions 
(http://www.climatechange.nc.gov/Climate_Maps_NC.pdf).  
21 While the negative binomial regression model is sometimes used as an alternative to the Poisson regression 
model for modeling over-dispersed count data, it can yield inconsistent parameter estimates when used with 
panel count data (Guimarães 2008; Wooldridge 1999).  

http://www.climatechange.nc.gov/Climate_Maps_NC.pdf
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and geographic determinants of mortality, we do not include them in this model because they are 

perfectly collinear with the airport proximity variables, which are of primary interest. Because we do not 

use block group fixed effects, we interpret the coefficients of this model as correlations rather than 

causal effects.  

 

The airport proximity model can be written as: 

 

(1)     𝑚𝑖𝑐𝑎𝑡 = 𝑒𝑥𝑝(ln(𝑝𝑜𝑝65𝑖𝑡) + 𝛼1𝐷𝑖𝑎 + 𝑋𝑖𝑐𝑡𝛽 + 𝑌𝑡 + 𝐵𝛼 + 𝜏𝛼𝑡) 

 

Here, micat represents the number of cardiovascular deaths in the 65 and older population in block group 

i, in county c, located closest to TFMSC airport a, during year t. We model micat as a function of several 

variables, including the offset term representing the natural log of the number of people age 65 and 

older in block group i in year t (pop65it). The coefficient on the offset term is constrained to equal one. 

Dia is an indicator variable denoting that the population-weighted centroid of block group i is within a 

given distance of airport a. Due to the uncertainty about the spatial extent of any adverse effects from 

aircraft operations on cardiovascular mortality, we estimate the model four separate times using 

different distances to reflect possible treatment groups: 0-1, 0-2, 0-3, and 0-4 kilometers. To further 

examine heterogeneity with respect to distance, we also estimate a single regression that includes 

mutually exclusive distance indicators from 1 to 4 kilometers in 1-kilometer increments: 0-1, 1-2, 2-3, 

and 3-4 kilometers. 22  

 

We include a vector of block group and county control variables (Xict), including airport noise, proximity 

to major roads, unemployment, and time-varying block group socioeconomic characteristics. Year-

specific intercepts for each year of the analysis (Yt) are included to capture statewide trends over time. 

Separate intercepts denoting the closest TFMSC airport (Ba) capture time-invariant location-and airport-

specific factors affecting mortality rates, albeit at a relatively coarse geographic resolution. We also 

include a linear time trend that is specific to each airport, represented by 𝜏𝛼𝑡 to capture more local 

trends over the study period. Coefficients to be estimated include 𝛼1, the correlation between airport 

proximity and mortality, and 𝛽, the effects of other characteristics on mortality. These coefficients 

represent the percent increase in cardiovascular mortality from a one-unit change in the corresponding 

explanatory variable.    

 

To examine the effect of year-to-year changes in air traffic on cardiovascular mortality near airports, we 

turn to a different specification that exploits temporal variation in the number of piston-engine and 

other flight operations. This model includes block group-specific intercept terms (𝐵𝑖 ) to absorb time-

invariant neighborhood characteristics affecting mortality at a much finer spatial resolution than the 

airport intercepts included in the airport proximity model. We do not include the airport noise or 

proximity variables in this specification because they are perfectly collinear with the block group 

intercepts. The higher resolution block group intercepts absorb at a more local scale all observed and 

unobserved time-invariant neighborhood characteristics that are correlated with cardiovascular 

mortality, including proximity to an airport (Dia) and characteristics of that airport (𝐵𝛼). We interact 

airport proximity with different types of annual flight operations, including piston-engine IFR operations 

 
22 In this model, Dia in equation (1) is a vector of mutually exclusive indicators denoting incremental distance bins.  
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other general aviation operations that typically use leaded fuel. Our inclusion of small and large jet- and 

turbine-engine flights that do not use leaded fuel helps to control for temporal variation in aviation 

noise and non-leaded fuel emissions that could affect cardiovascular mortality.  

 

The annual flight operations model can be written as: 

 

(2)     𝑚𝑖𝑐𝑎𝑡 = 𝑒𝑥𝑝(ln(𝑝𝑜𝑝65𝑖𝑡) + 𝛾1𝑃𝐸𝑖𝑎𝑡 + 𝛾2𝐿𝐺𝑖𝑎𝑡 + 𝛾3𝑆𝑀𝑖𝑎𝑡 + 𝛾4𝐺𝐴𝑖𝑎𝑡 + 𝛿1𝐷𝑖𝑎 ∗ 𝑃𝐸𝑖𝑎𝑡

+ 𝛿2𝐷𝑖𝑎 ∗ 𝐿𝐺𝑖𝑎𝑡 + 𝛿3𝐷𝑖𝑎 ∗ 𝑆𝑀𝑖𝑎𝑡 + 𝛿4𝐷𝑖𝑎 ∗ 𝐺𝐴𝑖𝑎𝑡 + 𝛽𝑋𝑖𝑐𝑡 + 𝑌𝑡 + 𝐵𝑖 + 𝜏𝛼𝑡) 

 

We include the numbers of piston-engine (PEiat), large jet or turbine (LGiat), and small jet or turbine 

(SMiat) IFR aviation operations, and the number of general aviation VFR operations (GAiat) at the closest 

airport a to block group i during year t. We interact these aviation variables with Dia, the airport 

proximity indicator corresponding to block group i’s location. These interaction terms are our key 

explanatory variables representing possible exposure to leaded aviation fuel emissions near airports, 

given by Dia*PEiat and Dia*GAiat. Therefore, 𝛿1 and 𝛿4 are the parameters of primary interest. They 

represent the percent change in cardiovascular mortality per piston-engine IFR operation and general 

aviation VFR operation at different distances from the airport. Like the airport proximity model, we 

estimate the flight operations model using four separate regressions with different distances in each 

regression (0-1, 0-2, 0-3, and 0-4 kilometers). We also estimate a regression including mutually exclusive 

distances from 1 to 4 kilometers (0-1, 1-2, 2-3, and 3-4 kilometers). 23   

 

We cluster the standard errors by closest airport in the airport proximity model and by block group in 

the annual flight operations model (equations (1) and (2), respectively) to address unobserved spatial 

correlation in cardiovascular mortality at the same resolution as the spatial intercept terms.  

 

We separately estimate these models for block groups near single-runway and multi-runway airports. 

We disaggregate by number of runways because we anticipate that our measure of proximity to airport 

traffic is more precise for single-runway airports. For airports with more than one runway, we lack data 

to apportion flight operations to specific runways at each airport, creating greater dispersion of 

emissions across space and uncertainty about where the emissions occurred, and hence which block 

groups were more exposed to air traffic. This potential for classical measurement error in our measure 

of air traffic exposure at multi-runway airports could bias our estimates of the impact of aircraft 

operations on mortality towards the null.  

