

AQIA MODELING REPORT

Northwestern Energy Meriwether Compressor Station

Federal Tribal Minor New Source Review Program

Prepared for:

NorthWestern Energy 11 East Park Street

Butte, MT 59701

Prepared by:

Bison Engineering, Inc. 3143 East Lyndale Avenue Helena, MT 59601 (406) 442 – 5768 www.bison-eng.com

Project Number: NWE221729 Report Issued: August 19, 2022

NorthWestern Energy - Meriwether Air Impact Modeling Analyses Report

Table of Contents

1.0	Summary	.1
2.0	Project Description and Background	
2.1	General Facility/Project Description	
2.2	Location of Project	
2.3	Applicable Standards	
3.0	Modeling Analyses Applicability and Protocol	
3.1	Modeling Protocol	
3.2	Criteria Pollutant Modeling Applicability	
3.3	SIL Modeling Parameters	
3.4	NAAQS Modeling Parameters	
4.0	Modeled Emission Sources	.6
4.1	Criteria Pollutants	.6
4.2	NO ₂ /NO _x Ratio for NO _x Chemistry Modeling	.6
4.3	AERSCREEN Emissions Release Parameters	
4.4	AERMOD Emissions Release Parameters	.8
5.0	Modeling Methodology	.9
5.1	Model Selection	.9
5.2	Meteorological Data 1	10
5.3	Effects of Terrain 1	11
5.4	Facility Layout1	11
5.5	Receptor Network1	11
5.6	Effects of Building Downwash 1	11
5.7	NO _x Chemistry	12
5.8	Background Concentrations 1	12
6.0	Results and Discussion 1	14
6.1	SIL Modeling Results	14
6.2	Cumulative NAAQS Impact Analyses 1	15
7.0	Modeled Emission Rates as Precursors (MERPS)1	Ι7

List of Tables

Table 1.	Applicable Regulatory Limits	3
Table 2.	SIL Compliance Demonstration Values	4
Table 3.	NAAQS Compliance Demonstration Values	5
Table 4.	Modeled Emission Rates	6
Table 4 (C	ontinued). Modeled Emission Rates	6
Table 5.	AERSCREEN Modeling Parameters	7
Table 6.	AERMOD Modeled Sources	8
Table 7.	AERMOD Modeling Parameters	9
Table 8.	Air Dispersion Modeling Programs	9
Table 9.	Background Concentrations for Modeling	13
Table 10.	AERSCREEN Model Results	14
Table 11.	EU8 AERSCREEN Results	
Table 12.	Results for the Significant Impact Level Analysis	
Table 13.	Comparison of Modeled Impacts	16
Table 14.	Results for Cumulative NAAQS Impact Analysis	16
Table 15.	MERPS-Related Values for Glacier County Source	17
Table 16.	Results of MERPS Analysis for O3 and Secondary PM2.5	18

List of Figures

- Figure 1: Site Plan with Aerial Photo
- Figure 2: Full Receptor Grid
- Figure 3: Fenceline and Sources
- Figure 4: Hot Spot Receptors

List of Attachments

Attachment 1:	Final Modeling Protocol
Attachment 2:	Met Data Processing Summary
Attachment 3:	AERSCREEN Output

1.0 SUMMARY

NorthWestern Energy (NWE) has applied for an air quality permit for modification of the Meriwether Compressor Station located on the Blackfeet Indian Reservation. This permit will be issued under Federal Tribal Minor New Source Review (TMNSR) Program in Indian Country. The EPA permitting authority is the Air Permitting and Monitoring Branch, Air and Radiation Division, U.S. EPA Region 8.

Bison Engineering, Inc. (Bison) is submitting this Air Quality Impact Analysis (AQIA) report on behalf of NWE. The purpose of the dispersion modeling is to demonstrate that the changes proposed in the TMNSR application will not cause or contribute to a violation of any National Ambient Air Quality Standard (NAAQS). Bison and NWE have worked with EPA Region 8 to develop a modeling protocol for this project. The final version of the modeling protocol is included as **Attachment 1** to this modeling report.

The current permitting action is for the proposed addition of a 2500 horsepower (hp) engine to the Meriwether facility. The dispersion modeling determines predicted ambient impacts due to the operation of the Meriwether facility with the proposed changes. The modeling is based on the Potential to Emit (PTE) of proposed and existing emission sources, calculated using applicable emission factors and methodologies as provided in the TMNSR permit application. The proposed facility is not PSD major - the current permitting action is not PSD Major Application. A detailed emissions inventory spreadsheet was included in TMNSR permit application.

Additional modeling has been performed to demonstrate the proposed project will not cause or contribute to a violation of the NAAQS with the proposed and existing compressor engines operating at 50% load as well as 100% load. The NAAQS compliance demonstration is based on the worst-case impacts from the facility under the two different operating scenarios.

2.0 PROJECT DESCRIPTION AND BACKGROUND

2.1 General Facility/Project Description

The Meriwether facility currently includes three natural gas fired compressor engines. Existing equipment at the facility will not be impacted by the proposed project. The facility was originally registered with a single 1,340-hp natural gas compressor engine and modified in 2018 to add two 1,380-hp natural gas compressor engines. The facility also includes an 85 hp gas-fired emergency generator engine. Maps showing the general site location are included in the Modeling Protocol in **Attachment 1**.

The scope of the project is the addition one new 2,500-hp natural gas compressor engine. The emission rates used in the modeling are the same as provided in the emissions inventory in the TMNSR permit application.

2.2 Location of Project

The NWE Meriwether facility is located 23 miles northwest of Cut Bank, Montana, 2.5 miles south of Buffalo Lake, Montana, and approximately 12.5 miles south of Canada. The facility is located in the NE¼, SE¼ of Section 3, Township 35 North, Range 9 West, in Glacier County. UTM coordinates for the proposed engine on the site are UTM Zone 12, Easting 370,986 meters, and Northing 5,408,634 meters. The proposed facility elevation is 4226 feet above sea level. The Big Sky Hutterite Colony is located 1.5 miles north of the project site.

