

# **Fact Sheet**

The U.S. Environmental Protection Agency (EPA)

# Proposes to Reissue a National Pollutant Discharge Elimination System (NPDES) Permit to Discharge Pollutants Pursuant to the Provisions of the Clean Water Act (CWA) to:

# **City of Wapato**

Public Comment Start Date: June 27, 2022

Public Comment Expiration Date: August 11, 2022

Technical Contact: Abigail Conner

(206) 553-6358 800-424-4372, ext. 6358 (within Alaska, Idaho, Oregon, and Washington) conner.abigail@epa.gov

# EPA PROPOSES TO REISSUE THE NPDES PERMIT

EPA proposes to reissue the NPDES permit for the facility referenced above. The proposed permit places conditions on the discharge of pollutants from the wastewater treatment plant to waters of the United States. In order to ensure protection of water quality and human health, the permit places limits on the types and amounts of pollutants that can be discharged from the facility.

This Fact Sheet (FS) includes:

- information on public comment, public hearing, and appeal procedures
- a listing of proposed effluent limitations and other conditions for the facility
- a map and description of the discharge location
- technical material supporting the conditions in the permit

# CWA § 401 CERTIFICATION

Since this facility discharges to tribal waters and the Yakama Nation does not have Treatment as a State (TAS), EPA is the certifying authority for the permit. See FS Section V.C. and Appendix F. Comments regarding the intent to certify should be directed to the EPA technical contact listed above.

# PUBLIC COMMENT

We request that all comments on EPA's proposed permits or requests for a public hearing be submitted via email to Abigail Conner (conner.abigail@epa.gov). If you are unable to submit comments via email, please call (206) 553-6358.

Persons wishing to comment on or request a Public Hearing for the proposed permit for this facility may do so in writing by the expiration date of the Public Comment period. A request for a Public Hearing must state the nature of the issues to be raised as well as the requester's name, address, and telephone number. All comments and requests for Public Hearings must be in writing and should be submitted to the EPA as described in the Public Comments Section of the attached Public Notice.

After the Public Notice expires, and all comments have been considered, EPA's regional Director for the Water Division will make a final decision regarding permit issuance. If no substantive comments are received, the tentative conditions in the proposed permit will become final, and the permit will become effective upon issuance. If substantive comments are received, EPA will address the comments and issue the permit. The permit will become effective no less than 30 days after the issuance date, unless an appeal is submitted to the Environmental Appeals Board within 30 days pursuant to 40 CFR 124.19.

#### DOCUMENTS ARE AVAILABLE FOR REVIEW

The proposed permit, this Fact Sheet and the Public Notice can also be found by visiting the Region 10 website at <u>https://www.epa.gov/npdes-permits/about-region-10s-npdes-permit-program</u>.

The draft Administrative Record for this action contains any documents listed in the References section. The Administrative Record or documents from it are available electronically upon request by contacting Abigail Conner.

For technical questions regarding the Fact Sheet, contact Abigail Conner at (206) 553-6358 or conner.abigail@epa.gov. Services can be made available to persons with disabilities by contacting Audrey Washington at (206) 553-0523.

# TABLE OF CONTENTS

| Acr                             | onyms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                            |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| I.                              | Background Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                            |
|                                 | A. General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |
|                                 | B. Permit History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |
|                                 | C. Tribal Consultation                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |
| II.                             | Facility Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              |
|                                 | A. Treatment Plant Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              |
|                                 | B. Outfall Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |
|                                 | C. Effluent Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |
|                                 | D. Compliance History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |
|                                 | E. Receiving Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |
| III.                            | Effluent Limitations and Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |
|                                 | <ul><li>A. Basis for Effluent Limits</li><li>B. Monitoring Requirements</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |
|                                 | C. Sludge (Biosolids) Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |
| IV.                             | Other Permit Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |
| 1.                              | A. Compliance Schedules                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |
|                                 | B. Nutrient Optimization Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |
|                                 | C. Quality Assurance Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              |
|                                 | D. Operation and Maintenance Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |
|                                 | E. Sanitary Sewer Overflows and Proper Operation and Maintenance of the                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |
|                                 | Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |
|                                 | Collection System<br>F. Environmental Justice                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 44                                                                                                                         |
|                                 | Collection System<br>F. Environmental Justice<br>G. Design Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 44<br>. 45                                                                                                                 |
|                                 | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements                                                                                                                                                                                                                                                                                                                                                                                                  | . 44<br>. 45<br>. 45                                                                                                         |
| V                               | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions                                                                                                                                                                                                                                                                                                                                                                 | . 44<br>. 45<br>. 45<br>. 45                                                                                                 |
| V.                              | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements                                                                                                                                                                                                                                                                                                                                     | 44<br>45<br>45<br>45<br>45                                                                                                   |
| V.                              | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act                                                                                                                                                                                                                                                                                                        | . 44<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45                                                                                 |
| V.                              | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat                                                                                                                                                                                                                                                                           | 44<br>45<br>45<br>45<br>45<br>45<br>45<br>45                                                                                 |
| V.                              | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification                                                                                                                                                                                                                                             | 44<br>45<br>45<br>45<br>45<br>45<br>45<br>46<br>46                                                                           |
| V.                              | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification<br>D. Antidegradation                                                                                                                                                                                                                       | 44<br>45<br>45<br>45<br>45<br>45<br>45<br>46<br>46<br>47                                                                     |
|                                 | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification<br>D. Antidegradation<br>E. Permit Expiration                                                                                                                                                                                               | 44<br>45<br>45<br>45<br>45<br>45<br>46<br>46<br>47                                                                           |
| VI.                             | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification<br>D. Antidegradation<br>E. Permit Expiration<br>References                                                                                                                                                                                 | 44<br>45<br>45<br>45<br>45<br>45<br>46<br>46<br>47<br>47                                                                     |
| VI.<br>App                      | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification<br>D. Antidegradation<br>E. Permit Expiration<br>References<br>pendix A. Facility Information                                                                                                                                               | . 44<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45                                                                 |
| VI.<br>App<br>App               | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification<br>D. Antidegradation<br>E. Permit Expiration<br>References<br>pendix A. Facility Information<br>pendix B. Water Quality Data                                                                                                               | . 44<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 46<br>. 47<br>. 47<br>. 47<br>. 49<br>. 53                         |
| VI.<br>App<br>App<br>App        | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification<br>D. Antidegradation<br>E. Permit Expiration<br>References<br>pendix A. Facility Information<br>pendix B. Water Quality Data<br>pendix C. Reasonable Potential and WQBEL Formulae                                                          | . 44<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 46<br>. 47<br>. 47<br>. 47<br>. 47<br>. 49<br>. 53<br>. 62         |
| VI.<br>App<br>App<br>App        | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification<br>D. Antidegradation<br>E. Permit Expiration<br>References<br>pendix A. Facility Information<br>pendix B. Water Quality Data<br>pendix C. Reasonable Potential and WQBEL Formulae<br>pendix D. Reasonable Potential and WQBEL Calculations | . 44<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 46<br>. 46<br>. 47<br>. 47<br>. 47<br>. 49<br>. 53<br>. 62<br>. 67 |
| VI.<br>App<br>App<br>App<br>App | Collection System<br>F. Environmental Justice<br>G. Design Criteria<br>H. Pretreatment Requirements<br>I. Standard Permit Provisions<br>Other Legal Requirements<br>A. Endangered Species Act<br>B. Essential Fish Habitat<br>C. CWA § 401 Certification<br>D. Antidegradation<br>E. Permit Expiration<br>References<br>pendix A. Facility Information<br>pendix B. Water Quality Data<br>pendix C. Reasonable Potential and WQBEL Formulae                                                          | . 44<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 45<br>. 46<br>. 47<br>. 47<br>. 47<br>. 47<br>. 47<br>. 53<br>. 62<br>. 69 |

# Tables

| Table 1. Effluent Characterization                                       | 8  |
|--------------------------------------------------------------------------|----|
| Table 2. Summary of Effluent Violations from August 2015 - February 2020 | 9  |
| Table 3. Receiving Water Quality Data                                    | 11 |
| Table 4. Critical Flows In Receiving Water                               | 12 |
| Table 5. Previous Permit - Effluent Limits and Monitoring Requirements   | 12 |
| Table 6. Proposed Permit - Effluent Limits and Monitoring Requirements   | 14 |
| Table 7. Summary of Proposed Changes to Effluent Limits                  | 16 |
| Table 8. Summary of Proposed Changes to Monitoring Requirements          | 17 |
| Table 9. Secondary Treatment Effluent Limits                             | 19 |
| Table 14. Mixing Zones (Irrigation Season)                               | 21 |
| Table 15. Surface Water Monitoring in Proposed Permit                    | 36 |
| Table 16. Compliance Schedule for Mercury                                | 40 |
|                                                                          |    |

# Acronyms

| 1Q10             | 1-day, 10-year low flow                                                     |
|------------------|-----------------------------------------------------------------------------|
| 7Q10             | 7-day, 10-year low flow                                                     |
|                  | Biologically based design flow intended to ensure an excursion              |
| 30B3             | frequency of less than once every three years, for a 30-day average flow.   |
| 30Q10            | 30-day, 10-year low flow                                                    |
| AML              | Average Monthly Limit                                                       |
| BO or<br>BiOp    | Biological Opinion                                                          |
| BOD <sub>5</sub> | Biochemical oxygen demand, five-day                                         |
| $BOD_{5u}$       | Biochemical oxygen demand, ultimate                                         |
| BMP              | Best Management Practices                                                   |
| °C               | Degrees Celsius                                                             |
| $C BOD_5$        | Carbonaceous Biochemical Oxygen Demand                                      |
| CFR              | Code of Federal Regulations                                                 |
| CFS              | Cubic Feet per Second                                                       |
| CV               | Coefficient of Variation                                                    |
| CWA              | Clean Water Act                                                             |
| DMR              | Discharge Monitoring Report                                                 |
| DO               | Dissolved oxygen                                                            |
| EFH              | Essential Fish Habitat                                                      |
| EPA              | U.S. Environmental Protection Agency                                        |
| ESA              | Endangered Species Act                                                      |
| FR               | Federal Register                                                            |
| ICIS             | Integrated Compliance Information System                                    |
| LA               | Load Allocation                                                             |
| lbs/day          | Pounds per day                                                              |
| LC               | Lethal Concentration                                                        |
| LC <sub>50</sub> | Concentration at which 50% of test organisms die in a specified time period |
| $LD_{50}$        | Dose at which 50% of test organisms die in a specified time period          |
| LOEC             | Lowest Observed Effect Concentration                                        |
| LTA              | Long Term Average                                                           |
| mg/L             | Milligrams per liter                                                        |
| mL               | Milliliters                                                                 |
| ML               | Minimum Level                                                               |
| µg/L             | Micrograms per liter                                                        |
| mgd              | Million gallons per day                                                     |
| MDL              | Maximum Daily Limit or Method Detection Limit                               |
| MPN              | Most Probable Number                                                        |
|                  |                                                                             |

| N     | Nitrogen                                                                             |
|-------|--------------------------------------------------------------------------------------|
| NEPA  | National Environmental Policy Act                                                    |
| NOAA  | National Oceanic and Atmospheric Administration                                      |
| NOEC  | No Observable Effect Concentration                                                   |
| NOI   | Notice of Intent                                                                     |
| NPDES | National Pollutant Discharge Elimination System                                      |
| O&M   | Operations and maintenance                                                           |
| POTW  | Publicly owned treatment works                                                       |
| PSES  | Pretreatment Standards for Existing Sources                                          |
| PSNS  | Pretreatment Standards for New Sources                                               |
| QAP   | Quality assurance plan                                                               |
| RP    | Reasonable Potential                                                                 |
| RPM   | Reasonable Potential Multiplier                                                      |
| RWC   | Receiving Water Concentration                                                        |
| SPCC  | Spill Prevention and Control and Countermeasure                                      |
| SS    | Suspended Solids                                                                     |
| SSO   | Sanitary Sewer Overflow                                                              |
| s.u.  | Standard Units                                                                       |
| TKN   | Total Kjeldahl Nitrogen                                                              |
| TMDL  | Total Maximum Daily Load                                                             |
| TRC   | Total Residual Chlorine                                                              |
| TRE   | Toxicity Reduction Evaluation                                                        |
| TSD   | Technical Support Document for Water Quality-based Toxics Control (EPA/505/2-90-001) |
| TSS   | Total suspended solids                                                               |
| TUa   | Toxic Units, Acute                                                                   |
| TUc   | Toxic Units, Chronic                                                                 |
| USFWS | U.S. Fish and Wildlife Service                                                       |
| USGS  | United States Geological Survey                                                      |
| WD    | Water Division                                                                       |
| WET   | Whole Effluent Toxicity                                                              |
| WLA   | Wasteload allocation                                                                 |
| WQBEL | Water quality-based effluent limit                                                   |
| WQS   | Water Quality Standards                                                              |
| WWTP  | Wastewater treatment plant                                                           |

# I. BACKGROUND INFORMATION

## A. GENERAL INFORMATION

This fact sheet provides information on the proposed NPDES permit for the following entity:

| NPDES Permit #:    | WA0050229                                                                                 |  |  |
|--------------------|-------------------------------------------------------------------------------------------|--|--|
| Applicant:         | City of Wapato<br>City of Wapato Wastewater Treatment Plant                               |  |  |
| Type of Ownership  | Municipal                                                                                 |  |  |
| Physical Address:  | 69172 Highway 97<br>Wapato, WA 98951                                                      |  |  |
| Mailing Address:   | City of Wapato<br>205 E. Third St.<br>Wapato, WA 98951-1326                               |  |  |
| Facility Contact:  | Jeff Schumacker<br>Public Works Director<br>jschumacker@wapato-city.org<br>(509) 853-8013 |  |  |
| Operator Name:     | Jeff Schumacker                                                                           |  |  |
| Facility Location: | 46.434326°N 120.422001°W                                                                  |  |  |
| Receiving Water    | WIP Drainage Way No.2                                                                     |  |  |
| Facility Outfall   | 46.433056°N 120.421389°W                                                                  |  |  |

## Table 1. General Facility Information

# **B. PERMIT HISTORY**

The most recent NPDES permit for the City of Wapato Wastewater Treatment Plant (WWTP) was issued on September 12, 2011, became effective on November 1, 2011, and expired on October 31, 2016. An NPDES application for permit issuance was submitted by the permittee on May 31, 2016. By letter on June 9, 2016, EPA requested additional information to complete the application, and requested submittal by September 1, 2016. The permittee submitted supplemental materials on August 31, 2016. EPA determined that the application was timely and complete. Therefore, pursuant to 40 Code of Federal Regulations (CFR) 122.6, the permit has been administratively continued and remains fully effective and enforceable.

# C. TRIBAL CONSULTATION

EPA met with the Yakama Nation (YN) on September 21, 2021 to understand tribal concerns with the reissuance of the permit. EPA shared the preliminary proposed permit and draft fact sheet on May 24, 2022 with YN prior to public notice for their review.

At the start of the comment period, EPA sent a letter to YN offering the opportunity for them to request Tribal Consultation on the proposed permit.

# **II. FACILITY INFORMATION**

# A. TREATMENT PLANT DESCRIPTION

# 1. Service Area

City of Wapato owns and operates the City of Wapato WWTP located in Wapato, WA. The collection system has no combined sewers. The facility serves a resident population of 5,058. The plant receives domestic wastewater from commercial and residential sources. The plant also receives industrial wastewater from three local fruit packing plants.

# 2. Treatment Process

The design flow of the facility is 1.16 million gallons per day (mgd). The reported actual flows from the facility between April 2017 and February 2022 ranged from 0.436 to 0.922 mgd (average monthly flow). In late 2015, the facility upgraded to a a Membrane Bio-Reactor (MBR) system for secondary treatment. Prior to this, the facility had an Rotating biological condactor (RBC) SBC fixed film system with chlorination. The MBR system uses a combination of a suspended growth biological treatment method, and membrane filtration. In addition, the facility uses ultraviolet (UV) disinfection. A schematic of the wastewater treatment process and a map showing the location of the treatment facility and discharge are included in Appendix A. Because the design flow is greater than 1.0 mgd, the facility is considered a major facility.

# **B. OUTFALL DESCRIPTION**

The outfall discharges into Wapato Irrigation Project (WIP) Drainage Way No. 2. WIP Drainage Way No. 2 drains into Wanity Slough, which empties into the Yakima River. The facility discharges to the YN's tribal waters.

# C. EFFLUENT CHARACTERIZATION

To characterize the effluent, EPA evaluated the facility's application form, discharge monitoring report (DMR) data, and additional data provided by Wapato WWTP. The effluent quality is summarized in Table 1. Data are provided in Appendix B.

| Parameter                   | Average<br>Monthly |       | Average<br>Weekly |      | Max Daily |     |
|-----------------------------|--------------------|-------|-------------------|------|-----------|-----|
|                             | Min                | Max   | Min               | Max  | Min       | Max |
| Temperature (deg C)         | 14                 | 27    |                   |      |           |     |
| BOD₅ (mg/L)                 | 0.1                | 4.48  | 0.1               | 7.35 |           |     |
| BOD, 5-day, percent removal | 96.6%              | 99.9% |                   |      |           |     |
| TSS (mg/L)                  | 1                  | 10.3  | 1                 | 30   |           |     |

# Table 1. Effluent Characterization

| Parameter Average Monthly                        |         | 0     | Average<br>Weekly |     | Max Daily |      |
|--------------------------------------------------|---------|-------|-------------------|-----|-----------|------|
|                                                  | Min     | Max   | Min               | Max | Min       | Max  |
| TSS, percent removal                             | 92.5%   | 99.5% |                   |     |           |      |
| DO (mg/L)                                        | 5.8     | 8.8   |                   |     |           |      |
| E.coli (#/100mL)                                 | 1       | 1.89  |                   |     | 1         | 3    |
| Ammonia, Apr1-Oct31 (mg/L)                       | 0.03    | 0.7   |                   |     | 0.04      | 1.2  |
| Ammonia, Nov1–Mar31 (mg/L)                       | 0.02    | 0.46  |                   |     | 0.033     | 0.99 |
| Copper, total recoverable (µg/L)                 | 0.9     | 6.4   |                   |     | 0.9       | 10.2 |
| Zinc, total recoverable (µg/L)                   | 30.7    | 136.5 |                   |     | 31.6      | 189  |
| WET, Apr1-Oct31 (C. Dubia; TUa,c)                | 1.0     | 1.0   |                   |     | 1.0       | 1.0  |
| WET, Nov1-Mar31(C. Dubia; TUc)                   | 1.0     | 1.0   |                   |     | 1.0       | 1.0  |
| WET, Apr1-Oct31 (P.prome; TUa,c)                 | 1.0     | 1.0   |                   |     | 1.0       | 1.0  |
| WET, Nov1-Mar31(P.prome; TUc)                    | 1.0     | 1.0   |                   |     | 1.0       | 1.0  |
| Cadmium, total recoverable (µg/L)                | 0.03    | 0.9   |                   |     |           |      |
| Mercury, total recoverable (µg/L)                | 0.00014 | 0.018 |                   |     |           |      |
| Phosphorus, total recoverable (mg/L)             | 0.12    | 21.1  |                   |     |           |      |
| Total Nitrogen (mg/L)                            | 0.3     | 21.5  |                   |     |           |      |
| Source: Facility DMR Data, April 2017 – Feb 2022 |         |       |                   |     |           |      |

# D. COMPLIANCE HISTORY

A summary of effluent violations is provided in Table 2. Overall, the facility has had difficulty achieving compliance with the ammonia, copper, and zinc effluent limits. A compliance order was issued in June 2021 for violations of these parameters during the period of August 2015 - August 2020. These effluent violations are summarized in Table 2.

Additional compliance information for this facility, including compliance with other environmental statutes, is available on Enforcement and Compliance History Online (ECHO). The ECHO web address for this facility is: https://echo.epa.gov/detailed-facility-report?fid=WA0050229&sys=ICP

# Table 2. Summary of Effluent Violations from August 2015 - February 2020

| Parameter | Limit Type      | Units  | Number of<br>Instances | Number of<br>Violations |
|-----------|-----------------|--------|------------------------|-------------------------|
| Ammonia   | Average Monthly | mg/L   | 3                      | 3                       |
| Copper    | Daily Maximum   | lb/day | 1                      | 1                       |

| Copper                                                   | Daily Maximum   | mg/L   | 3  | 3     |  |
|----------------------------------------------------------|-----------------|--------|----|-------|--|
| Copper                                                   | Average Monthly | µg/L   | 8  | 887   |  |
| Zinc                                                     | Daily Maximum   | lb/day | 19 | 19    |  |
| Zinc                                                     | Daily Maximum   | µg/L   | 44 | 44    |  |
| Zinc                                                     | Average Monthly | lb/day | 43 | 43    |  |
| Zinc                                                     | Average Monthly | µg/L   | 48 | 1,459 |  |
| Source: City of Wapato WWTP Enforcement Order, June 2021 |                 |        |    |       |  |

EPA conducted an inspection of the facility on August 27, 2019. The inspection encompassed the wastewater treatment process, records review, operation and maintenance, and the collection system. The inspection noted effluent limit exceedances, primarily for ammonia, zinc, and copper, failure to update the Quality Assurance Plan (QAP) to account for facility upgrades, two missing discharge monitoring reports (DMRs) and missing parameters in other monitoring reports. The inspection also found the grinder at the headworks was out of service at the time of inspection.

# E. RECEIVING WATER

In drafting permit conditions, EPA must analyze the effect of the facility's discharge on the receiving water. The details of that analysis are provided in the Water Quality-Based Effluent Limits (WQBEL) section below. This section summarizes characteristics of the receiving water that impact that analysis.

This facility discharges to WIP Drainage Way No. 2 near the City of Wapato, WA. The outfall is located within the YN Reservation and upstream of the Yakima River.

# 1. Water Quality Standards (WQS)

CWA § 301(b)(1)(C) requires the development of limitations in permits necessary to meet WQS. 40 CFR 122.4(d) requires that the conditions in NPDES permits ensure compliance with the WQS of all affected States. A State's WQS are composed of use classifications, numeric and/or narrative water quality criteria and an anti-degradation policy. The use classification system designates the beneficial uses that each water body is expected to achieve, such as drinking water supply, contact recreation, and aquatic life. The numeric and narrative water quality criteria are the criteria deemed necessary to support the beneficial use classification of each water body. The anti-degradation policy represents a three-tiered approach to maintain and protect various levels of water quality and uses.

The facility is located within the City of Wapato and discharges to tribal waters on the YN Reservation. The YN applied for the status of Treatment as a State (TAS) in 1994 from EPA for purposes of the CWA, and the current permit used YN WQS as a basis for permit limits. However, to date, EPA has not acted on the TAS submission nor does the Tribe have EPA-approved WQS. If the YN is granted TAS, and when it has WQS approved by EPA, those tribal WQS will be used to determine effluent limitations in the permit. In the meantime, the Washington WQS were used as reference for setting permit limits and to protect downstream uses in the State of Washington, located around 15 miles downstream.

## 2. Designated Beneficial Uses

WIP Drainage Way No. 2 does not have specific use designations in the Washington WQS (WAC 173-201A-602). The WQS state that such "undesignated waterways" are to be protected for the designated uses of: salmonid spawning, rearing, and migration; primary contact recreation; domestic, industrial, and agricultural water supply; stock watering; wildlife habitat; harvesting; commerce and navigation; boating; and aesthetic values (WAC 173-201A-600).

The Yakima River is designated for these same uses.

a. Water Quality

The water quality for the receiving water is summarized in Table 3.

Table 3. Receiving Water Quality Data

| Parameter                                                                             | Units          | Percentile         | Value       |  |
|---------------------------------------------------------------------------------------|----------------|--------------------|-------------|--|
| Temperature                                                                           | ٥C             | 95 <sup>th</sup>   | 23.1        |  |
| рН                                                                                    | Standard units | $5^{th} - 95^{th}$ | 7.2-9.1     |  |
| Hardness                                                                              | mg/L           | $5^{th} - 95^{th}$ | 24.0 –77.8  |  |
| DO                                                                                    | mg/L           | $5^{th} - 95^{th}$ | 8.1-10.6    |  |
| Phosphorus                                                                            | mg/L           | $5^{th} - 95^{th}$ | 0.07 – 0.09 |  |
| Nitrogen                                                                              | mg/L           | $5^{th} - 95^{th}$ | 0.2 – 1.4   |  |
| Source: Data collected by permittee 2016-2020 at Upstream Monitoring Station, 50 feet |                |                    |             |  |

above outfall

# b. Water Quality Limited Waters

WIP Drainage Way No. 2 is not listed as impaired for any parameters. WIP Drainage Way No.2 drains into the Wanity Slough then Marion Drain, and around 15 miles downstream, into the Yakima River.

At the point where Marion Drain enters the Yakima River near Granger, the Yakima River is listed as impaired for polychlorinated biphenyl congeners (PCBs), dioxin, and certain pesticides (4,4'-DDE, 4,4'-DDT). Further downstream, the Lower Yakima River is impaired for bacteria and dissolved oxygen (DO).

The only total maximum daily load (TMDL) downstream of the influence of Marion Drain to address these impairments is a TMDL for the target parameter of total DDT using the target surrogate parameter of total suspended solids (TSS). This TMDL did not impose wasteload allocations (WLAs) on point source discharges since agricultural practices were identified as the principal source of sediment loading to the river and its tributaries.

The WWTP may in the future receive WLAs in TMDLs to address the impairments discussed above. However, currently, there are no WLAs applicable to the WWTP.

