STARTING COMMUNITY COMPOSTING PROGRAMS ON TRIBAL LANDS

DATE

Introduction and Welcome

- Meet your instructor
- Your name and Tribe/organization
 - What interests you about composting?
 - What benefits do you see?
 - What drew you to this class?

Program Scale and Audience

- **Program**: Community composting
- Scale: Less than 100 cubic yards of compostable materials on a site of less than 750 square feet
- Audience: Tribal environmental staff

Community Composting Scale

< 100 cubic yards (CY)
Dimensions (2 piles)
6 feet high
6 feet wide at base
100 feet long
Each pile: 50 CY

100 CY is about 50 pick-up truck loads

By the end of this course, you will be able to:

- 1. Describe what compost is and its benefits
- 2. Identify community composting practices that might work well in your community
- 3. Pick a path for developing your community composting program

•••• Presentation Topics

Objective 1:

Describe compost and its benefits

Objective 2:

Identify community composting practices that might work well in your community

- What Composting Is
- Benefits of Composting

- Compost Science
- Composting Methods

Objective 3:

Pick a path for developing your community composting program

- Assessing Needs and Capacity
- Program Planning

WHAT IS COMPOSTING?

What is Composting?

- The process of breaking down organic materials into a soil-building substance that feeds the land
- Compositing makes the natural process of decomposition happen well and fast

Composting Perspectives

Technical View

Compost means the **product** resulting from the **controlled biological decomposition** of **organic wastes** that are **source separated** from the municipal solid waste stream, or which are separated at a centralized facility

Scientific View

Composting is the **biological decomposition** and stabilization of organic substrates, under conditions that allow development of **thermophilic** temperatures as a result of biologically produced heat, to produce a final product that is stable, free of pathogens and plant seeds, and can be beneficially applied to land

Source: <u>The Practical Handbook of Compost Engineering</u>, Roger T. Haug, 1993

Composting Perspectives

• A Chef's View

How do you become a good chef? Learn from experienced people and from one's own mistakes and successes.

The same is true with becoming a good composter

Composting Perspectives

• A Poet's View

Excerpts from This Compost, Walt Whitman, 1856

"Behold this compost! Behold it well! The grass of spring covers the prairies. The bean bursts noiselessly through the mould in the garden. The delicate spear of the onion pierces upward. The apple-buds cluster together on the apple-branches. The resurrection of the wheat appears with pale visage out of its graves. The tinge awakes over the willow-tree and the mulberry-tree. Out of its little hill faithfully rise the potato's dark green leaves.

Out of its hill rises the yellow maize-stalk, the lilacs bloom in the dooryards.

The summer growth is innocent and disdainful above all those strata of sour dead. What chemistry

...the Earth...gives such divine materials...."

\$epa

•••• What is Mulch/Mulching?

- Mulch: Organic materials that are spread on top of soil to: (a) conserve water, (b) control weeds, (c) beautify the landscape, and (d) help plants to grow
- Mulching: A mechanical size-reduction process (chopping, grinding, or shredding) used to make mulch

• Benefits:

- 1. Save resources (especially water and labor)
- 2. Promote healthy plants
- 3. Minimize soil erosion
- 4. Improve looks
- 5. Reduce fire risk

Mulch Benefits Soil and Plants

- 1. Improves water-holding ability of soil
- 2. Reduces soil erosion, compaction, and temperature extremes
- 3. Reduces salt build-up on soil surface
- 4. Reduces plant disease, weeds, and need for pesticides
- 5. Improves plant growth

BENEFITS OF COMPOSTING

Compostable Materials in US Waste Stream

16

Reduce Food Waste

Preventing waste matters most of all

EPA's Food Recovery Hierarchy

Source Reduction

Feed Hungry People

Feed Animals

Industrial Uses

Composting

Incineration or Landfill

Reduce Food Waste

EPA has strategies, tools, and tips for reducing wasted food

www.epa.gov/sustainablemanagement-food

Webinars

€FPA

- Call to Action by Stakeholders
- Donate Food
- Composting

Benefits Of Community Composting

- Reduce landfilling
- Reduce greenhouse gas emissions
- Reduce open burning
- Support community gardening and food sovereignty
- Create jobs