 

To ensure that the “treated” block groups located within Dia of a TFMSC airport are comparable in terms 

of socioeconomic characteristics that could affect cardiovascular mortality to the “control” block groups 

located farther away (but still within 10 km), our primary estimates use coarsened exact matching (CEM) 

(Iacus et al. 2012). CEM is a pre-processing algorithm that identifies observations in the treatment and 

control groups that match in terms of all explanatory variables selected by the analyst, after first 

coarsening the continuous variables into discrete categories. CEM also derives weights to balance the 

matched distributions of the observed socioeconomic characteristics across the treatment and control 

 
23 In this specification, Dia in equation (2) is a vector of mutually exclusive indicators denoting incremental distance 
bins.  
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groups. All treatment observations that do not have an identical “match” in the control group (and vice 

versa) are assigned a weight of zero and dropped from the sample.  

 

We match our treated and control samples using seven coarsened block group sociodemographic 

variables and three non-coarsened variables. The coarsened variables include median income, 

population density, share of the adult population that graduated from college, share of the population 

that is Black, share of population that is 65 and older, share of housing that is renter-occupied, and 

share of housing that was built before 1950. We divide median income into tertiles, and for all other 

coarsened variables we created three categories defined by equally spaced cut points. We matched on 

the 2010 values for all Census variables. The three variables used for an exact match are county, year, 

and closest airport. In balancing observable sociodemographic characteristics across the treatment and 

control groups, this strategy may also increase similarity in unobservable traits that are correlated with 

the observable characteristics.  

 

We generate four sets of CEM weights corresponding to four possible cutoffs delineating the treatment 

and control groups already discussed: 1 km, 2 km, 3 km, and 4 km from the closest TFMSC airport. The 

appendix also presents regression results using the full, unweighted sample. While we find that the 

results are robust across the two approaches, the CEM estimates are preferred because they improve 

the balance in sociodemographic covariates across block groups closer versus farther from airports in 

our sample, as discussed in the Results section.        

 

Our preferred approach combining panel data, block group-specific intercepts, and matching allows us 

to more credibly isolate the effect of piston-engine aviation on cardiovascular mortality based on year-

to-year changes in air traffic. The airport proximity model (equation 1) is less able to isolate this effect 

because airport proximity could be correlated with socioeconomic or other local attributes affecting 

cardiovascular mortality. The flight operations model interacting distance from the airport with annual 

aviation operations (equation 2) is conceptually similar to a quasi-experimental difference-in-difference 

model, although the exposure variable representing number of flight operations varies continuously 

over time rather than changing discretely at one point in time.   

 

Results 

 

Our full sample includes 31,197 census block group-year observations.24 Using CEM to focus our analysis 

on a more homogenous matched sample of treated and control block groups greatly reduces the sample 

size. Using a treatment definition of 2 kilometers, we keep 73% of treatment observations and 19% of 

control observations and are left with 7,134 observations. Since most of the “pruned” observations are 

in the control group, we retain most observations in the treatment group closest to each TFMSC airport. 

Therefore, CEM helps us to identify the most appropriate counterfactual set of block groups. Using a 

treatment definition of 1 km yields a much smaller matched sample of 826 observations, while 

treatment definitions of 3 km and 4 km yield larger matched samples of 10,444 and 14,620 

observations, respectively.  

 
24 This sample excludes 709 block group-year observations estimated to have zero individuals 65 and older, 5 

observations with zero housing units, and 3 observations with an estimated cardiovascular mortality rate greater 

than one. 
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Table 2. Summary statistics by airport type and distance from airport: CEM sample   

 Single-runway airports p-value of 
difference 
in means 

Multi-runway airports p-value of 
difference 
in means 

 0-2 km 2-10 km  0-2 km 2-10 km  

Outcome variable  

65+ CVD 
mortality rate 

0.012 
(0.012)           

0.013 
(0.011)           

0.045 0.017 
(0.015)           

0.016 
(0.014)           

0.10 

Exposure variables  

Piston-engine 
IFR operations 

2,374.16 
(2,532.48)           

2,306.98 
(2,521.26) 

0.53 4,502.57 
(3,742.53) 

4,711.79   
(3,880.03)           

0.16 

Large jet/ 
turbine IFR 
operations 

1,437.08   
(3,960.14)           

1,346.03 
(3,903.90) 

0.58 40,695.11   
(115,464.40) 

52,806.77   
(133,902.20)           

0.016 

Small jet/ 
turbine IFR 
operations 

729.64 
(1,140.95)           

680.82 
(1,127.22) 

0.31 2,489,77   
(2,192.57)           

2,657.46 
(2,314.80)           

0.059 

General 
aviation VFR 
operations  

24,811.77   
(18,849.85)         

24,926.54   
(18,616.47) 

0.88 23,946.29   
(11,727.97) 

23,638.67   
(11,506.22)           

0.49 

Time-variant control variables 

65+ population 214.2 
(137.29)           

222.61 
(159.17)          

0.20 176.45 
(114.16)         

184.65  
(119.94)    

0.075 

Share black 
population 

0.085 
(0.096)           

0.074 
(0.100)           

0.015 0.41 
(0.32)           

0.40 
(0.32)           

0.25 

Share Hispanic 
population 

0.060 
(0.062)           

0.056  
(0.062)           

0.14 0.087 
(0.11)           

0.084 
(0.10)           

0.75 

Population 
density 

0.00037 
(0.00036)   

0.00042 
(0.00043)    

<0.01 0.00070  
(0.00060)    

0.00074 
(0.00060)    

0.073 

Percent vacant 
housing 

0.14 
(0.17)           

0.19 
(0.22)           

<0.01 0.13 
(0.08)           

0.14 
(0.14)           

0.12 

Percent rental 
housing 

0.24 
(0.16)           

0.27 
(0.18)           

<0.01 0.51 
(0.23)    

0.51 
(0.24)           

0.84 

Percent pre-
1950 housing 

0.043 
(0.050) 

0.072 
(0.075)           

<0.01 0.16 
(0.14)           

0.13 
(0.14)           

<0.01 

Median income 
(2010$) 

67,868.04   
(25,223.92)       

68,009.15    
(30,130.86) 

0.91 39,498.44   
(18,965.69)    

41,809.03   
(20,180.05)    

<0.01 

Percent of 
adults 25+ with 
college degree 

0.31 
(0.17)    

0.30 
(0.19)           

0.58 0.17    
(0.13)           

0.18    
(0.12)           

0.11 

Days above 90 
degrees 

33.18 
(25.42)           

32.87 
(24.95)           

0.77 41.00 
(23.02)           

41.40 
(23.22)           

0.66 

Unemployment 
rate 

6.62 
(2.66)         

6.63 
(2.67)         

0.96 6.95 
(2.61)         

6.95   
(2.60)         

0.98 
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Toxicity-
weighted lead 
air 
concentration  

2.16 
(3.21)           

1.98 
(3.19)           

0.18 3.89 
(7.73)           

5.58 
(12.49)           

<0.01 

Toxicity-
weighted total 
air 
concentration 
of chemical 
releases 

7,957.05   
(44,881.71)           

6,191.49 
(38,227.35) 

0.29 18,779.52   
(73,898.80) 

23,673.97   
(136,759.50)           

0.31 

Charlotte 
Motor 
Speedway 
located within 4 
km * pre-2007 
lead phaseout 

0.009 
(0.095)           

0.001 
(0.038)           

<0.01 0          
(0) 

0 
(0) 

- 

Time-invariant variables (only included in airport intercepts models)  

Percent > 55 
decibel 
transportation 
noise 

4.90 
(6.18)     

3.09 
(2.27)           

<0.01 10.51 
(11.97)           

5.43 
(6.74)          

<0.01 

Heliport 
located within 2 
km 

0.027 
(0.16)           

0.11 
(0.31)           

<0.01 0.059 
(0.24)           

0.11 
(0.31)           

<0.01 

Major road 
located within 
500 m 

0.14 
(0.34)           

0.27 
(0.45)           

<0.01 0.35 
(0.48)           

0.42 
(0.49)           

<0.01 

Major road 
located within 2 
km  

0.95 
(0.22)           

0.89 
(0.31)           

<0.01 0.96 
(0.20)           

0.97 
(0.16)           

0.059 

Hospital 
located within 2 
km 

0.027 
(0.16)           

0.094 
(0.29)           

<0.01 0.079 
(0.27)           

0.13  
(0.33)           

<0.01 

N 664 2,659   909 2,902      

Means calculated using CEM weights using 2 km treatment group. Standard deviations in parentheses. 