# c. Low Flow Conditions

Receiving water data collected during the irrigation season (April 1 through October 30) from 2016 to 2020 were used to calculate critical low flows for this period. During non-irrigation season (November 1 through March 30), there is no flow in WIP Drainage No. 2. Therefore, the critical low flows for November through March are 0 mgd, consistent with the previous permit. Critical low flows for the receiving water during irrigation season are summarized in Table 4.

The 7Q10 low flow used to develop limits in the proposed permit is 44 mgd and is based on daily flow monitoring by the permittee from the last five years. The previous permit was based on a 7Q10 low flow of 11.9 mgd which was calculated from flow monitoring collected from 1988 through 1997. Since receiving water flows collected over the last five years are more recent and frequent which is more representative of current receiving water conditions, the proposed permit limits were calculated using a 7Q10 flow based on these data. Critical low flows for the receiving water are summarized in Table 4. Low flows are defined in Appendix D.

| Flows            | Seasonal Flows,<br>Irrigation Season<br>(April 1- October 30) | Seasonal Flows,<br>Non-Irrigation Season<br>(November 1 – March 31) |
|------------------|---------------------------------------------------------------|---------------------------------------------------------------------|
| 1Q10             | 20 mgd                                                        | 0 mgd                                                               |
| 7Q10             | 44 mgd                                                        | 0 mgd                                                               |
| 30Q5             | 48 mgd                                                        | 0 mgd                                                               |
| Harmonic<br>Mean | 94 mgd                                                        | 0 mgd                                                               |

# **III. EFFLUENT LIMITATIONS AND MONITORING**

Table 5 below presents the existing effluent limits and monitoring requirements in the previous permit. Table 6 below presents the effluent limits and monitoring requirements in the proposed permit.

#### Table 5. Previous Permit - Effluent Limits and Monitoring Requirements

| Parameter | Average<br>Monthly | Average<br>Weekly | Maximum<br>Daily | Sample<br>Location | Sample<br>Frequency | Sample<br>Type |  |
|-----------|--------------------|-------------------|------------------|--------------------|---------------------|----------------|--|
|-----------|--------------------|-------------------|------------------|--------------------|---------------------|----------------|--|

| Flow, mgd                                                |                                |                           |                              | Influent or<br>Effluent     | Continuous             | Meter                |
|----------------------------------------------------------|--------------------------------|---------------------------|------------------------------|-----------------------------|------------------------|----------------------|
| Temperature,<br>℃                                        |                                |                           |                              | Effluent                    | Daily or<br>Continuous | Grab or<br>Meter     |
| Biological<br>Oxygen<br>Demand (BOD₅)                    | 30 mg/l<br>290 lbs/day         | 45 mg/l<br>435<br>lbs/day |                              | Influent<br>and<br>Effluent | 1/week                 | 24-hour<br>composite |
| Total<br>Suspended<br>Solids (TSS)                       | 30 mg/l<br>290 lbs/day         | 45 mg/l<br>435<br>lbs/day |                              | Influent<br>and<br>Effluent | 1/week                 | 24-hour<br>composite |
| Removal Rates<br>for BOD₅ and<br>TSS                     | ≥85%<br>Minimum,<br>See Note 1 |                           |                              |                             |                        |                      |
| Dissolved<br>Oxygen                                      |                                |                           |                              | Effluent                    | 1/week                 | Grab                 |
| E. <i>coli</i> Bacteria                                  | 100/100 ml                     |                           | 200/100 ml                   | Effluent                    | 5/month                | Grab                 |
| Total Residual<br>Chlorine                               | 7.5 μg/L<br>0.073<br>Ibs/day   |                           | 19 µg/L<br>0.18 lbs/day      | Effluent                    | 5/week                 | Grab                 |
| Total Ammonia<br>as N, applies<br>from Apr 1 – Oct<br>31 | 1.2 mg/L<br>11.9 lbs/day       |                           | 2.5 mg/L<br>24.0 lbs/day     | Effluent                    | 2/month                | 24-hour<br>composite |
| Total Ammonia<br>as N, applies<br>from Nov 1 –<br>Mar 31 | 1.3 mg/L<br>13 lbs/day         |                           | 2.7 mg/L<br>25.8 lbs/day     | Effluent                    | 1/week                 | 24-hour<br>composite |
| Copper, total recoverable                                | 3.4 μg/L<br>0.033<br>Ibs/day   |                           | 5.5 μg/L<br>0.053<br>Ibs/day | Effluent                    | 1/week                 | 24-hour<br>composite |
| Zinc, total recoverable                                  | 25 μg/L<br>0.24 lbs/day        |                           | 52 μg/L<br>0.50 lbs/day      | Effluent                    | 1/week                 | 24-hour<br>composite |
| Whole Effluent<br>Toxicity, Apr 1 –<br>Oct 31            | 1.5 TUa,c<br>See Note 3        |                           | 3.0 TUa,c<br>See Note 3      | Effluent                    | See Note 5             | 24-hour<br>composite |
| Whole Effluent<br>Toxicity, Nov 1<br>– Mar 31            | 1.0 TUc<br>See Note 4          |                           | 1.6 TUc<br>See Note 4        | Effluent                    | See Note 5             | 24-hour<br>composite |
| Cadmium, total recoverable                               |                                |                           |                              | Effluent                    | 1/month                | 24-hour<br>composite |
| Mercury, total recoverable                               |                                |                           |                              | Effluent                    | 1/month                | 24-hour<br>composite |
| Phosphorus,<br>total                                     |                                |                           |                              | Effluent                    | 1/month                | 24-hour<br>composite |
| Nitrogen, total                                          |                                |                           |                              | Effluent                    | 1/month                | 24-hour<br>composite |
| Expanded<br>Effluent Testing                             |                                |                           |                              | Effluent                    | See Note 7             | 24-hour<br>composite |

#### Notes:

- 1. The monthly average percent removal must be calculated from the arithmetic mean of the influent values and the arithmetic mean of the effluent values for that month. Influent effluent samples must be taken over approximately the same time period.
- The average monthly limit for residual chlorine is not quantifiable using EPA-approved analytical methods. EPA will use 19 μg/L as the compliance evaluation level for this parameter. EPA will consider the effluent in compliance with the effluent limit provided the monitoring result is <19 μg/L.</li>
- 3. TU<sub>a,c</sub> is when acute toxicity is expressed in chronic toxic units (TU<sub>c</sub>) TU<sub>a,c</sub> should be treated as TU<sub>c</sub>, which is defined in Part I.D.2.d of this permit.
- 4. From November 1 March 31 (non-irrigation season), the monthly chronic WET limit is expressed as a median value.
- Monitoring must occur quarterly. The timing of quarterly testing must be such that two tests are conducted between April 1 – October 31 (irrigation season) and two tests are conducted between November 1 – March 31 (non-irrigation season).
- 6. During the first year of the permit, monitoring must occur once per month. After the first year of the permit, monitoring must occur once per quarter. Monitoring will occur once in each of the following quarters: January March, April June, July September, and October December.
- 7. See NPDES Permit Application Form 2A, Part D for the list of pollutants to include in this testing. Testing must occur once in the 2<sup>nd</sup>, 3<sup>rd</sup>, and 4<sup>th</sup> year of the permit. Additionally, the expanded effluent testing must occur on the same day as a whole effluent toxicity test and must be submitted with the WET test results with the next DMR as well as with the next permit application.

The following effluent limitations are proposed in the draft permit:

|                                                          |                             |                           | n                        | 1                           |                        |                      |
|----------------------------------------------------------|-----------------------------|---------------------------|--------------------------|-----------------------------|------------------------|----------------------|
| Parameter                                                | Average<br>Monthly          | Average<br>Weekly         | Maximum<br>Daily         | Sample<br>Location          | Sample<br>Frequency    | Sample<br>Type       |
| Flow, mgd                                                |                             |                           |                          | Influent or<br>Effluent     | Continuous             | Meter                |
| Temperature,<br>°C1                                      |                             |                           |                          | Effluent                    | Daily or<br>Continuous | Grab or<br>Meter     |
| Biological<br>Oxygen<br>Demand (BOD₅)                    | 30 mg/l<br>290 lbs/day      | 45 mg/l<br>435<br>lbs/day |                          | Influent<br>and<br>Effluent | 1/week                 | 24-hour<br>composite |
| Total<br>Suspended<br>Solids (TSS)                       | 30 mg/l<br>290 lbs/day      | 45 mg/l<br>435<br>lbs/day |                          | Influent<br>and<br>Effluent | 1/week                 | 24-hour<br>composite |
| Removal Rates<br>for BOD₅ and<br>TSS                     | ≥85%<br>Minimum²            |                           |                          |                             |                        |                      |
| Dissolved<br>Oxygen, mg/L                                |                             |                           |                          | Effluent                    | 1/week                 | Grab                 |
| E. <i>coli</i> Bacteria                                  | 100/100 ml                  |                           | 200/100 ml               | Effluent                    | 5/month                | Grab                 |
| Total Ammonia<br>as N, applies<br>from Apr 1 – Oct<br>31 | 0.7 mg/L<br>7.0 lbs/day     |                           | 2.6 mg/L<br>25.0 lbs/day | Effluent                    | 1/week                 | 24-hour<br>composite |
| Total Ammonia<br>as N, applies<br>from Nov 1 –<br>Mar 31 | 1.1 mg/L<br>10.4<br>Ibs/day |                           | 5.4 mg/L<br>52.3 lbs/day | Effluent                    | 1/week                 | 24-hour<br>composite |

#### Table 6. Proposed Permit - Effluent Limits and Monitoring Requirements

| Copper, total<br>recoverable,<br>µg/L                                 | 3.6 μg/L<br>0.035<br>Ibs/day     | <br>6.8 μg/L<br>0.066<br>Ibs/day     | Effluent | 1/week                | 24-hour<br>composite |
|-----------------------------------------------------------------------|----------------------------------|--------------------------------------|----------|-----------------------|----------------------|
| Mercury, total<br>recoverable,<br>µg/L                                | 0.008 µg/L<br>0.00008<br>Ibs/day | <br>0.022 μg/L<br>0.00021<br>Ibs/day | Effluent | 1/month               | 24-hour<br>composite |
| Silver                                                                | 0.29 µg/L<br>0.003<br>lbs/day    | <br>0.42 µg/L<br>0.004<br>Ibs/day    | Effluent | 1/month               | 24-hour<br>composite |
| Zinc                                                                  | 27 μg/L<br>0.261<br>lbs/day      | <br>47 μg/L<br>0.451<br>lbs/day      | Effluent | 1/week                | 24-hour<br>composite |
| Phosphorus,<br>total                                                  |                                  | <br>                                 | Effluent | 1/month               | 24-hour<br>composite |
| Nitrogen, total                                                       |                                  | <br>                                 | Effluent | 1/month               | 24-hour<br>composite |
| WET                                                                   |                                  | <br>                                 | Effluent | 1/year <sup>3,5</sup> | 24-hour<br>composite |
| Permit<br>Application<br>Effluent<br>Testing Data <sup>4</sup>        |                                  | <br>                                 | Effluent | 1/year                |                      |
| Permit<br>Application<br>Expanded<br>Effluent<br>Testing <sup>5</sup> |                                  | <br>                                 | Effluent | 1/year                |                      |

Notes:

1. See Permit Parts I.B.3 and I.B.4.

2. The monthly average percent removal must be calculated from the arithmetic mean of the influent values and the arithmetic mean of the effluent values for that month. Influent effluent samples must be taken over approximately the same time period.

3. Monitoring must occur yearly. See Permit Part I.C.

4. Effluent Testing Data - See NPDES Permit Application Form 2A, Table B for the list of pollutants to be included in this testing. The Permittee must use sufficiently sensitive analytical methods in accordance with Permit Part I.B.8.

5. Expanded Effluent Testing - See NPDES Permit Application Form 2A, Table C for the list of pollutants to be included in this testing. Testing must be conducted annually during alternating quarters. The expanded effluent testing must occur on the same day as a whole effluent toxicity testing. Quarters are defined as: January 1 to March 31; April 1 to June 30; July 1 to September 30; and, October 1 to December 31. The Permittee must use sufficiently sensitive analytical methods in accordance with Permit Part I.B.8.

| Parameter                  | Current Permit                                                         | Proposed Permit                                                                | Basis                                                           |
|----------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Ammonia, Apr 1 – Oct<br>31 | 1.2 mg/L AML<br>11.9 lbs/day AML<br>2.5 mg/L MDL<br>24.0 lbs/day MDL   | 0.7 mg/L AML<br>6.9 lbs/day AML<br>2.6 mg/L MDL<br>25.0 lbs/day MDL            | Updated receiving<br>water flow and effluent<br>monitoring data |
| Ammonia,<br>Nov 1 – Mar 31 | 1.3 mg/L AML<br>13 lbs/day AML<br>2.7 mg/L MDL<br>25.8 lbs/day MDL     | 1.1 mg/L AML<br>10.4 lbs/day AML<br>5.4 mg/L MDL<br>52.3 lbs/day MDL           | Updated receiving<br>water flow and effluent<br>monitoring data |
| Chlorine                   | 7.5 μg/L AML<br>0.073 lbs/day AML<br>19 μg/L MDL<br>0.18 lbs/day       | None                                                                           | Facility no longer uses chlorine disinfection                   |
| Copper                     | 3.4 μg/L AML<br>0.033 lbs/day AML<br>5.5 μg/L MDL<br>0.053 lbs/day MDL | 3.6 μg/L AML<br>0.035 lbs/day AML<br>6.8 μg/L MDL<br>0.066 lbs/day MDL         | Updated receiving<br>water flow and effluent<br>monitoring data |
| Mercury                    | None                                                                   | 0.008 μg/L AML<br>0.00008 lbs/day AML<br>0.022 μg/L MDL<br>0.00021 lbs/day MDL | Reasonable potential to exceed water quality standards.         |
| Silver                     | None                                                                   | 0.29 μg/L AML<br>0.003 lbs/day AML<br>0.42 μg/L MDL<br>0.004 lbs/day MDL       | Reasonable potential to exceed water quality standards          |
| WET, Apr 1 – Oct 31        | 1.5 TUa,c AML<br>3.0 TUa,c MDL                                         | None                                                                           | Upgraded facility and no reasonable potential                   |
| WET, Nov 1 – Mar 31        | 1.0 TUc AML<br>1.6 TUc MDL                                             | None                                                                           | Upgraded facility and no reasonable potential                   |

 Table 7. Summary of Proposed Changes to Effluent Limits

| Zinc | 25 μg/L AML<br>0.24 lbs/day AML<br>52 μg/L MDL<br>0.50 lbs/day MDL | 27 μg/L AML<br>0.261 lbs/day AML<br>47 μg/L MDL<br>0.451 lbs/day MDL | Updated receiving<br>water flow and effluent<br>monitoring data |
|------|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|
|------|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|

## Table 8. Summary of Proposed Changes to Monitoring Requirements

| Parameter | Current Permit                     | Proposed Permit     | Reason                                                                        |
|-----------|------------------------------------|---------------------|-------------------------------------------------------------------------------|
| Cadmium   | Effluent<br>1/month                | 1/year              | No detections were<br>found during monthly<br>monitoring                      |
| Chlorine  | Effluent<br>5/week                 | None                | The facility no longer<br>uses chlorine<br>disinfection                       |
| Silver    | Toxic scan with permit application | 1/month             | Monitoring to support new effluent limits                                     |
| WET       | Quarterly <sup>1</sup>             | Yearly <sup>2</sup> | No detections of toxicity<br>after upgrade of facility<br>during last 5 years |

Notes:

1. Monitoring must occur quarterly. The timing of quarterly testing must be such that two tests are conducted between April 1 – October 31 (irrigation season) and two tests are conducted between November 1 – March 31 (non-irrigation season).

2. Monitoring must occur yearly. The timing of yearly testing must be such that the tests are conducted between April 1 – October 31 (irrigation season) in the 2<sup>nd</sup> year, between November 1 – March 31 (non-irrigation season) in the 3<sup>rd</sup> year, and in alternating seasons every year thereafter. Expanded effluent testing must occur on the same day as a whole effluent toxicity test and must be submitted with the WET test results with the next DMR as well as with the next permit application.

# A. BASIS FOR EFFLUENT LIMITS

In general, the CWA requires that the effluent limits for a particular pollutant be the more stringent of either technology-based effluent limits (TBELs) or water quality-based effluent limits (WQBELs). TBELs are set according to the level of treatment that is achievable using available technology. WQBELs are designed to ensure that the WQSs applicable to a waterbody are being met and may be more stringent than TBELs.

## 1. Pollutants of Concern

Pollutants of concern are those that either have TBELs or may need WQBELs. EPA identifies pollutants of concern for the discharge based on those which:

- Have a TBEL
- Have an assigned WLA from a TMDL
- Had an effluent limit in the previous permit
- Are present in the effluent monitoring. Monitoring data are reported in the application and DMR and any special studies
- Are expected to be in the discharge based on the nature of the discharge

The wastewater treatment process for this facility includes both primary and secondary treatment, as well as UV disinfection. Pollutants expected in the discharge from a facility with this type of treatment, include but are not limited to: five-day biochemical oxygen demand (BOD<sub>5</sub>), TSS, *E. coli* bacteria, pH, ammonia, temperature, phosphorus, and DO.

Based on this analysis, pollutants of concern are as follows:

- BOD<sub>5</sub>
- DO
- TSS
- Ammonia
- Total residual chlorine (TRC)
- Copper
- E. coli bacteria
- Nitrogen
- Phosphorus
- pH
- Temperature
- Whole Effluent Toxicity (WET)
- Zinc
- Antimony
- Arsenic
- Beryllium
- Bis (2-Ethylhexyl) Phthalate
- Cadmium
- Chromium
- Chloroform
- Lead
- Nickel
- Selenium
- Silver
- Thallium
- Toulene

# 2. Technology-Based Effluent Limits (TBELs)

## a. Federal Secondary Treatment Effluent Limits

The CWA requires publicly owned treatment works (POTWs) to meet performance-based requirements based on available wastewater treatment technology. CWA § 301 established a required performance level, referred to as "secondary treatment," which POTWs were required to meet by July 1, 1977. EPA has developed and promulgated "secondary treatment" effluent limitations, which are found in 40 CFR 133.102. These TBELs apply to certain municipal WWTPs and identify the minimum level of effluent quality attainable by application of secondary treatment in terms of BOD<sub>5</sub>, TSS, and pH. The federally promulgated secondary treatment effluent limits are listed in Table 9. For additional information and background refer to Part 5.1 *Technology Based Effluent Limits for POTWs* in the Permit Writers Manual.

| Parameter                                | 30-day average | 7-day average |
|------------------------------------------|----------------|---------------|
| BOD <sub>5</sub>                         | 30 mg/L        | 45 mg/L       |
| TSS                                      | 30 mg/L        | 45 mg/L       |
| Removal for BOD₅ and TSS (concentration) | 85% (minimum)  |               |
| pH within the limits of 6.0 - 9.0 s.u.   |                |               |
| Source: 40 CFR 133.102                   |                |               |

#### Table 9. Secondary Treatment Effluent Limits

#### b. Mass-Based Limits

40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, except under certain conditions. 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass based limits are expressed in pounds per day and are calculated as follows:

Mass based limit = concentration limit (mg/L) × design flow (mgd) ×  $8.34^{1}$ 

Since the design flow for this facility is 1.16 mgd, the technology-based mass limits for  $BOD_5$  and TSS are calculated as follows:

Average Monthly Limit = 30 mg/L × 1.16 mgd × 8.34 = 290 lbs/day

Average Weekly Limit =  $45 \text{ mg/L} \times 1.16 \text{ mgd} \times 8.34 = 435 \text{ lbs/day}$ 

- 3. Water Quality-Based Effluent Limits (WQBELs)
  - a. Statutory and Regulatory Basis

<sup>&</sup>lt;sup>1</sup> 8.34 is a conversion factor with units (lb  $\times$ L)/(mg  $\times$  gallon $\times$ 10<sup>6</sup>)

CWA § 301(b)(1)(C) requires the development of limitations in permits necessary to meet WQSs. Discharges to State or Tribal waters must also comply with conditions imposed by the State or Triba as part of its certification of NPDES permits under CWA § 401. 40 CFR 122.44(d)(1) implementing CWA § 301(b)(1)(C) requires that permits include limits for all pollutants or parameters which are or may be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State or Tribal WQS, including narrative criteria for water quality. Effluent limits must also meet the applicable water quality requirements of affected States other than the State in which the discharge originates, which may include downstream States (40 CFR 122.4(d), 122.44(d)(4), see also CWA § 401(a)(2)).

The regulations require the permitting authority to make this evaluation using procedures which account for existing controls on point and nonpoint sources of pollution, the variability of the pollutant in the effluent, species sensitivity (for toxicity), and where appropriate, dilution in the receiving water. The limits must be stringent enough to ensure that WQSs are met and must be consistent with any available WLA for the discharge in an approved TMDL. If there are no approved TMDLs that specify WLAs for this discharge; all of the WQBELs are calculated directly from the applicable WQSs.

#### b. Reasonable Potential Analysis and Need for WQBELs

EPA uses the process described in the *Technical Support Document* for Water Quality-based Toxics Control (TSD) to determine reasonable potential. To determine if there is reasonable potential for the discharge to cause or contribute to an exceedance of water quality criteria for a given pollutant, EPA compares the maximum projected receiving water concentration to the water quality criteria for that pollutant. If the projected receiving water concentration exceeds the criteria, there is reasonable potential, and a WQBEL must be included in the permit.

In some cases, a dilution allowance or mixing zone is permitted. A mixing zone is a limited area or volume of water where initial dilution of a discharge takes place and within which certain water quality criteria may be exceeded (EPA, 2014). While the criteria may be exceeded within the mixing zone, the use and size of the mixing zone must be limited such that the waterbody as a whole will not be impaired, all designated uses are maintained, and acutely toxic conditions are prevented.

The Washington WQS at WAC 173-201A-400 provides Washington's mixing zone policy for point source discharges. EPA proposes to use a mixing zone of 25% per Washington WQS during irrigation season. During non-irrigation season when there is no receiving water, there is no authorized mixing zone, and the dilution factors are 1.0. The

proposed mixing zones are summarized in Table 10. All dilution factors are calculated with the effluent flow rate set equal to the design flow of 1.16 mgd.

| Criteria Type                         | Mixing Zone (%<br>of Critical Low<br>Flow) | Critical Low<br>Flow Irrigation<br>Season (cfs) | Dilution<br>Factor<br>Irrigation<br>Season |
|---------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------|
| Acute Aquatic Life                    | 25                                         | 20                                              | 3.7                                        |
| Chronic Aquatic Life (except ammonia) | 25                                         | 44                                              | 6.9                                        |
| Chronic Aquatic Life (ammonia)        | 25                                         | 48                                              | 7.4                                        |
| Human Health Noncarcinogen            | 25                                         | 94                                              | 13.6                                       |
| Human Health Carcinogen               | 25                                         | 94                                              | 13.6                                       |

The reasonable potential analysis and WQBEL calculations were based on mixing zones shown in Table 10.

The equations used to conduct the reasonable potential analysis and calculate the WQBELs are provided in Appendix C.

c. Reasonable Potential and WQBELs

The reasonable potential and WQBEL for specific parameters are summarized below. The calculations are provided in Appendix D.

#### <u>Ammonia</u>

Ammonia criteria are based on a formula which relies on the pH and temperature of the receiving water, because the fraction of ammonia present as the toxic, un-ionized form increases with increasing pH and temperature. Therefore, the criteria become more stringent as pH and temperature increase. Due to seasonal flows in the receiving water, two scenarios were considered for determining applicable ammonia criteria and evaluating reasonable potential, during irrigation and nonirrigation season. The table below details the equations used to determine water quality criteria for ammonia.

#### Table 14 Ammonia Criteria

# Freshwater Un-ionized Ammonia Criteria Calculation April 1 - October 31

Based on Chapter 173-201A WAC, amended November 20, 2006

| INPUT                                                     |         |  |  |  |
|-----------------------------------------------------------|---------|--|--|--|
| 1. Receiving Water Temperature (deg C):                   | 23.1    |  |  |  |
| 2. Receiving Water pH:                                    | 9.0     |  |  |  |
| 3. Is salmonid habitat an existing or designated use?     | Yes     |  |  |  |
| 4. Are non-salmonid early life stages present or absent?  | Present |  |  |  |
| OUTPUT                                                    |         |  |  |  |
| Using mixed temp and pH at mixing zone boundaries?        | no      |  |  |  |
| Ratio                                                     | 13.500  |  |  |  |
| FT                                                        | 1.400   |  |  |  |
| FPH                                                       | 1.000   |  |  |  |
| рКа                                                       | 9.305   |  |  |  |
| Unionized Fraction                                        | 0.331   |  |  |  |
| Unionized ammonia NH3 criteria (mg/L as NH <sub>3</sub> ) |         |  |  |  |
| Acute:                                                    | 0.356   |  |  |  |
| Chronic:                                                  | 0.042   |  |  |  |
| RESULTS                                                   |         |  |  |  |
| Total ammonia nitrogen criteria (mg/L as N):              |         |  |  |  |
| Acute:                                                    | 0.885   |  |  |  |
| Chronic:                                                  | 0.105   |  |  |  |

Data source: DMR and data provided by Wapato WWTF

## Freshwater Un-ionized Ammonia Criteria Calculation November 1 - March 31 Based on Chapter 173-201A WAC, amended November 20, 2006

| INPUT                                                     |         |
|-----------------------------------------------------------|---------|
| 1. Receiving Water Temperature (deg C):                   | 19.2    |
| 2. Receiving Water pH:                                    | 7.8     |
| 3. Is salmonid habitat an existing or designated use?     | Yes     |
| 4. Are non-salmonid early life stages present or absent?  | Present |
| ОИТРИТ                                                    |         |
| Using mixed temp and pH at mixing zone boundaries?        | no      |
| Ratio                                                     | 13.500  |
| FT                                                        | 1.400   |
| FPH                                                       | 1.118   |
| pKa                                                       | 9.428   |
| Unionized Fraction                                        | 0.023   |
| Unionized ammonia NH3 criteria (mg/L as NH <sub>3</sub> ) |         |
| Acute:                                                    | 0.227   |
| Chronic:                                                  | 0.038   |
| RESULTS                                                   |         |
| Total ammonia nitrogen criteria (mg/L as N):              |         |
| Acute:                                                    | 8.107   |
| Chronic:                                                  | 1.353   |

Data source: DMR and data provided by Wapato WWTF

Using facility monitoring data for ammonia, EPA conducted a reasonable potential analysis with a 25% mixing zone during irrigation season and no mixing zone during non-irrigation season. EPA determined that the discharge has reasonable potential to cause or contribute to a violation of the water quality criteria for ammonia in both the irrigation season and the non-irrigation season. The current permit has seasonal ammonia limits. During both seasons, effluent limit calculations result in a more stringent average monthly limit and a less stringent maximum daily limit.