Benefits Of Compost

- Improve soil quality and reduce erosion
- Store more carbon in soil
- Hold more water in soil
- Replace manufactured fertilizers

Grow more food

Using Compost and Mulch

Compost

Mix into soil

- --Poor soil: 4 to 8 inches
- --Established gardens: 1 to 3 inches per year
- Adds soil structure, nutrients, helpful microbes
- Reduces watering
- Improves soil health, plant growth

Mulch

- Spread on top of soil
 - --2 to 6 inches deep
 - --Do not cover tree flare
- Reduces watering, weeding, soil erosion, fire risks
- Helps plants to grow by reducing soil temperature changes, and by holding in water and soil

\$epa

HOW COMPOSTING WORKS: THE SCIENCE

Feeding Your Compost Pile: The Big Four Ingredients

Feed good microbes in your compost pile. They need food, water, air, and time to make good things happen, just like us. And some love!

1. Feedstock: Browns and Greens

BROWNS - Carbon to Nitrogen Ratio		GREENS – Carbon to Nitrogen Ratio	
Leaves	(30 to 60:1)	Fruit & vegetable scraps	s (15 to 20:1)
Straw	(75:1)	Coffee grounds	(20:1)
Corn stalks	(75:1)	Grass clippings	(15 to 25:1)
Pine needles	(80:1)	Animal manure	(7 to 25:1)
Woody plant prunings	(100:1)	Fresh alfalfa	(15:1)
Mixed paper	(200: 1)	Нау	(25:1)
Wood chips	(400:1)	Seaweed	(20:1)

1. Feedstock: A Simple Mix that Works

- Three or four 5-gallon buckets of food scraps
- One cubic yard of leaves would fill an average compost bin made from wood pallets

1. Feedstock: Sample Mixes

- Leaves
- Leaves, grass
- Leaves, food scraps, woody prunings
- Animal bedding (manure/straw)
- Leaves, animal bedding, woody prunings
- Leaves, food scraps, animal bedding, shredded paper
- Food scraps, shredded paper or straw (if worm composting)

1. Feedstock: Yard Trimmings

Leaves

- Easiest to compost
- Medium decomposition rate
- Compost alone, or mix with grass, ground up or shredded woody materials, or food scraps

Grass Clippings

- Reasonably simple to compost, provided they are mixed with leaves
- Often smells if composted alone
- Rapid decomposition rate, to point of self-combustion if mixed in big pile with woody material, and left untended
- Compost grass with leaves

Brush/Woody Materials

- Grind or shred
- Use directly as mulch, or compost with other materials
- Slow decomposition rate
- Loose brush should not be stockpiled with grass clippings due to potential fire hazard

1. Feedstock: Food Scraps

Vegetative Only

- No food of animal origin
- Relatively easy to compost
- Similar to compositing yard trimmings
- Meat/Dairy + Vegetative
 - Strongly recommend following health/safety requirements (Process to Further Reduce Pathogens)
 - Might attract animals

1. Feedstock: Paper

- Paper can be composted, in modest amounts:
 - Up to 10% by volume of compost pile
 - Shredded paper better than whole paper
 - Softer paper better than more rigid paper
 - Unwaxed cardboard better than waxed or plastic-coated
- Paper poses challenges for composting if:
 - Large quantities (high carbon)
 - Cardboard (too thick)
 - Milk cartons (plastic liner)

1. Feedstock: Considerations for Sourcing

Materials Generators

Quantities

Collection/Access

Seasonality

1. Feedstock: What's In and What's Out

- Many possible feedstocks
- Choose what works well for your program
- Start simple
- Add more feedstocks over time

FOOD SCRAP RECYCLING

1. Feedstock: Preventing Contamination at Food Facilities

Common Contaminants to Avoid

- Plastics (shrink wrap, straws, small packet wrappers, nitrile gloves)
- Paper (plastic-lined milk cartons, laminates, composites)
- Metal (occasional lost utensils)
- Glass (occasional bottles)
- Grease and cooking oil (not suitable for composting)

Need for education and training of food preparation, food service, dishwashing, and custodial staff