The air quality classification for the project area is "Unclassifiable or Better than National Standards" (40 CFR 81.327) for the National Ambient Air Quality Standards (NAAQS) for all criteria pollutants.

2.3 Applicable Standards

Criteria pollutant NAAQS are listed in **Table 1**, along with the applicable significant impact levels (SILs) for each pollutant and averaging period. SILs are used in the modeling analysis as described in Section 3.3.

Pollutant	Averaging Period	Significant Impact Levels ^a (µg/m ³) ^b	NAAQS ° (µg/m³)	Modeled Design Value Used ^a		
PM ₁₀ ^e	24-hour	5.0	150 ^f	Maximum 6 th highest ^g		
DM b	24-hour	1.2	35 ⁱ	Mean of maximum 8 th highest ^j		
PM _{2.5} h	Annual	0.2	12 ^k	Mean of maximum 1st highest ^k		
Carbon monoxide	1-hour	2,000	40,000 ¹	Maximum 2 nd highest ^m		
(CO)	8-hour	500	10,000 ¹	Maximum 2 nd highest ^m		
Sulfur Dioxide (SO ₂)	1-hour	3 ppb ⁿ (7.8 μg/m ³)	75 ppbº (196 μg/m ³)	Mean of maximum 4 th highest ^q		
	3-hour	25	1,300 ppb ^{l,p}	Maximum 2 nd highest ^m		
Nitrogen Dioxide	1-hour	4 ppb (7.5 μg/m ³)	100 ppb ^s (188 μg/m ³)	Mean of maximum 8 th highest ^t		
(NO ₂)	Annual	1.0	100 ^r	Maximum 1 st highest ⁿ		
Lood (Dh)	3-month ^u	NA	0.15 ^r	Maximum 1 st highest ⁿ		
Lead (Pb)	Quarterly	NA	1.5 ^r	Maximum 1 st highest ⁿ		
Ozone (O ₃)	8-hour	40 TPY VOC ^v	70 ppb ^w	Not typically modeled		
4 Guidance on Significant Impact Levels for Ozone and Fine Particles in the Provention of Significant Deterioration Permitting						

Table 1. Applicable Regulatory Limits

^{a.} Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program, April 17, 2018, www.epa.gov.

b. Micrograms/cubic meter.

^{c.} National Ambient Air Quality Standard (NAAQS), www.epa.gov.

^d The maximum 1st highest modeled value is always used for the SIL analysis unless indicated otherwise. Modeled design values are calculated for each ambient air receptor.

e. Particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers.

^f Not to be exceeded more than once per year on average over 3 years (or the 5-year modeling period).

^g Concentration at any modeled receptor when using five years of meteorological data.

h. Particulate matter with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers.

^{1.} 3-year mean of the upper 98th percentile of the annual distribution of 24-hour concentrations.

5-year mean of the 8th highest modeled 24-hour concentrations at the modeled receptor for each year of meteorological data modeled. For the SIL analysis, the 5-year mean of the 1st highest modeled 24-hour impacts at each receptor for each year.

^k 3-year mean of annual concentration (or the 5-year modeling period) at the modeled receptor.

^{1.} Not to be exceeded more than once per year.

^{m.} Concentration at any modeled receptor.

^{n.} Interim SIL established by EPA policy memorandum.

^{a.} 3-year mean of the upper 99th percentile of the annual distribution of maximum daily 1-hour concentrations.

^{p.} Secondary NAAQS - not modeled.

⁴ 5-year mean of the 4th highest daily 1-hour maximum modeled concentrations for each year of meteorological data modeled. For the significant impact analysis, the 5-year mean of 1st highest modeled 1-hour impacts for each year is used.

^{r.} Not to be exceeded in any calendar year.

^{s.} 3-year mean of the upper 98th percentile of the annual distribution of maximum daily 1-hour concentrations.

^t 5-year mean of the 8th highest daily 1-hour maximum modeled concentrations for each year of meteorological data modeled. For the significant impact analysis, the 5-year mean of maximum modeled 1-hour impacts for each year is used.

^{u.} 3-month rolling average.

v. An annual emissions rate of 40 ton/year of VOCs is considered significant for O₃.

w. Annual 4th highest daily maximum 8-hour concentration averaged over three years.

3.0 MODELING ANALYSES APPLICABILITY AND PROTOCOL

3.1 Modeling Protocol

NWE submitted the original AQIA modeling protocol on May 19, 2022. EPA reviewed the initial protocol submittal and returned comments. On June 23, 2022, the NWE team provided a protocol addendum including response to the additional items. NWE, Bison, and EPA had a conference call on June 28, 2022, in which EPA went over previous data requests and identified additional items. All EPA comments have been addressed in the final protocol, which is included as **Attachment 1**.

3.2 Criteria Pollutant Modeling Applicability

The Meriwether Compressor Station will have the potential to emit nitrogen oxides (NO_x), carbon monoxide (CO), and volatile organic compounds (VOC) in amounts exceeding the Minor NSR threshold for attainment areas listed in Table 1 to Section 49.153 – Minor NSR Thresholds. The proposed new engine by itself also has the potential to emit NO_x, CO and VOC in amounts exceeding the minor NSR thresholds. Emissions of sulfur dioxide (SO₂) and particulate matter (PM₁₀ and PM_{2.5}) from the entire facility are below the Minor NSR thresholds. In the modeling protocol review, EPA has requested that SO₂, PM₁₀, and PM_{2.5} also be modeled for the SIL analysis.

3.3 SIL Modeling Parameters

The first step in the AQIA is to perform a single-source impact analysis to determine if the emissions from the new engine will exceed the applicable SILs. If the impacts exceed the applicable SILs, all the engines as the site will be modeled to determine compliance with the NAAQS. SIL analysis was performed using the EPA AERSCREEN model. Short-term and annual allowable emissions from the proposed engine were modeled to determine if ambient impacts exceeded the applicable SILs. **Table 2** contains a listing of the SIL values, averaging periods, and modeling approach.