When relaxing limits, the facility must meet antibacksliding requirements consistent with CWA sections 303(d)(4) or 402(o)(2). The facility meets the requirements for an exception to antibacksliding

regulations for ammonia limits as described in Section III.A.3.d. Therefore, the proposed permit contains irrigation season limits of 0.7 mg/L average monthly (7.0 lbs/day) and 2.6 mg/L maximum daily (25.0 lbs/day) and non-irrigation season limits of 1.1 mg/L monthly average (10.4 lbs/day) and 5.4 mg/L maximum daily (52.3 lbs/day). The proposed permit also requires that the permittee monitor the receiving water for ammonia, pH, and temperature in order to determine the applicable ammonia criteria for the next permit reissuance. See Appendices C and D for reasonable potential and effluent limit calculations for ammonia.

#### Bis (2-ethylhexyl) Phthalate

The Washington WQS at WAC 173-201A-240 establish a human health criterion for water and organisms of 0.23  $\mu$ g/L and for organisms only of 0.25  $\mu$ g/L. The two samples submitted by the WWTP for bis (2ethylhexyl) phthalate are above the criteria, with a maximum concentration of 1.98  $\mu$ g/L and a 50% effluent concentration of 1.036  $\mu$ g/L. EPA believes it is possible that the measurements could have been biased due to contamination during sample collection and analysis.Therefore, EPA has determined that there is insufficient information to demonstrate that the facility has the reasonable potential to cause or contribute to excursions above water quality standards for this pollutant.

## BOD<sub>5</sub> and Dissolved Oxygen (DO)

Natural decomposition of organic material in wastewater effluent impacts dissolved oxygen in the receiving water at distances far outside of the regulated mixing zone. The water quality criterion requires DO to be greater than a 1-day minimum of 8.0 mg/L (WAC 173-201A-100 1(d)). The BOD<sub>5</sub> of an effluent sample indicates the amount of biodegradable material in the wastewater and estimates the magnitude of oxygen consumption the wastewater will generate in the receiving water. During April 2016- April 2021, the 95<sup>th</sup> percentile of BOD<sub>5</sub> in the effluent has a monthly average of 3.4 mg/L and a weekly average of 5.1 mg/L. This is below the secondary treatment standards and thus protective of the receiving waters. In addition to TBELs for BOD<sub>5</sub>, effluent and receiving water monitoring for dissolved oxygen are continued in the proposed permit.

#### **Chlorine**

The proposed permit proposes to remove the total residual chlorine effluent limits that are in the current permit. After the current permit was issued in 2011, the chlorine disinfection system was replaced with ultraviolet disinfection. There is no longer a source of chlorine in the discharge. Therefore, Wapato WWTP does not have the reasonable potential to cause or contribute to excursions above WQS for chlorine and WQBELs are not required.

#### Copper

The Washington WQS at WAC 173-201A-240 establish acute and chronic copper criteria for the protection of aquatic life and human health criteria for consumption of water and fish. Using the 5<sup>th</sup> percentile hardness value from facility surface monitoring of 29.4 mg/L, the hardness-dependent calculated acute and chronic aquatic life criteria are 5.4  $\mu$ g/L and 4.0  $\mu$ g/L, for acute and chronic respectively. The human health criterion for protection of water and organisms is 1,300  $\mu$ g/L.

Using facility effluent monitoring data for copper and the mixing zone for the critical season described in Section III.A.3.b above, EPA conducted a reasonable potential analysis. EPA determined there is reasonable potential to exceed the aquatic life criteria for copper. The calculated effluent limits are less stringent than the limits in the current permit. When relaxing limits, the facility must meet antibacksliding requirements consistent with CWA section 303(d)(4) or 402(o)(2). EPA has determined the calculated copper limits meet antidegradation and antibacksliding requirements as described in Section III.A.3.d,e. Therefore, the proposed permit contains a limit of 3.6 mg/L average monthly (0.035 lbs/day) and 6.8 mg/L maximum daily (0.066 lbs/day) for the non-irrigation season. See Appendices C and D for the reasonable potential and effluent limit calculations for copper.

#### E. coli

The Washington water quality standards at WAC 173-201A-200(2)(b) state that in waters of the State of Washington that are designated for recreation, E. coli organism levels within an averaging period must not exceed a geometric mean value of 100 CFU or MPN per 100 mL, with not more than 10 percent of all samples (or any single sample when less than ten sample points exist) obtained within the averaging period exceeding 320 CFU or MPN per 100 mL.

Regulations at 40 CFR 122.45(d)(2) require that effluent limitations for continuous discharges from POTWs be expressed as average monthly and average weekly limits, unless impracticable. Additionally, the terms "average monthly limit" and "average weekly limit" are defined in 40 CFR 122.2 as being arithmetic (as opposed to geometric) averages. It is impracticable to properly implement a 30-day geometric mean criterion in a permit using monthly and weekly arithmetic average limits. The geometric mean of a given data set is equal to the arithmetic mean of that data set if and only if all of the values in that data set are equal. Otherwise, the geometric mean is always less than the arithmetic mean. In order to ensure that the effluent limits are "derived from and comply with" the geometric mean water quality criterion, as required by 40 CFR 122.44(d)(1)(vii)(A), it is necessary to express the effluent limits as a monthly geometric mean and an instantaneous maximum limit.

The current permit contains effluent limits for E.coli of 100 CFU per 100 mL (average monthly) and 200 CFU per 100 mL (maximum daily). Since these effluent limitations meet Washington water quality standards, these limits are retained in the current permit.

#### Mercury

The Washington WQS at WAC 173-201A-240 establish acute and chronic criteria for the protection of aquatic life of 2.1  $\mu$ g/L and 0.012  $\mu$ g/L respectively. EPA promulgated human health criteria for mercury at 40 CFR 131.36 of 0.14  $\mu$ g/L for water and organisms, and 0.15  $\mu$ g/L for organisms only.

Using the last 5 years (2016-2020) of discharge monitoring data, EPA determined that Wapato WWTP has the reasonable potential to exceed the aquatic life criteria but does not have reasonable potential to exceed the human health criteria. Therefore, the proposed permit includes effluent limits for mercury based on the aquatic life criteria. The included mercury effluent limits are a monthly average limit of 0.008  $\mu$ g/L (0.0008 lbs/day) and a maximum daily limit of 0.022  $\mu$ g/L (0.00021 lbs/day). See Appendices C and D for reasonable potential and effluent limit calculations for mercury.

The proposed permit contains a compliance schedule for mercury requiring the WWTP to meet the new mercury limits within 96 months of permit issuance.

Additionally, the WWTP was required to complete a Mercury Minimization Plan in the previous permit but failed to do as such. As a result, the proposed permit contains a requirement to complete a Mercury Minimization Plan within 6 months of permit issuance.

#### **Nutrients**

The State of Washington has a narrative water quality criterion which reads "Aesthetic values must not be impaired by the presence of materials or their effects, excluding those of natural origin, which offend the senses of sight, smell, touch, or taste" (WAC 173-201A-260(2)(b)). The State of Washington does not have numeric water quality criteria for total phosphorus (TP) or total nitrogen (TN).

Eutrophication from excess nutrients in the Lower Yakima River has been noted since 2001, and the Lower Yakima River is impaired for DO downstream of the facility. The Marion Drain downstream of Wanity Slough and Yakima River has shown increasing signs of nutrient enrichment showing signs of algal blooms and increased turbidity (USGS, Assessment of eutrophication in the Lower Yakima River Basin, 2009). The reach of the Yakima River downstream of Wapato where the Marion Drain drains into the Yakima River shows high levels of productivity signals and DO and pH levels consistently not meeting criteria. It is believed that excess nutrients, such as phosphorus and nitrogen could be the cause of this problem. Both nitrogen and phosphorus can contribute to violations of WQS that result from excess nutrients (i.e., nuisance algae or aesthetics, DO, and pH).

Due to the excess nutrients in the Yakima, phosphorus and nitrogen effluent monitoring were included in the 2011 permit. These monitoring data taken during the current permit term measured the 95<sup>th</sup> percentile in the effluent as 7.7 mg/L for phosphorus and 11.1 mg/L for nitrogen. Comparatively, the receiving water has lower concentrations, with a 95<sup>th</sup> percentile concentration of phosphorus of 0.09 mg/L and nitrogen of 1.43 mg/L, upstream of the outfall.

The Wapato WWTP is not operated to remove nitrogen or phosphorus, and as such the nutrient concentrations are typical of a secondary effluent without nutrient removal. The addition of any nutrients to the Lower Yakima River will cause further impairment, and since the flow of the WIP Drainage Way No. 2 is effluent dominated during the nonirrigation season the WWTP discharge is contributing nutrients to the Lower Yakima River.

EPA believes there may be potential to improve nutrient removal within the current treatment system using techniques such as those described within *Case Studies on Implementing Low-Cost Modifications to Improve Nutrient Reduction at Wastewater Treatment Plants* (EPA 2015) and other EPA resources (<u>https://www.epa.gov/eg/national-study-nutrient-removal-and-</u> <u>secondary-technologies#fact-sheets</u>). Since the Lower Yakima River downstream of the facility is impaired for DO, and because the facility is a source of nutrients, EPA has included a requirement to develop and implement a Nutrient Optimization Plan in the proposed permit (Section II.1 of the draft permit).

#### <u>рН</u>

The Washington WQS at WAC 173-201A-200(1)(g), require pH values of the river to be within the range of 6.5 to 8.5 with a human-caused variation within the above range of less than 0.5 units. The minimum effluent pH measured between January 2016 and December 2020 was 6.7 standard units and the maximum effluent pH was 8.0 standard units.

Mixing zones are generally not granted for pH, therefore the most stringent water quality criterion must be met before the effluent is discharged to the receiving water. The proposed permit requires that the effluent have a pH of no less than 6.5 and no greater than 8.5 standard units. Effluent data indicate that Wapato WWTP can comply with these effluent limits.

#### <u>Silver</u>

The Washington WQS include a hardness-dependent acute criteria for protection of aquatic life. Using a 5<sup>th</sup> percentile hardness of 29.4 mg/L, the acute water quality criteria is 0.42  $\mu$ g/L.

Using information submitted by the WWTP with the permit application, EPA determined that the facility has reasonable potential to exceed the aquatic life water quality criteria. Therefore, the proposed permit includes effluent limits for silver of 0.29  $\mu$ g/L (0.003 lbs/day) average monthly and 0.42  $\mu$ g/L (0.004 lbs/day) maximum daily. See Appendices C and D for reasonable potential and effluent limit calculations for silver.

EPA has evaluated the WWTP's effluent data and determined that the WWTP will be consistently able to comply with the new silver effluent limits immediately upon the effective date of the permit. Therefore, no compliance schedule is included for the silver limits in the proposed permit.

#### **Temperature**

The Washington WQS include temperature criterion in WAC 173-201A-200(1)(c), 210(c), and Table 602. The site-specific annual maximum temperature criterion applicable to the receiving water at the closest point of Washington water quality standards, WRIA 37, Lower Yakima, is "temperature shall not exceed a 1-Dmax of 21°C due to human activities. When natural conditions exceed a 1-DMax of 21°C, no temperature increase will be allowed which will raise the receiving water temperature by greater than 0.3°C; nor shall such temperature increases, at any time, exceed t=34/(T+9)."

Based on upstream monitoring data from 2016 – 2020, the 95<sup>th</sup> percentile of ambient temperature upstream of the outfall in WIP Drainage Way No. 2 is 23.1 °C and the 95<sup>th</sup> percentile of temperature downstream of the outfall is 22.8 °C . The 95<sup>th</sup> percentile of the effluent temperature is 25 °C. Since the maximum temperatures of the natural conditions of the receiving water is above 21°C, the temperature increase must not raise the receiving water more than 0.3°C.

EPA evaluated the reasonable potential to exceed the temperature criteria. The max temperature of the receiving waters and the max temperature of the effluent are both above the aquatic life criteria. Considering a 25% mixing zone during the summer season, the effluent will not raise the temperature more than 0.3°C (Figure 1). Based on this analysis, a temperature limit is not required.

|                                                      | Cold Water |                                        |  |
|------------------------------------------------------|------------|----------------------------------------|--|
|                                                      | Critera    |                                        |  |
| INPUT                                                |            | Data Source                            |  |
| Chronic Dilution Factor at Mixing Zone Boundary      | 7.1        | High River Flow                        |  |
| Ambient Temperature (T) (Upstream Background)        | 23.1 °C    | 95th Percentile based on permittee or  |  |
|                                                      |            | USGS data                              |  |
| Effluent Temperature                                 | 25.0 °C    | 95th Percentile of monthly daily max   |  |
|                                                      |            | effluent based on daily max per DMR    |  |
|                                                      |            | data                                   |  |
| Aquatic Life Temperature WQ Criterion in Fresh Water | 21.0 °C    | Lowest daily max criteria              |  |
| OUTPUT                                               |            |                                        |  |
| Temperature at Chronic Mixing Zone Boundary:         | 23.4 °C    | Mass balance                           |  |
| Incremental Temperature Increase or decrease:        | 0.3 °C     | WQS 401.c - allow for maximum of 0.3°C |  |
|                                                      |            | rise in receiving water temperature.   |  |

## Figure 1 Temperature Reasonable Potential Analysis

#### <u>WET</u>

The federal regulations require POTWs with design influent flows equal to or greater than 1.0 mgd or POTWs with approved treatment programs to submit results of WET testing (40 CFR 122.21(j)(1). Additionally, Washington WQS for toxics states, "Toxic substances shall not be introduced above natural background levels in waters of the state which have the potential either singularly or cumulatively to adversely affect characteristic water uses, cause acute or chronic toxicity to the most sensitive biota dependent upon those waters, or adversely affect public health (WAC 173-201A-240-1)".

The current permit has WET limits and requires quarterly WET monitoring. Using the WET results from the previous 5 years, EPA determined that the facility's effluent does not have reasonable potential for acute and chronic WET. Since the current permit was issued in 2011, the facility upgraded to an MBR and has reduced the toxicity in the effluent.

When relaxing limits, the facility must meet antibacksliding and requirements consistent with CWA section 303(d)(4) or 402(o)(2). Since EPA did not find reasonable potential for WET and the facility qualifies for an exception to antibacksliding as described in Section III.A.3.e, and the revised effluent limit complies with Washington's antidegradation policy as described in Section III.A.3.d, the proposed permit removes the current WET limits. The proposed permit also proposes to reduce the frequency of WET monitoring to once a year.

#### <u>Zinc</u>

The Washington WQS at WAC 173-201A-240 establish hardnessdependent acute and chronic zinc criteria for the protection of aquatic life and human health criteria for consumption of water and fish and water only. Using the 5<sup>th</sup> percentile hardness value from facility surface monitoring of 29.4 mg/L, the hardness-dependent calculated acute and chronic aquatic life criteria are 34.2  $\mu$ g/L and 31.2  $\mu$ g/L, for acute and chronic respectively. The human health criterion for protection of water and organisms is 2,300  $\mu$ g/L.

Using facility effluent monitoring data for zinc and the mixing zones described in Section III.A.3.b above, EPA conducted a reasonable potential analysis. EPA determined there is reasonable potential to exceed the aquatic life criteria for zinc on an annual basis. There is no reasonable potential to exceed the human health criteria for zinc.

The calculated monthly average effluent limits for zinc during the irrigation season are less stringent than the limits in the current permit, and the calculated maximum daily effluent limits are more stringent than the current effluent limits. When relaxing limits, the facility must meet antibacksliding requirements consistent with CWA section 303(d)(4) or 402(o)(2). EPA has determined the monthly average zinc limits can be relaxed by 10% in accordance with antidegradation requirements described in Section III.A.3.d. and antibacksliding requirements as described in Section III.A.3.e.

Therefore, the proposed permit contains WQBELs for zinc. The proposed limits are 27  $\mu$ g/L (0.261 lbs/day) average monthly and 47  $\mu$ g/L (0.451 lbs/day) maximum daily. See Appendices C and D for reasonable potential and effluent limit calculations for zinc.

#### **Other Parameters**

40 CFR 122.21(j)(4) requires that certain priority pollutants be monitored, and results be submitted with the permit application. In addition to the pollutants discussed above, antimony, arsenic, beryllium, chloroform, chromium, lead, nickel, selenium, thallium, and toulene have been detected in the Wapato WWTP effluent. As shown in Appendix C and D, the discharge does not have the reasonable potential to cause or contribute to excursions above water quality standards for those pollutants, thus, no effluent limits are required for any of those pollutants.

d. Antidegradation

#### <u>Overview</u>

EPA is required under Section 301(b)(1)(C) of the CWA and implementing regulations (40 CFR 122.4(d) and 122.44(d)) to establish conditions in NPDES permits that ensure protection of the downstream State water quality standards, including antidegradation requirements. Since the receiving water WIP Drainage Way No. 2 is located within the Yakama Reservation, but the YN does not have approved WQS, this permit is based on Ecology's WQS, including antidegradation Therefore, EPA has prepared an antidegradation analysis consistent with Ecology's antidegradation implementation procedures. EPA referred to Washington's antidegradation policy (WAC 173-201A-300) and Ecology's 2011 Supplemental Guidance on Implementing Tier II Antidegradation (https://apps.ecology.wa.gov/publications/documents/1110073.pdf)

The purpose of Washington's Antidegradation Policy is to:

• Restore and maintain the highest possible quality of the surface waters of Washington.

• Describe situations under which water quality may be lowered from its current condition.

• Apply to human activities that are likely to have an impact on the water quality of surface water.

• Ensure that all human activities likely to contribute to a lowering of water quality, at a minimum, apply all known, available, and reasonable methods of prevention, control, and treatment (AKART); and

• Apply three tiers of protection (described below) for surface waters of the state.

- Tier I ensures existing and designated uses are maintained and protected and applies to all waters and all sources of pollution.
- Tier II ensures that waters of a higher quality than the criteria assigned are not degraded unless such lowering of water quality is necessary and in the overriding public interest. Tier II applies only to a specific list of polluting activities.
- Tier III prevents the degradation of waters formally listed as "outstanding resource waters," and applies to all sources of pollution.

#### Tier I Protection

According to Washington's antidegradation policy, a facility must first meet Tier I requirements. Existing and designated uses must be maintained and protected. No degradation may be allowed that would interfere with, or become injurious to, existing or designated uses, except as provided for in Chapter 173-201A WAC. WIP Drainage Way No.2 at the point of discharge has the following designated beneficial uses:

Aquatic Life Uses: Salmonoid Spawning, Rearing, and Migration

**Recreational Uses: Primary Contact** 

Water Supply Uses: Domestic Water; Industrial Water; Agricultural Water; Stock Water

Misc. Uses: Wildlife Habitat; Harvesting; Commerce/Navigation; Boating; and Aesthetics.

The effluent limits in the draft permit ensure compliance with applicable numeric and narrative water quality criteria. The numeric and narrative water quality criteria are set at levels that ensure protection of the designated uses. As there is no information indicating the presence of existing beneficial uses other than those that are designated, the draft permit ensures a level of water quality necessary to protect the designated uses and, in compliance with WAC 173-201A-310 and 40 CFR 131.12(a)(1), also ensures that the level of water quality necessary to protect existing uses is maintained and protected.

If EPA receives information during the public comment period demonstrating that there are existing uses for which WIP Drainage Way No.2 is not designated, EPA will consider this information before issuing a final permit and will establish additional or more stringent permit conditions if necessary to ensure protection of existing uses.

#### Tier II Protection

Whenever a water quality constituent is of a higher quality than a criterion designated for that water under the Washington WQS, new or expanded actions within certain categories, including NPDES permits, that are expected to cause a measurable change in the quality of the water may not be allowed unless Ecology determines that the lowering of water quality is necessary and in the overriding public interest.

With the exceptions of chlorine, WET, ammonia, copper, and zinc, all the effluent limits in the reissued permit are as stringent as or more stringent than the corresponding limits in the current permit. For those parameters with limits that are as stringent or more stringent than the corresponding limits in the current permit, the proposed permit will not allow lower water quality. Of the effluent limits that are not as stringent as the current permit, Chlorine and WET limits are removed from the proposed permit and ammonia, copper, and zinc effluent limits in the proposed permit are in some cases less stringent than the current permit.

Chlorine limits are not included in the proposed permit because the facility now uses ultraviolet disinfection. Since there is no longer a source of chlorine in the discharge, the removal of chlorine limits will not allow lower water quality.

WET limits are not included in the proposed permit because EPA has determined that there is not reasonable potential to exceed water quality criteria. The WET effluent data shows that there have been no exceedances of the limits since the facility upgraded the plant to an MBR facility after the current permit was issued. Therefore, the removal of WET limits will not allow lower water quality.

The ammonia, copper and zinc limits are, in some cases, less stringent than the corresponding limits in the current permit. Since there is no water quality data to determine the status of WIP Drainage Way No. 2, and the goal is to track the incremental effect on water quality caused by the action under evaluation, it is appropriate to assume the zero as a background concentration according to Washington Tier II policy and therefore that the receiving water is of higher quality than the water quality criteria for these parameters. However, as explained below, the revised limits are nonetheless consistent with Washington's Tier II antidegradation policy.

Washington's antidegradation policy states that Tier II reviews will only be conducted for new or expanded actions conducted under certain authorizations, including NPDES permits (WAC 173-201A-320(2)). The State of Washington has published the *Supplemental Guidance on Implementing Tier II Antidegradation* ("Washington Tier II Guidance") which defines the actions that are considered "expanded" in the context of its Tier II antidegradation requirements (Ecology 2011). The Washington Tier II Guidance states that:

"Expanded" means:

- A physical expansion of the facility (production or wastewater system expansions with a potential to allow an increase of the volume of wastewater or the amount of pollution) or activity
- An increase (either monthly average or annual average) to an existing permitted concentration or permitted effluent mass limit (loading) to a water body greater than 10%
- The act of re-rating the capacity of an existing plant greater than 10%."

The Wapato WWTP has not been physically expanded or re-rated to a higher capacity since the current permit was issued. However, increases to existing concentration or mass limits are considered "expansions" within the Washington antidegradation policy. Therefore, the applicable limits are increased by no more than 10% above the current permits limits to ensure consistency with Washington's antidegradation policy.

The calculated effluent limits for ammonia result in a more stringent average monthly limit and a less stringent maximum daily limit during both the irrigation and non-irrigation season. Since the Tier II guidance defines an expansion as an increase in the monthly or annual average, a change to the maximum daily limit, in accordance with water quality criteria, is allowed under Washington antidegradation policy.

The calculated effluent limits for copper result in less stringent monthly average and maximum daily effluent limits. The calculated monthly average copper effluent limit results in a less than 10% increase from the current limit, and thus meets the Tier II antidegradation requirements. As discussed above, the maximum daily effluent requirements can be relaxed in accordance with Tier II guidance. Therefore, the proposed permit contains less stringent copper limits.

The calculated effluent limits for zinc result in less stringent monthly average and more stringent maximum daily effluent limits. The calculated monthly average copper effluent limit results in a more than 10% increase from the current limit, however, as discussed above, the monthly average limits can not be relaxed more than 10% without a Tier II antidegradation review. Therefore, the monthly average effluent limit for zinc will only be relaxed by 10%. Therefore, the proposed permit contains less stringent monthly average zinc limits and more stringent maximum daily zinc limits.

# e. Antibacksliding

CWA § 402(o) and 40 CFR §122.44 (I) generally prohibit the renewal, reissuance, or modification of an existing NPDES permit that contains effluent limits, permit conditions or standards that are less stringent than those established in the previous permit (i.e., anti-backsliding) but provides limited exceptions. For explanation of the antibacksliding exceptions refer to Chapter 7 of the Permit Writers Manual *Final Effluent Limitations and Anti-backsliding*.