 

Table 2 presents summary statistics for the CEM-weighted sample using the 2 km treatment definition. 

Appendix Table A2 presents summary statistics for all variables for the full sample, without matching.  

We present these statistics separately for single-runway and multi-runway airports. The matched 

treatment and control groups near single-runway airports have similarly high incomes and education 

levels, though the control group has somewhat higher rates of vacant, rental, and older housing, a lower 

percentage of Black residents, and a higher population density. Average air concentrations for lead and 

for aggregate toxicity-weighted emissions from stationary industrial sources were both similar across 

the treatment and control groups, though the control group includes more block groups located within 4 

km of Charlotte Motor Speedway, a source of lead emissions before 2007.  
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The treatment and control groups near multi-runway airports have sociodemographic and housing 

characteristic that are similar to each other, though incomes are somewhat higher in the control group. 

Air lead concentrations from stationary industrial sources are also higher in the control group. The 

differences between the single-runway and multi-runway samples are more pronounced than the 

differences between the treatment and control groups for each airport type. Income and education 

levels are much higher, and the share of Black and Hispanic residents is much lower, near single-runway 

airports. These divergent demographic characteristics further support our decision to analyze single-

runway and multi-runway airports separately.   

 

Figure 3. Cardiovascular mortality rate (age 65 and older) by airport type and distance from airport: CEM 

sample   

 
Annual averages calculated using CEM weights assuming a 2 km treatment group. 

 

Figure 3 shows cardiovascular mortality rates near single- and multi-runway airports during the study 

period in the matched and weighted sample, again using the 2 km cutoff to define treatment and 

control groups near each airport type. The figure shows that cardiovascular mortality rates were 

somewhat lower near single-runway airports than multi-runway airports. Though there is substantial 

year-to-year variation, mortality rates were generally similar across the treatment and control groups 

near each airport type. Appendix Figure A1 shows trends for the full unweighted sample, revealing a 

larger divergence between the treatment and control groups for each airport type than the matched 
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sample. This outcome suggests that CEM helped to identify treatment and control groups that are 

similar in terms of the broad determinants of cardiovascular mortality during the study period.   

 

Table 3a presents the airport proximity coefficients from the regressions corresponding to equation (1) 

for the single- and multi-runway airport samples. We estimate four separate regressions, varying the 

cutoff between the treatment and control areas from 1 km to 4 km. The treatment definition used for 

deriving the CEM weights matches the distance variable included in each regression. We do not find a 

consistently adverse or monotonic relationship between cardiovascular mortality and proximity to 

single-runway TFMSC airports. Mortality rates are 13 percent higher within 4 km of these airports, but 

there is no statistically significant association using closer treatment definitions, which would be 

expected if exposure to leaded fuel at airports was the cause of elevated mortality. In contrast, 

cardiovascular mortality rates are higher closest to multi-runway airports. Mortality is 13 percent higher 

within both 1 km and 2 km of multi-runway airports, though the estimate is only statistically significant 

using the 0-2 km treatment definition. There is no significant association between mortality and 

proximity to multi-runway airports beyond this distance.  

 

Table 3a. Key coefficient results from separate regressions with varying treatment cutoffs: Association 

between proximity to TFMSC airports with age 65+ cardiovascular mortality  

 Single-runway 
airports 

Multi-runway 
airports 

   

0-1 km  -0.270 0.132 
 (0.319) (0.116) 
   
Observations 380 446 
Pseudo R2 0.157 0.0623 

0-2 km -0.0243 0.125** 
 (0.0998) (0.0577) 
   
Observations 3,323 3,811 
Pseudo R2 0.0963 0.0654 

0-3 km 0.0442 -0.0150 
 (0.0555) (0.0489) 
   
Observations 4,802 5,642 
Pseudo R2 0.0973 0.0719 

0-4km 0.126** -0.0117 
 (0.0540) (0.0392) 
   
Observations 7,104 7,516 
Pseudo R2 0.0867 0.0743 

All models use CEM weights (calculated using a treatment definition consistent with the treatment 
group for each regression) and include closest TFMSC airport fixed effects, year fixed effects, airport-
year time trends, and time-variant and time-invariant control variables shown in Table 2. Robust 
standard errors clustered by closest airport are in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 3b presents the airport proximity coefficient estimates from a single regression model that 

includes mutually exclusive distance bins in 1-kilometer increments. This model uses the CEM sample 

and weights derived using the 4 km treatment group so that all of the distance bins included in the 

regression fall within this treatment group. The results are similar to those shown in Table 3a. There is 

no clear trend in the association between cardiovascular mortality and distance from either single-

runway or multi-runway airports. There is a significantly higher cardiovascular mortality rate in block 

groups located between 3 and 4 km of single-runway airports. Because the models in Tables 3a and 3b 

do not include spatially refined block group intercepts, we cannot parse to what extent this adverse 

association is due to residual confounding with factors common to these neighborhoods or due to other 

lead and non-lead related hazards at these airports. (Appendix Table A3 shows the full set of coefficient 

estimates for all control variables included in this regression. Appendix Table A4 shows the key 

coefficient estimates for this model using the full sample, without CEM weights.)   

 

Table 3b. Key coefficient results from single regression with 4 km treatment cutoff: Association between 

proximity to TFMSC airports with age 65+ cardiovascular mortality 

 Single-runway 
airports 

Multi-runway 
airports 

   

0-1 km  -0.147 0.137 
 (0.149) (0.140) 

1-2 km 0.0737 -0.0309 
 (0.0775) (0.0601) 

2-3 km 0.119 -0.0711 
 (0.103) (0.0550) 

3-4km 0.155*** 0.0255 
 (0.0553) (0.0490) 
   
Observations 7,104 7,516 
Pseudo R2 0.0871 0.0748 

This model uses CEM weights (calculated using the 4 km treatment group) and includes closest TFMSC 
airport fixed effects, year fixed effects, airport-year time trends, and time-variant and time-invariant 
control variables shown in Table 2. Robust standard errors clustered by closest airport are in 
parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
 

Table 4a presents the key coefficients from the flight operations regressions (equation 2). This model is 

our preferred specification for estimating the unbiased effect of piston-engine air traffic on 

cardiovascular mortality. Similar to Table 3a, we present results from four different regressions in which 

the treatment definition (and corresponding CEM weights) varies from 1 to 4 km. The results indicate 

that piston-engine IFR flights have a statistically significant adverse effect on cardiovascular mortality for 

treatment groups that extend up to 4 km away from single-runway airports. The effect is largest within 1 

km of the runway and declines monotonically as we expand the treatment group to include block groups 

farther from the nearest single-runway airport. The coefficient estimates indicate that each piston-

engine flight operation at a single-runway airport increases cardiovascular mortality by 0.05 percent in 
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the 0-1 km treatment group, 0.008 percent for the 0-2 km treatment group, and 0.005 percent for the 0-

3 km treatment group.  The effect is only marginally significant when using a 4 km treatment definition.  