		-		
Pollutant	Averaging Period	Significant Impact Level (µg/m³)	Regulatory Modeled Value	AERSCREEN Modeled Value
PM10	24-hour	5.0	High 1 st high of 5 met years	Max 1-hr impact * 0.6
	24-hour	1.2	Average of 24-hr H1H averaged over 5 years	Max 1-hr impact * 0.6
PM _{2.5}	Annual	0.2	Average of annual high values over 5 years	Max 1-hr impact * 0.1
NO ₂	1-hour	4 ppb (7.5 μg/m³)	Average of 1-hr H1H values over 5 years	Max 1-hour impact
	Annual	1.0	Highest annual average over 5 years	Max 1-hr impact * 0.1

Table 2.SIL Compliance Demonstration Values

Pollutant	Averaging Period	Significant Impact Level (µg/m³)	Regulatory Modeled Value	AERSCREEN Modeled Value
SO ₂	1-hour 3 ppb (7.8 μg/m ³)		Average of 1-hr H1H values over 5 years	Max 1-hr impact * 0.1
60	1-hour	2,000	High 1 st high of 5 met years	Max 1-hr impact
CO	8-hour	500	High 1 st high of 5 met years	Max 1-hr impact * 0.9

SIL modeling was performed using the AERSCREEN modeling program as described in the Modeling Protocol in Attachment 1. The use of AERSCREEN precludes the development of a radius of impact (ROI) from each pollutant/averaging period. SIL modeling results for each pollutant and averaging period are included in **Table 12** of this report.

3.4 NAAQS Modeling Parameters

The SIL modeling showed that the SIL impacts triggered NAAQS modeling for 1-hour NO_2 , Annual NO_2 , 24-hour $PM_{2.5}$ and Annual $PM_{2.5}$. The proposed full PTE emissions for these pollutants and averaging periods were modeled to determine total facility impact. The total modeled impacts were added to a background ambient concentration to determine compliance with the NAAQS. The background values are listed in Section 5 of this report.

The engine modeling for NAAQS compliance was performed using the three existing engines and one proposed engine running at 100% load and at 50% load. **Table 3** lists the sources and compliance demonstration values that were used in the NAAQS compliance demonstration.

Pollutant	Averaging Period	Modeled Sources	Modeled Value	Met Data Set
PM10	24-hour	Not Modeled	High 6 th high of 5 met years	5 year combined met data set
PM2.5	24-hour	EU1, EU2, EU3, EU8	H8H of max daily values averaged over 5 years	5 year combined met data set
P 1V12.5	Annual	EU1, EU2, EU3, EU8	Average of annual high values over 5 years	5 year combined met data set
СО	1-hour	Not Modeled	High 2 nd high of 5 met	Individual met year files
CO	8-hour	Not Modeled	years	muividual met year mes
NO ₂	1-hour	EU1, EU2, EU3, EU8.	H8H of max daily values averaged over 5 years	5 year combined met data set
INU2	Annual	EU1, EU2, EU3, EU8	Highest annual result of the 5 years modeled	Individual met year files
SO ₂	1-hour	Not Modeled	H4H of max daily values averaged over 5 years	5 year combined met data set

Table 3.NAAQS Compliance Demonstration Values

4.0 MODELED EMISSION SOURCES

Emissions from the facility have been as calculated as detailed in the TMNSR application.

4.1 Criteria Pollutants

The modeled criteria pollutant emissions rates for the NWE sources relisted in **Table 4**.

Table 4. Modeled Emission Rates							
Emissions Unit	PM _{2.5}	PM _{2.5}	NOx	NOx	CO	CO	
Emissions Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
EU1 – 1340 hp engine – 100% load	0.110	0.482	2.95	12.9	5.91	25.88	
EU1 – 1340 hp engine – 50% load	0.055	0.241	1.48	6.49	2.96	12.94	
EU2 – 1380 hp engine – 100% load	0.114	0.498	3.04	13.3	6.08	26.65	
EU2 – 1380 hp engine – 50% load	0.057	0.249	1.52	6.66	3.04	13.33	
EU3 – 1380 hp engine – 100% load	0.114	0.498	3.04	13.3	6.08	26.65	
EU3 – 1380 hp engine – 50% load	0.057	0.249	1.52	6.66	3.04	13.33	
EU8 –2500 hp engine – 100% load	0.187	0.820	5.51	24.1	11.02	48.28	
EU8 –2500 hp engine – 50% load	0.094	0.410	2.76	12.1	5.51	24.14	

Table 4.Modeled Emission Rates

Table 4 (Continued). Modeled Emission Rates

Emissions Unit	SO ₂	SO ₂	PM ₁₀	PM ₁₀
Emissions onit	lb/hr	tpy	lb/hr	tpy
EU1 – 1340 hp engine – 100% load EU1 – 1340 hp engine – 50% load	0.01	0.03	0.110 0.055	0.482 0.241
EU2 – 1380 hp engine – 100% load EU2 – 1380 hp engine – 50% load	0.01	0.03	0.114 0.057	0.498 0.249
EU3 – 1380 hp engine – 100% load EU3 – 1380 hp engine – 50% load	0.01	0.03	0.114 0.057	0.498 0.249
EU8 –2500 hp engine – 100% load EU8 –2500 hp engine – 50% load	0.01	0.05	0.187 0.094	0.820 0.410

NAAQS modeling has been performed with the engines operating at 100% capacity and 50% capacity as described in **Section 6**. The impacts from operating at 100% capacity were consistently higher.

4.2 NO₂/NO_x Ratio for NO_x Chemistry Modeling

The estimated emissions of NO_x from natural gas combustion are a mixture of primarily nitric oxide (NO) and NO₂. NO₂ is a regulated criteria air pollutant, while NO is not. It is valuable to know the concentrations of NO and NO₂ in the NO_x emissions, and the rate at which the NO converts to NO₂.

Section 4.2.3.4.b of the EPA's Guideline on Air Quality Models, Appendix W to 40 CFR Part 51 (Jan. 17, 2017), contains the following description of NO₂ modeling.