Section 303(d)(4) of the CWA states that, for water bodies where the water quality meets or exceeds the level necessary to support the water body's designated uses, WQBELs may be revised as long as the revision is consistent with the State's antidegradation policy. Additionally, CWA § 402(o) contains exceptions to the general prohibition on backsliding in 402(o)(1). According to the According to the U.S. EPA NPDES Permit Writers' Manual (EPA-833-K-10-001) the 402(o)(2) exceptions are applicable to WQBELs (except for 402(o)(2)(B)(ii) and 402(o)(2)(D)) and are independent of the requirements of 303(d)(4). Therefore, WQBELs may be relaxed as long as either the 402(o)(2) exceptions or the requirements of 303(d)(4) are satisfied.

Even if the requirements of Sections 303(d)(4) or 402(o)(2) are satisfied, Section 402(o)(3) prohibits backsliding which would result in violations of WQS or effluent limit guidelines.

According to Section 402(o)(2), one of the exceptions when EPA may propose a less stringent limit is if "material and substantial alterations"

to the permitted facility occurred after permit issuance, justifying application of a less stringent effluent limit." This exception applies to WET limits and chlorine limits, since the facility upgraded to an MBR treatment facility after the previous permit was issued. The upgraded facility consistently achieves lower toxicity in the effluent and therefore the facility upgrade justifies the removal of WET effluent limits. The proposed permit continues to include yearly WET monitoring to continue to monitor effluent toxicity.

In addition, the chlorine disinfection system was replaced with UV disinfection, and chlorine is no longer used in the treatment process. The replacement of the chlorine disinfection system with UV disinfection is a material and substantial alteration to the permitted facility, which occurred after the current 2011 permit was issued, and which justifies the deletion of the chlorine effluent limits.

Another listed exception to antibacksliding is if "information, not available at the time of permit issuance...would have justified applying a less stringent effluent limit at the time of permit issuance." This exception is applicable to ammonia, copper, and zinc effluent limits.

In the case of ammonia limits, more accurate and recent flow data is available at the time of this proposed permit that was not available at the time the current permit was issued. The current permit used receiving water flow data collected from 1988 through 1997, a 7Q10 of 11.9 mgd during the irrigation season. Flow data collected during 2016-2020 results in a 7Q10 of 44 mgd during the irrigation season. Therefore, the ammonia limits meet the exceptions for antibacksliding.

The revised copper and zinc effluent limits are also based on information not available at the time of permit issuance. The current permit used a hardness of 37 mg/L based on 11 samples during two months, however, the proposed permit uses a hardness of 29.4 mg/L based on more extensive and recent receiving water data, from 2016-2020. In addition, the copper and zinc limits in the current permit are based on limited effluent sampling during July and August 2010 whereas the proposed limits are based on weekly effluent sampling during 2017-2022. Therefore, the copper and zinc limits meet the exceptions for antibacksliding based on new flow and water quality data available at this time.

As discussed in Section III.A.d above, the revised effluent limits in the proposed permit for chlorine, WET, ammonia, copper, and zinc are consistent with Washington's antidegradation policy. The proposed effluent limits are adequately stringent to ensure compliance with water quality for those pollutants, and furthermore, the effluent limits are consistent with Washington's antidegradation policy. Therefore, the revised effluent limits comply with Section 402(0)(3).

# **B. MONITORING REQUIREMENTS**

CWA § 308 and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality.

The permit also requires the permittee to perform effluent monitoring required by the NPDES Form 2A application, so that these data will be available when the permittee applies for a renewal of its NPDES permit.

The permit also requires the permittee to perform effluent monitoring required by Tables B, C, D, and E of the NPDES Form 2A application, so that these data will be available when the permittee applies for a renewal of its NPDES permit.

The permittee is responsible for conducting the monitoring and for reporting results on DMRs or on the application for renewal, as appropriate, to EPA.

## 1. Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples must be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) or as specified in the permit. Proposed monitoring changes from the current permit are summarized in Table 8.

#### 2. Surface Water Monitoring

In general, surface water monitoring may be required for pollutants of concern to assess the assimilative capacity of the receiving water for the pollutant. In addition, surface water monitoring may be required for pollutants for which the water quality criteria are dependent and to collect data for TMDL development if the facility discharges to an impaired water body. Table 11 presents the proposed surface water monitoring requirements for the proposed permit. Surface water monitoring results must be submitted with the DMR.

# Table 11. Surface Water Monitoring in Proposed Permit

| Parameter   | Units | Upstream<br>Sampling<br>Frequency | Downstream<br>Sampling<br>Frequency | Sample<br>Type       |
|-------------|-------|-----------------------------------|-------------------------------------|----------------------|
| Flow        | mgd   | 1/week                            | 1/week                              | Meter                |
| Temperature | °C    | Continuous                        | Continuous                          | Meter                |
| BOD5        | mg/L  | 1/week                            | 1/week                              | 24-hour<br>composite |
| TSS         | mg/L  | 1/week                            | 1/week                              | 24-hour<br>composite |

| Parameter                  | Units          | Upstream<br>Sampling<br>Frequency | Downstream<br>Sampling<br>Frequency | Sample<br>Type       |
|----------------------------|----------------|-----------------------------------|-------------------------------------|----------------------|
| Dissolved Oxygen           | mg/L           | 1/week                            | 1/week                              | Grab                 |
| рН                         | Standard units | 1/month                           | 1/month                             | 24-hour<br>composite |
| Hardness as CaCO₃          | µg/L           | 1/month                           | 1/month                             | 24-hour<br>composite |
| Total Phosphorus           | Mg/L           | 1/month                           | 1/month                             | 24-hour<br>composite |
| Total Nitrogen             | Mg/L           | 1/month                           | 1/month                             | 24-hour<br>composite |
| Source: Facility DMR Data, | 2016-2021      |                                   |                                     |                      |

### 3. Electronic Submission of Discharge Monitoring Reports

The proposed permit requires that the permittee submit DMR data electronically using NetDMR. NetDMR is a national web-based tool that allows DMR data to be submitted electronically via a secure Internet application.

EPA currently conducts free training on the use of NetDMR. Further information about NetDMR, including upcoming trainings and contacts, is provided on the following website: https://netdmr.epa.gov. The permittee may use NetDMR after requesting and receiving permission from EPA Region 10.

Permit Part III.C requires that the Permittee submit a copy of the DMR to the YN. Currently, the permittee may submit a copy to the YNin one of three ways: 1) a paper copy may be mailed; 2) The email address for the YN may be added to the electronic submittal through NetDMR; or 3) The permittee may provide the YN viewing rights through NetDMR.

### C. SLUDGE (BIOSOLIDS) REQUIREMENTS

EPA Region 10 separates wastewater and sludge permitting. EPA has authority under the CWA to issue separate sludge-only permits for the purposes of regulating biosolids. EPA may issue a sludge-only permit to each facility at a later date, as appropriate.

Until future issuance of a sludge-only permit, sludge management and disposal activities at each facility continue to be subject to the national sewage sludge standards at 40 CFR Part 503 and any requirements of the State's biosolids program. The Part 503 regulations are self-implementing, which means that facilities must comply with them whether or not a permit has been issued.

### **IV. OTHER PERMIT CONDITIONS**

### A. COMPLIANCE SCHEDULES

Compliance schedules are authorized by federal NPDES regulations at 40 CFR 122.47 and Washington WQS WAC 173-201A-510(4). Compliance schedules allow a discharger to phase in, over time, compliance with WQBELs when limitations are in the permit for the first time.

The proposed permit contains new effluent limits for mercury, and silver, and more stringent revised effluent limits in some cases for ammonia and zinc.

Effluent data indicate that the permittee can immediately comply with all of the new water quality-based effluent limits proposed in the proposed permit, except for mercury and zinc.

Although the maximum daily zinc limit is more stringent, the average monthly zinc limit is less stringent. Therefore, EPA is not authorizing a compliance schedule for zinc in this permit.

EPA has found that a compliance schedule is appropriate for mercury because the facility cannot immediately comply with the new effluent on the effective date of the permit. Refer to Section 9.1.3 Compliance Schedules in the Permit Writers Manual. While the schedules of compliance are in effect, the permittee must comply with the monitoring requirements in Section III.B.

EPA proposes a compliance schedule that begins with source reduction achieved through a Mercury Minimization Plan (MMP), see Fact Sheet Part IV.B and Permit Part II.E. Source reduction is a quicker and more cost-efficient method of achieving compliance with mercury effluent limits. In the event that effluent limits are not met after 36 months of source reduction efforts, the compliance schedule requires the facility to improve its treatment process for mercury in order to meet the mercury effluent limits. If compliance with the final mercury effluent limits is achieved sooner than required in the compliance schedule, the permittee may submit the supporting documentation. The permittee must provide written notice to EPA that the mercury limitations are achieved. The mercury effluent limits must be fully met by 96 months from the effective date of the permit.

### 1. Mercury Minimization Plan

Potential sources for mercury include residential, institutional, municipal, and commercial sources (such as dental clinics, hospitals, medical clinics, nursing homes, schools, laundries, and industries with potential for mercury contributions). Other potential influent mercury sources are stormwater inputs, ground water (inflow & infiltration) inputs, lift station components, and waste streams or sewer tributaries to the wastewater treatment facility.

The permittee must develop and implement a MMP that identifies potential sources of mercury and the measures to reduce or eliminate mercury

loading. The MMP must be submitted to EPA and YN within 6 months of the effective date of this permit. The MMP must include the following:

- a. A Program Plan which includes the City of Wapato's commitments for:
  - Identification of potential sources of mercury that contribute to discharge levels;
  - Reasonable, cost-effective activities designed to reduce or eliminate mercury loadings from identified sources;
  - Tracking mercury source reduction implementation and mercury source monitoring;
  - Meeting effluent and influent mercury monitoring requirements in permit Section I.B;
  - Resources and staffing.
- b. Implementation of cost-effective control measures for direct and indirect contributors, including:
  - An evaluation of past and present WWTP operations to determine those operating procedures that maximize mercury removal.
  - A summary of any mercury reduction activities implemented during the last five years.

For more guidance, see the <u>EPA Region 5 Mercury Pollutant Minimization</u> <u>Program Guidance, November 2004</u>.

2. Annual Status Reports

The permittee must submit annual status reports at 12, 24, and 36 months from the effective date of the permit. The annual status reports must include:

- Identification of potential sources of mercury that contribute to discharge concentrations;
- Reasonable, cost-effective activities to reduce or eliminate mercury loadings from identified sources;
- Mercury source reduction implementation, source monitoring results, influent and effluent, and results for the previous year
- Proposed adjustments to the MMP based on findings from the previous year.

| Task<br>No. | Due By                                                       | Task Activity                                                                                                                                                                                                                                                                                                                                                      |
|-------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | 6                                                            | Mercury Minimization Plan                                                                                                                                                                                                                                                                                                                                          |
|             | months<br>from the<br>effective                              | The permittee must complete a Mercury Minimization Plan as described in permit Section II.E.                                                                                                                                                                                                                                                                       |
|             | date of<br>the<br>permit                                     | Deliverable: The permit must submit the Mercury Minimization<br>Plan to EPA. The permittee must submit the plan as an<br>electronic attachment to the DMR. The file name of the<br>electronic attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Minimization_Plan_CS<br>011, where YYYY_MM_DD is the date that the permittee<br>submits the document. |
| 2           | 12                                                           | Annual Status Report                                                                                                                                                                                                                                                                                                                                               |
|             | months<br>from the<br>effective<br>date of<br>the<br>permit  | Deliverable: The permit must submit the annual status report to<br>EPA. The permittee must submit the plan as an electronic<br>attachment to the DMR. The file name of the electronic<br>attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Annual_Report_CS01<br>0, where YYYY_MM_DD is the date that the permittee submits<br>the document.          |
| 4           | 24                                                           | Annual Status Report                                                                                                                                                                                                                                                                                                                                               |
|             | months<br>from the<br>effective<br>date of<br>this<br>permit | Deliverable: The permit must submit the annual status report to<br>EPA. The permittee must submit the plan as an electronic<br>attachment to the DMR. The file name of the electronic<br>attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Annual_Report_CS01<br>0, where YYYY_MM_DD is the date that the permittee submits<br>the document.          |
| 5           | 36                                                           | Annual Status Report                                                                                                                                                                                                                                                                                                                                               |
|             | months<br>from the<br>effective<br>date of<br>this<br>permit | Deliverable: The permit must submit the annual status report to<br>EPA. The permittee must submit the plan as an electronic<br>attachment to the DMR. The file name of the electronic<br>attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Annual_Report_CS01<br>0, where YYYY_MM_DD is the date that the permittee submits<br>the document.          |
| 6           | 48                                                           | Facility Planning                                                                                                                                                                                                                                                                                                                                                  |
|             | months<br>from the<br>effective                              | The permittee must develop a facility plan that evaluates<br>alternatives to meet the final effluent limitations for mercury<br>and select a preferred alternative. The facility plan will include                                                                                                                                                                 |

|   | date of<br>this<br>permit                                    | a cost estimate for design and construction of the preferred<br>alternative. If final effluent limitations are met through source<br>reduction efforts, facility may submit supporting documentation<br>instead of proceeding with compliance schedule requirements.<br>Deliverable: The permit must submit the facility plan to EPA.                               |
|---|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                              | The permittee must submit the plan as an electronic<br>attachment to the DMR. The file name of the electronic<br>attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Facility_Plan_CS011,<br>where YYYY_MM_DD is the date that the permittee submits<br>the document.                                                                                    |
| 7 | 54                                                           | Facility Funding                                                                                                                                                                                                                                                                                                                                                    |
|   | months<br>from the<br>effective<br>date of                   | The permittee must acquire the funds necessary to complete<br>all facility upgrades/changes in facility operations outlined in<br>the facility plan required to meet the final effluent limitations for<br>mercury by the end of this schedule.                                                                                                                     |
|   | this<br>permit                                               | Deliverable: The permit must submit the funding plan to EPA.<br>The permittee must submit the plan as an electronic<br>attachment to the DMR. The file name of the electronic<br>attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Funding_Plan_CS011,<br>where YYYY_MM_DD is the date that the permittee submits<br>the document.                     |
| 8 | 66                                                           | Final Design                                                                                                                                                                                                                                                                                                                                                        |
|   | months<br>from the                                           | The permittee must complete design of the selected alternative for meeting the final mercury effluent limitations.                                                                                                                                                                                                                                                  |
|   | effective<br>date of<br>this<br>permit                       | Deliverable: The permit must submit the final design to EPA.<br>The permittee must submit the plan as an electronic<br>attachment to the DMR. The file name of the electronic<br>attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Final_Design_CS011,<br>where YYYY_MM_DD is the date that the permittee submits<br>the document.                     |
| 9 | 72                                                           | Award Bid for Construction                                                                                                                                                                                                                                                                                                                                          |
|   | months<br>from the<br>effective<br>date of<br>this<br>permit | Deliverable: The permit must submit a letter to EPA certifying<br>that the facility has awarded a bid for construction for meeting<br>the mercury effluent limits. The permittee must submit the plan<br>as an electronic attachment to the DMR. The file name of the<br>electronic attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Construction_Bid |
|   |                                                              | _Certification_CS011, where YYYY_MM_DD is the date that the permittee submits the document.                                                                                                                                                                                                                                                                         |

| 10               | 84                                     | Construction Complete                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                  | months<br>from the                     | The permittee must complete construction to achieve the mercury effluent limitations.                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| t                | effective<br>date of<br>this<br>permit | Deliverable: The permit must submit a letter to EPA certifying<br>that the facility has completed construction for meeting the final<br>mercury effluent limits. The permittee must submit the plan as<br>an electronic attachment to the DMR. The file name of the<br>electronic attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Mercury_Construction_                                    |  |  |  |  |  |  |
|                  |                                        | Complete_Certification_CS016, where YYYY_MM_DD is the date that the permittee submits the document.                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| r<br>f<br>c<br>t | 96                                     | Meet Effluent Limitation for Mercury                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                  | months<br>from the<br>effective        | Training and optimization of process such that compliance with the mercury effluent limitations are achieved.                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                  | date of<br>the<br>permit               | Deliverable: The permittee must provide written notice to EPA<br>that the mercury effluent limitations are achieved. The<br>permittee may submit the written notification as an electronic<br>attachment to the DMR. The file name of the electronic<br>attachment must be as follows:<br>YYYY_MM_DD_WA0050229_Limits_FELMC_CS017, where<br>YYYY_MM_DD is the date that the permittee submits the |  |  |  |  |  |  |
|                  |                                        | written notification.                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                  |                                        | ce with the final mercury effluent limits is achieved sooner than es, the permittee may submit the supporting documentation                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

the listed deadlines, the permittee may submit the supporting documentation earlier than the dates listed above. The permittee must provide written notice to EPA that the mercury limitations are achieved.

### **B. NUTRIENT OPTIMIZATION PLAN**

The City of Wapato is required to submit a Nutrient Optimization Plan within 48 months of the effective date of the permit and identify the optimization strategy selected for implementation within 18 months of the effective date of the permit. The Nutrient Optimization Plan must evaluate and implement operational strategies for maximizing nitrogen and phosphorus removal from the existing treatment plant during the permit term. The plan must be submitted to EPA and the YN.

### C. QUALITY ASSURANCE PLAN

The City of Wapato is required to update the Quality Assurance Plan (QAP) within 90 days of the effective date of the permit. The QAP must consist of standard operating procedures the permittee must follow for collecting, handling, storing, and shipping samples, laboratory analysis, and data

reporting. The plan must be retained on-site and made available to EPA and the YN upon request.

### D. OPERATION AND MAINTENANCE PLAN

The permit requires the City of Wapato to properly operate and maintain all facilities and systems of treatment and control. Proper operation and maintenance are essential to meeting discharge limits, monitoring requirements, and all other permit requirements at all times. The permittee is required to develop and implement an operation and maintenance plan for their facility within 60 days of the effective date of the permit. The plan must be retained on site and made available to EPA and YN upon request.

# E. SANITARY SEWER OVERFLOWS AND PROPER OPERATION AND MAINTENANCE OF THE COLLECTION SYSTEM

SSOs are not authorized under this permit. The permit contains language to address SSO reporting and public notice and operation and maintenance of the collection system. The permit requires that the permittee identify SSO occurrences and their causes. In addition, the permit establishes reporting, record keeping and third party notification of SSOs. Finally, the permit requires proper operation and maintenance of the collection system.

The following specific permit conditions apply:

**Immediate Reporting** – The permittee is required to notify EPA of an SSO within 24 hours of the time the permittee becomes aware of the overflow. (See 40 CFR 122.41(I)(6))

**Written Reports** – The permittee is required to provide EPA a written report within five days of the time it became aware of any overflow that is subject to the immediate reporting provision. (See 40 CFR 122.41(I)(6)(i)).

**Third Party Notice** – The permit requires that the permittee establish a process to notify specified third parties of SSOs that may endanger health due to a likelihood of human exposure; or unanticipated bypass and upset that exceeds any effluent limitation in the permit or that may endanger health due to a likelihood of human exposure. The permittee is required to develop, in consultation with appropriate authorities at the local, county, tribal and/or state level, a plan that describes how, under various overflow (and unanticipated bypass and upset) scenarios, the public, as well as other entities, would be notified of overflows that may endanger health. The plan should identify all overflows that would be reported and to whom, and the specific information that would be reported. The plan should include a description of lines of communication and the identities of responsible officials. (See 40 CFR 122.41(I)(6)).

**Record Keeping** – The permittee is required to keep records of SSOs. The permittee must retain the reports submitted to EPA and other appropriate reports that could include work orders associated with investigation of system problems related to a SSO, that describes the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the SSO. (See 40 CFR 122.41(j)).

**Proper Operation and Maintenance** – The permit requires proper operation and maintenance of the collection system. (See 40 CFR 122.41(d) and (e)). SSOs may be indicative of improper operation and maintenance of the collection system. The permittee may consider the development and implementation of a capacity, management, operation, and maintenance (CMOM) program.

The permittee may refer to the Guide for Evaluating Capacity, Management, Operation, and Maintenance (CMOM) Programs at Sanitary Sewer Collection Systems (EPA 305-B-05-002). This guide identifies some of the criteria used by EPA inspectors to evaluate a collection system's management, operation, and maintenance program activities. Owners/operators can review their own systems against the checklist (Chapter 3) to reduce the occurrence of sewer overflows and improve or maintain compliance.

### F. ENVIRONMENTAL JUSTICE

As part of the permit development process, EPA Region 10 conducted a screening analysis to determine whether this permit action could affect overburdened communities. "Overburdened" communities can include minority, low-income, tribal, and indigenous populations or communities that potentially experience disproportionate environmental harms and risks. EPA used a nationally consistent geospatial tool that contains demographic and environmental data for the United States at the Census block group level. This tool is used to identify permits for which enhanced outreach may be warranted.

The City of Wapato WWTP is located within or near a Census block group that is potentially overburdened based on the State Wastewater Discharge Indicator (93<sup>rd</sup> percentile) and the State EJ Index for Wastewater Discharge Indicator (98<sup>th</sup> percentile). In order to ensure that individuals near the facility are able to participate meaningfully in the permit process, EPA will work collaboratively with the to conduct enhanced outreach activities such as posting the proposed permit and fact sheet in public places, the YN website, and other media the YN feels is necessary to ensure membership are able to participate in the review and comment period.

Regardless of whether a facility is located near a potentially overburdened community, EPA encourages permittees to review (and to consider adopting, where appropriate) Promising Practices for Permit Applicants Seeking EPA-Issued Permits: Ways To Engage Neighboring Communities (see <a href="https://www.federalregister.gov/d/2013-10945">https://www.federalregister.gov/d/2013-10945</a>). Examples of promising practices include: thinking ahead about community's characteristics and the effects of the permit on the community, engaging the right community leaders, providing progress or status reports, inviting members of the community for tours of the facility, providing informational materials translated into different languages, setting up a hotline for community members to voice concerns or request information, follow up, etc.

For more information, please visit <u>https://www.epa.gov/environmentaljustice</u> and Executive Order 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*.

### G. DESIGN CRITERIA

The permit includes design criteria requirements. This provision requires the permittee to compare influent flow and loading to the facility's design flow and loading and prepare a facility plan for maintaining compliance with NPDES permit effluent limits when the flow or loading exceeds 85% of the design criteria values for any two months in a twelve-month period.

### H. PRETREATMENT REQUIREMENTS

The City of Wapato does not have an approved POTW pretreatment program per 40 CFR 403.8. EPA is the Control Authority of industrial users that might introduce pollutants into the Wapato WWTP.

The Permittee may not authorize discharges which may violate the national specific prohibitions of the General Pretreatment Program under 40 CFR 403.5(b).

Although, not a permit requirement, the Permittee may wish to consider developing the legal authority enforceable in Federal, State, or local courts which authorizes or enables the POTW to apply and to enforce the requirement of CWA §§ 307 (b) and (c) and 402(b)(8), as described in 40 CFR 403.8(f)(1). Where the POTW is a municipality, legal authority is typically through a sewer use ordinance, which is usually part of the city or county code. EPA has a Model Pretreatment Ordinance for use by municipalities operating POTWs that are required to develop pretreatment programs to regulate industrial discharges to their systems (EPA, 2007). The model ordinance should also be useful for communities with POTWs that are not required to implement a pretreatment program in drafting local ordinances to control nondomestic dischargers within their jurisdictions.

### I. STANDARD PERMIT PROVISIONS

Permit Parts III., IV. and V. contain standard regulatory language that must be included in all NPDES permits. The standard regulatory language covers requirements such as monitoring, recording, and reporting requirements, compliance responsibilities, and other general requirements.

### V. OTHER LEGAL REQUIREMENTS

### A. ENDANGERED SPECIES ACT

The Endangered Species Act requires federal agencies to consult with National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries) and the U.S. Fish and Wildlife Service (USFWS) if their actions could beneficially or adversely affect any threatened or endangered species. A review of the threatened and endangered species located in Washington finds that the following federally listed endangered and threatened species may be located in the vicinity of the discharges: Middle Columbia River steelhead (O. mykiss), Bull Trout (Salvelinus confluentus), and Ute Ladies'-tresses (Spiranthes diluvialis).

Middle Columbia River Steelhead are found in Wanity Slough and Marion Drain, downstream of the outfall from Wapato WWTP. With regards to Bull

Trout, the Athanum local population is the only population found in the action area. Ahtanum Creek is 15-20 miles north of the action area and are seasonally isolate (from July through October) from fish in the Yakima River due to thermal barriers and dewatering of lower Ahtanum Creek below river mile 19.7 by irrigation withdrawals. Ute Ladies'-Tresses are endemic to moist soils in near bodies of water. Since the action addresses the effluent discharge and the instream water quality, it will not affect areas where the orchid is likely to be found.

A Biological Assessment was completed for the prior permit, in March 2011. Since there have been no changes in endangered species found in the action area since the prior Biological Assessment, and the proposed permit similar to the prior permit and will continue to protect water quality, the no effect determination still applies.

Therefore, EPA has determined that the issuance of this permit will have no effect on Bull trout, Mid Columbia River steelhead, or Ute-Ladies'-tresses. EPA made the determination that Bull trout are not in the area of the discharge, and Ute Ladies'-tresses is not found within streams and therefore will not be impacted. Mid Columbia River steelhead are within the area of discharge, and EPA made the determination that there will be no effect on steelhead because the proposed permit contains effluent limitations based on criteria that are designed to be protective of aquatic life.

### B. ESSENTIAL FISH HABITAT

Essential fish habitat (EFH) is the waters and substrate (sediments, etc.) necessary for fish to spawn, breed, feed, or grow to maturity. The Magnuson-Stevens Fishery Conservation and Management Act (January 21, 1999) requires EPA to consult with NOAA Fisheries when a proposed discharge has the potential to adversely affect EFH (i.e., reduce quality and/or quantity of EFH). A review of the Essential Fish Habitat documents shows that Chinook and Coho Salmon in the Lower Yakima River, and all streams, estuaries, marine waters, and other waterbodies historically accessible to Chinook and Coho in the Lower Yakima (see 73 FR 60991).

