The New England Stormwater Retrofit Manual: Upgrading the Performance of your Stormwater Management System for Better Watershed Health Tuesday, July 26th, 1:30 PM – 3:00PM ET

Soak up the Rain New England Webinar Series

Stormwater **Retrofit Guidance** Manual Now Available at ovement is beneficial. SNEPnetwork.org!

nd encourages the user to piece components together in configurations that best fit project and sitescale planning to the design of small-scale measures inserted into reconstruction projects.

ater Retrofit Manual

a key tool for improving New England's water resources. The itment occurs within structural controls with the understanding

he the stormwater control measures (SCM) best t that incorporating some stormwater treatment for cause prescribed design standards cannot be fully on their core functional and treatment components needs. The range of sites and scales where this guidance can be applied varies from watershed

UPCOMING EVENTS

SOAK UP THE RAIN WEBINAR SERIES

The New England Stormwater Retrofit Manual: Upgrading the Performance of your Stormwater Management System for Better Watershed Health

Tuesday, July 26th, 1:30 PM - 3:00PM ET

Register for the upcoming webinar HERE.

The manual presents the US EPA (Environmental Protection Agency) SCM Performance Curves as a tool to quantify water quality benefit (i.e. pollutant removal credit) for a range of sizes and types of SCMs to aid in the selection process and justify the retrofit.

Download the New England Stormwater Retrofit Manual

Theresa McGovern Water Resources Engineer, VHB <u>tmcgovern@vhb.com</u> Nate Pacheco Water Resources Specialist, VHB <u>npacheco@vhb.com</u> James Houle Program Director, University of New Hampshire Stormwater Center James.Houle@unh.edu

Today's Speakers

Southeast New England Program (SNEP) Network Context

2021 - 2025 PRIORITY ACTIONS

Ensure Diverse Representation

Southess New England Program

Outline Slide

- Manual Introduction
 - Goals/Why It Matters
- Manual Highlights
 - Planning and Crediting
 - Retrofit Design Approach
 - Breaking through Prescriptive Design Guidance
- Manual Applications

July 2022

Goals of New England Stormwater Retrofit Manual

• **Retrofit:** the addition of stormwater controls on a currently developed site

Source: Arlington Installs New Rain Gardens to Reduce Stormwater Pollution

Goals of New England Stormwater Retrofit Manual

- Provide **research-based guidance** on planning, siting, and designing retrofit stormwater control measures (SCMs)
- Present a framework for selecting the optimal SCM for a specific project/site
- Present an approach for crediting pollutant and runoff volume reductions associated with these SCMs

* where regulatory requirements to not dictate prescribed specifications

The Stormwater Retrofit Guidance Manual is a key tool for improving New England's water resources. The guidance is based on how stormwater treatment occurs within structural controls with the understanding that achieving any water quality improvement is beneficial.

In retrofit scenarios, it is often challenging to determine the stormwater control measures (SCM) best suited for the site. The manual is based on the concept that incorporating some stormwater treatment for developed sites is better than omitting all together because prescribed design standards cannot be fully met. The manual guides users to develop SCMs based on their core functional and treatment components and encourages the user to piece components together in configurations that best fit project and sitespecific needs. The range of sites and scales where this guidance can be applied varies from watershed scale planning to the design of small-scale measures inserted into reconstruction projects.

Why this Manual Matters

This manual...

- Encourages designers to move beyond prescriptive new/redevelopment mindset
- Helps designers piece SCM components together to arrive at the best SCM to meet project and site-specific needs
- Promotes the use of EPA-developed water quality crediting methods to quantify SCM impact

Manual Highlights: Stormwater Control Measure Performance Curves

SCM Performance Curves

Gravel Wetland

*See our handout for more information on SCM Performance Curves and how to utilize them!

Runoff Depth from Impervious Area (in)

If a designer is working on a site where a pollutant reduction of 60% is desired ...

- 2 ... the designer would use the curves to determine that a Runoff Depth from Impervious Area of approximately
 0.2 inches achieves the desired reduction
 - If a designer determines that their SCM provides a DSV equivalent to 1.2 inches from the Impervious Area ...
- 2 ... the designer would use the curves to determine a 98% pollutant reduction from this SCM

SCM Performance Curves: Finding the Cost-Optimal Size

Infiltration Basin (HSG C) with Cost Optimal Runoff Depths

Manual Highlights: Planning Your Retrofit – SCM Selection Approach

SCM Selection and Design: Treatment Unit Operations and Processes (UOPs)

UOPs: Unit Operations and Processes

Operations: methods of treatment in which application of *Physical* and *Hydrologic* forces dominate.