- b. Due to the complexity of NO₂ modeling, a multi-tiered screening approach is required to obtain hourly and annual average estimates of NO₂. The tiers of NO₂ modeling include:
 - i. A first tier (most conservative) "full" conversion approach;
 - ii. A second-tier approach that assumes ambient equilibrium between NO and NO₂; and
 - iii. For Tier 1, use an appropriate refined model (Section 4.2.2) to estimate NO_X concentrations and assume a total conversion of NO to NO_2 .

NO_x modeling for SIL and NAAQS compliance was completed using the Tier I approach. No additional NO_x analyses were necessary for this project.

4.3 AERSCREEN Emissions Release Parameters

The SIL modeling was performed using EPA's AERSCREEN screening model. AERSCREEN is a Gaussian plume model which provides maximum ground-level concentrations for point, area, flare, and volume sources that does not require the use of site-specific meteorological data. AERSCREEN was used for the SIL modeling to represent the proposed engine, EU8.

The proposed engine will be located at a distance of 133' (40.5 m) from the nearest point of public access at the site, which is the fence line. The model was run with receptors from 0 meters to 5000 meters. The highest impact was at a location of 51 m from the stack, which falls outside the fence line.

Building downwash was calculated in AERSCREEN, using the generator engine housing as the building. For purposes of this model exercise, a modeled emission rate of 1.0 pound per hour (lb/hr) was used to provide unit-based results. The AERSCREEN model input parameters are summarized below in **Table 5**.

	0
Source Modeled	EU8
Source Type	Point
Modeled Emission Rate (pound/hour)	1.000
Stack Height (ft)	31
Stack Inside Diameter (in)	36
Stack Exit Velocity (ft/s)	37.7
Stack Gas Exit Temp (°F)	853
Minimum Ambient Air Temp (°F)	-36
Maximum Ambient Air Temp (°F)	103
Urban/Rural Option	Rural

Table 5.AERSCREEN Modeling Parameters

Source Modeled	EU8
Distance to the Ambient Air Boundary (ft)	0 used
Building Height (ft)	12
Min. Horiz. Building Dimension (ft)	23
Max. Horiz. Building Dimension (ft)	38

4.4 AERMOD Emissions Release Parameters

The NAAQS compliance modeling was performed for engine operations at 100% and 50% load. The modeled source emissions and stack parameters were based on all engines operating at the same load percentage. Details of modeled source parameters are contained in **Table 6**.

Release	Decerintian	UTM Coordinates ^a		Stack		Stack Gas	Modeled Stack	Orient. of
Point	Description	Easting (m)	Northing (m)	Height (ft)	Temp. (°F) ^b	Velocity (ft/sec) ^c	Diameter (ft)	Released
EU1	Existing 1340 hp Engine	371008	5408667	26	992 1006	48.4 26.7	2	v
EU2	Existing 1380 hp Engine	370986	5408667	26	980 986	45.9 24.8	2	v
EU2	Existing 1380 hp Engine	370964	5408667	26	980 986	45.9 24.8	2	v
EU4	Existing 85 hp emergency generator	Not modeled – emergency unit						
EU5 & 6	Existing Building Heaters	Not modeled – insignificant sources						
EU7	Process Valves	Not modeled – fugitive non-combustion source						
EU8	Proposed 2500 hp Engine	371045	5408701	31	853 956	37.7 21.1	3	v

Table 6. AERMOD Modeled Sources

a UTM Zone 12

b Temperatures at 100% and 50% engine load

c Velocities at 100% and 50% engine load.

d Orientation of Stack Release: v – vertical, h – horizontal, c - capped

5.0 MODELING METHODOLOGY

This section of the Modeling Report describes the specific methods and data used in the air impact analyses. **Table 7** summarizes the key modeling parameters used in the impact analyses.

Parameter	Description/Values	Documentation/Addition Description			
General Facility Location	Attainment	The facility area is attainment or unclassified for all criteria pollutants.			
Model	AERMOD	AERMOD with the PRIME downwash algorithm, version 21112.			
Meteorological Data	KJER, Surface, Great Falls, Montana upper air	The modeling has been performed for the period 2016-2018, 2020-2021 using AERMET data processed as described in Attachment 2 .			
Terrain	Considered	3-dimensional receptor coordinates were obtained from USGS National Elevation Dataset (NED) files and were used to establish elevation of ground level receptors. AERMAP was used to determine each receptor elevation and hill height scale.			
Building Downwash	Considered	Plume downwash was considered for the structures associated with the facility. BPIP-PRIME was used to evaluate building dimensions for consideration of downwash effects in AERMOD.			
NOx Chemistry	None	Tier I analysis used for SIL and NAAQS modeling.			
	Fenceline	25-meter spacing along the ambient air boundary			
	Fenceline to 1 km	50-meter spacing			
Decemtor Crid	1 km to 3 km	250-meter spacing			
Receptor Grid	3 km to 10 km	500-meter spacing			
	Hot Spot Receptors	10-meter spacing, around the peak modeled impact point			
	NAAQS analysis used f	full 10 km grid			

 Table 7.
 AERMOD Modeling Parameters

5.1 Model Selection

EPA's AERSCREEN model has been used for the SIL modeling and AERMOD has been used for the NAAQS and MERPS modeling. The modeling was implemented using the Providence Engineering and Environmental Group, LLC BEEST and AerScreen for Windows programs. **Table 8** lists the versions of all the modeling files that were used.

Model/Program Name	Version					
AERSCREEN	21112					
MAKEMET	16216					
AerScreen for Windows	4.02					
AERMOD	21112					
AERMET	21112					
AERMINUTE	15272					
AERSURFACE	20060					

 Table 8.
 Air Dispersion Modeling Programs

Model/Program Name	Version
AERMAP	18081
BPIPPRM	04274
BEEST	12.06

5.2 Meteorological Data

Met data for AERSCREEN was generated using the MAKEMET program. A figure showing the proposed MAKEMET meteorology parameters is shown below.