The EFH regulations define an adverse effect as any impact which reduces quality and/or quantity of EFH and may include direct (e.g. contamination or physical disruption), indirect (e.g. loss of prey, reduction in species' fecundity), site specific, or habitat-wide impacts, including individual, cumulative, or synergistic consequences of actions. EPA has prepared an EFH assessment which appears in Appendix D.

EPA has determined that issuance of this permit will not affect any EFH species in the Yakima River.

### C. CWA § 401 CERTIFICATION

CWA § 401 requires a Certification that any permit requirements comply with the appropriate sections of the CWA, as well as any appropriate requirements of Tribal Law. See 33 USC § 1341(d). Since this facility discharges to tribal waters and the YN has not been approved for TAS from EPA under the CWA,

EPA is the certifying authority. EPA is taking comment on EPA's intent to certify this permit. See Appendix F for the draft certification.

### D. ANTIDEGRADATION

EPA has completed an antidegradation review which is shown in Appendix G.

### E. PERMIT EXPIRATION

The permit will expire five years from the effective date.

### **VI. R**EFERENCES

Ecology 2011. Supplemental Guidance on Implementing Tier II Antidegradation ("Washington Tier II Guidance"), 11-10-073 https://apps.ecology.wa.gov/publications/documents/1110073.pdf

EPA. 1991. *Technical Support Document for Water Quality-based Toxics Control.* US Environmental Protection Agency, Office of Water, EPA/505/2-90-001. <u>https://www3.epa.gov/npdes/pubs/owm0264.pdf</u>

Water Pollution Control Federation. Subcommittee on Chlorination of Wastewater. *Chlorination of Wastewater.* Water Pollution Control Federation. Washington, D.C. 1976.

EPA. 2004. *Mercury Pollutant Minimization Program Guidance*. US EPA Region 5, NPDES Programs Branch <u>https://www3.epa.gov/npdes/pubs/pt\_region5\_mercury\_pmp\_guidance.pdf</u>

EPA. 2008. *Municipal Nutrient Removal Technology Reference Document*. US Environmental Protection Agency, Office of Wastewater Management, EPA/832/R-08-006. <u>https://www.epa.gov/sites/default/files/2019-</u>08/documents/municipal\_nutrient\_removal\_technologies\_vol\_i.pdf

EPA. 2010. *NPDES Permit Writers' Manual*. Environmental Protection Agency, Office of Wastewater Management, EPA-833-K-10-001. September 2010. <u>https://www3.epa.gov/npdes/pubs/pwm\_2010.pdf</u>

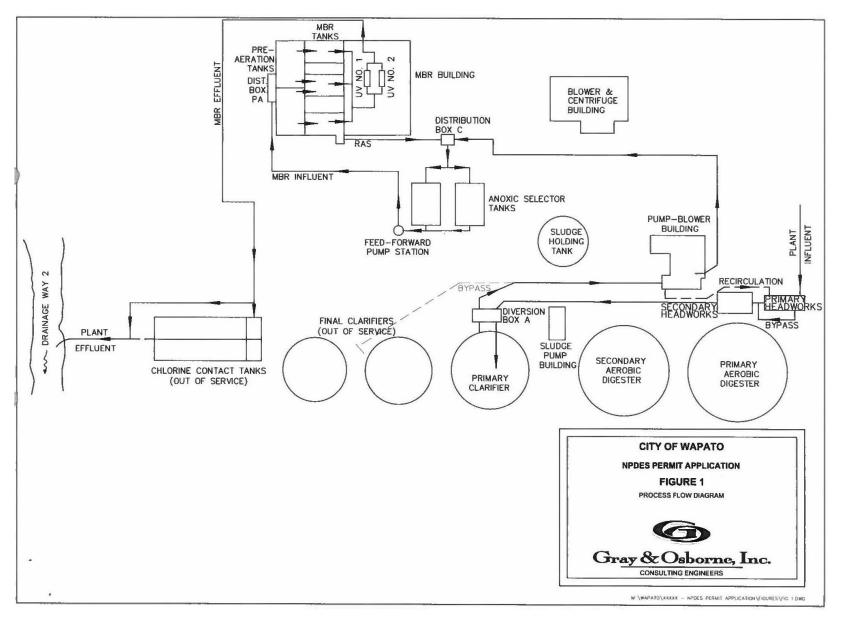
EPA, 2007. *EPA Model Pretreatment Ordinance*, Office of Wastewater Management/Permits Division, January 2007.

EPA, 2011. *Introduction to the National Pretreatment Program*, Office of Wastewater Management, EPA 833-B-11-011, June 2011.

EPA. 2014. Water Quality Standards Handbook Chapter 5: General Policies. Environmental Protection Agency. Office of Water. EPA 820-B-14-004. September 2014. <u>https://www.epa.gov/sites/production/files/2014-</u>09/documents/handbook-chapter5.pdf

EPA, 2015. Case Studies on Implementing Low-Cost Modifications to Improve Nutrient Reduction at Wastewater Treatment Plants, Draft, 2015. <u>https://www.epa.gov/sites/default/files/2015-</u> <u>08/documents/case\_studies\_on\_implementing\_low-</u>

<u>cost modification to improve potw\_nutrient\_reduction-combined\_508\_-</u> <u>august.pdf</u> Wise, D.R., Zuroske, M.L., Carpenter, K.D., and Kiesling, R.L. 2009. Assessment of eutrophication in the Lower Yakima River Basin, Washington, 2004–07: U.S. Geological Survey Scientific Investigations Report 2009–5078. 108 p. <u>https://pubs.usgs.gov/sir/2009/5078/pdf/sir20095078.pdf</u>




### Appendix A. Facility Information

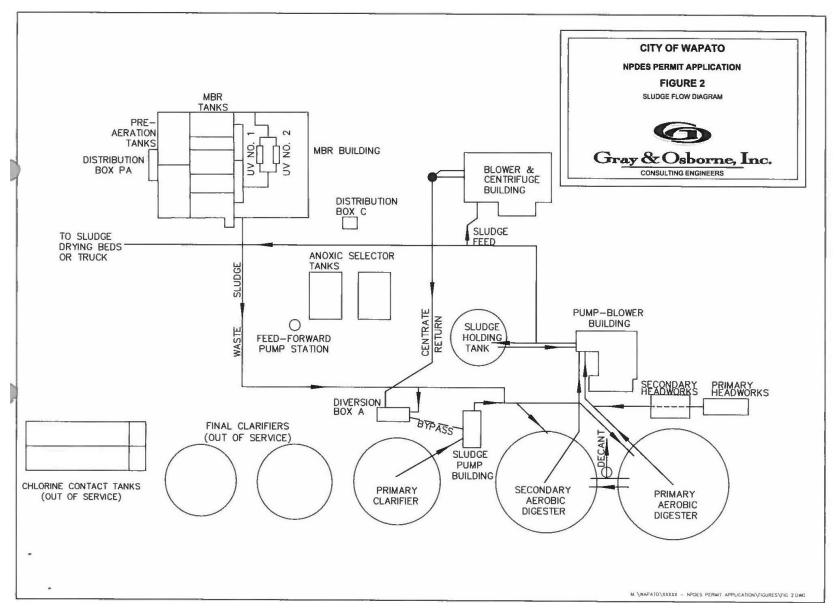

Figure 2 Wapato Area Map



Figure 3 Facility Layout Diagram



### Figure 4 Process Flow Diagram



### Figure 5 Sludge Flow Diagram

## Appendix B. Water Quality Data

### **Treatment Plant Effluent Data**

|           |             |          |               |            |            |                 | Cadmium,      |                   |                |                    |                                                                                                                 |
|-----------|-------------|----------|---------------|------------|------------|-----------------|---------------|-------------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
|           | BOD, 5-day, |          |               |            |            | BOD, 5-day,     | total         | Copper, total     |                |                    |                                                                                                                 |
|           | 20 deg. C   |          |               |            |            | percent removal | recoverable   | recoverable       |                |                    |                                                                                                                 |
|           |             |          | D (           |            |            | percent removar | recoverable   | recoverable       |                |                    |                                                                                                                 |
|           | Effluent    |          | Raw Sewage    |            |            | a               |               | 500               |                |                    |                                                                                                                 |
|           | Gross       |          | Influent      |            |            | Percent Removal |               | Effluent Gross    |                |                    |                                                                                                                 |
|           | MO AVG      |          | MO AVG        | WKLY AVG   |            | MO AV MN        | MO MAX        | DAILY MX          |                | MO AVG             |                                                                                                                 |
|           | Milligrams  |          | 171 0         | Milligrams | Pounds per |                 | Micrograms    | Micrograms        | Pounds per     | Micrograms         | Pounds per                                                                                                      |
| Date      | per Liter   | Day      | Liter         | per Liter  | Day        | Percent         | per Liter     | per Liter         | Day            | per Liter          | Daγ                                                                                                             |
| 4/1/2017  | 0.73        | 3.1      | 242           | 0.9        | 4.2        | 99.6            | 0.3           | N 13              | (SUR-200575    |                    | UT 000000 000                                                                                                   |
| 5/1/2017  | 0.73        | 2282-020 |               | 1.2        | 5          | 98              | 11,115,023312 | 1.104.103         |                |                    |                                                                                                                 |
| 6/1/2017  | 0.52        | 2.8      | 206           | 0.8        | 4          | 98              | 0.3           | 2.8               | 0.02           | 2.56               | 0.01                                                                                                            |
| 7/1/2017  |             |          |               |            |            |                 |               |                   |                |                    |                                                                                                                 |
| 8/1/2017  | 0.24        | 1.2      | 160           | 0.4        | 2          | 99              | 0.3           | (/ <del></del> ,) |                | 2.13               |                                                                                                                 |
| 9/1/2017  | 0.78        | 5        |               | 1.6        | 11         | 99              | 0.3           |                   | 0.02           | 2.54               | 2<br>2                                                                                                          |
| 10/1/2017 | 0.93        | 4.8      | 229           | 1.6        | 8          | 98.8            | 0.3           |                   |                | 2.74               | 1 USLOUM 10                                                                                                     |
| 11/1/2017 | 0.1         | 0.4      |               | 0.1        | 0.5        | 99.9            | 0.3           | 20048C - 652      | 0.02           | 2.77               | 0.01                                                                                                            |
| 12/1/2017 | 0.1         | 0.4      | 233           | 0.1        | 0.4        | 99.9            | 0.3           | 2.6               | 0.01           | 2.45               | 0.01                                                                                                            |
| 1/1/2018  |             |          |               |            |            |                 |               |                   |                |                    |                                                                                                                 |
| 2/1/2018  | 1.4         | 6.5      |               | 3.5        | 16         | 98.7            | 0.3           |                   | 0.01           | 2                  | 1 (Control of the second se |
| 3/1/2018  | 1.08        | 4.7      | 253           | 3.3        |            | 98.7            | 0.3           |                   |                | 3.35               | 12022/1209_120                                                                                                  |
| 4/1/2018  | 1.05        | 4.9      |               | 1.2        | 5.7        | 99              | 0.3           |                   | 0.01           | 2                  |                                                                                                                 |
| 5/1/2018  | 2.2         | 9.3      | 226           | 4.3        | 18         | 98              | 0.3           |                   |                | 2                  |                                                                                                                 |
| 6/1/2018  | 0.94        | 4.6      | N11161/201025 | 1          | 5          | 99              | 0.3           | 2772              | 2012-2012-2    | 2                  | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |
| 7/1/2018  | 0.64        | -        | 199           | 1.2        |            | 96.6            | 0.3           |                   |                | 2                  |                                                                                                                 |
| 8/1/2018  | 2.16        | 10.8     |               | 5          | - CO.0     | 98              | V/TS-etty     |                   |                | 2.3                |                                                                                                                 |
| 9/1/2018  | 1           | 5.9      | 219           | 1.5        |            | 99              | 0.3           |                   |                | 2                  | 12906-08035 53                                                                                                  |
| 10/1/2018 | 1.3         | 6.5      | 230           | 2.1        | 9          | 99              |               | 10.2              | 0.04           | 10.00.00 P.00.0000 |                                                                                                                 |
| 11/1/2018 | 3.29        | 15.1     | 208           | 7.35       | 35         | 96.9            | 0.3           |                   |                | 4.75               |                                                                                                                 |
| 12/1/2018 | 0.8         | 2.6      | 217           | 1.7        | 7.5        | 99              | 0.3           | ST31.0            |                | 2.2                | 0.008                                                                                                           |
| 1/1/2019  | 0.82        | 3.4      |               | 2          |            | 99              | 0.3           |                   |                |                    |                                                                                                                 |
| 2/1/2019  | 3.97        | 18.6     |               | 5.9        |            | 98.3            |               |                   |                | 3.08               |                                                                                                                 |
| 3/1/2019  | 1.33        | 6.6      |               | 2.1        | 10.5       | 99              |               |                   |                | 2                  |                                                                                                                 |
| 4/1/2019  | 1.51        | 7.3      | 236           | 2.3        | 11.2       | 99              | 0.3           | 2472.22           | 0.01           | 2                  |                                                                                                                 |
| 5/1/2019  | 1.86        | 8.4      | 230           | 3          |            | 98.8            | 0.3           |                   |                | 2.9                |                                                                                                                 |
| 6/1/2019  | 1.13        | 5.6      | 188           | 1.6        | 7.9        | 99              |               | 2                 | 0.01           | 2                  |                                                                                                                 |
| 7/1/2019  | 2.37        | 10.1     | 203           | 4.5        | 23         | 98              | 0.3           | BC 1407.00        | 10.30040010000 | 2.52               |                                                                                                                 |
| 8/1/2019  | 1.73        | 9.5      | 1.82773574325 | 4.2        | 22         | 98              | 0.3           | 1.002             |                | 2                  | <ul> <li>BOAL ADDRESS AND ADDRESS ADDRESS</li> </ul>                                                            |
| 9/1/2019  | 3.15        | 19.8     | 218           | 4.35       | 24.4       | 98              |               |                   |                | 2.33               |                                                                                                                 |
| 10/1/2019 | 2.34        | 13.3     | 219           | 3.09       | 22         | 98.6            | 0.3           | 2.1               | 0.014          | 2.04               | 0.01                                                                                                            |

| 11/1/2019 | 0.9        | 3.6        | 215         | 1.8        | 6.67       | 99          | 0.3         | 2.3         | 0.001       | 2.09        | 0.001       |
|-----------|------------|------------|-------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 12/1/2019 | 2.45       | 9.2        | 219         | 3.21       | 11.97      | 98.6        | 0.3         | 2           | 0.007       | 2           | 0.0065      |
| 1/1/2020  | 3.41       | 14.8       | 222         | 5.1        | 24         | 97.8        | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 2/1/2020  | 2.65       | 13.4       | 214         | 3.7        | 19         | 98          | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 3/1/2020  | 0.93       | 3.5        | 231         | 1.2        | 6          | 99          | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 4/1/2020  | 1.25       | 6.8        | 241         | 2.61       | 13         | 98.8        | 0.3         | 2           | 0.01        | 2           | 0.0097      |
| 5/1/2020  | 2.31       | 11.9       | 249         | 3.9        | 19.5       | 98          | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 6/1/2020  | 1.44       | 8.4        | 231         | 1.8        | 11.26      | 99.2        | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 7/1/2020  | 4.48       | 28.5       | 230         | 5.16       | 33.4       | 98          | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 8/1/2020  | 1.37       | 10.4       | 230         | 1.5        | 12.2       | 99.3        | 0.3         | 2           | 0.016       | 2           | 0.014       |
| 9/1/2020  | 1.1        | 8.7        | 141         | 1.98       | 15         | 98.6        | 0.3         | 2           | 0.02        | 2           | 0.02        |
| 10/1/2020 | 0.74       | 4.1        | 174         | 2.13       | 10.4       | 98.9        | 0.3         | 2           | 0.02        | 2           | 0.0125      |
| 11/1/2020 | 0.263      | 1.2        | 214         | 0.45       | 2.14       | 99.9        | 0.03        | 2           | 0.01        | 2           | 0.01        |
| 12/1/2020 | 1.5        | 5.9        | 244         | 2.55       | 10.6       | 98.9        | 0.3         | 2           | 0.01        | 2           | 0.008       |
| 1/1/2021  | 1.3        | 5.5        | 237         | 1.8        | 6.8        | 99.1        | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 2/1/2021  | 1.77       | 8.2        | 223         | 2.9        | 12.5       | 98.6        | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 3/1/2021  | 3.36       | 16.1       | 242         | 4.5        | 21         | 98.2        | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 4/1/2021  | 2.45       | 11.7       | 231         | 4.17       | 18.4       | 98          | 0.3         | 2           | 0.01        | 2           | 0.0097      |
| 5/1/2021  | 1.76       | 8.4        | 238         | 2.7        | 13.4       | 98.9        | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 6/1/2021  | 3.87       | 20.2       | 233         | 4.56       | 23         | 98          | 0.3         | 2           | 0.01        | 2           | 0.01        |
| 7/1/2021  | 3.5        | 17.9       | 224         | 7.3        | 35.4       | 97          | 0.9         | 2.4         | 0.01        | 2.13        | 0.01        |
| 8/1/2021  | 4.16       | 23.8       | 207         | 5.88       | 32.9       | 97.1        | 0.03        | 2           | 0.013       | 2           | 0.0115      |
| 9/1/2021  | 1.21       | 5.6        | 208         | 1.7        | 7.8        | 99          | 0.4         | 2           | 0.01        | 2           | 0.0092      |
| 10/1/2021 | 0.9        | 4.7        | 242         | 1.8        | 8.7        | 99          | 0.3         | 2           | 0.012       | 2           | 0.01        |
| 11/1/2021 | 1.05       | 4.8        | 257         | 1.71       | 8.24       | 99.3        | 0.4         | 2           | 0.01        | 2           | 0.01        |
| 12/1/2021 | 2.36       | 11.5       | 214         | 3.3        | 15.7       | 98.6        | 0.03        | 0.9         | 0.004       | 0.9         | 0.004       |
| 1/1/2022  | 1.62       | 7.2        | 225         | 2.28       | 10.4       | 99          | 0.3         | 2           | 0.01        | 1.5         | 0.008       |
| 2/1/2022  | 2.36       | 11         | 236         | 3.3        | 14.9       | 98          | 0.3         | 4           | 0.02        | 2.31        | 0.01        |
| 3/1/2022  |            |            |             |            |            |             |             |             |             |             |             |
| Average   | 1.696      | 8.500      | 223.088     | 2.752      | 13.742     | 98.589      | 0.300       | 2.665       | 0.013       | 2.316       | 0.010       |
| Minimum   | 0.1        | 0.4        | 141         | 0.1        | 0.4        | 96.6        | 0.03        | 0.9         | 0.001       | 0.9         | 0.0009      |
| Maximum   | 4.48       | 28.5       | 261         | 7.35       | 35.4       | 99.9        | 0.9         | 10.2        | 0.04        | 6.43        | 0.025       |
| Count     | 57         | 57         | 57          | 57         | 57         | 57          | 55          | 57          | 57          | 57          | 57          |
| Std Dev   | 1.07262576 | 5.87513344 | 22.31063054 | 1.68678456 | 8.79597142 | 0.699544767 | 0.104333223 | 1.427240157 | 0.006537766 | 0.779653584 | 0.003925602 |
| CV        | 0.63250332 | 0.69119217 | 0.100008331 | 0.61286793 | 0.64005818 | 0.007095532 | 0.347988313 | 0.535567406 | 0.490978463 | 0.3366941   | 0.379349479 |
| 95th      | 3.989      | 20.56      | 253.4       | 6.04       | 33.56      | 99.9        | 0.4         | 5.43        | 0.021       | 3.571       | 0.02        |
| 5th       | 0.226      | 1.12       | 172.6       | 0.37       | 1.85       | 96.99       | 0.03        | 2           | 0.0038      | 1.95        | 0.001225    |
| 90th      | 3.428      | 18.04      | 248.2       | 5.112      | 28.2       | 99.3        | 0.3         | 4.44        | 0.02        | 3.226       | 0.014       |
| 50th      | 1.37       | 6.8        | 229         | 2.28       | 11.26      | 98.8        | 0.3         | 2.00        | 0.01        | 2           | 0.01        |

|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flow, in conduit or |         |                               | Nitrogen,                                                                                                      |             |                     |                |
|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|-------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|---------------------|----------------|
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | thru treatment      |         | Mercury, total                | Not the test of the second |             |                     |                |
|           | E. coli, MTEC-MF   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | plant               |         | recoverable                   | total [as N]                                                                                                   |             |                     |                |
|           | E. COII, INTEC-INT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | piant               |         | recoverable                   |                                                                                                                |             |                     |                |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |         |                               |                                                                                                                |             |                     |                |
|           | Effluent Gross     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Effluent Gross      |         |                               | Effluent Gross                                                                                                 |             |                     |                |
|           | DAILY MX           | MO AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAILY MX            | MO AVG  | MO MAX                        | DAILY MX                                                                                                       | D 1         | MO AVG              |                |
|           |                    | and the second sec |                     |         | Micrograms                    | Milligrams per                                                                                                 |             | Milligrams per      |                |
|           | Milliliters        | Milliliters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Daγ                 | per Day | per Liter                     | Liter                                                                                                          | Day         | Liter               | Pounds per Day |
| 4/1/2017  | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.546               | 0.495   |                               | 1.05                                                                                                           | 4.9         | 0.6                 | 2.7            |
| 5/1/2017  | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.587               | 0.492   | 0.0011                        |                                                                                                                |             | 0.62                | 2.7            |
| 6/1/2017  | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.714               | 0.612   |                               | 1.02                                                                                                           | 5.4         | 0.7                 | 3.4            |
| 7/1/2017  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |         |                               |                                                                                                                |             |                     |                |
| 8/1/2017  | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.889               | 0.715   |                               | 1.2                                                                                                            | 6.9         | 0.65                | 3.8            |
| 9/1/2017  | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.838               | 0.73    |                               | 0.862                                                                                                          | 5.7         | 0.26                | 1.8            |
| 10/1/2017 | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.643               | 0.55    | 0.0018                        | 0.461                                                                                                          | 2.3         | 0.16                | 0.8            |
| 11/1/2017 | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.584               | 0.495   |                               | 0.921                                                                                                          | 3.7         | 0.24                | 1              |
| 12/1/2017 | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.709               | 0.512   |                               | 0.107                                                                                                          | 0.4         | 0.07                | 0.3            |
| 1/1/2018  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |         |                               |                                                                                                                |             |                     |                |
| 2/1/2018  | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.575               | 0.518   |                               | 0.192                                                                                                          | 0.9         | 0.12                | 0.6            |
| 3/1/2018  | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.577               | 0.51    |                               | 0.675                                                                                                          | 3.1         | 0.21                | 0.9            |
| 4/1/2018  | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.601               | 0.507   | 0.018                         | 0.172                                                                                                          | 0.4         | 0.08                | 0.34           |
| 5/1/2018  | 2                  | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.577               | 0.47    |                               | 0.08                                                                                                           | 0.3         | 0.03                | 0.1            |
| 6/1/2018  | 2                  | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.798               | 0.594   | 0.0018                        | 0.04                                                                                                           | 0.2         | 0.03                | 0.12           |
| 7/1/2018  | 2                  | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.699               | 0.597   | 0.0069                        | 0.08                                                                                                           | 0.4         | 0.06                | 0.3            |
| 8/1/2018  | 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.854               | 0.656   |                               | 0.15                                                                                                           | 0.8         | 0.1                 | 0.56           |
| 9/1/2018  | 2                  | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.883               | 0.705   |                               | 0.79                                                                                                           | 5.3         | 0.34                | 2.2            |
| 10/1/2018 | 2                  | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.621               | 0.535   |                               | 0.181                                                                                                          | 0.8         | 0.09                | 0.4            |
| 11/1/2018 | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.593               | 0.508   |                               | 0.07                                                                                                           | 0.32        | 0.05                | 0.21           |
| 12/1/2018 | 2                  | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.576               | 0.449   | 0.00014                       | 0.77                                                                                                           | 0.3         | 0.46                | 0.22           |
| 1/1/2019  | 2                  | 11/1 90/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.56                | 0,489   | VII.W195899.00-5-21 - 85 - 57 | 0.05                                                                                                           | 0,195       | 0.04                | 0.162          |
| 2/1/2019  | 3                  | •12 •1 <del>2</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.736               | 0.502   |                               | 0.984                                                                                                          | 5.2         | 0.41                | 2.03           |
| 3/1/2019  | 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.613               | 0.514   | 0.011                         | 0.477                                                                                                          | 2.4         | 0.19                | 0.9            |
| 4/1/2019  | 2                  | 132-26500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.62                | 0.545   | 10.000                        | 0.421                                                                                                          | 2           | 0.33                | 1.55           |
| 5/1/2019  | 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.608               | 0.524   |                               | 0.1                                                                                                            | 0.1         | 0.07                | 0.3            |
| 6/1/2019  | 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.686               | 0.573   | 0.0019                        |                                                                                                                | 0.5         | 0.08                | 0.325          |
| 7/1/2019  | 2                  | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.716               | 0.613   |                               | 0.067                                                                                                          | 0.3         | 0.06                | 0.275          |
| 8/1/2019  | 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.787               | 0.682   | 0.0056                        | 16/12/11 (6/01/20/20/20/20)                                                                                    | No. Provide | Protocon the Sector | 0.26           |
| 9/1/2019  | 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.919               | 0.769   |                               | 0.072                                                                                                          | 0.4         | 0.05                | 0.3            |
| 10/1/2019 | 2                  | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.933               | 0.703   |                               | 0.072                                                                                                          | 0.28        | 0.03                | 0.23           |
| 10/1/2019 | l                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.933               | 0.044   |                               | 0.00                                                                                                           | 0.20        | 0.04                | 0.25           |