 

Table 4a. Key coefficient results from separate regressions with varying treatment cutoffs: Effect of 

annual flight operations on cardiovascular mortality near TFMSC airports  

 Single-runway 
airports 

Multi-runway 
airports 

   

Piston-engine IFR operations*0-1 km 0.000506** 0.000242** 
 (0.000247) (0.000117) 
Large jet/turbine IFR operations*0-1 km 0.000624 -2.93e-05 
 (0.000555) (0.000126) 
Small jet/turbine IFR operations*0-1 km -0.000393 2.50e-05 
 (0.000515) (0.000137) 
General aviation VFR operations*0-1 km -9.33e-06 1.25e-05 
 (1.03e-05) (1.18e-05) 
   
Observations 380 446 
Pseudo R2 0.187 0.0936 

Piston-engine IFR operations*0-2 km 8.31e-05** 3.37e-06 
 (3.84e-05) (2.70e-05) 
Large jet/turbine IFR operations*0-2 km 1.01e-05 -1.59e-06 
 (5.87e-05) (2.38e-06) 
Small jet/turbine IFR operations*0-2 km 4.31e-05 9.11e-05* 
 (8.20e-05) (5.09e-05) 
General aviation VFR operations*0-2 km 1.44e-06 -4.60e-06 
 (3.36e-06) (5.05e-06) 
   
Observations 3,323 3,811 
Pseudo R2 0.162 0.101 

Piston-engine IFR operations*0-3 km 5.31e-05** -9.50e-06 
 (2.15e-05) (1.92e-05) 
Large jet/turbine IFR operations*0-3 km 4.51e-05 1.25e-06 
 (4.38e-05) (2.05e-06) 
Small jet/turbine IFR operations*0-3 km 6.39e-05* 4.07e-05 
 (3.39e-05) (4.27e-05) 
General aviation VFR operations*0-3 km -3.65e-07 -1.41e-06 
 (2.37e-06) (3.80e-06) 
   
Observations 4,802 5,642 
Pseudo R2 0.162 0.115 

Piston-engine IFR operations*0-4 km 3.77e-05* -9.79e-06 
 (2.04e-05) (1.33e-05) 
Large jet/turbine IFR operations*0-4 km 5.72e-05 2.04e-06 
 (3.70e-05) (2.03e-06) 
Small jet/turbine IFR operations*0-4 km 4.57e-05* 1.71e-05 
 (2.74e-05) (3.19e-05) 
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General aviation VFR operations*0-4 km 6.80e-07 3.79e-06 
 (2.08e-06) (3.74e-06) 
   
Observations 7,104 7,516 
Pseudo R2 0.151 0.134 

All models use CEM weights (calculated using a treatment definition consistent with the treatment 
group for each regression) and include block group fixed effects, year fixed effects, airport-year time 
trends, and all time-variant control variables shows in Table 2. Robust standard errors clustered by block 
group are in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
 

We also find a significant increase in cardiovascular mortality of 0.02 percent per piston-engine IFR 

operation within 1 km of multi-runway airports, but find no significant effect from changes in piston-

engine IFR operations beyond this localized area. As already noted, at multi-runway airports we have 

lower confidence that the distance between populations and airport runways is a good proxy for 

exposure to leaded fuel emissions because we do not know which runway was used for each operation. 

 

Turning to the other flight types, the results suggest that general aviation VFR flights have no statistically 

significant effect on cardiovascular mortality in any of these regressions. This is not necessarily 

surprising considering that our VFR flight data lack accurate year-to-year variation at most airports given 

their exclusion from the TFMSC database. In addition, while most general aviation VFR flights are 

thought to be piston-engine, our data do not confirm engine type (and hence, the use of leaded fuel). 

Moreover, piston-engine IFR operations are more likely than VFR operations to be performed by twin 

engine aircraft, which have higher lead emissions per operation than single-engine aircraft.  

 

The effects from small and large jet or turbine flights on cardiovascular mortality are also not 

significantly different from zero in most specifications. The exception is a marginally significant adverse 

effect of small jet and turbine operations on cardiovascular mortality within 0-3 and 0-4 km of single-

runway airports. If these aircraft emit very fine particulates that disburse with wind, then adverse health 

effects could occur further from airports. The magnitude of the coefficients on small and large 

jet/turbine operations at single-runway airports is very similar to that of the piston-engine IFR 

coefficients using the 0-3 km and 0-4 km treatment definitions. These results suggest that piston-engine 

IFR flights are relatively more harmful to cardiovascular health than other flight types in areas located 

closest to single-runway airports, but that these effects may converge or even reverse a few kilometers 

away from the airports. We also find a marginally significant adverse effect of small jet or turbine flights 

within 0-2 km of multi-runway airports.  

 

Table 4b presents results of the flight operations model using a single regression that interacts flight 

operations with mutually exclusive distance bins of 0-1, 1-2, 2-3, and 3-4 km from the closest airport. 

Consistent with the results in Table 4a, we find statistically significant effects of piston-engine 

operations in block groups with centroids 0-1 and 1-2 km from single-runway airports. Each piston-

engine IFR flight operation increases cardiovascular mortality by 0.08 percent and 0.01 percent at these 

distances, respectively. The effects of piston-engine IFR operations are smaller and not statistically 

different from zero in the 2-3 and 3-4 km bins. This result suggests that the significant effects within 0-3 
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and 0-4 km shown in Table 4a were likely driven by the inclusion of block groups within 0-2 km of single-

runway airports in the treatment area definitions in those models.    

 

Table 4b. Key coefficient results from single regression with 4 km treatment cutoff: Effect of annual 

flight operations on cardiovascular mortality near TFMSC airports  

 Single-runway 
airports 

Multi-runway 
airports 

   

Piston-engine IFR operations*0-1 km 0.000756** 3.99e-06 
 (0.000323) (7.19e-05) 
Large jet/turbine IFR operations*0-1 km 0.000409* 0.000170 
 (0.000230) (0.000149) 
Small jet/turbine IFR operations*0-1 km -0.000487 -3.65e-07 
 (0.000450) (0.000187) 
General aviation VFR operations*0-1 km 4.37e-06 -5.80e-06 
 (3.13e-06) (7.15e-06) 

Piston-engine IFR operations*1-2 km 0.000117** -7.55e-06 
 (4.73e-05) (2.43e-05) 
Large jet/turbine IFR operations*1-2 km 5.85e-05 4.59e-07 
 (5.80e-05) (2.42e-06) 
Small jet/turbine IFR operations*1-2 km 9.43e-05 0.000109* 
 (8.55e-05) (6.27e-05) 
General aviation VFR operations*1-2 km 2.63e-07 5.25e-06 
 (3.27e-06) (4.98e-06) 