*********************** MAKEMET METEOROLOGY PARAMETERS ************************** _____ MIN/MAX TEMPERATURE: 235.4 / 312.6 (K) MINIMUM WIND SPEED: 0.5 m/s ANEMOMETER HEIGHT: 10.000 meters SURFACE CHARACTERISTICS INPUT: AERMET SEASONAL TABLES DOMINANT SURFACE PROFILE: Desert Shrubland DOMINANT CLIMATE TYPE: Dry Conditions DOMINANT SEASON: Spring ALBEDO: 0.30 BOWEN RATIO: 5.00 0.300 (meters) ROUGHNESS LENGTH:

SURFACE FRICTION VELOCITY (U*) ADJUSTED

The AERMOD modeling used an AERMET dataset processed with the most recent five years of surface meteorological data from Cut Bank, Montana that meet the minimum data availability requirements. During met data processing, it was noted that the data from 2019 was less than 90% complete, so that year was replaced with 2016. The modeled met years are 2016, 2017, 2018, 2020 and 2021. The identification numbers for the Cut Bank airport are KCTB and WBAN 24137.

The 1-minute Automated Surface Observing System (ASOS) data from Cut Bank was processed using the AERMINUTE preprocessor. Upper air data from Great Falls International Airport was used. The identification numbers for the Great Falls airport are KGTF and WBAN 24143. A summary of the meteorological data processing is provided as **Attachment 2** to this modeling report.

5.3 Effects of Terrain

The terrain inclusion feature was used in AERSCREEN, which incorporates AERMAP. AERMAP was also used to establish receptor elevations and hill heights for use in AERMOD. Three-dimensional digital elevation data was obtained from USGS National Elevation Dataset (NED) and AERMAP was used to determine each receptor elevation and hill height scale.

5.4 Facility Layout

The modeling was based on the final facility plot plan shown in **Figure 1** of this AQIA report, which is the final site plan provided by NWE. The building and source locations were entered into AERMOD using the BEEST interface. BEEST was then used to overlay the modeled buildings and sources on a Google Earth satellite photo to confirm the locations of the ambient air boundary.

5.5 Receptor Network

For the AERSCREEN SIL modeling, receptors were placed from the EU8 location extending outward using the AERSCREEN recommended spacing. AERSCREEN automated receptor spacing of 25-meters was used from the source to a distance of 5,000 meters (16,404'). AERSCREEN interpolates the modeled results to identify the point of highest impact.

The facility fence line is the ambient air quality boundary (AAB) for modeling purposes. AERMOD receptor spacing used is as follows:

- 25 meter spacing along the AAB
- 100 meter spacing from the AAB to 1 km
- 250 meter spacing from 1 km to 3 km
- 500 meter from 3 km to 10 km

The full grid, along with the fence line receptors, includes a total of 3,115 receptors as shown on **Figure 2**. The fence line and nearby receptors are shown on **Figure 3**. The NAAQS modeling results were used to determine the receptor of highest impact within the modeling grid. Hotspot receptors were then placed at spacing of 10 meters surrounding the peak modeling point. All the peak impacts from each pollutant and averaging period were closely grouped, so only one hotspot receptor grid was needed. The hotspot grid is shown on **Figure 4**.

5.6 Effects of Building Downwash

The building downwash function within AERSCREEN only allows a single building per source. The compressor engine housing units are 23' x 28' and 12' high. The proposed engine was modeled in AERSCREEN using its own housing for downwash, with the stack at the center, height of 12', max dimension of 28' and minimum dimension of 23'.

Detailed building downwash was used for each of the sources included in the refined AERMOD modeling. AERMOD uses the BPIPPRM program to calculate building downwash parameters. AERMOD allows input of multiple buildings and sources. The compressor engine housings were used as downwash structures at the dimensions listed above. The auxiliary building was also included in the modeling with dimensions of 12' x 20' and height of 12'. The other site buildings are far enough away to be excluded from the downwash calculations because the stacks are farther than the distance of 5L as described in the BPIP User's Manual. Each structure type produces an area of wake effect influence that extends out to a distance of five times L directly downwind from the trailing edge of the structure, where L is the lesser of the building height (BH) or the projected building width (PBW).¹

5.7 NO_x Chemistry

The estimated NO_x emissions from the natural gas-fired engines are a mixture of primarily nitric oxide (NO) and NO₂. NO₂ is a regulated criteria air pollutant, and NO is not a regulated pollutant. Once emitted, NO converts to NO₂ in the ambient air. Section 4.2.3.4 of Appendix W to 40 CFR Part 51 (Jan. 17, 2017), contains a tiered approach for NO₂ modeling. For Tier I, all NO_x is assumed to be NO₂ when emitted from the stack. The SIL modeling must be conducted using only the Tier 1 approach, to provide the widest reasonable pattern of significant impact receptors.

The NAAQS 1-hour compliance modeling began with an analysis using the Tier 1 methodology. If model did not show NAAQS compliance, additional modeling would have been performed using the Tier 2 ARM2 option to simulate the conversion of NO to NO₂ in the ambient air. The ARM2 option requires a minimum and maximum NO₂/NOx ratio to predict ambient concentrations of NO₂. The Tier II modeling EPA regulatory default maximum ratio is 0.9 and the default minimum ratio is 0.5. The project passed with Tier I modeling and Tier 2 modeling was not required for this application.

5.8 Background Concentrations

Ambient concentrations of the criteria pollutants provide background values for the NAAQS compliance demonstration. The modeling compliance demonstration used background concentrations obtained from the EPA air monitoring data website². The EPA website includes an interactive map of air quality monitors which shows active pollutant monitors throughout the US. PM₁₀ and PM_{2.5} monitors are located at Lewistown as well sites west of the Continental Divide in Northwest Montana. The Northwest sites represent air quality in mountain valleys with stagnant air patterns. The NWE Meriwether site is located east of the Rocky Mountains in an area of open plains, which is better represented by the Lewistown data. The NCORE site is located in the mountains just north of Helena, Montana. Data from Lewistown has been selected for NOx, PM₁₀, and PM_{2.5} background values. SO₂ and CO NAAQS

¹ BPIP User Manual. gaftp.epa.gov/Air/aqmg/SCRAM/models/related/bpip/bpipd.pdf

² <u>https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors</u>

modeling was not required; however, the appropriate background values were identified from the NCORE site. The selected background concentrations are listed in **Table 9**.