2. Water

Compost piles need water

- <u>Science</u>: Target starting range is 40% to 60% water by weight
- <u>Practical</u>: Use "squeeze test" to check moisture level (Wet as wrung-out sponge)

Hoop Barn

2. Water

ACTIONS

If too wet, you can:

- Add brown materials
- Use a cover (tarp or open-air structure)

If too dry, you can:

- Add green materials
- Increase watering {most important}
- Use a pile cover (e.g., tarp or mulch) to hold in moisture
- Reduce drying effects of wind by blocking it with a physical barrier, called a "wind break" (e.g., trees, mound of dirt), or moving the compost pile to a less windy area

3. Air ("Aerobic Composting")

- Compost piles need air
 - The little critters (microbes) who do the actual composting work need to breath!
- You may hear the term "aerobic" to describe composting or exercise; it means "with oxygen"
- If not enough air, good microbes die, "anaerobic" microbes thrive, and then compost piles can smell bad

3. Air ("Aerobic Composting")

• How to make sure the pile has enough air?

- <u>Feedstock mix</u>: mix of greens and browns, to make sure there is enough structure to the pile for air flow
 AND EITHER
- <u>Pile-turning</u>: pitchfork (small systems); tractor/front-end loader or other (larger systems)
 OR
- <u>Passive aeration</u>: perforated pipes layered in compost pile

Building Your Compost Pile: 3 Key Actions

4. Time

Compositing takes between 2 months and 18 months

- Can be sped up by managing the feedstock, air and water
- Is a forgiving process you will get the same results in the end regardless of how long it takes

If you are composting animal-based food scraps

- Turn the pile five times within 15 days and maintain 131 degrees Fahrenheit in the pile (Turning Method)
- Maintain 131 degrees Fahrenheit in the pile for 15 days (Static Pile Method)

•••• Determining When Compost is Ready

- Compost is ready when it looks, feels and smells like rich, dark earth
- ✓ It should be dark brown, crumbly and smell like earth

Troubleshooting

Problem	Cause	Solution
	Too wet	Turn the pile; add dry materials (i.e. sawdust)
Compost pile does not heat up	Too dry	Water the pile well (penetrate heap, without making it soggy)
	Not enough nitrogen	Turn the pile and add "greens" (i.e. grass, animal manure, food scraps, coffee grounds)
Compost pile smells putrid (like rotten eggs)	Too wet/ not enough air (pile is putrefying, not decomposing)	Turn the pile to increase air flow through it. Add dry materials that absorbs water
Compost pile has ants	Too dry	Turn the pile and add water
Compost pile is attracting small animals	Food scraps, especially meat, dairy, and grains	Enclose compost pile with ½ inch wire mesh and secure lid (if 1 to 3 bin system), add food to center of pile, turn the pile, ensure adequate heating of pile

Questions?

HOW COMPOSTING WORKS: APPROACHES & METHODS

•••• Community Composting Methods

- Smaller Scale (generally less than 10 cubic yards)
- Three-bin systems
- Trench
- Worm composting
- In-vessel

Larger Scale (defined as up to 100 cubic yards on site)

- Windrow (long pile)
- Passive aerated static pile

Composting Methods: Bins

Composting Methods: Bins

Size	Cost Estimate
1-10 CY	\$100 to \$300
Advantages	Limitations
 Low Cost Able to customize Pride in Do It Yourself (DIY) Neat, tidy Easy set-up 	 Turning piles by hand Costly unless stick to basic models
Recommended Supplies	
 Scrap wood, discarded pallets ,or cinder blocks Pitch fork Water and hose 	

Rodent-proof wire mesh (if composting food)

•••• Yocha Dehe Wintun Nation Community Composting

Shingle Springs Community Composting

Composting Methods: Trench Composting

Size	Cost Estimate
1-3 foot wide by 10-100 feet long by 2-3 feet deep	\$0 to \$500
Advantages	Limitations
No costLow maintenanceNo watering	Digging might be hardNeed spaceMay attract animals
Recommended Supplies	

- Minimum equipment needed: shovel(s)
- Desired equipment: small mechanical digger/excavator