Piston-engine IFR operations*2-3 km 3.82e-05 -3.29e-05* 
 (2.32e-05) (1.83e-05) 
Large jet/turbine IFR operations*2-3 km 5.73e-05 2.69e-06 
 (6.15e-05) (2.45e-06) 
Small jet/turbine IFR operations*2-3 km 5.76e-05* -1.91e-05 
 (3.43e-05) (5.13e-05) 
General aviation VFR operations*2-3 km -4.63e-07 2.33e-06 
 (2.42e-06) (6.04e-06) 

Piston-engine IFR operations*3-4 km 2.05e-05 -2.02e-06 
 (2.58e-05) (1.49e-05) 
Large jet/turbine IFR operations*3-4 km 5.26e-05 1.73e-06 
 (4.41e-05) (2.47e-06) 
Small jet/turbine IFR operations*3-4 km 2.67e-05 -4.75e-06 
 (3.87e-05) (3.93e-05) 
General aviation VFR operations*3-4 km 1.39e-06 4.27e-06 
 (3.75e-06) (4.97e-06) 
   
Observations 7,104 7,516 
Pseudo R2 0.152 0.134 

This models uses CEM weights (calculated using the 4 km treatment group) and includes block group 
fixed effects, year fixed effects, airport-year time trends, and all time-variant control variables shows in 
Table 2. Robust standard errors clustered by block group are in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
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In contrast to Table 4a, the estimated effect of piston-engine IFR operations within 1 km of multi-

runway airports is smaller and not statistically different from zero. The main difference between these 

models is the treatment and control group definitions used to calculate the CEM sample and weights. 

The small number of block group-year observations within 1 km of the closest airport contributes to our 

uncertainty about the effect of air traffic operations near multi-runway airports.     

 

The estimates of the effects of other flight types on cardiovascular mortality from Table 4b are generally 

similar to those from Table 4a. None are statistically significant at a 5% level in any of the distance 

buffers.  

 

Appendix Table A5 presents the full set of coefficients for all explanatory variables for the CEM-weighted 

flight operations model corresponding to Table 4b. These results suggest that annual increases in 

cardiovascular mortality are significantly associated with decreases in the share of Hispanic residents, 

decreases in median income, decreased population density, and more days exceeding 90 degrees in 

communities near single- or multi-runway airports.   

 

The primary finding that piston-engine IFR operations have a statistically significant adverse association 

with cardiovascular mortality within 0-1 and 1-2 km from single-runway airports is robust to alternative 

specifications that use the full sample without CEM weights, and to models that exclude other operation 

types.25   

 

We provide an illustrative example of the magnitude of the adverse effect of piston-engine aircraft on 

cardiovascular mortality by calculating the impact of a 10 percent reduction in operations near single-

runway airports. Using the coefficients for the 0-2 km treatment effect from column 1 of Table 4a, we 

estimate that reducing piston-engine IFR operations at single-runway airports by 10 percent, which is 

equivalent to 237 takeoffs or landings per airport on average, would result in a statistically significant 2 

percent reduction in annual cardiovascular mortality among individuals age 65 and older, assuming that 

all other flight traffic is held constant. This equates to a drop in cardiovascular deaths of 0.047 per block 

group, which totals to about 2.5 avoided deaths per year across all block groups located within 2 km of 

one of the 24 single-runway airports in North Carolina. If we instead assume that the reduction in 

piston-engine IFR flights is balanced by an equal increase in the number of small jet or turbine IFR 

operations (which do not use leaded fuel), we obtain a net reduction in cardiovascular mortality of 0.9 

percent, equivalent to 1.3 deaths per year across all block groups located within 2 km of a single-runway 

airport.26  The latter illustration is of interest because it better isolates the effects associated with leaded 

 
25 Appendix Table A6 presents regression results using the full sample without CEM weights. These results are 

similar to the CEM-weighted model results shown in Table 4b, but the piston-engine IFR coefficients are slightly 

larger in the CEM-weighted model, suggesting that estimating the model using unmatched treatment and control 

groups with divergent socioeconomic characteristics leads to a potential downward bias in the coefficient 

estimates. As shown in Appendix Table A7, the piston-engine IFR operation coefficient estimates are similar to 

those in Table 4b when all other operation types except for piston-engine IFR traffic are excluded. This suggests 

that the primary results are not being driven by collinearity with the other flight operation variables.  
26 This net effect when assuming an offsetting increase in small jet or turbine IFR operations is not significantly 
different from zero (p = 0.58). 
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fuel emissions. Small jet and turbine IFR flights do not use leaded fuel but may emit similar levels of 

other pollutants and noise that could contribute to cardiovascular mortality.    

 

Discussion 

 

Our analysis indicates that increases in annual piston-engine air traffic are associated with significant 

increases in cardiovascular mortality among adults age 65 and older living near single-runway airports.  

However, our data has several limitations that may bias our estimates toward zero, suggesting that our 

estimates are conservative. 

 

Unfortunately, we do not have blood lead surveillance data for adults or monitored air lead 

concentration data that would provide us with a more precise measure of lead exposure from piston-

engine air traffic. Our reliance on airport proximity and aircraft operations as a less precise measure of 

exposure to lead emissions could lead to downward bias in our estimates.   

 

Our measure of general aviation VFR flights is particularly coarse as an indicator of lead exposure. Our 

data source for VFR general aviation flights does not distinguish between piston- and non-piston-engine 

aircraft, though EPA (2020a) has noted that most of these flights are piston-engine. VFR flight data are 

not updated annually for most airports in our sample, reducing the temporal variation that we rely on 

for identification in our preferred regression models. These limitations could contribute to our lack of 

precise estimates of the association between general aviation VFR flights and cardiovascular mortality. 

Given the lack of precision in our measure of piston-engine VFR flights, we cannot conclude from our 

null results that these flights have no effect on cardiovascular mortality. VFR flights are more numerous 

than piston-engine IFR flights, so they remain an important source of lead emissions.  

 

Because leaded fuel usage can vary across parts of an airport, there is also uncertainty about the specific 

location of the lead emissions, leading to classical measurement error. This source of measurement 

error should be less pronounced for single-runway airports. Our use of population-weighted block group 

centroids instead of individual residential addresses as an indicator of population location exacerbates 

this source of measurement error, further biasing our results toward the null. However, our finding of 

more pronounced adverse effects near single-runway airport is consistent with McCumber and 

Strevett’s (2017) finding of higher soil lead levels near single-runway airports in their analysis of three 

airports in Oklahoma. 

 

Our analysis focuses on the effects of year-to-year fluctuations in piston-engine air traffic. A key 

uncertainty in the scientific literature is the timing and duration of lead exposure resulting in adverse 

cardiovascular effects (EPA 2013). If cardiovascular damage accrues over many years of exposure, which 

is likely the case, our results underestimate the total contribution of piston-engine air traffic to 

cardiovascular mortality.  

