Nutrient Removal in Activated Sludge wastewater treatment plants

US EPA sponsored webinar for Wastewater Treatment Plant Operators March 31, 2022

Grant Weaver, PE & wastewater operator President Grant Tech, Inc. Grant@GrantTechSolutions.com Optimizing Nutrient Removal & Wastewater Excellence

Optimizing Nutrient Removal in:

Oxidation Ditches (January)

Sequencing Batch Reactors (February)

Other Activated Sludge WWTPs (Today)

Transitioning from Permit Compliance to Wastewater Excellence

(April 28, 2022)

KEEP CALM

AND

BLAME ME FOR EVERYTHING

Acknowledgements

CONRAD, MONTANA Keith Thaut

HELENA, MONTANA Jeff Brown & staff

KALISPELL, MONTANA Aaron Losing & staff including Curt Konecky (retired)

NASHVILLE, TENNESSEE David Tucker & Johnnie McDonald (retired)

NORRIS, TENNESSEE Tony Wilkerson & Doug Snelson

PARSONS, KANSAS Derek Clevenger

SUNDERLAND, MASSACHUSETTS Bob Gabry

EPA Peter Bahor, Laura Paradise, Paul Shriner & Tony Tripp (**HQ**), Brendon Held & Craig Hesterlee (**R4**), Andrea Schaller & Sydney Weiss (**R5**), Tina Laidlaw (**R8**),

TENNESSEE Karina Bynum, Tim Hill & Mark Valencia (**TDEC**), Brett Ward (**UT-MTAS**), Dewayne Culpepper (**TAUD**)

KANSAS Tom Stiles, Shelly Shores-Miller, Ryan Eldredge & Rod Geisler (retired), (KDHE)

MONTANA Paul LaVigne (retired), Pete Boettcher, Josh Viall, Darryl Barton, Bill Bahr (retired), Dave Frickey (retired) & Mike Abrahamson (**DEQ**)

Optimizing Nutrient Removal in Activated Sludge wwtps

Nutrient Removal

Nitrogen: Ammonia \rightarrow Nitrate ... and ... Nitrate \rightarrow Nitrogen Gas Phosphorus: Manufacture the food, feed the bacteria, grow the bacteria, prevent re-release

Case Studies

Wastewater treatment plants operating differently than designed to improve N&P removal

Sunderland, Massachusetts Norris, Tennessee

Conrad, Montana

Parsons, Kansas

Kalispell, Montana

Nashville, Tennessee

Helena, Montana

Discussion

Ammonia Removal -1st Step of N Removal

Step 1: Convert Ammonia (NH₄) to Nitrate (NO₃)

Oxygen-rich Aerobic Process Don't need BOD for bacteria to grow Bacteria are sensitive to pH and temperature Nitrate Removal - 2nd Step of N removal

Step 1: Convert Ammonia (NH₄) to Nitrate (NO₃)

Oxygen-rich Aerobic Process Don't need BOD for bacteria to grow Bacteria are sensitive to pH and temperature

Step 2: Convert Nitrate (NO₃) to Nitrogen Gas (N_2)

Oxygen-poor Anoxic Process Do need BOD for bacteria to grow Bacteria are hardy

Biological Phosphorus Removal

Step 1: prepare "dinner"

VFA (volatile fatty acids) production in septic/fermentive conditions

Biological Phosphorus Removal

Step 1: prepare "dinner"

VFA (volatile fatty acids) production in septic/fermentive conditions

Step 2: "eat"

Bio-P bugs (PAOs, "phosphate accumulating organisms") eat VFAs in anaerobic/fermentive conditions ... temporarily releasing more P into the water

Biological Phosphorus Removal

Step 1: prepare "dinner"

VFA (volatile fatty acids) production in septic/fermentive conditions

Step 2: "eat"

Bio-P bugs (PAOs, "phosphate accumulating organisms") eat VFAs in anaerobic/fermentive conditions ... temporarily releasing more P into the water

Step 3: "breathe" and grow

Bio-P bugs (PAOs) take in almost all of the soluble P in aerobic conditions as they grow and reproduce