$\bullet \bullet \bullet \bullet$ **Composting Methods: Worms**

Size	Cost Estimate	10
Scalable from the size of a cardboard box to the maximum for community composting	\$200 to \$10,000 depending initial size of system	g on
Advantages	Limitations	
 Easy, tidy, quiet Fun, educational for kids Makes excellent fertilizer 	 Narrow range of feedstoor vegetative food scraps Narrow range of suitable temperatures: worms die they freeze (32° F) or overheat (above 85-90° F) 	cks: e if ;)
Recommended Supplies		
 Scrounged dimensional lum 	ber or fruit crates	
Trowel(s)Shredded paper or straw		<i>Excellent</i> Sourcebook:
Rubber gloves		The Worm Farme
 Water bucket 		Handbook

Homemade screen

arry stock photo

Composting Methods: Turned Windrows

Farm-scale windrow turner attachments

Tractor with bucket

•••• Composting Methods: Turned Windrows

Size	Cost Estimate
Up to 100 CY on site at any one time (for "community composting")	Estimates will vary widely, depending on whether heavy equipment can be borrowed periodically for windrow formation and turning, rented on a short- term basis, or purchased used or new. As a large placeholder, assume a cost of \$10,000 to \$75,000 for equipment and supplies.
Advantages	Limitations
 Shape allows for easy access, mechanical turning, containment of possible run-off Can add new materials to end of small windrow or start new one 	 May need frequent watering and mechanical turning in first 30-60 days Needs available land, water, and buffer zone
Recommended Supplies	

- Water; water hoses or sprinkler system
- Large compost thermometer
- Shovels
- Possibly a wood/brush grinder/shredder
- Possibly a large truck to transport feedstocks

•••• Composting Technologies: Passive Aerated Static Pile

$\bullet \bullet \bullet \bullet$

Composting Technologies: Passive Aerated Static Pile

Size	Cost Estimate
Up to 100 CY on site at any one time (for "community composting")	Similar to turned windrow
Advantages	Limitations
 Same as above, plus aerated drain pipes reduces or eliminates need for pile turning to add air Conserves water more than windrow turning 	 Pipes may need to be unclogged occasionally Periodic turning may be needed or desirable to ensure all parts of compositing mass meets PRFP Needs available land, water, and buffer zone
Recommended Supplies	
 Tractor with bucket attachment, or front-e Shovels Water; hoses or sprinklers Large compost thermometer Perforated drain pipe Possibly a pile cover Possibly a wood/brush grinder/shredder Possibly a large truck for transporting feed 	end bucket loader

Area for Further Investigation: Small In-Vessel Composting Systems

Fully enclosed and mechanical

- Offers advantages of rapid composting, less labor, more system controls
- Poses potential disadvantages of high cost, need for electricity, need for spare parts and maintenance

DEVELOPING A COMMUNITY COMPOSTING PROGRAM: ASSESSING NEEDS & CAPACITY

•••• Community Assessment: Needs and Capacity

Issues and Strengths

- What are one or two important issues that composting could help to address?
- Which area(s) are we strongest in:
 - project management;
 - community mobilization;
 - figuring things out on our own;
 - access to outside resources;
 - other?

What would give us more confidence about implementing a successful program?

•••• Community Assessment: Needs and Capacity

Support

• Who in the community do we need to convince first and second?

- What specific existing or natural partnerships does the tribe have that could be particularly useful? What new or unexpected partnerships might be useful? Brainstorm "existing" and "new" partnerships.
- Who will help champion the project and what is their motivation to do so? Describe and rank by category:
 - community leaders
 - specific parts of our community
 - funders
 - partners

Community Assessment: Needs and Capacity

Success Indicators

- What would a moderately successful outcome look like?
- How can we tell if our program or project is successful?
- What would our program or project have to achieve for our community to consider it reasonably successful?
- Who will document our efforts, and how?