| 11/1/2019 | 2           | 1.32        | 0.769       | 0.484       | 0.00098     | 0.044       | 0,181       | 0.03        | 0.147       |
|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 12/1/2019 | 2           | 1.41        | 0.505       | 0,436       |             | 0.044       | 0.171       | 0.04        | 0.146       |
| 1/1/2020  | 2           | 1.32        | 0.635       | 0.561       |             | 0.057       | 0.28        | 0.04        | 0.168       |
| 2/1/2020  | 1           | 1           | 0.624       | 0.553       | 0.001       | 0.033       | 0.17        | 0.02        | 0.09        |
| 3/1/2020  | 2           | 1.322       | 0.623       | 0.556       |             | 0.152       | 0.188       | 0.06        | 0.123       |
| 4/1/2020  | 2           | 1.32        | 0.662       | 0.573       |             | 0.443       | 2.2         | 0.32        | 0.15        |
| 5/1/2020  | 2           | 1.52        | 0.665       | 0.59        | 0.0011      | 0.09        | 0.4         | 0.06        | 0.3         |
| 6/1/2020  | 2           | 1.32        | 0.754       | 0.659       |             | 0.045       | 0.28        | 0.04        | 0.23        |
| 7/1/2020  | 2           | 1.52        | 0.788       | 0.729       |             | 0.044       | 0.28        | 0.03        | 0.21        |
| 8/1/2020  | 2           | 1.41        | 1.02        | 0.867       | 0.0011      | 0.4         | 2.8         | 0.11        | 0.78        |
| 9/1/2020  | 2           | 1.41        | 1.02        | 0.922       |             | 0.044       | 0.4         | 0.04        | 0.3         |
| 10/1/2020 | 2           | 1.74        | 0.914       | 0.698       |             | 0.093       | 0.65        | 0.04        | 0.264       |
| 11/1/2020 | 2           | 1.68        | 0.602       | 0.536       | 0.0011      | 0.061       | 0.28        | 0.04        | 0.19        |
| 12/1/2020 | 2           | 1.52        | 0.695       | 0.513       |             | 0.113       | 0.5         | 0.09        | 0.37        |
| 1/1/2021  | 3           | 1.89        | 0.562       | 0.503       |             | 0.049       | 0.2         | 0.04        | 0.15        |
| 2/1/2021  | 2           | 1.41        | 0.63        | 0.522       |             | 0.042       | 0.2         | 0.02        | 0.11        |
| 3/1/2021  | 2           | 1.15        | 0.636       | 0.541       | 0.0013      | 0.861       | 4.1         | 0.7         | 3.3         |
| 4/1/2021  | 2           | 1.52        | 0.792       | 0.562       |             | 0.063       | 0.3         | 0.06        | 0.3         |
| 5/1/2021  | 2           | 1.41        | 0.613       | 0.532       |             | 0.06        | 0.3         | 0.04        | 0.19        |
| 6/1/2021  | 1           | 1           | 0.663       | 0.594       |             | 0.512       | 2.7         | 0.34        | 1.7         |
| 7/1/2021  | 2           | 1.52        | 0.7         | 0.604       | 0.0011      | 0.081       | 0.4         | 0.06        | 0.3         |
| 8/1/2021  | 2           | 1.41        | 0.767       | 0.652       |             | 0.046       | 0.26        | 0.04        | 0.23        |
| 9/1/2021  | 2           | 1.15        | 0.924       | 0.732       | 0.0015      | 0.061       | 0.3         | 0.04        | 0.19        |
| 10/1/2021 | 2           | 1.15        | 0.731       | 0.609       |             | 0.047       | 0.2         | 0.04        | 0.2         |
| 11/1/2021 | 2           | 1.41        | 0.629       | 0.519       | 0.0011      | 0.048       | 0.2         | 0.04        | 0.185       |
| 12/1/2021 | 2           | 1.32        | 0.569       | 0.475       |             | 0.089       | 0.4         | 0.06        | 0.27        |
| 1/1/2022  | 2           | 1.32        | 0.658       | 0.529       |             | 0.082       | 0.4         | 0.06        | 0.3         |
| 2/1/2022  | 1           | 1           | 0.624       | 0.538       |             | 0.067       | 0.3         | 0.05        | 0.225       |
| 3/1/2022  |             |             |             |             |             |             |             |             |             |
| Average   | 1.737       | 1.263       | 0.699       | 0.581       | 0.003       | 0.279       | 1.346       | 0.153       | 0.700       |
| Minimum   | 1           | 1           | 0.505       | 0.436       | 0.00014     | 0.033       | 0.1         | 0.02        | 0.09        |
| Maximum   | 3           | 1.89        | 1.02        | 0.922       | 0.018       | 1.2         | 6.9         | 0.700       | 3.8         |
| Count     | 57          | 57          | 57          | 57          | 18          | 57          | 57          | 57          | 57          |
| Std Dev   | 0.513888369 | 0.233976415 | 0.124276729 | 0.099000418 | 0.004453369 | 0.33654701  | 1.77796434  | 0.187357743 | 0.916897113 |
| CV        | 0.295875122 | 0.185226183 | 0.177912738 | 0.170515013 | 1.369799192 | 1.205958355 | 1.320700689 | 1.221898326 | 1.309853019 |
| 95th      | 2.1         | 1.74        | 0.9417      | 0.7788      | #NUM!       | 1.023       | 5.43        | 0.6550      | 3.31        |
| 5th       | 1           | 1           | 0.5586      | 0.4679      | #NUM!       | 0.0418      | 0.1709      | 0.029       | 0.109       |
| 90th      | 2           | 1.552       | 0.915       | 0.7292      | 0.0117      | 0.893       | 4.96        | 0.488       | 2.3         |
| 50th      | 2           | 1.32        | 0.662       | 0.55        | 0.0012      | 0.089       | 0.4         | 0.060       | 0.3         |

|           |                           |                   |              |          |                                                                   |                                      |                            |                                         | č.                |                |
|-----------|---------------------------|-------------------|--------------|----------|-------------------------------------------------------------------|--------------------------------------|----------------------------|-----------------------------------------|-------------------|----------------|
|           | Nitrogen, total [as<br>N] | Oxygen, dissolved | pН           |          | Phosphorus,<br>total [as P]                                       | Solids, suspended<br>percent removal | Solids, total<br>suspended |                                         |                   |                |
|           |                           | [50]              | Effluent     |          | cotar [as r]                                                      |                                      | Juspendeu                  |                                         | Raw Sewage        |                |
|           | Effluent Gross            | Effluent Gross    | Gross        |          | Effluent Gross                                                    | Percent Removal                      | Effluent Gross             |                                         | Influent          |                |
|           | MO MAX                    | MOMIN             | INST MAX     | INST MIN | MO MAX                                                            | MO AV MN                             | MO AVG                     |                                         | MO AVG            | WKLY AVG       |
|           | Milligrams per            | Milligrams per    |              | Standard | Milligrams per                                                    |                                      | Milligrams per             | Pounds per                              |                   | Milligrams per |
| Date      | Liter                     | Liter             | Units        | Units    | Liter                                                             | Percent                              | Liter                      | Dav                                     | Liter             | Liter          |
| 4/1/2017  | 3.85                      | 7.9               | 7.6          | 6.9      | 5.13                                                              | 27.813/26016/10/26128/               | 1.75                       | 1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | 223.5             | 2              |
| 5/1/2017  | 3.26                      | 10 202372         | 7.5          | 7.0      | 5.25                                                              | 1201207                              | 1.5                        | 7                                       | 258.3             |                |
| 6/1/2017  | 2.42                      | 6.1               | 7.5          | 6.7      | 3.19                                                              |                                      | 2.2                        | 11.4                                    |                   |                |
| 7/1/2017  |                           |                   | 04 1940      |          | 0.01 26000                                                        |                                      |                            | 51 000 H                                |                   |                |
| 8/1/2017  | 0.3                       | 5.8               | 7.8          | 7.0      | 3.71                                                              | 99                                   | 1                          | 7                                       | 226.6             | 1              |
| 9/1/2017  | 10.1                      | 6.2               | 7.5          | 7.2      | 3.9                                                               |                                      | 3                          | 18.3                                    |                   |                |
| 10/1/2017 | 10.3                      | 6.6               | 7.7          | 7.2      | 3.88                                                              | 98.6                                 | 1.5                        | 7.5                                     | 227               | 3              |
| 11/1/2017 | 10.2                      | 7.7               | 7.7          | 6.9      |                                                                   | 98.7                                 | 2.2                        | 9.4                                     | 211.2             | 3              |
| 12/1/2017 | 4.9                       | 7.9               | 7.5          | 7.0      | 3.52                                                              | 99                                   | 1.25                       | 5.75                                    | 226.5             | 2              |
| 1/1/2018  |                           |                   |              |          |                                                                   |                                      |                            |                                         |                   |                |
| 2/1/2018  | 3.4                       | 7.9               | 7.5          | 7.0      | 5.36                                                              | 98                                   | 1.75                       | 8.25                                    | 265.5             |                |
| 3/1/2018  | 2.28                      |                   |              | 7.1      | 3.87                                                              | 99                                   | 1.6                        | 7.4                                     |                   |                |
| 4/1/2018  | 0.9                       | 7.1               | 7.3          | 6.9      | 3.07                                                              | 98                                   | 3.3                        | 14.4                                    | 377               | 5              |
| 5/1/2018  | 1.28                      | 7.2               | 7.4          | 7.0      | 2.53                                                              | 96.2                                 | 4.4                        | 19.8                                    | 984927723         |                |
| 6/1/2018  | 2.1                       | 7.1               | 7.4          | 7.1      | 7.1                                                               | 98.4                                 | 1.8                        | 9.6                                     | 247               |                |
| 7/1/2018  | 2.3                       |                   | 7.7          | 7.0      |                                                                   | 99.3                                 | 1.3                        |                                         | 278               |                |
| 8/1/2018  | 2.9                       | (20%GSMD          | 7.8          | 6.9      | 3.17                                                              | 99                                   | 1.9                        | 10.3                                    | 05 3.45 13        | 2.7            |
| 9/1/2018  | 7.48                      | 7.2               | 7.4          | 6.8      | 100532 15 10                                                      | 98                                   | 3.9                        | 24                                      |                   | 2 PS / SS / SS |
| 10/1/2018 |                           | 7                 | 7.6          | 7.0      |                                                                   | 99.2                                 | 1.5                        | 7.08                                    |                   |                |
| 11/1/2018 |                           | 7.3               |              | 6.9      |                                                                   | 99.2                                 | 2.08                       | 9.48                                    | 1/ PAGE 2017/2017 |                |
| 12/1/2018 | 10.6                      |                   | 7.4          | 7.0      | <ul> <li>MONTAL AND AND AND AND AND AND AND AND AND AND</li></ul> | 99                                   | 1.49                       | 6.28                                    | 96-2922/37354     |                |
| 1/1/2019  | 4.04                      | 8.3               | 7.5          | 7.0      |                                                                   |                                      | 1.59                       | 6.71                                    | 365.8             |                |
| 2/1/2019  | 2.88                      |                   | 7.8          | 7.0      |                                                                   | 9                                    | 2.77                       | 12.6                                    |                   |                |
| 3/1/2019  |                           | 7.4               |              | 7.0      |                                                                   |                                      | 4.5                        |                                         | 271.5             |                |
| 4/1/2019  | 2.96                      | 6.8               | 7.9          | 7.0      |                                                                   |                                      | 2.2                        | 10.58                                   |                   | 3.3            |
| 5/1/2019  | 3.3                       |                   | 7.4          | 7.0      |                                                                   | 98.6                                 | 3.14                       | 14                                      |                   |                |
| 6/1/2019  |                           | 8                 | A 12 12      | 7.0      |                                                                   | 98                                   | 2.6                        | 12.7                                    | 375               |                |
| 7/1/2019  | 8.62                      | 6.6               | 201 (17529-2 | 7.0      |                                                                   | 98                                   | 1.45                       | 7.54                                    |                   | 2 Substation   |
| 8/1/2019  | 5.29                      | 8                 |              | 7.0      |                                                                   | 98                                   | 3.16                       | 18.9                                    | 0                 |                |
| 9/1/2019  | 5.78                      |                   |              | 7.1      | 2.85                                                              |                                      | 1.49                       | 9.83                                    |                   |                |
| 10/1/2019 | 5.42                      | 7.1               | 7.4          | 7.0      | 3.22                                                              | 98.6                                 | 1.6                        | 9.56                                    | 485.6             | 2.22           |

| 44/4/0040 | 5.4         |             | 7.0        | 0.7        | 0.0         | 07.0        | 0.07        | 40.00  | 070 5   |       |
|-----------|-------------|-------------|------------|------------|-------------|-------------|-------------|--------|---------|-------|
| 11/1/2019 | 5.4         | 8           | 7.8        | 6.7        | 3.2         | 97.8        | 2.97        | 12.99  | 273.5   | 5     |
| 12/1/2019 | 3.4         | 6.1         | 7.4        | 7.1        | 2.36        | 99.4        | 1.76        | 6.7    | 464     | 2.5   |
| 1/1/2020  | 2.95        | 7.1         | 7.5        | 7.0        | 1.43        | 99.1        | 1.5         | 7.26   | 429.8   | 2.22  |
| 2/1/2020  | 2.99        | 7.3         | 7.4        | 6.9        | 0.66        | 99          | 1.36        | 6.73   | 308.5   | 2.2   |
| 3/1/2020  | 2.91        | 7.5         | 7.3        | 7.0        | 0.62        | 98          | 2.31        | 11.26  | 329.3   | 4.08  |
| 4/1/2020  | 2.48        | 6.6         | 7.3        | 7.0        | 2.06        | 98.6        | 1.94        | 9.69   | 428.1   | 2.5   |
| 5/1/2020  | 1.9         | 7.1         | 7.4        | 7.0        | 0.35        | 98          | 1.69        | 8.77   | 235     | 2.4   |
| 6/1/2020  | 1.81        | 6.9         | 7.2        | 6.9        | 0.32        | 99.4        | 1.85        | 10.52  | 505.3   | 2.5   |
| 7/1/2020  | 1.91        | 8           | 7.2        | 7.0        | 1.19        | 99.3        | 1.85        | 11.86  | 380.6   | 2.66  |
| 8/1/2020  | 2.37        | 7.6         | 7.4        | 7.0        | 1.35        | 98.8        | 2.3         | 18.05  | 310     | 4.2   |
| 9/1/2020  | 3.48        | 7           | 7.4        | 7.0        | 0.28        | 99          | 2.1         | 17.4   | 291.3   | 2.5   |
| 10/1/2020 | 4.81        | 7.2         | 7.4        | 7.0        | 4.27        | 97.9        | 2.6         | 16.01  | 204.6   | 4     |
| 11/1/2020 | 3.8         | 8           | 7.4        | 7.0        | 3.28        | 99.3        | 2.32        | 10.92  | 357.1   | 3.33  |
| 12/1/2020 | 0.5         | 7.7         | 7.2        | 7.0        | 2.68        | 98          | 3.04        | 11.9   | 243     | 5     |
| 1/1/2021  | 3.6         | 8.8         | 7.3        | 7.0        | 2.18        | 98.8        | 2.25        | 9.25   | 382.5   | 3.6   |
| 2/1/2021  | 1.84        | 7.9         | 7.4        | 7.0        | 2.16        | 98          | 3.15        | 14.9   | 259     | 4.3   |
| 3/1/2021  | 1.45        | 7.6         | 7.6        | 7.1        | 0.42        | 99.4        | 1.75        | 8.49   | 499.3   | 3.33  |
| 4/1/2021  | 2.7         | 7           | 7.6        | 7.0        | 2.73        | 99.2        | 1.75        | 8.64   | 342.2   | 2.35  |
| 5/1/2021  | 2.72        | 6.8         | 8.1        | 6.8        | 0.99        | 97.5        | 3.9         | 18.7   | 340     | 8     |
| 6/1/2021  | 3.82        | 7.1         | 7.6        | 7.0        | 2.63        | 92.5        | 10.3        | 53.65  | 361.4   | 30    |
| 7/1/2021  | 2.4         | 7.9         | 7.6        | 7.0        | 0.36        | 99          | 2.8         | 14.5   | 424     | 5     |
| 8/1/2021  | 3.36        | 8.1         | 7.7        | 6.9        | 0.76        | 98.2        | 2.4         | 14.05  | 307     | 3.53  |
| 9/1/2021  | 1.02        | 7.8         | 7.6        | 7.1        | 0.12        | 99          | 1.86        | 8.68   | 254     | 3.2   |
| 10/1/2021 | 0.58        | 7.9         | 7.2        | 6.8        | 0.36        | 99          | 1.8         | 8.5    | 282.3   | 3     |
| 11/1/2021 | 2.88        | 8.1         | 7.4        | 6.8        | 2.15        | 98.7        | 2.12        | 9.57   | 316     | 2.5   |
| 12/1/2021 | 2.1         | 8.1         | 7.2        | 6.9        | 1.28        | 98.7        | 1.86        | 9.08   | 330.4   | 3     |
| 1/1/2022  | 6.24        | 7.9         | 7.2        | 7.0        | 2.15        | 98.8        | 7.2         | 8.68   | 371     | 3.3   |
| 2/1/2022  | 5.06        | 8           | 7.2        | 7.0        | 0.67        | 99          | 2.1         | 9.6    | 281.8   | 3.2   |
| 3/1/2022  |             | -00e        | 0.8.0      | 14 1995.   |             |             |             |        |         |       |
| Average   | 4.023       | 7.333       | 7.502      | 6.977      | 2.844       | 98,439      | 2.434       | 11.906 | 320.026 | 4.268 |
| Minimum   | 0.3         | 5.8         | 7.2        | 6.7        | 0.12        | 92.5        | 1           | 5.75   | 204.6   | 1     |
| Maximum   | 21.5        | 8.8         | 8.1        | 7.2        | 21.1        | 99.5        | 10.3        | 53.65  | 505.3   | 30    |
| Count     | 55          | 57          | 57         | 57         | 54          | 57          | 57          | 57     | 57      | 57    |
| Std Dev   | 3.418979143 | 0.646266832 | 0.20561523 | 0.09736447 | 3.024926333 | 1.13751875  | 1.45742256  | 6.989  | 77.330  | 4.354 |
| cv        | 0.849800492 | 0.088127295 | 0.02740895 | 0.01395468 | 1.06365841  | 0.011555617 | 0.598724943 | 0.587  | 0.242   | 1.020 |
| 95th      | 10.36       | 8.12        | 7.9        | 7.11       | 7.2225      | 99.4        | 4.77        | 21.93  | 486.97  | 9.9   |
| 5th       | 0.564       | 6.1         | 7.2        | 6.79       | 0.28        | 96.05       | 1.295       | 6.658  | 219.57  | 2     |
| 90th      | 9.212       | 8.02        | 7.2        | 7.1        | 5.19        | 99.3        | 3.9         | 18.74  | 431.76  | 7.2   |
|           |             |             |            | 7.1        |             |             |             |        |         | 3     |
| 50th      | 2.96        | 7.3         | 7.4        | 7          | 2.58        | 98.8        | 2.08        | 9.6    | 308.5   |       |

|           |            | Temperature,       |                                   |          | Pimephales        |          |                |            | 6                        |               |
|-----------|------------|--------------------|-----------------------------------|----------|-------------------|----------|----------------|------------|--------------------------|---------------|
|           |            | water deg.         | Toxicity [acute],                 |          | promelas [Fathead |          | Zinc, total    |            |                          |               |
|           |            | centigrade         | Ceriodaphnia dubia                |          | Minnow]           |          | recoverable    |            |                          |               |
|           |            |                    |                                   |          |                   |          |                |            |                          |               |
|           |            | Effluent Gross     | See Comments                      |          | Toxicity [acute], |          | Effluent Gross |            |                          |               |
|           |            | DAILY MX           | DAILY MX                          | MO AVG   | DAILY MX          | MO AVG   | DAILY MX       |            | MO AVG                   |               |
|           | Pounds per |                    |                                   | Toxicity |                   | Toxicity | Micrograms per | Pounds per | Micrograms               | Pounds per    |
| Date      | Dav        | Degrees Centigrade | Toxicity Units                    | Units    | Toxicity Units    | Units    | Liter          | Day        | per Liter                | Dav           |
| 4/1/2017  | 10         |                    | And a barrow water a state of the | 1        | 1                 | 1        | 126            | 15170228   | Contraction Contractions | 744.852.534.5 |
| 5/1/2017  | 11         | 22                 |                                   |          |                   |          | 77.5           | 0.3        | 69.88                    | 0.3           |
| 6/1/2017  | 18         |                    | 1                                 | 1        | 1                 | 1        | 94.5           | 0.6        | 69.2                     |               |
| 7/1/2017  |            |                    |                                   |          |                   |          |                |            |                          |               |
| 8/1/2017  | 9          | 25                 |                                   |          |                   |          | 94             | 0.5        | 67.9                     | 0.4           |
| 9/1/2017  | 48         | 23                 |                                   |          |                   |          | 58             | 0.4        | 57.7                     | 0.4           |
| 10/1/2017 | 15         | 20                 | 1                                 | 1        | 1                 | 1        | 65.5           | 0.3        | 61.63                    | 0.3           |
| 11/1/2017 | 14         | 18                 |                                   |          |                   |          | 78.5           | 0.4        | 71.9                     | 0.3           |
| 12/1/2017 | 9          | 15                 | 1                                 | 1        | 1                 | 1        | 74.5           | 0.4        | 65                       | 0.3           |
| 1/1/2018  | -          |                    |                                   |          |                   |          |                |            |                          |               |
| 2/1/2018  | 14         | 15                 |                                   |          |                   |          | 76.5           | 0.4        |                          | 0.3           |
| 3/1/2018  | 10         |                    | 1                                 | 1        | 1                 | 1        | 114            |            | 72.1                     | 0.3           |
| 4/1/2018  | 21         | 20                 |                                   |          |                   |          | 73             | 0.4        | 62.4                     | 0.325         |
| 5/1/2018  | 53         |                    |                                   |          |                   |          | 148            | 0.7        | 117.6                    | 0.5           |
| 6/1/2018  | 22         |                    |                                   |          | 1                 | 1        | 126            | 0.6        | 67.4                     |               |
| 7/1/2018  | 12         |                    | 1                                 | 1        |                   |          | 58             | 0.3        |                          |               |
| 8/1/2018  | 15.7       | 26                 |                                   |          |                   |          | 63.5           |            | 53.2                     |               |
| 9/1/2018  | 42         | - Validade         |                                   |          |                   |          | 53             | 07.000     | 15761611 V               | 0.25          |
| 10/1/2018 | 13         |                    | 1                                 | 1        | 1                 | 1        | 61.5           |            |                          | 0.25          |
| 11/1/2018 | 15.8       |                    |                                   |          |                   |          | 189            |            |                          |               |
| 12/1/2018 | 11.6       | - 10411-V/         |                                   |          |                   |          | 105            | - VALMENCE |                          |               |
| 1/1/2019  | 9.3        |                    |                                   |          |                   |          | 91.5           |            |                          |               |
| 2/1/2019  | 15.4       |                    |                                   |          |                   |          | 154            |            |                          |               |
| 3/1/2019  |            |                    |                                   |          |                   |          | 97             | 4.8        | 77.3                     |               |
| 4/1/2019  | 15.6       |                    |                                   |          |                   |          | 168            |            |                          | 0.42          |
| 5/1/2019  | 24         |                    |                                   |          |                   |          | 75             |            | 63                       |               |
| 6/1/2019  | 24         |                    |                                   |          |                   |          | 62             | 0.33       | 60.6                     | 2022502 65    |
| 7/1/2019  | 13.7       | 23                 |                                   |          |                   |          | 68             |            | 51.75                    |               |
| 8/1/2019  | 56         |                    |                                   |          |                   |          | 51             | 0.3        | 9                        | 20010000000   |
| 9/1/2019  | 15         |                    |                                   |          |                   |          | 42.4           |            |                          |               |
| 10/1/2019 | 16.27      | 20                 |                                   |          |                   |          | 63.5           | 0.305      | 45.76                    | 0.256         |