SHALL WE BEGIN

Connecticut

Colchester-East Hampton Gardner East Haddam Groton New Canaan New Hartford **Plainfield North**

Plainfield Village

Suffield

Kansas

Abilene

Andover

Basehor

Beloit

Buhler

Caney

Derby

De Soto

Eudora

Ellinwood

Garden Plain

Chanute

Coffeyville

Arkansas City

Baldwin Citv

Bonner Springs

Chisholm Creek

Windham

Garnett Goddard **Great Bend** Halstead Haysville Herington Hiawatha Holton Independence Kansas City #14 & 20 Kingman Lansing Lakewood Hills Lyons Medicine Lodge Miami CO - Bucvrus Miami CO - Walnut Creek Norton Osawatomie Parsons Phillipsburg Pratt Riley CO - University Park **Rose Hill** Shawnee CO - Sherwood St. Marys

Spring Hill

Kansas, cont'd

Kansas, cont'd Tonganoxie **Topeka** North Wamego Wellington Wellsville Wichita Plants 1&2 Winfield Yates Center

Kentucky Hopkinsville

Massachusetts

Amherst Barnstable Easthampton Greenfield Montague Newburyport Northfield Palmer South Deerfield South Hadley Sunderland Upton Westfield

Montana Bigfork **Big Sky** Billings Boulder Bozeman Butte Chinook Choteau Colstrip **Columbia Falls** Conrad Craig Dillon East Helena Forsyth **Gallatin Gateway** Glendive **Great Falls** Hamilton Hardin Havre Helena Kalispell Laurel Lewistown Libby Lolo Manhattan

Montana, cont'd

Miles Citv Missoula Stevensville Wolf Creek

New Hampshire Keene

North Carolina

Asheboro Eden - Mebane Bridge Oneida Newton Reidsville

South Carolina

Greeneville

Tennessee

Athens Baileyton Bartlett Chattanooga Collierville Cookeville Cowan Crossville Dickson – White Bluff Harpeth Valley

Tennessee, cont'd

Harriman Humboldt Lafayette LaFollette Livingston McMinnville Millington Nashville Dry Creek Norris **Oak Ridge** Virginia

Strasburg

Washington

Alderwood Everett King CO Brightwater Lake Stevens Marysville Mukilteo Sultan

Wyoming

Laramie

Sunderland, Massachusetts Population: 3,700 0.5 MGD design flow

Sunderland, Massachusetts

Not designed for nitrogen removal Effluent total-nitrogen now 8 mg/L, was 25 mg/L Not designed for phosphorus removal No change Process changes Raised MLSS Cycle air/off

Portable ORP probe Aeration timers

Savings

Electricity

Sludge disposal

Facility upgrade

https://www.tpomag.com/editorial/2017/04/simple_solutions _for_process_improvement

Norris, Tennessee Population: 1,450 0.2 MGD design flow

Norris, Tennessee

Not designed for nitrogen removal Effluent total-nitrogen now 6 mg/L, was ?? Not designed for phosphorus removal Effluent total-phosphorus now 2-3 mg/L, was 3-4

Process changes

Raised MLSS

Cycle air/off

Created fermentation zone

Costs

Piping & Fermenters (IBC totes)

Aeration timers

Savings

Electricity

Facility upgrade

Nitrogen Removal

Nitrogen Removal Raise MLSS concentration Cycle aeration: ON 2-3 hours OFF 1½-2 hours

Phosphorus Removal

10

Phosphorus Removal Recycle RAS through fermenters

Phosphorus Removal

Phosphorus Removal Create Fermentation Zone in Aeration Tank ... Air off 70% RAS to aeration

Phosphorus Removal

Phosphorus Removal
 Hold influent in tote
 fermenters
 and Create Fermentation Zone
 in Aeration Tank

epa.gov/compliance/technical-assistancewebinar-series-improving-cwa-npdes*permit-compliance*

- or search –

"EPA Technical Assistance Webinar Series"