Processes: methods of treatment in which Chemical or Biological activities are involved.

Selection and Design: Linking SCMs to UOPs and Performance Curves

SCM Guidance: Putting It All Together

SCM Guidance: Putting It All Together

Source: Rhode Island Department of Transportation Bio-Filtration Basin at Pawtucket/Central Falls Transit Center

Manual Highlights: Breaking through Prescriptive Guidance

Overflow structure

Uncompacted subgrade

Breaking Through Prescriptive Guidance: Separation to Groundwater/Bedrock

Current Typical Requirement:

Provide 1-3 ft of separation to groundwater/bedrock

Proposed Retrofit Guidance:

Provide 1 ft of separation to groundwater when possible (SCMs with a filtering layer should always provide 1 ft)

Breaking Through Prescriptive Guidance: Flexibility for IA Disconnection Design Criteria

Current Typical Requirement:

Meet slope, length/width, contributing area, soils, vegetation, setback, and ownership criteria

Proposed Retrofit Guidance:

Provide IA Disconnection wherever possible and use the SCM performance curves to determine credit

Breaking Through Prescriptive Guidance: Flexibility for IA Disconnection Design Criteria

Breaking Through Prescriptive Guidance: Pretreatment as an O+M Measure

Current Typical Requirement:

Prescribed pretreatment measure types and sizing criteria

Proposed Retrofit Guidance:

Provide pretreatment whenever possible

Breaking Through Prescriptive Guidance: HSG D Infiltration

Current Typical Requirement:

Infiltration is not encouraged (and often not permitted) in HSG D Soils

Proposed Retrofit Guidance:

Consider infiltration whenever possible

100% % Removal 50% 0% 0.0 1.0 2.0 Runoff Depth from Impervious Area (in) **Total Phosphorus Total Suspended Solids Total Nitrogen** Metals

Bacteria

Infiltration Basin (HSG D) (Infiltration Rate = 0.10 in/hr)

Other Tools Provided in Manual

- Retrofit Site/Situation
 Considerations
- Tools utilizing the SCM
 Performance Curves to
 experiment with SCM Type/Size
- Considerations for retrofitting "traditional" approaches
- I+M Planning Considerations and a compiled list of I+M Manuals
- Retrofit-specific design guidance/considerations for individual SCMs

Infiltration

Variation-Specific Design Considerations

Outlet controls should be considered as a means to retain runoff through mechanisms such as impermeable check dams and raised outlet control structures. In addition, maximum depths for design events should be evaluated to ensure no flooding of adjacent infrastructure.

Flow velocity should be zero for the DSV of the SCM; there should be no flow in the system, and therefore all captured runoff will be stored and infiltrated. Flow velocities for larger design events should be evaluated to avoid erosion and resuspension.

Check dams are often included to isolate cells within the linear basin. Check dams should have an impermeable core to force retention and vertical infiltration. Surface treatments of the check dam can vary to support maintenance needs.

New England Stormwater Retrofit Manual

Linear Configuration

Linear Configuration SCMs are basins configured within more linear areas. They contain one or more cells designed to store and infiltrate stormwater into the underlying soils. Overflows are commonly conveyed in the linear system like a swale.

Infiltration Linear Configuration

Manual Highlights: Examples of Using Manual Concepts

Retrofit Approaches

Planning Approach

- Proactively planning retrofits and prioritizing sites
- Steps:
 - 1. Understand and Quantify Goals
 - 2. Identify Potential Sites
 - 3. Identify SCMs
 - 4. Prioritize Sites and Controls
 - 5. Implement SCMs

Opportunistic Approach

- Incorporation of SCMs into already planned and needed construction projects
- Key Considerations:
 - Be proactive in identifying opportunities.
 - Develop a suite of typical SCMs.
 - Be willing to be flexible with the project specifications
 - Tailor the scale and type of SCMs to the project

Planning Approach: Rhode Island Department of Transportation Stormwater Control Plans

Planning Approach: Rhode Island Department of Transportation Stormwater Control Plans

Planning Approach: Rhode Island Department of Transportation Stormwater Control Plans

Challenges/Lessons Learned

- Working with designers who have regulatory requirements ingrained
- Providing enough treatment to meet goals
- Developing new credits for new SCMs
- Approaches to prioritization