| 11/1/2019 | 24.5   | 18     |       |       |       |       | 62.5   | 0.03  | 55.25  | 0.225  |
|-----------|--------|--------|-------|-------|-------|-------|--------|-------|--------|--------|
| 12/1/2019 | 10.4   | 15     |       |       |       |       | 87     | 0.3   | 70.7   | 0.24   |
| 1/1/2020  | 11.39  | 15     |       |       |       |       | 106    | 0.5   | 61.9   | 0.3    |
| 2/1/2020  | 10.7   | 16     |       |       |       |       | 49.4   | 0.2   | 45.8   | 0.2    |
| 3/1/2020  | 20     | 17     |       |       |       |       | 51.1   | 0.245 | 48.96  | 0.235  |
| 4/1/2020  | 12.62  | 18     |       |       |       |       | 53.5   | 0.25  | 41.64  | 0.2    |
| 5/1/2020  | 12.3   | 17     |       |       |       |       | 54.5   | 0.3   | 49.4   | 0.25   |
| 6/1/2020  | 13     | 22     |       |       |       |       | 62.5   | 0.39  | 49.3   | 0.27   |
| 7/1/2020  | 16.8   | 23     |       |       |       |       | 54     | 0.33  | 48.16  | 0.29   |
| 8/1/2020  | 34.7   | 24     |       |       |       |       | 58.5   | 0.48  | 42.1   | 0.33   |
| 9/1/2020  | 20     | 21     |       |       |       |       | 31.6   | 0.26  | 30.7   | 0.25   |
| 10/1/2020 | 26.9   | 21.8   |       |       |       |       | 51.5   | 0.36  | 45.8   | 0.3    |
| 11/1/2020 | 15.42  | 18     |       |       |       |       | 120    | 0.57  | 74.1   | 0.3    |
| 12/1/2020 | 17     | 18.1   |       |       |       |       | 124    | 0.5   | 90.1   | 0.36   |
| 1/1/2021  | 13.5   | 15.1   |       |       |       | -     | 94.5   | 0.4   | 82.6   | 0.325  |
| 2/1/2021  | 21     | 14.5   |       |       |       |       | 74     | 0.36  | 61.25  | 0.29   |
| 3/1/2021  | 16.2   | 17     |       |       |       |       | 64     | 0.33  | 56.7   | 0.275  |
| 4/1/2021  | 12     | 16.5   |       |       |       |       | 128    | 0.6   | 96     | 0.47   |
| 5/1/2021  | 39.6   | 21.9   |       |       |       |       | 81     | 0.4   | 67     | 0.35   |
| 6/1/2021  | 156.6  | 24.7   |       |       |       |       | 56.5   | 0.3   | 49.6   | 0.25   |
| 7/1/2021  | 26     | 24.8   |       |       |       |       | 62     | 0.3   | 52.6   | 0.3    |
| 8/1/2021  | 19.93  | 27     |       |       |       |       | 48.8   | 0.27  | 34     | 0.195  |
| 9/1/2021  | 14.7   | 22     |       |       |       |       | 62.5   | 0.3   | 44.34  | 0.22   |
| 10/1/2021 | 16     | 19     |       |       |       |       | 75.5   | 0.36  | 56.5   | 0.29   |
| 11/1/2021 | 11.07  | 18     | 1     | 1     | 1     | 1     | 69     | 0.3   | 55     | 0.25   |
| 12/1/2021 | 15     | 16.8   |       |       |       |       | 50     | 0.2   | 45.06  | 0.2    |
| 1/1/2022  | 15.3   | 17.1   |       |       |       |       | 51     | 0.2   | 50     | 0.2    |
| 2/1/2022  | 14     | 14.4   |       |       |       |       | 60     | 0.3   | 50.25  | 0.23   |
| 3/1/2022  |        |        |       |       |       |       |        |       |        |        |
| Average   | 21.474 | 19.539 | 1.000 | 1.000 | 1.000 | 1.000 | 79.847 | 0.631 | 62.302 | 0.484  |
| Minimum   | 9      | 14     | 1     | 1     | 1     | 1     | 31.6   | 0.03  | 30.7   | 0.0225 |
| Maximum   | 156.6  | 27     | 1     | 1     | 1     | 1     | 189    | 4.8   | 136.5  | 3.8    |
| Count     | 57     | 57     | 8     | 8     | 8     | 8     | 57     | 57    | 57     | 57     |
| Std Dev   | 20.937 | 3.509  | 0.000 | 0.000 | 0.000 | 0.000 | 32.912 | 0.941 | 19.622 | 0.713  |
| CV        | 0.975  | 0.180  | 0.000 | 0.000 | 0.000 | 0.000 | 0.412  | 1.491 | 0.315  | 1.473  |
| 95th      | 53.3   | 25.1   | 1     | 1     | 1     | 1     | 155.4  | 3.906 | 102.21 | 2.808  |
| 5th       | 9.27   | 14.36  | 1     | 1     | 1     | 1     | 48.16  | 0.183 | 38.977 | 0.1781 |
| 90th      | 40.08  | 24.84  | 1     | 1     | 1     | 1     | 126.4  | 0.8   | 90.93  | 0.52   |
| 50th      | 15.42  | 20     | 1     | 1     | 1     | 1     | 68     | 0.36  | 57.7   | 0.3    |

### **Receiving Water Data**

### Upstream

|                 | Receiving<br>water<br>(cfs) | BOD<br>(mg/L) | TSS<br>(mg/L) | DO<br>(mg/L) | Phosphorus<br>(mg/L) | Nitrogen<br>(mg/L) | Temp<br>(°C) | PH (S.U) | Hardness<br>(mg/L) |
|-----------------|-----------------------------|---------------|---------------|--------------|----------------------|--------------------|--------------|----------|--------------------|
| Average         | 121.5                       | 2.0           | 9.3           | 9.2          | 0.07                 | 0.57               | 18.1         | 7.9      | 45.5               |
| Minimum         | 20.0                        | 0.1           | 1.0           | 8.0          | 0.05                 | 0.10               | 9.1          | 7.0      | 24.0               |
| 5th percentile  | 29.0                        | 0.5           | 1.0           | 8.1          | 0.07                 | 0.15               | 12.5         | 7.2      | 24.0               |
| 95th percentile | 205.0                       | 5.7           | 21.0          | 10.6         | 0.09                 | 1.43               | 23.1         | 9.1      | 77.8               |
| Count           | 660                         | 130           | 53            | 132          | 35                   | 35                 | 659          | 69       | 34                 |

#### Downstream

|                 | Receiving<br>water<br>(cfs) | BOD<br>(mg/L) | TSS<br>(mg/L) | DO<br>(mg/L) | Phosphorus<br>(mg/L) | Nitrogen<br>(mg/L) | Temp<br>(°C) | PH (S.U) | Hardness<br>(mg/L) |
|-----------------|-----------------------------|---------------|---------------|--------------|----------------------|--------------------|--------------|----------|--------------------|
| Average         | 121.5                       | 1.8           | 8.4           | 9.3          | 0.11                 | 0.57               | 18.0         | 7.7      | 45.8               |
| Minimum         | 20.0                        | 0.1           | 1.0           | 8.0          | 0.07                 | 0.16               | 9.1          | 6.4      | 28.0               |
| 5th percentile  | 28.5                        | 0.2           | 1.0           | 8.2          | 0.07                 | 0.17               | 12.7         | 7.2      | 29.4               |
| 95th percentile | 205.0                       | 5.4           | 22.8          | 10.8         | 0.44                 | 1.26               | 22.8         | 8.8      | 77.3               |
| Count           | 659                         | 130           | 44            | 138          | 34                   | 35                 | 660          | 64       | 33                 |

### Appendix C. Reasonable Potential and WQBEL Formulae

A. Reasonable Potential Analysis

EPA uses the process described in the *Technical Support Document for Water Quality-based Toxics Control* (EPA, 1991) to determine reasonable potential. To determine if there is reasonable potential for the discharge to cause or contribute to an exceedance of water quality criteria for a given pollutant, EPA compares the maximum projected receiving water concentration to the water quality criteria for that pollutant. If the projected receiving water concentration exceeds the criteria, there is reasonable potential, and a WQBEL must be included in the permit.

1. Mass Balance

For discharges to flowing water bodies, the maximum projected receiving water concentration is determined using the following mass balance equation:

$$C_dQ_d = C_eQ_e + C_uQ_u$$
 Equation 1

where,

| Cd | = | Receiving water concentration downstream of the effluent discharge (that is, the concentration at the edge of the mixing zone) |
|----|---|--------------------------------------------------------------------------------------------------------------------------------|
| Ce | = | Maximum projected effluent concentration                                                                                       |
| Cu | = | 95th percentile measured receiving water upstream concentration                                                                |
| Qd | = | Receiving water flow rate downstream of the effluent discharge = $Q_e+Q_u$                                                     |
| Qe | = | Effluent flow rate (set equal to the design flow of the WWTP)                                                                  |
| Qu | = | Receiving water low flow rate upstream of the discharge (1Q10, 7Q10 or 30B3)                                                   |

When the mass balance equation is solved for C<sub>d</sub>, it becomes:

$$C_{d} = \frac{C_{e} \times Q_{e} + C_{u} \times Q_{u}}{Q_{e} + Q_{u}}$$
 Equation 2

The above form of the equation assumes that the discharge is rapidly and completely mixed with 100% of the receiving stream.

If the mixing zone is based on less than complete mixing with the receiving water, the equation becomes:

$$C_{d} = \frac{C_{e} \times Q_{e} + C_{u} \times (Q_{u} \times \%MZ)}{Q_{e} + (Q_{u} \times \%MZ)}$$
Equation 3

Where:

% MZ = the percentage of the receiving water flow available for mixing.

If a mixing zone is not allowed, dilution is not considered when projecting the receiving water concentration and,

A dilution factor (D) can be introduced to describe the allowable mixing. Where the dilution factor is expressed as:

$$D = \frac{Q_{e} + Q_{u} \times \%MZ}{Q_{e}}$$
 Equation 5

After the dilution factor simplification, the mass balance equation becomes:

$$C_d = \frac{C_e - C_u}{D} + C_u$$
 Equation 6

If the criterion is expressed as dissolved metal, the effluent concentrations are measured in total recoverable metal and must be converted to dissolved metal as follows:

$$C_{d} = \frac{CF \times C_{e} - C_{u}}{D} + C_{u}$$
 Equation 7

Where  $C_e$  is expressed as total recoverable metal,  $C_u$  and  $C_d$  are expressed as dissolved metal, and CF is a conversion factor used to convert between dissolved and total recoverable metal.

The above equations for  $C_d$  are the forms of the mass balance equation which were used to determine reasonable potential and calculate wasteload allocations.

2. Maximum Projected Effluent Concentration

When determining the projected receiving water concentration downstream of the effluent discharge, EPA's Technical Support Document for Water Quality-based Toxics Controls (TSD, 1991) recommends using the maximum projected effluent concentration (Ce) in the mass balance calculation (see equation 3, page C-5). To determine the maximum projected effluent concentration (Ce) EPA has developed a statistical approach to better characterize the effects of effluent variability. The approach combines knowledge of effluent variability as estimated by a coefficient of variation (CV) with the uncertainty due to a limited number of data to project an estimated maximum concentration for the effluent. Once the CV for each pollutant parameter has been calculated, the reasonable potential multiplier (RPM) used to derive the maximum projected effluent concentration (Ce) can be calculated using the following equations:

First, the percentile represented by the highest reported concentration is calculated.

$$p_n = (1 - confidence level)^{1/n}$$

Equation 8

where,

 $p_n = the percentile represented by the highest reported concentration$ 

n = the number of samples

confidence level = 99% = 0.99

and  $RPM = \frac{C_{99}}{C_{P_n}} = \frac{e^{Z_{99} \times \sigma - 0.5 \times \sigma^2}}{e^{Z_{P_n} \times \sigma - 0.5 \times \sigma^2}}$ Equation 9 Where,  $\sigma^2 = \ln(CV^2 + 1)$   $Z_{99} = 2.326 (z-score for the 99^{th} percentile)$   $Z_{P_n} = z-score for the P_n percentile (inverse of the normal cumulative distribution function at a given percentile)$ 

CV = coefficient of variation (standard deviation ÷ mean)

The maximum projected effluent concentration is determined by simply multiplying the maximum reported effluent concentration by the RPM:

where MRC = Maximum Reported Concentration

3. Maximum Projected Effluent Concentration at the Edge of the Mixing Zone

Once the maximum projected effluent concentration is calculated, the maximum projected effluent concentration at the edge of the acute and chronic mixing zones is calculated using the mass balance equations presented previously.

4. Reasonable Potential

The discharge has reasonable potential to cause or contribute to an exceedance of water quality criteria if the maximum projected concentration of the pollutant at the edge of the mixing zone exceeds the most stringent criterion for that pollutant.

### B. WQBEL Calculations

1. Calculate the Wasteload Allocations (WLAs)

Wasteload allocations (WLAs) are calculated using the same mass balance equations used to calculate the concentration of the pollutant at the edge of the mixing zone in the reasonable potential analysis. To calculate the wasteload allocations,  $C_d$  is set equal to the acute or chronic criterion and the equation is solved for  $C_e$ . The calculated  $C_e$  is the acute or chronic WLA. Equation 6 is rearranged to solve for the WLA, becoming:

$$C_e = WLA = D \times (C_d - C_u) + C_u$$

Equation 11

Some quality criteria for some metals are expressed as the dissolved fraction, but the Federal regulation at 40 CFR 122.45(c) requires that effluent limits be expressed as total recoverable metal. Therefore, EPA must calculate a wasteload allocation in total recoverable metal that will be protective of the dissolved criterion. This is accomplished by dividing the WLA expressed as dissolved by the criteria translator, as shown in equation \_\_\_\_. As discussed in Appendix \_\_\_\_\_, the criteria translator (CT) is equal to the conversion factor, because site-specific translators are not available for this discharge.

$$C_{e} = WLA = \frac{D \times (C_{d} - C_{u}) + C_{u}}{CT}$$
 Equation 12

The next step is to compute the "long term average" concentrations which will be protective of the WLAs. This is done using the following equations from EPA's *Technical Support Document for Water Quality-based Toxics Control* (TSD):

$$LTA_{a}=WLA_{a}\times e^{(0.5\sigma^{2}-z\sigma)}$$

$$LTA_{c}=WLA_{c}\times e^{(0.5\sigma_{4}^{2}-z\sigma_{4})}$$
Equation 14

where,

 $\begin{array}{lll} \sigma^2 & = & \ln(CV^2 + 1) \\ Z_{99} & = & 2.326 \ (z \text{-score for the 99}^{\text{th}} \ \text{percentile probability basis}) \\ CV & = & \text{coefficient of variation (standard deviation <math>\div \ \text{mean})} \\ \sigma_{4^2} & = & \ln(CV^2/4 + 1) \end{array}$ 

For ammonia, because the chronic criterion is based on a 30-day averaging period, the Chronic Long Term Average (LTAc) is calculated as follows:

$$LTA_{c}=WLA_{c}\times e^{(0.5\sigma_{30}^{2}-z\sigma_{30})}$$
 Equation 15

where,

 $\sigma_{30^2} = \ln(CV^2/30 + 1)$ 

The LTAs are compared and the more stringent is used to develop the daily maximum and monthly average permit limits as shown below.

2. Derive the maximum daily and average monthly effluent limits

Using the TSD equations, the MDL and AML effluent limits are calculated as follows:

$$MDL = LTA \times e^{(z_m \sigma - 0.5 \sigma^2)}$$

$$AML = LTA \times e^{(z_a \sigma_n - 0.5 \sigma_n^2)}$$

$$Equation 17$$

where  $\sigma$ , and  $\sigma^2$  are defined as they are for the LTA equations above, and,

$$\begin{array}{lll} \sigma_n{}^2 &=& ln(CV^2/n+1) \\ z_a &=& 1.645 \ (z\mbox{-score for the 95}^{th} \ percentile \ probability \ basis) \\ z_m &=& 2.326 \ (z\mbox{-score for the 99}^{th} \ percentile \ probability \ basis) \\ n &=& number \ of \ sampling \ events \ required \ per \ month. \ With \ the \ exception \ of \ ammonia, \ if \ the \ AML \ is \ based \ on \ the \ det \ based \ the \ det \ based \ based$$

LTA<sub>c</sub>, i.e., LTA<sub>minimum</sub> = LTA<sub>c</sub>), the value of "n" should is set at a minimum of 4. For ammonia, In the case of ammonia, if the AML is based on the LTA<sub>c</sub>, i.e., LTA<sub>minimum</sub> = LTA<sub>c</sub>), the value of "n" should is set at a minimum of 30.

C. Critical Low Flow Conditions

The low flow conditions of a water body are used to determine WQBELs. In general, Washington's WQS require criteria be evaluated at the following low flow receiving water conditions (See Table 12. Applicable Criteria/Design Conditions for Determining the Acute and Chronic Dilution Factors for Aquatic Life, Department of Ecology Water Quality Program Permit Writer's Manual page 190 at

https://apps.ecology.wa.gov/publications/summarypages/92109.html) as defined below:

| Acute aquatic life                                                                                                                          | 1Q10 or 1B3        |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| Chronic aquatic life                                                                                                                        | 7Q10 or 4B3        |  |  |  |  |  |  |
| Non-carcinogenic human health criteria                                                                                                      | 30Q5               |  |  |  |  |  |  |
| Carcinogenic human health criteria                                                                                                          | Harmonic Mean Flow |  |  |  |  |  |  |
| Ammonia                                                                                                                                     | 30B3 or 30Q10      |  |  |  |  |  |  |
| <ol> <li>The 7Q10 represents lowest average 7 consecutive day flow with an average<br/>recurrence frequency of once in 10 years.</li> </ol> |                    |  |  |  |  |  |  |

- 2. The 30Q5 represents the lowest average 30 consecutive day flow with an average recurrence frequency of once in 5 years.
- 3. The harmonic mean is a long-term mean flow value calculated by dividing the number of daily flow measurements by the sum of the reciprocals of the flows.

# Appendix D. Reasonable Potential and WQBEL Calculations

|                                                                      | Pollutants of Concern                                                                               |                    | AMMONIA,<br>default cold<br>water, fish<br>early life<br>stages | AMMONIA,<br>default cold<br>water, fish<br>early life<br>stages | AMMONIA,<br>default cold<br>water, fish<br>early life<br>stages | ZINC - SEE<br>Toxic BiOp | COPPER -<br>SEE Toxic<br>BiOp | MERCURY -<br>SEE Toxic<br>BiOp |            | LEAD - SEE<br>Toxic BiOp | BIS(2-<br>ETHYLHEXYL)<br>PHTHALATE | TOLUENE    | CHLOROFO<br>RM |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|-------------------------------|--------------------------------|------------|--------------------------|------------------------------------|------------|----------------|
|                                                                      |                                                                                                     |                    |                                                                 | Non<br>Irrigation                                               | Irrigation                                                      | Year-round               | Year-round                    | Year-round                     | Year-round | Year-round               | Year-round                         | Year-round | Year-round     |
|                                                                      | Number of Samples in Data Set (n)                                                                   |                    |                                                                 | 22                                                              | 36                                                              | 58                       | 58                            | 19                             | 56         | 1                        | 2                                  | 2          | 2              |
| Effluent Data                                                        | Coefficient of Variation (CV) = Std. Dev./Mean (de                                                  | ault CV = 0.6)     |                                                                 | 1.937                                                           | 0.962                                                           | 0.329                    | 0.3668                        | 1.466                          | 0          | 0.6                      | 0.6                                | 0.6        | 0.6            |
| Enident Data                                                         | Effluent Concentration, µg/L (Max. or 95th Percentile) - (Ce)                                       |                    |                                                                 | 892.500                                                         | 627.500                                                         | 107.005                  | 4.6225                        | 0.0117                         | 0.3        | 0.068                    | 1.98                               | 0.43       | 1.48           |
|                                                                      | Calculated 50th % Effluent Conc. (when n>10), Hu                                                    | man Health Only    |                                                                 | 0,135                                                           | 0.105                                                           | 63.455                   | 2.065                         | 0.0013                         | 0.3        |                          | 1.036                              | 0.29       | 1.48           |
| Receiving Water Data                                                 | 90th Percentile Conc., µg/L - (Cu)                                                                  |                    |                                                                 |                                                                 |                                                                 |                          | 0                             | 0                              | 0          | 0                        | 0                                  | 0          | 0              |
| Receiving water Data                                                 | Geometric Mean, µg/L, Human Health Criteria Onl                                                     |                    |                                                                 |                                                                 |                                                                 |                          | 0                             | 0                              | 0          | 0                        | 0                                  | 0          | 0              |
|                                                                      | Aquatic Life Criteria, µg/L                                                                         | Acute              |                                                                 | 8,107                                                           | 885                                                             | 40.564                   | 5.37                          | 2.1                            | .981       | 16.658                   |                                    |            |                |
|                                                                      | Aquatic Life Criteria, µg/L                                                                         | Chronic            |                                                                 | 1,353                                                           | 105                                                             | 37.041                   | 3.988                         | .012                           | .4165      | .6491                    |                                    |            |                |
| Applicable                                                           | Human Health Water and Organism, µg/L                                                               |                    |                                                                 |                                                                 |                                                                 | 2,300.                   | 1,300.                        | .14                            |            | Narrative                | .23                                | 180.       | 260.           |
| Water Quality Criteria                                               | Human Health, Organism Only, µg/L                                                                   |                    |                                                                 |                                                                 |                                                                 |                          |                               | .15                            |            | Narrative                | .25                                | 410.       | 1,200          |
| crater and y crateria                                                | Metals Criteria Translator, decimal (or default use                                                 | Acute              |                                                                 |                                                                 |                                                                 | .87                      | 789                           | .85                            | .943       | .466                     |                                    |            | .97            |
|                                                                      | Conversion Factor)                                                                                  | Chronic            |                                                                 |                                                                 | 1                                                               | .87                      | .789                          |                                | .943       | .466                     |                                    |            | .97            |
|                                                                      | Carcinogen (Y/N), Human Health Criteria Only                                                        |                    |                                                                 |                                                                 |                                                                 | N                        | N                             | N                              | N          | N                        | Y                                  | N          | Y              |
|                                                                      | Aquatic Life - Acute                                                                                | 1010               | 0%                                                              | 0%                                                              | 25%                                                             | 25%                      | 0%                            | 25%                            | 25%        | 25%                      | 25%                                | 25%        | 25%            |
| Percent River Flow                                                   | Aquatic Life - Chronic                                                                              | 7Q10 or 4B3        | _                                                               |                                                                 |                                                                 | 25%                      | 0%                            | 25%                            | 25%        | 25%                      | 25%                                | 25%        | 25%            |
| Default Value =                                                      |                                                                                                     | 30B3 or 30Q10/30Q5 |                                                                 |                                                                 |                                                                 | 25%                      | 0%                            | 25%                            | 25%        | 25%                      | 25%                                | 25%        | 25%            |
| 25%                                                                  | Human Health - Non-Carcinogen                                                                       | Harmonic Mean      |                                                                 | 0%                                                              | 25%                                                             | 25%                      | 0%                            | 25%                            | 25%        | 25%                      | 25%                                | 25%        | 25%            |
|                                                                      | Human Health - Carcinogen                                                                           | Harmonic Mean      |                                                                 |                                                                 |                                                                 | 25%                      | 0%                            | 25%                            | 25%        | 25%                      | 25%                                | 25%        | 25%            |
| and the second second                                                | Aquatic Life - Acute                                                                                | 1Q10               |                                                                 | 1.0                                                             | 3.8                                                             | 1.0                      | 1.0                           | 1.0                            | 1.0        | 1.0                      | 1.0                                | 1.0        | 1.0            |
| Calculated                                                           | Aquatic Life - Chronic                                                                              | 7Q10 or 4B3        |                                                                 |                                                                 |                                                                 | 1.0                      | 1.0                           | 1.0                            | 1.0        | 1.0                      | 1.0                                | 1.0        | 1.0            |
| Dilution Factors (DF)                                                | Aquatic Life - Chronic Ammonia                                                                      | 30B3 or 30Q10/30Q5 |                                                                 | 1.0                                                             | 7.7                                                             | 1.0                      | 1.0                           | 1.0                            | 1.0        | 1.0                      | 1.0                                | 1.0        | 1.0            |
| (or enter Modeled DFs)                                               | Human Health - Non-Carcinogen                                                                       | Harmonic Mean      | -                                                               |                                                                 |                                                                 | 1.0                      | 1.0                           | 1.0                            | 1.0        | 1.0                      | 1.0                                | 1.0        | 1.0            |
|                                                                      | Human Health - Carcinogen                                                                           | Harmonic Mean      | _                                                               |                                                                 |                                                                 | 1.0                      | 1.0                           | 1.0                            | 1.0        | 1.0                      | 1.0                                | 1.0        | 1.0            |
| Aquatic Life Reasonable                                              | e Potential Analysis                                                                                |                    | -                                                               |                                                                 |                                                                 |                          |                               |                                |            |                          |                                    |            |                |
| σ                                                                    | σ <sup>2</sup> =ln(CV <sup>2</sup> +1)                                                              |                    |                                                                 | 1.248                                                           | 0.809                                                           | 0.321                    | 0.355                         | 1.071                          |            | 0.555                    | 0.555                              | 0.555      | 0.555          |
| Pa                                                                   | =(1-confidence level) <sup>1/n</sup> , where confidence level =                                     | 99%                |                                                                 | 0.811                                                           | 0.880                                                           | 0.924                    | 0.924                         | 0.785                          | 0.921      | 0.010                    | 0.100                              | 0.100      | 0.100          |
| Multiplier (TSD p. 57)                                               | =exp(zo-0.5o <sup>2</sup> )/exp[normsinv(Pn)o-0.5o <sup>2</sup> ], where                            | 99%                |                                                                 | 6.1                                                             | 2.5                                                             | 1.33                     | 1.37                          | 5.19                           | 1.00       | 13.2                     | 7.4                                | 7.4        | 7.4            |
| Statistically projected critical disci                               | harge concentration (C <sub>e</sub> )                                                               |                    |                                                                 | 5416                                                            | 1594                                                            | 142.62                   | 6.36                          | 0.061                          | 0.30       | 0.90                     | 14.64                              | 3.18       | 10.94          |
| Predicted max. conc.(ug/L) at Ed                                     | ge-of-Mixing Zone                                                                                   | Acute              | -                                                               | 5416                                                            | 421                                                             | 124.04                   | 5.02                          | 0.052                          | 0.28       | 0.42                     | 14.64                              | 3.18       | 10.61          |
| (note: for metals, concentration as                                  | dissolved using conversion factor as translator)                                                    | Chronic            |                                                                 | 5416                                                            | 207                                                             | 124.04                   | 5.02                          | 0.061                          | 0.28       | 0.42                     | 14.64                              | 3.18       | 10.61          |
| Reasonable Potential to excee                                        | d Aquatic Life Criteria                                                                             |                    | n/a                                                             | YES                                                             | YES                                                             | YES                      | YES                           | YES                            | NO         | NO                       | NA                                 | NA         | NA             |
| Aquatic Life Effluent Lin                                            | ait Calculations                                                                                    |                    |                                                                 |                                                                 |                                                                 |                          |                               |                                | -          |                          |                                    |            |                |
| Number of Compliance Sample                                          |                                                                                                     |                    |                                                                 | 4                                                               |                                                                 |                          |                               |                                |            |                          |                                    |            |                |
|                                                                      | ic is limiting then use min=4 or for ammonia min=30)                                                |                    | -                                                               | 30                                                              | 30                                                              | 4                        |                               | 4                              |            | -4                       |                                    | 4          | ~              |
| In used to calculate AML (if chroni<br>LTA Coeff, Var. (CV), decimal | (Use CV of data set or default = 0.6)                                                               |                    |                                                                 | 1.937                                                           | 0.962                                                           | 0.329                    | 0.367                         | 1.466                          | 73         |                          |                                    |            |                |
|                                                                      | cimal (Use CV from data set or default = 0.6)                                                       |                    |                                                                 | 1.937                                                           | 0.902                                                           | 0.329                    | 0.307                         | 1.400                          |            |                          |                                    | -          |                |
| Acute WLA, ug/L                                                      | C <sub>d</sub> = (Acute Criteria x MZ <sub>a</sub> ) - C <sub>u</sub> x (MZ <sub>a</sub> -1)        | Acute              |                                                                 | 8,107                                                           | 3,351                                                           | 40.6                     | 5.4                           | 2.1                            |            |                          |                                    | -          |                |
| Chronic WLA, ug/L                                                    | $C_d = (Chronic Criteria \times MZ_c) - C_{u \times}(MZ_c-1)$                                       | Chronic            |                                                                 | 1 353                                                           | 807                                                             | 37.0                     | 4.0                           | 0.012                          | 7          |                          |                                    |            |                |
| Long Term Ave (LTA), ug/L                                            | WLAa x exp(0.50 <sup>2</sup> -zo). Acute                                                            | 99%                | -                                                               | 968                                                             | 707                                                             | 20.3                     | 2.5                           | 0.308                          |            |                          |                                    |            |                |
| (99th % occurrence prob.)                                            | WLAc x exp(0.50 <sup>-20</sup> ), Actie<br>WLAc x exp(0.50 <sup>2</sup> -zo); ammonia n=30, Chronic | 99%                |                                                                 | 646                                                             | 546                                                             | 25.7                     | 2.7                           | 0.0032                         |            |                          |                                    |            |                |
| Limiting LTA, ug/L                                                   | used as basis for limits calculation                                                                | 0070               |                                                                 | 646                                                             | 546                                                             | 20.3                     | 2.5                           | 0.0032                         |            |                          |                                    |            |                |
|                                                                      | ator (metals limits as total recoverable)                                                           |                    | 1.0                                                             | 1.0                                                             | 1.0                                                             | 0.8697                   | 0.79                          |                                |            |                          |                                    |            | 0.97           |
| Average Monthly Limit (AML), ug                                      |                                                                                                     | 95%                |                                                                 | 1,071                                                           | 717                                                             | 30                       | 42                            | 0.0077                         |            | -                        | -                                  |            |                |
| Maximum Daily Limit (MDL), ug/L                                      |                                                                                                     | 99%                |                                                                 | 5,407                                                           | 2.588                                                           | 47                       | 6.8                           | 0.0220                         |            |                          | -                                  |            |                |
| Average Monthly Limit (AML), mo                                      |                                                                                                     |                    |                                                                 | 1.1                                                             | 0.7                                                             | 0.030                    | 0.004                         | 0.000008                       |            |                          |                                    |            |                |
| Maximum Daily Limit (MDL), mg/l                                      |                                                                                                     |                    |                                                                 | 5.4                                                             | 2.6                                                             | 0.047                    | 0.007                         | 0.000022                       |            |                          | -                                  |            |                |
| Average Monthly Limit (AML), Ib/                                     |                                                                                                     |                    |                                                                 | 10.4                                                            | 6.9                                                             | 0.291                    | 0.04070                       | 0.00007                        |            |                          | 1                                  | -          |                |
| Maximum Daily Limit (MDL), Ib/da                                     |                                                                                                     |                    |                                                                 | 52.3                                                            | 25.0                                                            | 0.451                    | 0.06583                       | 0.00021                        |            | -                        | -                                  |            |                |
|                                                                      |                                                                                                     |                    |                                                                 |                                                                 | м                                                               |                          |                               | -                              |            |                          |                                    |            |                |
| Human Health Reasona                                                 | able Potential Analysis                                                                             |                    |                                                                 |                                                                 |                                                                 |                          |                               |                                |            |                          |                                    |            |                |
| 7                                                                    | σ <sup>2</sup> =ln(CV <sup>2</sup> +1)                                                              |                    | -                                                               |                                                                 |                                                                 | 0.321                    | 0.355                         | 1.071                          |            | 0.555                    | 0.555                              | 0.555      | 0.555          |
| -<br>-                                                               |                                                                                                     |                    | -                                                               |                                                                 |                                                                 |                          |                               |                                | 0.010      |                          |                                    |            |                |
| Pa                                                                   | =(1-confidence level)1/n where confidence level =                                                   |                    |                                                                 |                                                                 |                                                                 | 0.950                    | 0.950                         | 0.854                          | 0.948      | 0.050                    | 0.224                              | 0.224      | 0.224          |
| Multiplier                                                           | =exp(2.326o-0.5o <sup>2</sup> )/exp[invnorm(P <sub>N0</sub> o-0.5o <sup>2</sup> ], prob.            | 50%                |                                                                 |                                                                 | 3                                                               | 0.591                    | 0.558                         | 0.323                          | 1.000      | 2.490                    | 1.524                              | 1.524      | 1.524          |
| Dilution Factor (for Human Health                                    |                                                                                                     |                    |                                                                 |                                                                 |                                                                 | 1.0                      | 1.0                           | 1.0                            | 1.0        | 1.0                      | 1.0                                | 1.0        | 1.0            |
| Max Conc. at edge of Chronic Zo                                      |                                                                                                     |                    |                                                                 |                                                                 |                                                                 | 63.455                   | 2.065                         | 0.001                          | 0.300      | 0.169                    | 1.036                              | 0.290      | 1.480          |
| Reasonable Potential to excee                                        |                                                                                                     |                    |                                                                 |                                                                 |                                                                 | NO                       |                               |                                |            | NO                       | YES                                | NO         |                |
| Reasonable Potential to excee                                        | d HH Organiem Only                                                                                  |                    |                                                                 |                                                                 |                                                                 | NO                       | NO                            | NO                             | NO         | NO                       | YES                                | NO         | NO             |