United States Environmental Protection

Environmental Topics 🗸

Compliance

Compliance Home How We Monitor Compliance **Compliance Monitoring** Programs

CAA

CERCLA

CWA **FIFRA**

RCRA

SDWA

TSCA

Technical Assistance Webinar Series: Improving CWA-NPDES **Permit Compliance**

Report a Violation ∨

On this page:

- Upcoming Webinars
- Recorded Webinars

Laws & Regulations ∨

This technical assistance webinar series supports the joint EPA and Authorized State Significant Noncompliance (SNC) Rate Reduction National Compliance Initiative (NCI). The SNC NCI is aimed at improving surface water quality and reducing potential impacts on drinking water by assuring that all Clean Water Act (CWA) - National Pollutant Discharge Elimination System (NDPES) permittees are complying with their wastewater discharge permits.

Good Laboratory Practices (GLP)

State Review Framework

NPDES Electronic Reporting **Compliance Assistance** Centers

National Enforcement Training Institute (NETI)

Resources and Guidance Documents

Compliance Assistance Compliance Monitoring

State Oversight

This page includes registration information for upcoming webinars as well as recordings and supplemental materials for past webinars.

Intended Audience: The webinars are intended for plant operators, municipal leaders, technical assistance providers, and compliance inspection staff from federal, state, tribal and local governments. Every plant is unique and plant operators should discuss any major operational change with their NDPES permiting authority.

For attending live webinars: All registered attendees receive a follow-up email from GoToWebinar 24 hours after the conclusion of the webinar which includes a link to download a certificate of attendance. Acceptance of certificates for CEUs is contingent on state and/or organization requirements-EPA cannot guarantee acceptance. Discuss eligibility of continuing education credits with your state's specific certification authority.

For viewing recorded webinars: We are unable to provide certificates of attendance for viewing our previously recorded webinars.

For additional information, contact: Laura Paradise (paradise.laura@epa.gov) or Peter Bahor (bahor.peter@epa.gov)

Upcoming Webinars

- Thursday March 31, 2022 (1:00 2:30pm Eastern) Optimizing Nutrient Removal in Activated Sludge WWTPs EXIT Presenter: Grant Weaver, PE, President Grant Tech, Inc
- Thursday April 28, 2022 (1:00 2:30pm Eastern) Transitioning from Permit Compliance to Wastewater Excellence Presenter: Grant Weaver, PE, President Grant Tech, Inc

Recorded Webinars

CONTACT US

Q

Recorded Webinars

For viewing recorded webinars: We are *unable* to provide certificates of attendance for viewing our previously recorded webinars.

Show 10	✓ entries	Search:		
Webinar				Date 🕴
Alkalinity Testing for Better Process Control in Small Wastewater Treatment Plants				2020-01-29
Asset Management 101 – Finding Financial Assistance for Infrastructure Upgrades				2020-04-15
Best Management Practices for POTW Compliance Part 1				2020-08-18
Best Management Practices for POTW Compliance Part 2				2020-09-15
Biosolids Part 1: Overview of Wastewater Treatment Sludge and Clean Water Act Regulatory Structure				2021-04-29
Biosolids Part 2: Wastewater Treatment Sludge Disposal Methods				2021-05-27
Build Resilience & Adapt to Climate Change Impacts for Drinking Water & Wastewater Utilities Part 2				2021-07-29
CWA – NPDES Compliance Assistance for Public Drinking Water Systems				2020-05-13
Discharge Monitoring Reports - Avoiding Common Mistakes				2020-07-15
Do's and Don'ts in Operating an NPDES Laboratory: Common Mistakes and Ways to Improve Results				2021-02-24
Showing 1 to	0 10 of 26 entries	Previous	1 2	3 Next

epa.gov/compliance/technical-assistancewebinar-series-improving-cwa-npdespermit-compliance

- or search -

Contact Us to ask a question, provide feedback, or report a problem.