Opportunistic/Planning Approach: MassDOT Check Dams

Yes, climate change gives us pause to think, but IC is the 800pound gorilla

Design Dimensionless Hyetographs

Dimensionless Time

Sizing for Performance

Southeast New England Program

Sizing Details

System	WQV ft ³ (m ³)	Actual WQV ft ³ aka DSV (m ³)	% of normal design	Rain Event in aka PSC (mm)	Sizing Method
SGWSC	7,577 (214.6)	720 (20.4)	10%	0.10 (2.5)	Static
IBSCS	1,336 (37.8)	310 (8.8)	23%	0. 23 (5.8)	Dynamic

$$WQV = \left(\frac{P}{12}\right) x IA$$

Dynamic Bioretention Sizing

Static SGW System Sizing

 $Af = Vwq * \frac{df}{(i(hf + df)tf)}$

 $Q = C dA \sqrt{2gh}$

Design Storage Volume (DSV) - runoff depth from IA (in)

Analyte	Depth txt	Modeled RE	Measured RE	Analyte	Depth txt	Modeled RE	Measured RE
TSS	0.1	48	75	TSS	0.23	70	81
TZn	0.1	57	75	TZn	0.23	88	86
TN	0.1	55	23	TN	0.23	60	27
TP	0.1	19	53	TP	0.23	35	45

a		De sies Charles Value a	Dev	(1000	1
Output		Design Storage Volume	DSV	cf	1,200	
	Calculation s	viculation Impervious to Pervious Ratio		acłac	N/A	UNIVERSITY OF REW ANAPSHIRE STORMWATER CENTER
		Physical Storage Capacity: Depth of Runoff from IA <i>(range of 0 - 2, goal > 0,1, optimal 0,4</i>)	PSC	in	0.11	hd Program
		PSC Notes			DSV small, increase for optimal range 0.3≤ PSC≤ 0.6	
	Performanc	Removal Efficiency: Volume	Vol _{re}	-	0%	
]	e Gurve	Removal Efficiency: P	Pre	-	20%	
	Removal	Removal Efficiency: N		-	23%	
	Efficiencies	Removal Efficiency: TSS	TSSre	-	49%	
		Removal Efficiency: Zn		-	59%	
		Removal Efficiency: Bacteria	FIBre	-	32%	
	Loading Rate	Load: Volume	Vol _{ler}	Mgal/yr	3.29	
		Load: P		lb/yr	6.2	
		Load: N	NLER	lb/yr	44.3	
		Load: TSS	TSSLER	lb/yr	1,378	
		Load: Bacteria	FIBLER	Billion MPN/y	20	
	Reductions	Reduction: Volume	Vol _{Red}	Mgal/yr	0.00	
		Reduction: P	PRel	lbłyr	1.2	
		Reduction: N	N_{Red}	lbłyr	10.1	
		Reduction: TSS	TSSR	lb/yr	682	
-		Reduction: Bacteria	FIB _{Brd}	<u>%/yr</u>	32%]
-	Casts	Estimated Total Costs		\$	\$22,000	
-		Removal Costs: Volume Removal Costs: P		\$/Mgal-yr \$/Ib-yr	N/A \$17,940	
		Removal Costs: P		şrib-yı \$/lb-yr	\$2,170	
		Removal Costs: TSS		\$/Ib-yr	\$30	
		Removal Costs: Bacteria		\$/%-yr	\$700	1
	CAAI	Estimated 0&M Hours		hr/yr	68	4
						1

https://www.unh.edu/unhsc/ms4-resources

https://www.unh.edu/unhsc/sites/default/files/media/unhsc_performance_curve_calculator_v2.3.xlsm

Conclusions/Next Steps

- All the guidance and recommendations are based on science and empirical research.
- Retrofit is a unique and often uncharacterized opportunity that requires flexibility
- Stormwater is a quickly evolving field and this manual forwards new research and new approaches to economically meet WQ standards.
- State departments are updating stormwater manuals and we hope that the retrofit guidance compliments updates and fills gaps in applied approaches.

Access the manual here: https://snepnetwork.org/ stormwater-retrofitmanual/

Southeast New England Program

Acknowledgments

- EPA and SNEP Network
- Elizabeth Scott
- Kimberly Groff
- TAC
 - Tom Ballestero UNHSC
 - Henry Barbaro MassDOT
 - Eric Beck RIDEM
 - Ian Dombrowski EPA
 - Kathleen Knight CTDEEP
 - Daniel Macadam UNHSC

- Padraic Monks VTDEC
- Nick Pisani RIDEM
- Alisa Richardson RIDOT
- Michael Sadler VTDEC
- Laura Schifman MADEP
- Newt Tedder EPA

tmcgovern@vhb.com \searrow

npacheco@vhb.com $\left|\right\rangle$

James.Houle@unh.edu

Thank You!

