With "RAIN DELAY: Preparing 100-year-old Hoy Field for a 100-year storm" we ask, can we design a landscape that functions as it did in its pre-development state? Long before it was a baseball field or the idea of a Computer Science building, rain fell on a site entirely forested, infiltrating into the ground to be used by plants before it slowly made its way into Cascadilla Creek.

Following a simple mantra: Slow, Spread & Sink, the design uses green infrastructure to manage and treat stormwater, so that it is released into the creek at a similar rate and of similar quality as it would in a natural landscape. Not only do these applications enhance water quality and water quantity, they also create wildlife habitats, reduce erosion, and protect infrastructure. We believe these applications should be "business as usual" and have created a design that is functional, beautiful, and educational.

Goals:
- Reduce Peak Stormwater Discharge into Cascadilla Gorge.
- Contribute to the Campus-wide Phosphorus reduction initiative.
- Improve the aesthetic, natural, and social environment.
- Educate the community about green infrastructure.
- Set a sustainable example for future campus development projects.
- Provide an easily and economically maintained infrastructure.

Footprint
- 109,085 cu ft Stormwater Basin Captured
- 37.7 lbs Total Phosphorus
- 6.0 lbs Total Nitrogen
- 124.6 lbs Dissolved Oxygen Removed
- 1.2 t Sediment Removed

Site Design
- Site Development
- Cyclist & Pedestrian Corridor
- Observation Deck
- Tennis Court
- Retention Pond
- Site Plan
- Rendered Views

Sections
- X-X'
- Y-Y'

PLANTING SCHEME

Infographics
- Rain Garden
- Permeable Pavers
- Green Roof
- Bioswale
- Roof Garden
- Permeable Pavers
- Roof Square
- Hard Paving
- Baseball-Field Square
- Hard Paving
- Hard Paving
- Circulation
- Site Design

Water System
- Water goes on the ground
- Water goes underground

Site Plan
- X-X'
- Y-Y'

Perspective View