Pollutant	Averaging Period	Background Concentration (µg/m³)	Data Source	
PM2.5	24-hour	24.6	EPA, Lewistown, MT, 3-year average DV	
F 1¥12.5	Annual	5.0	EPA, Lewistown, MT, 3-year average DV	
PM10	24-hour	70.7	EPA, Lewistown, MT, 3-year average DV	
NO ₂	1-hour	20.1	EPA, Lewistown, MT, 3-year average DV	
NO ₂	Annual	1.2	EFA, Lewistowii, MT, 5-year average DV	
SO ₂	1-hour	4.4	EPA, NCORE Site. 3-year average DV	
СО	1-hour	908	EDA NCODE Site 2 year average DV	
CU	8-hour	687	EPA, NCORE Site. 3-year average DV	
Ozone	8-hour	0.063 ppm	EPA, Lewistown, MT. 3-year average DV	

Table 9.Background Concentrations for Modeling

6.0 RESULTS AND DISCUSSION

6.1 SIL Modeling Results

The AERSCREEN modeling was performed with a modeled emission rate of 1 lb/hr. Therefore, the results are provided in units of micrograms per cubic meter per pound per hour $[(\mu g/m^3)/(lb/hr)]$ as shown in **Table 10**. The AERSCREEN output files and results are included in **Attachment 3**.

	EU8
Maximum 1-hr Conc. (μ/m³)/(lb/hr)	10.39
Scaled 3-hr Conc. (μ/m³)/(lb/hr)	10.39
Scaled 8-hr Conc. (μ/m³)/(lb/hr)	9.351
Scaled 24-hr Conc. (μ/m³)/(lb/hr)	6.234
Scaled Annual Conc. (μ/m³)/(lb/hr)	1.039
Distance to Maximum Impact (m)	51

Table 10. AERSCREEN Model Results

The modeled emission rates for the engine running at 100% load for each of the pollutants are converted to ambient impact results using the AERSCREEN model results. The pollutant specific AERSCREEN model results are calculated as shown in the following example calculation:

- EU8 NOx Emissions = 5.51 lb/hr
- EU8 Unit-based Result = $10.39 (\mu g/m^3)/(lb/hr)$
- NOx Impact: 5.51 lb/hr * 10.39 (µg/m³)/(lb/hr) = 57.25 µg/m³

The modeled impacts from the EU8 running at 100% load are shown in Table 11. The 100% load was selected over the 50% due to create a "worst case" scenario of the engine's operating conditions. The 100% load also creates a scenario where the compressor engine is at full capacity. The 100% load is typically routine for operating these compressor engines. A partial load for SILs analysis also seemed uncommon since the objective of the SIL modeling is to determine the extent of the significant impacts; therefore, modeling the scenario that generates the farthest impacts and not the highest impacts.

Pollutants	Modeled Emission Rate (lb/hr)	Modeled Impact (μg/m³)
NOx 1-hr	5.51	57.25
NOx Annual	5.51	5.72
CO 1-hr	5.51	57.25
CO 8-hr	5.51	51.52
SO2 1-hr	0.011	0.11
PM ₁₀ 24-hr	0.187	1.17
PM _{2.5} 24-hr	0.187	1.17
PM _{2.5} Annual	0.187	0.19

Table 11.EU8 AERSCREEN Results

The maximum total modeled impacts are compared to the applicable SIL values for each pollutant and averaging period. **Table 12** contains SIL analyses results comparing modeled results to applicable SILs.

			8	-		
Pollutant	Averaging Period	Modeled Emission Rate (lb/hr)	AERSCREEN Maximum Concentration (μg/m ³)	Significant Impact Level (µg/m ³)	Impact Percentage of SIL	Cumulative NAAQS Analysis Provided
NO	1-hour	5.51	57.25	7.5	763%	Yes
NO ₂	Annual	5.51	5.72	1.0	572%	Yes
DM	24-hour	0.187	1.17	1.2	97.5%	Yes
PM _{2.5}	Annual	0.187	0.19	0.2	95.0%	Yes
PM_{10}	24-hour	0.187	1.17	5.0	23.4%	No
CO	1-hour	5.51	57.25	2,000	2.86%	No
	8-hour	5.51	51.52	500	10.3%	No
SO ₂	1-hour	0.011	0.11	7.8	1.41%	No

 Table 12.
 Results for the Significant Impact Level Analysis

The AERSCREEN modeling results exceeded the applicable SILs for 1-hour NO₂ and annual NO₂, requiring that NAAQS modeling be provided. The results were close to the applicable SILs for 24-hour PM_{2.5} and annual PM_{2.5}. NAAQS modeling is provided for PM_{2.5} as well as NO₂.

6.2 Cumulative NAAQS Impact Analyses

The NAAQS modeling was performed with the engines at the facility operating at 50% and 100% load. Typically, the stack dispersion characteristics are less favorable at lower combustion rates, resulting in higher modeled impacts for the same emission rate. However, the pollutant emission rates are also reduced, so the outcome can only be assessed by modeling. As stated above, the modeling included a set of hot-spot receptors surrounding the peak modeled impact points from the 100% modeling case. Results from the various modeling cases are presented in **Table 13**.

Pollutants	100% Modeled Impact, Main Receptors (μg/m³)	50% Modeled Impact, Main Receptors (μg/m³)	100% Modeled Impact, Hot Spot Receptors (μg/m³)	
NO ₂ 1-hr 91.30		59.19	92.44	
NO ₂ Annual (2020) 15.97		11.68	16.10	
PM _{2.5} 24-hr	2.05	1.43	2.73	
PM _{2.5} Annual	0.518	0.381	0.522	

 Table 13.
 Comparison of Modeled Impacts

As shown in **Table 13**, the highest modeled impacts for all four modeled pollutant and averaging period combinations fell within the hot spot receptor grid when modeling the 100% operational load case. The modeling for NO₂ 1-hr and for PM_{2.5} 24-hour and annual cases was performed using the concatenated met data set for all five modeled years. The annual NO₂ modeling was done separately for each modeled year, and the highest impacts resulted from the 2020 met data set.