 

Our study is also limited to airports large enough to report data on piston-engine IFR flights to FAA, as 

reflected in the TFMSC database. We cannot assume that estimates of the impact of aviation traffic at 

larger airports is generalizable to smaller airports, which are likely to have fewer based aircraft and flight 

operations. Some of these smaller airports could be located closer to residential neighborhoods than 
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larger airports if local zoning does not require setbacks, so lead emissions from these airports could still 

raise public health concerns. We did not conduct an analysis of proximity to smaller airports as a proxy 

for exposure because airport location could be correlated with socioeconomic and other determinants 

of cardiovascular mortality, making it challenging to isolate the effect of piston-engine air traffic holding 

all other risk factors constant with this approach.  

 

As already noted, there is potential for omitted variable bias if neighborhoods near airports are 

systematically different from those farther away. We use several strategies to minimize this potential 

bias, particularly in the flight operations regressions. These strategies include spatially refined Census 

block group intercepts, coarsened exact matching on several socioeconomic characteristics that are 

associated with cardiovascular mortality rates, and the inclusion of numerous time-variant control 

variables and linear airport-specific time trends. To minimize bias due to confounding of aircraft lead 

emissions with aircraft noise and other pollutants that can cause cardiovascular damage, we adjust for 

aviation noise in our airport proximity regressions and account for large and small jet- and turbine-

engine operations in our flight operations models. Despite this multi-pronged approach, we cannot 

assert with 100% confidence that we eliminated all sources of bias.  

 

Given the potential for our results to be biased towards the null, it is notable that we estimate 

statistically significant increases in annual cardiovascular mortality from an increase in piston-engine IFR 

air traffic for block groups within 2 km of single-runway airports. The magnitude of this effect is similar 

to findings from other studies examining associations between airport pollution and cardiovascular 

disease. For example, Schlenker and Walker (2016) found that a one standard deviation increase in 

aircraft carbon monoxide emissions caused a 9 percent increase in daily mean hospital admissions for 

heart problems near California airports. This result corresponds to a 1.4 percent increase in hospital 

admissions per 10 percent increase in carbon monoxide. Correia et al. (2013) found that hospitalization 

for cardiovascular disease was 3.5% higher in zip codes with 10 dB higher 90th centile aviation noise 

exposure. This finding roughly translates to a 1.8 percent increase in cardiovascular disease per 10 

percent increase in 90th centile aviation noise. However, our findings are only applicable to a highly 

localized area near single-runway airports, whereas these studies found effects surrounding broader 

geographic areas near major airports.   

 

Conclusions 

 

Piston-engine aviation is the largest remaining source of airborne lead emissions in the United States.  

Our study is the first to estimate the effect of piston-engine aircraft operations on cardiovascular 

mortality. We find that adults age 65 and older living within two kilometers of single-runway airports 

have higher cardiovascular mortality rates in years with more piston-engine IFR operations compared to 

adults living farther away from these airports. We do not consistently find that cardiovascular morality is 

significantly higher in years with more piston-engine IFR operations at multi-runway airports, nor do we 

find higher mortality in years with more general aviation VFR operations, possibly because our measure 

of leaded avgas exposure is less precise in these cases.   

 

To obtain more reliable and precise estimates of the effect of leaded aviation fuel emissions on 

cardiovascular outcomes, a direction for future research is to conduct similar analyses using a larger 
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sample of airports with reliable flight operations data. Data on the variation in air lead concentrations 

and/or adult blood lead levels over time near airports would further expand opportunities to identify 

the health effects of changes in adult lead exposure. In addition, a more comprehensive dataset of 

individual-level health and location data for the entire population of adults age 65 and older living near 

airports—not just those who experience a fatality or other significant adverse effect—would allow for a 

more spatially refined analysis based on the distance from individuals’ residences to the closest airport 

runway. In the meantime, our study presents preliminary evidence that reducing emissions from leaded 

aviation fuel could have significant health benefits for adult populations who are often overlooked in 

discussions of lead exposure.  
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Appendix 

 
Figure A1. Cardiovascular mortality rate (age 65 and older) by airport type and distance from airport: 
Full sample 

 
 

  



34 
 

Table A1. Appendix table: ICD-10 codes for cardiovascular deaths among individuals age 65 and older in 

North Carolina, 2000-2017  

 Number of deaths Percentage of deaths 

I00-I02– acute rheumatic fever 6 <1% 

I05-I09 – chronic rheumatic heart diseases 1,161 <1% 

I10-I15 – hypertensive diseases 19,694 6% 

I20-I25 – ischemic heart diseases 144,190 45% 

I26-I28 – pulmonary heart disease and diseases of 
pulmonary circulation 

5,978 2% 

I30-I52 – other forms of heart disease 69,462 22% 

I60-I69 – cerebrovascular diseases 67,499 21% 

I70-I79 – diseases of arteries, arterioles and capillaries 12,171 4% 

I80-I89 – diseases of veins, lymphatic vessels and lymph 
nodes, not elsewhere classified 

1,042 <1% 

I95-I99 – other and unspecified disorders of the 
circulatory system 

259 <1% 

Total I00-I99 – diseases of the circulatory system 321,445 100% 
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Table A2. Summary statistics by airport type and distance from airport: full sample 

 Single-runway airports p-value of 
difference 
in means 

Multi-runway airports p-value of 
difference 
in means 

 0-2 km 2-10 km  0-2 km 2-10 km  

Outcome variable 

Number of 65+ 
CVD deaths 

2.55 
(2.79) 

3.16 
(3.39)           

<0.01 3.09     
(3.41)           

2.85 
(3.18)           

0.011 

Exposure variables  

Piston-engine 
IFR operations 

2,602.14   
(2,940.56)           

3,287.11 
(3,528.17)           

<0.01 4,170.90     
(3,608.60)           

6,921.76     
(5,865.58)           

<0.01 

Large jet/ 
turbine IFR 
operations 

2,112.27    
(5,484.15)           

2,552.21      
(5,089.20)      

0.011 39,918.12    
(115,986.50)           

113,453.40    
(178,755.60)                   

<0.01 

Small jet/ 
turbine IFR 
operations 

845.15    
(1,337.19)           

1,229.35    
(1,629.59)           

<0.01 2,317.14 
(2,184.43)           

3,840.27 
(2,894.09)           

<0.01 

General 
aviation VFR 
operations  

26,011.13    
(19,390.86)           

28,644.00   
(17,647.35)           

<0.01 24,053.28    
(11,526.59)           

20,839.80    
(10,756.56)           

<0.01 

Time-variant control variables  

65+ population 207.44 
(139.16) 

209.88 
(149.18)    

0.62 176.64 
(104.80)          

191.74 
(136.60)    

<0.01 

Share black 
population 

0.088     
(0.096)           

0.18 
(0.19)           

<0.01 0.42 
(0.31)           

0.27 
(0.26)           

<0.01 

Share Hispanic 
population 

0.063     
(0.066)           

0.078 
(0.084)           

<0.01 0.084 
(0.11)           

0.074 
(0.094)           

<0.01 

Population 
density 

0.00042 
(0.00059)    

0.00050 
(0.00053)    

<0.01 0.00065 
(0.00059)    

0.00084     
(0.00070)    

<0.01 

Percent vacant 
housing 

0.19     
(0.20)           

0.13 
(0.13)           

<0.01 0.13 
(0.08)           

0.10    
(0.09)           