|                                                                                   |                                                                                                                          |                                                                                           | THALLIUM     | SILVER     | SELENIUM     | NICKEL         | CHROMUM    | BERYLLIUM         | ARSENIC        | ANTIMONY   |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|------------|--------------|----------------|------------|-------------------|----------------|------------|
|                                                                                   | Pollutants of Concern                                                                                                    |                                                                                           |              | 1.000423.1 |              |                |            |                   |                |            |
|                                                                                   |                                                                                                                          |                                                                                           | Year-round   | Year-round | Year-round   | Year-round     | Year-round | Year-round        | Year-round     | Year-round |
| N                                                                                 | umber of Samples in Data Set (n)                                                                                         |                                                                                           | 1            | 2          | 2            | 1              | 1          | 1                 | 1              | 1          |
|                                                                                   | oefficient of Variation (CV) = Std. Dev./Mean (defa                                                                      |                                                                                           | 0.6          | 0.6        | 0.6          | 0.6            | 0.6        | 0.6               | 0.6            | 0.6        |
| E                                                                                 | Effluent Concentration, µg/L. (Max. or 95th Percentile) - (Cs)                                                           |                                                                                           |              | 0.16       | 0.44         | 1.78           | 0.54       | 0.011             | 0.95           | 0.36       |
|                                                                                   | alculated 50 <sup>h</sup> % Effluent Conc. (when n≥10), Hum<br>0 <sup>h</sup> Percentile Conc., μg/L - (C <sub>u</sub> ) | an Health Only                                                                            | 0.13         | 0.08       | 0.318        | 1.78           | 0.54       | 0.011             | 0.95           | 0.36       |
|                                                                                   | eometric Mean, μg/L, Human Health Criteria Only                                                                          |                                                                                           | 0            | 0          | 0            | 0              | 0          | 0                 | 0              | 0          |
| A                                                                                 | quatic Life Criteria, μg/L                                                                                               | Acute                                                                                     |              | .42        | 20.          | 502.46         | 15.        | 1                 | 360.           | -          |
|                                                                                   | quatic Life Criteria, μg/L                                                                                               | Chronic                                                                                   |              |            | 5.           | 55.802         | 10.        |                   | 190.           | -          |
|                                                                                   | uman Health Water and Organism, µg/L                                                                                     |                                                                                           | .24          |            | 120.         | 150.           |            |                   | 10.            | 12.        |
| Water Quality Criteria                                                            | uman Health, Organism Only, μg/L<br>letals Criteria Translator, decimal (or default use                                  | Acute                                                                                     | .27          |            | 480.         | 190.<br>.998   |            |                   | 10.            | 180.       |
|                                                                                   | onversion Factor)                                                                                                        | Chronic                                                                                   | -            |            |              | .997           | 1          |                   | 1.             |            |
|                                                                                   | arcinogen (Y/N), Human Health Criteria Only                                                                              | onano                                                                                     | N            | N          |              |                |            | Y                 | -              | _          |
| A                                                                                 | quatic Life - Acute                                                                                                      | 1018                                                                                      | 25%          | 25%        | 25%          | 25%            | 25%        | 25%               | 25%            | 25%        |
|                                                                                   | quatic Life - Chronic                                                                                                    | 7Q10 or 4B3                                                                               | 25%          | 25%        | 25%          | 25%            | 25%        | 25%               | 25%            | 25%        |
| Default Value =                                                                   | and the data Man Angele and                                                                                              | 30B3 or 30Q10/30Q5                                                                        | 25%          | 25%        | 25%          | 25%            | 25%        | 25%               | 25%            | 25%        |
|                                                                                   | uman Health - Non-Carcinogen<br>uman Health - Carcinogen                                                                 | Hammonic Mean<br>Hammonic Mean                                                            | 25%<br>25%   | 25%<br>25% | 25%<br>25%   | 25%<br>25%     | 25%<br>25% | 25%<br>25%        | 25%            | 25%<br>25% |
|                                                                                   | quatic Life - Acute                                                                                                      | 1Q10                                                                                      | 25%          | 25%        | 25%          |                | 25%        | 25%               |                | 25%        |
|                                                                                   | quatic Life - Chronic                                                                                                    | 7Q10 or 4B3                                                                               | 1.0          | 1.0        | 1.0          | 1.0            | 1.0        | 1.0               |                | 1.0        |
| Dilution Factors (DF) A                                                           | quatic Life - Chronic Ammonia                                                                                            | 30B3 or 30Q10/30Q5                                                                        | 1.0          | 1.0        | 1.0          | 1.0            | 1.0        | 1.0               | 1.0            | 1.0        |
| (or enter Modeled DFs) H                                                          | uman Health - Non-Carcinogen                                                                                             | Hamonic Mean                                                                              | 1.0          | 1.0        | 1.0          | 1.0            | 1.0        | 1.0               | 1.0            | 1.0        |
| Н                                                                                 | uman Health - Carcinogen                                                                                                 | Hamonic Mean                                                                              | 1.0          | 1.0        | 1.0          | 1.0            | 1.0        | 1.0               | 1.0            | 1.0        |
| Aquatic Life Reasonable P                                                         | otential Analysis                                                                                                        |                                                                                           |              |            | 1            |                |            |                   |                |            |
| σσσ                                                                               | <sup>2</sup> =ln(C√ <sup>2</sup> +1)                                                                                     |                                                                                           | 0.555        | 0.555      | 0.555        | 0.555          | 0.555      | 0.555             | 0.555          | 0.555      |
|                                                                                   | (1-confidence level) <sup>th</sup> , where confidence level =                                                            | 99%                                                                                       | 0.010        | 0.100      | 0.100        | 0.010          | 0.010      | 0.010             | 0.010          | 0.010      |
| Multiplier (TSD p. 57) =                                                          | exp(zo-0.5o <sup>2</sup> )/exp[normsinv(P <sub>n</sub> )o-0.5o <sup>2</sup> ], where                                     | 99%                                                                                       | 13.2         | 7.4        | 7.4          | 13.2           | 13.2       | 13.2              | 13.2           | 13.2       |
| Statistically projected critical discharge<br>Predicted max.conc.(ug/L) at Edge-c |                                                                                                                          | Acute                                                                                     | 1.72         | 1.18       | 3.25<br>3.25 | 23.49<br>23.44 | 7.13       | 0.15              | 12.54<br>12.54 | 4.75       |
|                                                                                   | issolved using conversion factor as translator)                                                                          | Chronic                                                                                   | 1.72         | 1.10       | 3.25         | 23.44          | 7.13       | 0.15              | 12.54          | 475        |
| Reasonable Potential to exceed A                                                  | quatic Life Criteria                                                                                                     | Childre                                                                                   | NA           | YES        | NO           | NO             | NO         | NA                | NO             | -          |
|                                                                                   |                                                                                                                          |                                                                                           |              |            | 1            |                |            |                   |                |            |
| Aquatic Life Effluent Limit                                                       |                                                                                                                          |                                                                                           | 4            | 1          | 1            | 1              | A          | A                 | 1              | А          |
| Number of Compliance Samples E                                                    | <pre>slimiting then use min=4 or for ammonia min=30)</pre>                                                               |                                                                                           |              | 1          |              |                | -          |                   |                |            |
| LTA Coeff. Var. (CV), decimal (L                                                  |                                                                                                                          |                                                                                           | -            | 0.600      |              |                | 122        | 1                 | -              | 0.600      |
| Permit Limit Coeff. Var. (CV), decima                                             | al (Use CV from data set or default = 0.6)                                                                               |                                                                                           | T            | 0.600      | 4            | 122            | 544        | - 1               | -              | 0.600      |
|                                                                                   | <sub>d</sub> = (Acute Criteria × MZ <sub>a</sub> ) - C <sub>u</sub> × (MZ <sub>a</sub> -1)                               | Acute                                                                                     | -            | 0.4        | 1            | 124            |            |                   | -              | -          |
|                                                                                   | a= (Chronic Criteria × MZc) - Cux(MZc1)                                                                                  | Chronic                                                                                   | -            |            | -            |                |            | - 15 <del>5</del> | -              | -          |
| Long Term Ave (LTA), ug/L VA                                                      | /LAa x exp(0.5o <sup>2</sup> -zor), Acute                                                                                | 99%                                                                                       |              | 0.1        |              |                |            |                   |                |            |
|                                                                                   | /LAc x exp(0.5σ <sup>2</sup> -zσ); ammonia n=30, Chronic<br>sed as basis for limits calculation                          | 99%                                                                                       |              | 0.1        |              |                | 1          |                   |                | 2          |
| Applicable Metals Criteria Translator                                             |                                                                                                                          |                                                                                           | -            |            |              | -              | 1          | 1                 | -              | -          |
| Average Monthly Limit (AML), ug/L,                                                |                                                                                                                          | 95%                                                                                       | -            | 0.29       |              |                |            |                   | -              | -          |
| Maximum Daily Limit (MDL), uc/L                                                   |                                                                                                                          | 99%                                                                                       | -            | 0.42       | -            |                |            | -                 | -              | 1          |
| Average Monthly Limit (AML), mo/L                                                 |                                                                                                                          |                                                                                           | -            | 0.00029    | -            |                |            | -                 | -              | -          |
| Maximum Daily Limit (MDL), morL                                                   |                                                                                                                          |                                                                                           | -            | 0.00042    |              |                |            |                   | -              |            |
| Average MonthlyLimit (AML), Ib/day<br>Maximum DailyLimit (MDL), Ib/day            |                                                                                                                          |                                                                                           | -            | 0.003      |              |                |            | -                 |                | -          |
| waxmuni Dany Linni (wDE), ibiday                                                  |                                                                                                                          |                                                                                           |              | 0.004      |              |                |            |                   |                |            |
| Human Health Reasonable                                                           | Potential Analysis                                                                                                       |                                                                                           |              |            |              |                |            |                   |                |            |
|                                                                                   | = Fotential Analysis<br><sup>2</sup> =In(CV <sup>2</sup> +1)                                                             |                                                                                           | 0.555        | 0.555      | 0.555        | 0.555          | 0.555      | 0.555             | 0.555          | 0.555      |
| A100                                                                              |                                                                                                                          | 95%                                                                                       | 0.050        | 0.224      | 0.224        | 0.050          | 0.050      | 0.050             | 0.050          | 0.050      |
|                                                                                   | (1-confidence level) <sup>th</sup> where confidence level =                                                              |                                                                                           |              | 0.000      |              | 101000         | 6          | 10 2005           |                | 1011578    |
| Multiplier ==<br>Dilution Factor (for Human Health Cr                             | exp(2.326σ-0.5σ <sup>2</sup> )/exp[invnorm(P <sub>w</sub> σ-0.5σ <sup>2</sup> ], prob. =                                 | 50%                                                                                       | 2.490<br>1.0 | 1.524      | 1.524        | 2.490<br>1.0   | 2.490      | 2.490             | 2.490          | 2.490      |
| Max Conc. at edge of Chronic Zone,                                                |                                                                                                                          |                                                                                           | 0.130        | 0.080      | 0.318        | 1.0            | 0.540      | 0.011             | 0.950          | 0.360      |
| Reasonable Potential to exceed HI                                                 |                                                                                                                          |                                                                                           | NO           | NO         | NO           | NO             | 0.040      | -                 | NO             | NO         |
| Reasonable Potential to exceed HI                                                 | H Organism Only                                                                                                          |                                                                                           | NO           | NO         | NO           | NO             |            |                   | NO             | NO         |
| Human Health, Water + O                                                           | rganism, Effluent Limit Calculations                                                                                     |                                                                                           |              |            |              |                |            |                   |                |            |
| Number of Compliance Samples E<br>Average Monthly Effluent Limit, ug/L            | xpectea per month (n)                                                                                                    | equals wasteload allocation                                                               | 1            |            |              |                |            |                   |                |            |
| Average Monthly Effluent Limit, ug/L<br>Maximum Daily Effluent Limit, ug/L        | TOP M. P. P.                                                                                                             | equals wasteload allocation<br>er, Table 5-3, using 99 <sup>h</sup> and 95 <sup>h</sup> % |              | -          | -            |                | -          |                   | -              |            |
| Average Monthly Limit (AML), lb/day                                               | TSD Multiple                                                                                                             | er, i able 5-3, using 99 and 95 %                                                         |              |            |              |                |            |                   |                |            |
| Maximum Daily Limit (MDL), Ib/day                                                 |                                                                                                                          |                                                                                           | 1            |            |              |                |            |                   | -              | 2          |
| Human Health Organism                                                             | Only, Effluent Limit Calculations                                                                                        |                                                                                           |              |            |              |                |            |                   |                |            |
| Number of Compliance Samples E                                                    | xpected per month (n)                                                                                                    |                                                                                           |              |            |              |                |            |                   |                |            |
| Average Monthly Effluent Limit, ug/L                                              |                                                                                                                          | equals wasteload allocation                                                               |              |            | -            |                |            | -                 | -              | -          |
| Maximum Daily Effluent Limit, ug/L                                                | TSD Multiplie                                                                                                            | er, Table 5-3, using 99 <sup>th</sup> and 95 <sup>th</sup> %                              | <u></u>      | <u> </u>   |              |                |            |                   | -              |            |
| Average Monthly Limit (AML), lb/day                                               |                                                                                                                          |                                                                                           | -            |            |              |                |            |                   | -              | 2          |
| Maximum DailyLimit (MDL), Ib/day                                                  |                                                                                                                          |                                                                                           | -            |            |              | 14             |            | -                 | -              | -          |

### Appendix E. Essential Fish Habitat Assessment

Pursuant to the requirements for Essential Fish Habitat (EFH) assessments, this appendix contains the following information:

- Listing of EFH Species in the Facility Area
- Description of the Facility and Discharge Location
- EPA's Evaluation of Potential Effects to EFH

### Listing of EFH Species in the Facility Area

Essential Fish Habitat in the Lower Yakima consists of all life stages of Chinook and Coho Salmon according to NOAA Fisheries

(https://www.habitat.noaa.gov/application/efhmapper/index.html - accessed October 26, 2021)

### **Description of the Facility and Discharge Location**

The activities and sources of wastewater at the Wapato wastewater treatment facility are described in detail in Part II and Appendix A of this fact sheet. The location of the outfall is described in Part III ("Receiving Water").

### EPA's Evaluation of Potential Effects to EFH

Water quality is an important component of aquatic life habitat. NPDES permits are developed to protect water quality in accordance with WQSs. The standards protect the beneficial uses of the waterbody, including all life stages of aquatic life. The development of permit limits for an NPDES discharger includes the basic elements of ecological risk analysis. The underlying technical process leading to NPDES permit requirements incorporates the following elements of risk analysis:

### Effluent Characterization

Characterization of the effluent was accomplished using a variety of sources, including:

- Permit application monitoring
- Permit compliance monitoring
- Statistical evaluation of effluent variability
- Quality assurance plans and evaluations

### Identification of Pollutants of Concern and Threshold Concentrations

The pollutants of concern include pollutants with aquatic life criteria in the Washington WQSs. Threshold concentrations are equal to the numeric water quality criteria for the protection of aquatic life. No other pollutants of concern were identified by NMFS.

### Exposure and Wasteload Allocation

Analysis of the transport of pollutants near the discharge point with respect to the following:

• Mixing zone policies in the Washington WQS

- Dilution modeling and analysis
- Exposure considerations (e.g., prevention of lethality to passing organisms)

### Statistical Evaluation for Permit Limit Development

Calculation of permit limits using statistical procedures addressing the following:

- Effluent variability and non-continuous sampling
- Fate/transport variability
- Duration and frequency thresholds identified in the water quality criteria

### Monitoring Programs

Development of monitoring requirements, including:

- Compliance monitoring of the effluent
- Ambient monitoring

### Protection of Aquatic Life in NPDES Permitting

EPA's approach to aquatic life protection is outlined in detail in the Technical Support Document for Water Quality-based Toxics Control (EPA/505/2-90-001, March 1991). EPA and states evaluate toxicological information from a wide range of species and life stages in establishing water quality criteria for the protection of aquatic life.

The NPDES program evaluates a wide range of chemical constituents (as well as whole effluent toxicity testing results) to identify pollutants of concern with respect to the criteria values. When a facility discharges a pollutant at a level that has a "reasonable potential" to exceed, or to contribute to an exceedance of, the water quality criteria, permit limits are established to prevent exceedances of the criteria in the receiving water (outside any authorized mixing zone).

### Effects Determination

Since the proposed permit has been developed to protect aquatic life species in the receiving water in accordance with the Washington WQSs, EPA has determined that issuance of this permit is not likely to adversely affect any EFH in the vicinity of the discharge. EPA will provide NMFS with copies of the proposed permit and fact sheet during the public notice period. Any recommendations received from NMFS regarding EFH will be considered prior to reissuance of this permit.

### Appendix F. CWA § 401 Certification



### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10 1200 Sixth Avenue, Suite 155

Seattle, WA 98101-3188

WATER DIVISION

### Clean Water Act (CWA) Section 401 Certification for Discharger Located within Tribal Boundaries

Facility: NPDES Permit Number: Location: Receiving Water: Facility Location:

Wapato WWTP WA0050229 Yakama Nation WIP Drainage Way No. 2 69172 Highway 97 Wapato, WA 98951

EPA hereby certifies that the conditions in the National Pollutant Discharge Elimination System (NPDES) permit for the Wapato wastewater treatment plant, are necessary to assure compliance with the applicable provisions of Sections 301, 302, 303, 306, and 307 of the CWA. See CWA Section 401(a)(1), 33 U.S.C. 1341(a)(1); 40 CFR 124.53(e).

The State in which the discharge originates is responsible for issuing the CWA Section 401 certification pursuant to CWA Section 401(a)(1). When a NPDES permit is issued on Tribal Land, the Tribe is the certifying authority where the Tribe has been approved by EPA for Treatment as a State (TAS) pursuant to CWA Section 518(e) and 40 CFR § 131.8. Where a Tribe does not have TAS, EPA is the certifying authority. The Yakama Nation does not have TAS for the Wapato WWTP discharging into WIP Drainage Way No. 2. Therefore, EPA is responsible for issuing the CWA Section 401 Certification for this permit.

# DRAFT

Mathew J. Martinson Capt, USPHS Branch Chief Permits, Drinking Water, and Infrastructure