Table 14 provides results of Cumulative NAAQS Impact analyses for the project design configuration with the existing and proposed engines operating simultaneously. The NAAQS compliance demonstration has been performed with all of the proposed equipment modeled at 100% of capacity. No exceedances of NAAQS standards were modeled.

 Table 14.
 Results for Cumulative NAAQS Impact Analysis

Pollutant	Averaging Period	Modeled Design Concentration (μg/m ³) ^a	Background Concentration (µg/m³)	Total Impact (µg/m³)	NAAQS (µg/m³)	% of NAAQS
DM	24-hour	2.73 ^b	24.6	27.3	35	78%
PM _{2.5}	Annual	0.522 ^c	5.0	5.52	12	46%
NO	1-hour	92.44 ^b	20.1	113	188	60%
NO ₂	Annual	16.10	1.2	17.3	100	17%
a. Micrograms/cubic meter						

^{b.} Maximum of 5-year means of 8th highest modeled concentrations for each year modeled.

^c 5-year mean of annual concentration.

d. Maximum annual impact of 5 years modeled.

The modeling analysis demonstrates that the NWE Meriwether facility will not cause or contribute to an exceedance of any NAAQS.

7.0 MODELED EMISSION RATES AS PRECURSORS (MERPS)

EPA has requested that NWE address the potential impacts of emissions on ozone and secondary particulate matter formation. The analysis is based on the 2019 EPA memorandum titled Guidance on the Development of Modeled Emission Rates for Precursors (MERPS) as a Tier I Demonstration Tool for Ozone and $PM_{2.5}$ under the PSD Permitting Program³.

The MERPS guidance explains how to estimate single-source ozone and secondary PM_{2.5}formation pollutants under the Tier I approach put forth in EPA's Guideline on Air Quality Models (Appendix W to 40 CFR Part 51). For Tier 1 assessments, the analysis uses existing empirical relationships between precursors and secondary impacts (*e.g.*, O₃ and PM_{2.5}). EPA has generated empirical relationships between single sources and O₃ and PM_{2.5} impacts for hundreds of hypothetical sources that vary in stack height, emission rate, and geographic location.

The MERPS analysis uses the methodology provided in the MERPS View Qlik website: www.epa.gov/scram/merps-view-qlik. The MERPS analysis requires selection of one of the embedded hypothetical sources as the basis of the analysis. The selected hypothetical source is located in Glacier County, near Cutbank, Montana. The 10-meter stack height was used, with 500 tpy of VOC and 1000 tpy of NO₂ and SO₂. **Table 15** lists the associated VOC and NOx MERP values for ozone and associated NOx and SO₂ MERP values for 24-hour and annual secondary PM_{2.5}.

Pollutant	Precursor	MERP	MaxConc	Annual PTE ⁽¹⁾
8-hour Ozone	VOC	5400	0.0926 ppb	44.9 tpy
	NOx	407	2.455 ppb	64.4 tpy
Secondary Daily PM _{2.5}	24-hour NOx	8595	0.1396 μg/m ³ 64.4 tpy	
	24-hour SO ₂	1615	0.513 μg/m ³	0.138 tpy
Sec. Annual PM _{2.5}	Annual NOx	21,988	0.009096 μg/m ³ 64.4 tpy	
	Annual SO ₂	9851	0.0203 μg/m ³	0.138 tpy

 Table 15.
 MERPS-Related Values for Glacier County Source

(1) Facility-wide PTE.

Equation 1, along with the values in **Table 15**, is used to determine the ozone impacts resulting from the project for comparison to the Ozone SIL (1 ppb). **Equation 2** is used to determine the secondary $PM_{2.5}$ impacts resulting from the project for comparison to the 24-hour and annual $PM_{2.5}$ SILs (24-hour = 1.2 µg/m³ and Annual = 0.2µg/m³).

Equation 1: $\left[\frac{X \ tpy \ NOx \ from \ Source}{X \ tpy \ NOx \ 8-hr \ daily \ Maximum \ Ozone \ MERP} + \frac{X \ tpy \ VOC \ from \ Source}{X \ tpy \ VOC \ 8-hr \ daily \ Maximum \ Ozone \ MERP} \right] \times 100.0$

³ <u>www.epa.gov/sites/default/files/2019-05/documents/merps2019.pdf</u>

Equation 2: $\left[\frac{AERMOD Primary PM2.5}{PM2.5 SIL} + \frac{X tpy NOx from Source}{X tpy NOx PM2.5 MERP} + \frac{X tpy SO2 from Source}{X tpy SO2 PM2.5 MERP}\right] \times 100.0$

Table 16 outlines the results of the MERPS analysis for ozone and secondary PM_{2.5}. Using **Equation 1** and the values outlined in **Table 15**, ozone is predicted to be about 17% of the SIL. This suggests that the NAAQS will not be exceeded as a result of the emissions from the project. Using **Equation 2**, the values in **Table 15**, and the AERMOD Primary PM_{2.5} Concentrations, the combined primary and secondary PM_{2.5} impacts are predicted to be above the 24-hour and annual PM_{2.5} SILs.