<0.01 

Percent rental 
housing 

0.30 
(0.20)           

0.33 
(0.22)           

<0.01 0.48     
(0.22)    

0.41  
(0.25)           

<0.01 

Percent pre-
1950 housing 

0.051 
(0.065)           

0.12 
(0.14)           

<0.01 0.16 
(0.15)           

0.13 
(0.17)                  

<0.01 

Median income 
(2010$) 

62,576.34     
(23,963.21)    

58,625.32    
(30,021.59)       

<0.01 39,781.36 
(17,908.55)    

5,9707.25    
(32,498.18)        

<0.01 

Percent of 
adults 25+ with 
college degree 

0.29 
(0.16)    

0.24 
(0.17)           

<0.01 0.17 
(0.12)           

0.29 
(0.19)    

<0.01 

Days above 90 
degrees 

33.95     
(24.83)           

34.67 
(25.05)           

0.39 41.01 
(22.58)           

42.41 
(22.00)           

0.034 

Unemployment 
rate 

6.68      
(2.65)         

6.74 
(2.62)         

<0.01 6.93 
(2.56)         

6.66 
(2.49)         

<0.01 

Toxicity-
weighted lead 

1.82 
(2.93) 

3.04     
(8.67)  

<0.01 3.81     
(7.34) 

5.94     
(29.51) 

0.013 
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air 
concentration  

Toxicity-
weighted total 
air 
concentration 
of chemical 
releases 

6,093.79     
(37,767.60) 

10,196.27    
(57,053.85)           

0.030 18,620.90    
(76,619.06)           

32,529.24    
(177,235.90)           

<0.01 

Charlotte 
Motor 
Speedway 
located within 
4 km * pre-
2007 lead 
phaseout 

0.006 
(0.080) 

0.004 
(0.061) 

 0            
(0) 

0 
(0) 

0.21 

Time-invariant variables (only included in airport fixed effects models)  

Percent > 55 
decibel 
transportation 
noise 

5.24 
(6.17)           

3.42 
(2.90)           

<0.01 9.15 
(11.09)           

5.17 
(7.67) 

<0.01 

Heliport 
located within 
2 km 

0.038 
(0.19)           

0.068 
(0.25)           

<0.01 0.045 
(0.21)           

0.13 
(0.33)           

<0.01 

Major road 
located within 
500 m 

0.21 
(0.40) 

0.30 
(0.46) 

<0.01 (0.37) 
(0.48) 

0.34    
(0.47) 

0.032 

Major road 
located within 
2 km  

0.96 
(0.19)           

0.85 
(0.36)           

<0.01 0.95 
(0.21)           

0.92     
(0.27)           

<0.01 

Hospital 
located within 
2 km 

0.054 
(0.23)           

0.10 
(0.30)           

<0.01 0.090     
(0.29)           

0.16     
(0.37)           

<0.01 

N 944 12,662  1,198      16,393      

Standard deviations in parentheses 
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Table A3. Full coefficient results using single regression with a 4 km treatment cutoff: Association of 

airport proximity and cardiovascular mortality near TFMSC airports using CEM sample  

 Single-runway airports Multi-runway airports 
   

Located 0-1 km of TFMSC airport -0.147 0.137 
 (0.149) (0.140) 
Located 1-2 km of TFMSC airport 0.0737 -0.0309 
 (0.0775) (0.0601) 
Located 2-3 km of TFMSC airport 0.119 -0.0711 
 (0.103) (0.0550) 
Located 3-4 km of TFMSC airport 0.155*** 0.0255 
 (0.0553) (0.0490) 
Share Black population 0.133 -0.216* 
 (0.217) (0.114) 
Share Hispanic population -0.0953 -0.532 
 (0.253) (0.330) 
Population density -22.38 -2.299 
 (73.82) (61.54) 
Share vacant housing 0.251 0.115 
 (0.161) (0.252) 
Share rental housing 0.348*** 0.296 
 (0.0990) (0.241) 
Median income -2.70e-06* -5.07e-06*** 
 (1.59e-06) (1.68e-06) 
Share college graduates -0.481** 0.0434 
 (0.215) (0.259) 
Share pre-1950 housing 0.249 0.565*** 
 (0.290) (0.181) 
Days above 90 degrees 0.00287* -0.000165 
 (0.00161) (0.00147) 
Unemployment rate 0.0105 0.00469 
 (0.0165) (0.0150) 
Toxicity-weighted lead air concentration -0.00248 0.000409 
 (0.00233) (0.000316) 
Toxicity-weighted total air concentration 
of chemical releases  

4.40e-09 -8.89e-09 
(1.71e-07) (4.13e-08) 

Percent > 55 decibel transportation noise -0.00744 0.00450*** 
Heliport located within 2 km (0.00913) (0.00108) 
Percent > 55 decibel transportation noise 0.163 0.0310 
 (0.135) (0.131) 
Major road located within 2 km 0.157** -0.0849 
 (0.0610) (0.0580) 
Major road located within 500 m 0.0341 -0.0538 
 (0.0713) (0.0364) 
Hospital located within 2 km -0.0446 0.159 
 (0.131) (0.102) 
Charlotte Motor Speedway located within -0.0395 - 
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4 km  (0.0481)  
Charlotte Motor Speedway located within 
4 km*pre-2007 lead phaseout 

-0.218*** - 
(0.0244)  

General aviation VFR data missing  -0.130** 
  (0.0564) 
Constant -3.836*** -3.627*** 
 (0.192) (0.148) 
   
Observations 7,104 7,516 
Pseudo R 0.0871 0.0748 

This model uses CEM weights derived based on a 4 km treatment cutoff and includes airport fixed 
effects, year fixed effects, and airport-year time trends. Robust standard errors clustered by closest 
airport are in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table A4. Key coefficient results from single regression model with a 4 km treatment cutoff: Impact of 

airport proximity on cardiovascular mortality within near TFMSC airports using full sample without 

matching 

 Single-runway 
airports 

Multi-runway 
airports 

   

0-1 km  -0.396*** 0.0593 
 (0.105) (0.0712) 

1-2 km -0.0669 0.0434 
 (0.0557) (0.0715) 

2-3 km 0.0222 -0.00306 
 (0.0683) (0.0656) 

3-4km 0.0583 0.0110 
 (0.0458) (0.0344) 
   
Observations 13,606 17,591 
Pseudo R2 0.0949 0.0621 

This model includes closest TFMSC airport fixed effects, year fixed effects, airport-year time trends, and 
control variables shown in Table 2. Robust standard errors clustered by closest airport are in 
parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table A5. Full coefficient results using single regression model with a 4 km treatment cutoff: Impact of 

annual flight operations on cardiovascular mortality near TFMSC airports using CEM sample 