•••• Community Assessment: Action Items

[Community Assessment Discussion]

DEVELOPING A COMMUNITY COMPOSTING PROGRAM: PROGRAM PLANNING

Community Composting Program Planning

Program Plan: Outline

1. Goals

- 2. Feedstock, Sourcing, and Collection
- 3. Site Plan & Design
- 4. Operations Plan
- 5. Implementation Timeline
- 6. Outreach & Training for Behavior Change
- 7. Resource Needs & Budget
- 8. Documenting Results

2. Feedstock, Sourcing, and Collection

- Methods
 - On-site
 - Drop-off by car or small pick-up truck
 - Other

Sequencing Roll-Out

- Which materials generators to involve first?
- Next?

3. Process Site Plan and Design

• Site Plan

- Space needs
- Water availability
- Site preparation
- Site access and security
- Consider your Maximum Scale Site Design and Operations

4. Operations Plan

Operations Plan

- Site supervision
- Description of regular operations
- Site maintenance
- Nuisance control (odor, run-off, animals, dust, noise, intruders)
- Safety and accident prevention (people, spills, fires)

5. Implementation Timeline

- Sequencing of activities
- Setting target dates for phases
- Pilot phase
- Expansion phase
- Full-scale phase

6. Outreach & Training for Behavior Change

- Training is key to getting clean food scraps from casinos, restaurants, community centers, and grocery stores
- Training should focus on simple actions, reinforced by periodic re-fresher trainings
 - New, good habits take time and several positive reminders
- Education and training may be needed about the use of compost and mulch

7. Resource Needs & Budget

- Capital
- Operational costs
- Staffing (paid? part-time? all volunteer?)
- Community support
- Community partnerships
- Budget preparation (examples to follow)
- Funding

Budgets: Potential Cost Components

Initial Cost

- Site Improvements (grading, access road, fencing, utility hookups)
- Building/Covered Area
- Processing Equipment (tractor or front-end loader, compost turner attachment, hoses, compost cover, large thermometer, other)
- Design and Construction
- Start-up

Annual Cost

- Labor (administration, collection, site operation)
- Maintenance (parts and repair)
- Fuel
- Electrical Power
- Water
- Supplies
- Laboratory Services
- Other

Sample Budgets

Sample Budget - \$70,000

\$66,000 Year 1 Cost

- Concrete Pad (100 sq. ft.)
- Pick-up Truck (used)
- Wood chipper/shredder
- Front-end loader w/bucket
- Water line
- Electrical
- Hand tools/supplies
- Other (shed, fence, misc.)

Total Initial Costs

\$ 1,000 \$10,000 \$24,000 \$25,000 \$ 1,000 \$ 2,000 \$ 1,000 \$ 2,000

\$66,000

Annual Operational Costs \$ 4,000

- (300 cubic yards/year,
- 250 CY yard trimmings (40 tons),
- 50 CY vegetative food (20 tons)),
- Assumes part-time paid hauler/operator

Total Year 1 Costs \$70,000

Sample Budgets

Sample Budget - \$35,000

\$10,000 Year 1 Cost

Wood chipper/shredder

 Hand tools/supplies 	\$ 1,000

• Other	ې <u>3,00 ک</u>
Total Initial Costs	\$28,00

- Annual Operational Costs
- Discount occasional use of used tractor with bucket
 - \$ 3,000

\$24.000

- Part-time paid operator \$ 4,000
- Drop off of materials
- (same size operation)

Total Year 1 Costs\$ 35,000

8. Documenting Results

- Cost-benefit analysis (can be simple to complex)
- Amount and type of materials processed annually
- End uses and amounts of compost, mulch annually
- Employment generation, if any
- Volunteer engagement
- Perceived community and environmental benefits
- Other
•••• The Composting Journey: An Endpoint? Or Sprouting Beginnings?

"You must teach your children that the ground beneath their feet is the ashes of our grandfathers. So that they will respect the land, tell your children that the earth is rich with the lives of our kin. This we know. All things are connected." --attributed to Chief Seattle

Objectives Summary

You should now be able to:

- 1. Describe what compost is and its benefits
- 2. Identify community composting practices that might work well in your community
- 3. Pick a path to developing your community composting program

Additional Resources

Training Courses

- <u>U.S. Composting Council: compost</u> operations training courses
- Solid Waste Association of North America: managing composting programs e-course
- Maine Compost School: operator training, medium-scale composting (including fish and other animal carcasses)
- Institute for Tribal Environmental Professionals, Northern Arizona University: composting strategies and tribal food security