			-			-	
Pollutant Impacts	NOx Contribution [ppb]	VOC Contribution [ppb]				Total Impact [ppb]	Percent of SIL
Ozone	0.158	0.008				0.166	17%
Pollutant Impacts	NOx Contribution	SO ₂ Contribution	Total Secondary Impact	Primary ¹ PM _{2.5} [μg/m ³]		Total Impact [μg/m ³]	Percent of SIL
24-hour PM _{2.5}	0.0075	0.0001	0.0076	1.17		1.18	98%
Annual PM _{2.5}	0.0029	0.000014	0.0029	0.19		0.193	96%
Pollutant Impacts	NOx Contribution	SO ₂ Contribution	Total Secondary Impact	Primary ¹ PM _{2.5} [μg/m ³]	Back- ground ² [µg/m ³]	Total Impact [μg/m³]	Percent of NAAQS
24-hour PM _{2.5}	0.0090	0.00002	0.0090	2.73	24.6	27.3	78.1%
Annual PM _{2.5}	0.0006	0.000003	0.0006	0.522	5.0	5.523	46.0%

Table 16. Results of MERPS Analysis for O₃ and Secondary PM_{2.5}

¹ See Table 12

² See Table 9

For the final cumulative impact analysis, the EPA's 2019 MERP guidance recommends using the existing relevant single-source modeled impacts and then adding the impacts to the appropriate background concentrations for comparison to the NAAQS. Instead of calculating a modeled emission rate based on a critical air quality threshold such as a SIL value (i.e., Equation 2), Equation 3 would be used to calculate a project-specific cumulative impact analysis relative to the NAAQS.

Equation 3:
$$\left[X \text{ tpy of NOx from Source } \times \frac{Modeled \text{ NOx Impact from Hypothetical Source } [\frac{\mu g}{m^3}]}{X \text{ tpy NOx PM2.5 MERP}}\right] + \left[X \text{ tpy of SO2 from Source } \times \frac{Modeled \text{ SO2 Impact from Hypothetical Source } [\frac{\mu g}{m^3}]}{X \text{ typ SO2 PM2.5 MERP}}\right] + Monitor DV \left[\frac{\mu g}{m^3}\right] + AERMOD Primary PM2.5$$

The O_3 analysis does not include any modeled impacts of direct O_3 emissions. The predicted 8-hour impact from O_3 formation due to NO_x and VOC emissions is 0.169 ppb ozone, which is below the applicable SIL value of 1 ppb. No additional O_3 analysis is required.

The $PM_{2.5}$ analysis includes modeled impacts of direct $PM_{2.5}$ emissions as well as impacts from secondary $PM_{2.5}$ formation due to NO_x and SO_2 emissions. The modeled 24-hour and annual $PM_{2.5}$ SIL impacts have been used for the MERPS analysis, as shown in **Table 16**. The SIL modeled impacts represent the high-first-high 24-hour $PM_{2.5}$ impact and the average annual maximum impact.

Based on direct $PM_{2.5}$ alone, the modeled impacts exceed the 24-hour and annual $PM_{2.5}$ SIL values. The secondary $PM_{2.5}$ contributions are a small fraction of the total $PM_{2.5}$ impacts, so the modeled results will not change. The project will comply with applicable $PM_{2.5}$ NAAQS.

W:\GAS TRANSMISSION\DRAFTING\GGAS-DFT_PROJECTS\MERIWEATHER\MODELS\MERIWEATHER.DWG 6/28/2022 12:17 PM 00081636

FIGURE 1: SITE PLAN WITH AERIAL PHOTO

Affix Stamp Here Affix Stamp Here Affix Stam	np Here					
Signature/Date Signature/Date Signature	e/Date					
Rev. No Rev. No Origin	nal					
d d d						
P REFERENCE DRAWINGS, TITLE DI	REFERENCE DRAWINGS, TITLE DRWG.NO.					
Image: Second stateImage: Mercel stateImage: Second s						
COMPRESSOR STATION						
6						
2022 NEW PIPING INSTALL						
16" USM & REG LOOP AND ESD)#4,					
INORTHWESTERN						
Energy						
Energy						
DRAWN S. CROSSMAN SCALE 1'-0" = 30"	۱ ۵"					
CHECKED DATE 6/28/2022						
ENGINEERED C. SMITH DRAWING EXHIBI 2 APPROVED NUMBER 1 OF						

Figure 2: Full Receptor Grid

0 0 0 • 0 203 0 • 0 • • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 - 0 0 213 0 20 0 0 0 0 • 0 • 0

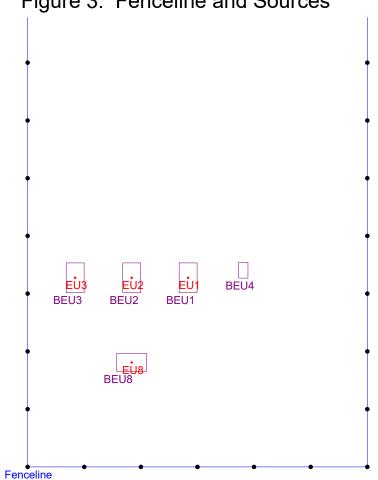
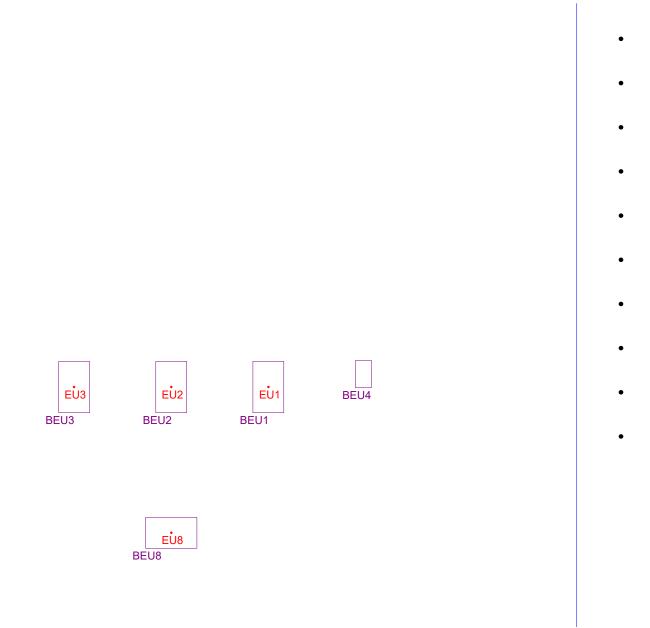



Figure 3: Fenceline and Sources

Figure 4: Hot Spot Receptor

X:\Models\NWE221729 Meriwether\AERMOD\MW_HS.BST

Scale: 1 inch = 21.7 Meters

٠

٠