 Single-runway 
airports 

Multi-runway 
airports 

Piston-engine IFR operations*0-1 km 0.000756** 3.99e-06 
 (0.000323) (7.19e-05) 
Large jet/turbine IFR operations*0-1 km 0.000409* 0.000170 
 (0.000230) (0.000149) 
Small jet/turbine IFR operations*0-1 km -0.000487 -3.65e-07 
 (0.000450) (0.000187) 
General aviation VFR operations*0-1 km 4.37e-06 -5.80e-06 
 (3.13e-06) (7.15e-06) 
Piston-engine IFR operations*1-2 km 0.000117** -7.55e-06 
 (4.73e-05) (2.43e-05) 
Large jet/turbine IFR operations*1-2 km 5.85e-05 4.59e-07 
 (5.80e-05) (2.42e-06) 
Small jet/turbine IFR operations*1-2 km 9.43e-05 0.000109* 
 (8.55e-05) (6.27e-05) 
General aviation VFR operations*1-2 km 2.63e-07 5.25e-06 
 (3.27e-06) (4.98e-06) 
Piston-engine IFR operations*2-3 km 3.82e-05 -3.29e-05* 
 (2.32e-05) (1.83e-05) 
Large jet/turbine IFR operations*2-3 km 5.73e-05 2.69e-06 
 (6.15e-05) (2.45e-06) 
Small jet/turbine IFR operations*2-3 km 5.76e-05* -1.91e-05 
 (3.43e-05) (5.13e-05) 
General aviation VFR operations*2-3 km -4.63e-07 2.33e-06 
 (2.42e-06) (6.04e-06) 
Piston-engine IFR operations*3-4 km 2.05e-05 -2.02e-06 
 (2.58e-05) (1.49e-05) 
Large jet/turbine IFR operations *3-4 km 5.26e-05 1.73e-06 
 (4.41e-05) (2.47e-06) 
Small jet/turbine IFR operations*3-4 km 2.67e-05 -4.75e-06 
 (3.87e-05) (3.93e-05) 
General aviation VFR operations*3-4 km 1.39e-06 4.27e-06 
 (3.75e-06) (4.97e-06) 
Piston-engine IFR operations at closest airport -1.43e-05 2.73e-05 
 (1.82e-05) (1.75e-05) 
Large jet/turbine IFR operations at closest airport -1.35e-05 -1.75e-06 
 (2.99e-05) (1.34e-06) 
Small jet/turbine IFR operations at closest airport 6.54e-06 9.18e-06 
 (3.31e-05) (2.54e-05) 
General aviation VFR operations at closest airport -1.76e-06 -2.55e-06 
 (1.85e-06) (4.43e-06) 
Share Black population 0.273 -0.0272 
 (0.398) (0.345) 
Share Hispanic population -0.930** -0.0688 
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 (0.365) (0.641) 
Population density -134.3 -246.5* 
 (363.1) (134.7) 
Share vacant housing 0.287 0.474 
 (0.418) (0.498) 
Share rental housing 0.210 0.284 
 (0.324) (0.432) 
Median income -2.07e-06 -7.52e-06** 
 (1.77e-06) (3.07e-06) 
Share college graduates 0.317 0.0105 
 (0.358) (0.426) 
Share pre-1950 housing -0.293 -0.981 
 (0.446) (0.635) 
Days above 90 degrees 0.00201* -0.000225 
 (0.00108) (0.00184) 
Unemployment rate 0.0233 0.0103 
 (0.0184) (0.0209) 
Toxicity-weighted lead air concentration -0.000649 0.000419 
 (0.00216) (0.000534) 
Toxicity-weighted total air concentration of 
chemical releases  

1.44e-07 4.64e-08 
(1.63e-07) (7.40e-08) 

Charlotte Motor Speedway located within 4 km* 
pre-2007 lead phaseout 

-0.403  
(0.268)  

General aviation VFR data missing   -0.152 
  (0.148) 
Constant -4.098*** -2.539*** 
 (0.443) (0.278) 
   
Observations 7,104 7,516 
Pseudo R2 0.152 0.134 

This model uses CEM weights (derived based on a 4 km treatment cutoff) and includes block group fixed 
effects, year fixed effects, and airport-year time trends. Robust standard errors clustered by block group 
are in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table A6. Key coefficient results from single regression model: Impact of annual flight operations on 

cardiovascular mortality near TFMSC airports using full sample without matching 

 Single-runway 
airports 

Multi-runway 
airports 

   

Piston-engine IFR operations*0-1 km 0.000485** -2.08e-05 
 (0.000199) (0.000111) 
Large jet/turbine IFR operations*0-1 km 0.000335* 3.15e-05 
 (0.000180) (8.73e-05) 
Small jet/turbine IFR operations*0-1 km 5.39e-07 0.000188 
 (0.000466) (0.000122) 
General aviation VFR operations*0-1 km 9.46e-07 -9.01e-06 
 (1.96e-06) (6.60e-06) 

Piston-engine IFR operations*1-2 km 9.75e-05*** -2.81e-05 
 (3.58e-05) (2.14e-05) 
Large jet/turbine IFR operations*1-2 km 2.25e-05 -9.67e-07 
 (3.65e-05) (1.93e-06) 
Small jet/turbine IFR operations*1-2 km 4.68e-05 5.48e-05 
 (6.25e-05) (4.63e-05) 
General aviation VFR operations*1-2 km 1.42e-07 2.59e-06 
 (2.82e-06) (3.94e-06) 

Piston-engine IFR operations*2-3 km 3.39e-05 -1.21e-05 
 (2.11e-05) (2.62e-05) 
Large jet/turbine IFR operations*2-3 km 3.42e-05 8.67e-07 
 (5.20e-05) (3.30e-06) 
Small jet/turbine IFR operations*2-3 km 6.73e-05* 3.40e-05 
 (3.55e-05) (5.23e-05) 
General aviation VFR operations*2-3 km -1.82e-06 -3.63e-06 
 (1.70e-06) (5.01e-06) 

Piston-engine IFR operations*3-4 km 2.45e-05 9.42e-06 
 (2.21e-05) (8.94e-06) 
Large jet/turbine IFR operations*3-4 km 1.80e-05 1.51e-06 
 (2.52e-05) (2.12e-06) 
Small jet/turbine IFR operations*3-4 km 2.39e-05 -5.32e-06 
 (3.90e-05) (3.21e-05) 
General aviation VFR operations*3-4 km 4.04e-07 2.49e-06 
 (3.16e-06) (3.66e-06) 
   
Observations 13,606 17,591 
Pseudo R2 0.168 0.145 

This model includes block group fixed effects, year fixed effects, airport-year time trends, and all time-
variant control variables shows in Table 2. Robust standard errors clustered by block group in 
parentheses.  
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Table A7: Key coefficient results using single regression model with a 4 km treatment cutoff: Impact of 

only piston-engine annual flight operations on cardiovascular mortality near TFMSC airports  

 Single-runway 
airports 

Multi-runway 
airports 

   

Piston-engine IFR operations*0-1 km 0.000800** 1.52e-05 
 (0.000382) (9.09e-05) 
Piston-engine IFR operations*1-2 km 0.000117*** -4.31e-06 
 (4.03e-05) (1.97e-05) 
Piston-engine IFR operations*2-3 km 3.21e-05 -4.11e-05** 
 (2.09e-05) (2.04e-05) 
Piston-engine IFR operations*3-4 km 2.34e-05 -5.13e-06 
 (2.36e-05) (1.67e-05) 
   
Observations 7,104 7,516 
Pseudo R2 0.151 0.134 

This model uses CEM weights (derived based on a 4 km treatment cutoff) and includes block group fixed 
effects, year fixed effects, and airport-year time trends. Robust standard errors clustered by block group 
are in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
 