- Funding and Partnership Opportunities
 - <u>U.S. Environmental Protection</u>
 <u>Agency</u>
 - <u>Land-grant State Universities</u>: sustainable agriculture, food security, waste management (e.g., UC Davis, Oregon State University)
 - <u>State Cooperative Extension Services</u> (e.g., Washington State University, University of Idaho Extension)
 - <u>Statewide Recycling Trade</u>
 <u>Associations</u> (e.g., Association of Oregon Recyclers, California
 Organics Recycling Council, Arizona
 Recycling Coalition, Northern
 California Recycling Association)
 - <u>County Master Composter</u> groups

Solutions Are in Our Hands

Composting is a hopeful act,

showing faith in the future

and in future generations

Instructor's Contact Information

Steven Sherman

Compost Program Planner/Resource Economist

Steven Sherman Consulting 3141 Lewiston Avenue, Suite B Berkeley, California 94705

Telephone: (510) 773-2776

Email: stevenericsherman@gmail.com

LinkedIn: https://www.linkedin.com/in/steven-sherman-5016698

EPA Tribal Solid Waste Coordinators

For additional assistance, please reach out to your EPA Tribal Solid Waste contact

Region 9	Deirdre Nurre	<u>Nurre.Deirdre@epa.gov</u>		
	Jenny Stephenson	Stephenson.Jenny@epa.gov		
	Robert Seaman	<u>Seaman.Robert@epa.gov</u>		
Region 10	Gabriela Carvalho	<u>Carvalho.Gabriela@epa.gov</u>		
	Angel Ip	<u>lp.Angel@epa.gov</u>		
	Rick McMonagle	McMonagle.Richard@epa.gov		
	Jim Penor	Penor.James@epa.gov		

More Regional EPA Tribal Waste contacts:

<u>https://www.epa.gov/tribal-lands/forms/contact-us-about-tribal-</u> waste-management

BACKUP

Picking the Right Composting Technique for You Hint: For Your Program, Use More Than One

ТҮРЕ	SIZE	ADVANTAGES	LIMITATIONS	BEST APPLICATION	MATERIALS NOT TO USE
Неар	1-5 CY	No cost. Low maintenance. Easy.	Slow decomposition. May attract animals. Can look untidy. Possible fire risk.	Area not directly visible to neighbors.	Meat, bone, dairy, excessive food.
Bins—Build Your Own Bins—Purchase	1-10 CY	Low cost. Able to customize. Pride in DIY. Neat, tidy. Easy set- up.	Turning piles by hand. Costly unless stick to basic models.	Home, school, community center.	Wide range of acceptable materials.
Trench	< 1 CY	No cost. Low maintenance. No watering.	Digging might be hard. Need space. May attract animals.	For new gardens or landscapes.	Wide range of acceptable materials.
Worms	< 1 CY	Easy, neat, tidy. Fun for kids. Makes excellent fertilizer.	Narrow range: vegetative food scraps.	Indoor or outdoor, food scraps	Meat, bone, excessive citrus

Picking the Right Composting Technique for You Hint: For Your Program, Use More Than One

ТҮРЕ	SIZE	ADVANTAGES	LIMITATIONS	BEST APPLICATION	MATERIALS NOT USE
Windrow	Up to 100 CY on site at any one time (for "community composting")	Shape allows for easy access, mechanical turning, containment of possible run-off. Can add new materials to end of small windrow or start new one.	May need frequent watering and mechanical turning in first 30-60 days. Needs available land, water, and buffer zone.	Upper end of community composting size range.	Wide range of acceptable materials.
Passive Aerated Static Pile	Up to 100 CY on site at any one time (for "community composting")	Same as above, plus aerated drain pipes reduces or eliminates need for pile turning to add air. Conserves water more than windrow turning.	Pipes may need to be unclogged occasionally. Periodic turning may be needed or desirable to ensure all parts of composting mass meets PRFP. Needs available land, water, and buffer zone.	Upper end of community composting size range.	Wide range of acceptable materials.

Low organic matter

High organic matter

add compost

Healthy soil, healthy food, healthy communities ⁸³