Discover. Accessibility Budget & Performance Contracting EPA www Web Snapshot Grants No FEAR Act Data Plain Writing Privacy Privacy and Security Notice Connect. Data.gov EXIT Inspector General

Iobs

Newsroom

Subscribe

USA.gov exit

White House EXIT

Open Government

Regulations.gov EXIT

Ask. Contact EPA EPA Disclaimers Hotlines FOIA Requests Frequent Questions **Follow.**

f y D .. 0

LAST UPDATED ON MARCH 14, 2022

"EPA Technical Assistance Webinar Series"

Conrad, Montana Population: 2,500 0.5 MGD design flow

Conrad, Montana

Not designed for nitrogen removal

Effluent total-nitrogen now 4-8 mg/L, was 30

Not designed for phosphorus removal

Effluent total-phosphorus now 0.2-0.4 mg/L, was 2.5-3.0

Process changes

Raised MLSS

Cycle air/off in both aeration and digester

Returned fermented MLSS to aeration

Costs

Lab testing equipment

Savings

Electricity

Facility upgrade

Effluent total-Nitrogen (mg/L) Conrad, Montana

Monthly average tN ——Rolling AVG tN

Parsons, Kansas Population: 9,700 2.5 MGD design flow

Ba

Parsons, Kansas

"Continuously Sequencing Reactor" Process Designed for nitrogen removal Air cycles ON for ammonia removal Air cycles OFF for nitrate removal

Effluent total-Nitrogen Parsons, Kansas

Monthly average tN ——Rolling AVG tN

Parsons, Kansas

"Continuously Sequencing Reactor" Process

Designed for nitrogen removal

Air cycles ON for ammonia removal

Air cycles OFF for nitrate removal

\underline{Not} designed for phosphorus removal

NO CHEMICALS

WAS (waste sludge) sent to digesters

Digester air is OFF long enough for VFA production and consumption by bio-P bugs

When sludge is wasted into digesters during air-ON cycles, energized bio-P bugs are sent back to the aeration basin for Phosphorus removal

Kalispell, Montana Population: 23,200 5.4 MGD design flow

Kalispell, Kansas

Modified Johannesburg Process with final effluent filtration

Designed for nitrogen removal

Air-on zones for ammonia removal

Air-off zones for nitrate removal

Designed for biological phosphorus removal ... no chemicals Sidestream fermenter for VFA (volatile fatty acid) production Anaerobic zones for energizing bio-P bugs Aerobic zones for bio-P bug growth

4-month trial

Air turned off in large air-on zone

Primary effluent bypassed treatment units to trial "post-anoxic" zone for nitrate removal

Nashville Dry Creek Population: 678,000 24 MGD design flow

Dry Creek wwtp Nashville, Tennessee

Conventional plug-flow aeration with anaerobic selector

Not designed for nitrogen removal

Nitrate removal during 6-month trial by step-feed flow to air-ON / air-OFF aeration zone

Not designed for phosphorus removal ... but ...

Anaerobic selector provides habitat for VFA production & "eating" by bio-P bugs Phosphorus removal during aeration as bio-P bugs multiply

Benefits

Potentially significant electrical savings

Potential money savings design strategy for Metro's Dry Creek and White Creek wwtps

Helena, Montana Population: 31,500 5.4 MGD design flow

Google

Helena, Montana

Modified Ludzack-Ettinger (MLE) Biological Nutrient Removal (BNR) Process

Designed for nitrogen removal ... yet 2 mg/L improvement to 4 mg/L total-N

3 aeration zones

2 anoxic zones with internal recycle from 2 aeration zones

Not designed for phosphorus removal ... 25% improvement to 1.5 mg/L

Short-term: "De-tune" primary clarifiers

Long-term: repurpose first anoxic zone by relocating internal recycle outlet

Monetary expenses / savings

Field testing equipment

More staff time spent on process control

Now operating with 3 bio-reactors vs. 2

Potential change to contemplated \$50 million^{+/-} upgrade

Optimizing Nutrient Removal & Wastewater Excellence

Wastewater Excellence

April 28: Transitioning from Permit Compliance to Wastewater Excellence Grant Weaver Grant@GrantTechSolutions.com

Comments & Questions